23,275 research outputs found

    Assessing hyper parameter optimization and speedup for convolutional neural networks

    Get PDF
    The increased processing power of graphical processing units (GPUs) and the availability of large image datasets has fostered a renewed interest in extracting semantic information from images. Promising results for complex image categorization problems have been achieved using deep learning, with neural networks comprised of many layers. Convolutional neural networks (CNN) are one such architecture which provides more opportunities for image classification. Advances in CNN enable the development of training models using large labelled image datasets, but the hyper parameters need to be specified, which is challenging and complex due to the large number of parameters. A substantial amount of computational power and processing time is required to determine the optimal hyper parameters to define a model yielding good results. This article provides a survey of the hyper parameter search and optimization methods for CNN architectures

    An evolutionary algorithm for online, resource constrained, multi-vehicle sensing mission planning

    Full text link
    Mobile robotic platforms are an indispensable tool for various scientific and industrial applications. Robots are used to undertake missions whose execution is constrained by various factors, such as the allocated time or their remaining energy. Existing solutions for resource constrained multi-robot sensing mission planning provide optimal plans at a prohibitive computational complexity for online application [1],[2],[3]. A heuristic approach exists for an online, resource constrained sensing mission planning for a single vehicle [4]. This work proposes a Genetic Algorithm (GA) based heuristic for the Correlated Team Orienteering Problem (CTOP) that is used for planning sensing and monitoring missions for robotic teams that operate under resource constraints. The heuristic is compared against optimal Mixed Integer Quadratic Programming (MIQP) solutions. Results show that the quality of the heuristic solution is at the worst case equal to the 5% optimal solution. The heuristic solution proves to be at least 300 times more time efficient in the worst tested case. The GA heuristic execution required in the worst case less than a second making it suitable for online execution.Comment: 8 pages, 5 figures, accepted for publication in Robotics and Automation Letters (RA-L

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    A MPC Strategy for the Optimal Management of Microgrids Based on Evolutionary Optimization

    Get PDF
    In this paper, a novel model predictive control strategy, with a 24-h prediction horizon, is proposed to reduce the operational cost of microgrids. To overcome the complexity of the optimization problems arising from the operation of the microgrid at each step, an adaptive evolutionary strategy with a satisfactory trade-off between exploration and exploitation capabilities was added to the model predictive control. The proposed strategy was evaluated using a representative microgrid that includes a wind turbine, a photovoltaic plant, a microturbine, a diesel engine, and an energy storage system. The achieved results demonstrate the validity of the proposed approach, outperforming a global scheduling planner-based on a genetic algorithm by 14.2% in terms of operational cost. In addition, the proposed approach also better manages the use of the energy storage system.Ministerio de Economía y Competitividad DPI2016-75294-C2-2-RUnión Europea (Programa Horizonte 2020) 76409

    Designing Conducting Polymers Using Bioinspired Ant Algorithms

    Full text link
    Ant algorithms are inspired in real ants and the main idea is to create virtual ants that travel into the space of possible solution depositing virtual pheromone proportional to how good a specific solution is. This creates a autocatalytic (positive feedback) process that can be used to generate automatic solutions to very difficult problems. In the present work we show that these algorithms can be used coupled to tight-binding hamiltonians to design conducting polymers with pre-specified properties. The methodology is completely general and can be used for a large number of optimization problems in materials science
    corecore