7,677 research outputs found

    Optical router for optical fiber sensor networks based on a liquid crystal cell

    Get PDF
    Optical fiber sensor networks are evolving rapidly. They are used because of the inert nature of optical fibers allowing no electromagnetic interference and safe applications in inflammable atmospheres; other relevant characteristics are their low weights and wide bandwidths as a transmission medium. In any case, it is very interesting to have specific components such as optical routers for selecting a certain path in a network with no optical to electrical and electrical to optical conversions. In this paper, we propose an all-optical router based on liquid crystals, polarizers, and a spatial split polarization beam splitter. The implemented device is designed to operate with visible light and it has been tested with plastic optical fibers. It has a crosstalk of 14 dB between selected ON channels and nonoperative OFF channels and 11-dB insertion losses. An average switch time of 100 ms is measured. The device checks the optical power level in each channel and, in case of failure, automatically switches to an operative channel while an alarm is activated.Publicad

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    New Electronic Interface Circuits for Humidity Measurement Based on the Current Processing Technique

    Get PDF
    The paper describes a new electronic conditioning circuit based on the current-processing technique for accurate and reliable humidity measurement, without post-processing requirements. Pseudobrookite nanocrystalline (Fe2TiO5) thick film was used as capacitive humidity transducer in the proposed design. The interface integrated circuit was realized in TSMC 0.18 mu m CMOS technology, but commercial devices were used for practical realization. The sensing principle of the sensor was obtained by converting the information on environment humidity into a frequency variable square-wave electric current signal. The proposed solution features high linearity, insensitivity to temperature, as well as low power consumption. The sensor has a linear function with relative humidity in the range of Relative Humidity (RH) 30-90 %, error below 1.5 %, and sensitivity 8.3 x 10(14) Hz/F evaluated over the full range of changes. A fast recovery without the need of any refreshing methods was observed with a change in RH. The total power dissipation of readout circuitry was 1 mW

    Strategies for increasing the operating frequency range of vibration energy harvesters: a review

    No full text
    This paper reviews possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, non-linear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This paper presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach

    Formaldehyde sensor using non-dispersive UV spectroscopy at 340nm

    Get PDF
    Formaldehyde is a volatile organic compound that exists as a gas at room temperature. It is hazardous to human health causing irritation of the eyes, nose and throat, headaches, limited pulmonary function and is a potential human carcinogen. Sources include incomplete combustion, numerous modern building materials and vehicle fumes. Here we describe a simple method for detecting formaldehyde using low resolution non-dispersive UV absorption spectroscopy for the first time. A two channel system has been developed, making use of a strong absorption peak at 339nm and a neighbouring region of negligible absorption at 336nm as a reference. Using a modulated UV LED as a light source and narrowband filters to select the desired spectral bands, a simple detection system was constructed that was specifically targeted at formaldehyde. A minimum detectable absorbance of 4.5 × 10-5 AU was estimated (as ΔI/I0), corresponding to a limit of detection of approximately 6.6 ppm for a 195mm gas cell, with a response time of 20s. However, thermally-induced drift in the LED spectral output caused this to deteriorate over longer time periods to around 30 ppm or 2 × 10-4 A

    Efficient large-scale multiplexing of fiber Bragg grating and fiber Fabry-Perot sensors for structural health monitoring applications

    Get PDF
    Fiber Bragg gratings have been demonstrated as a versatile sensor for structural health monitoring. We present an efficient and cost effective multiplexing method for fiber Bragg grating and fiber Fabry-Perot sensors based on a broadband mode-locked fiber laser source and interferometric interrogation. The broadband, pulsed laser source permits time and wavelength division multiplexing to be employed to achieve very high sensor counts. Interferometric interrogation also permits high strain resolutions over large frequency ranges to be achieved. The proposed system has the capability to interrogate several hundred fiber Bragg gratings or fiber Fabry-Perot sensors on a single fiber, whilst achieving sub-microstrain resolution over bandwidths greater than 100 kHz. Strain resolutions of 30n epsilon/Hz(1/2) and 2 n epsilon/Hz(1/2) are demonstrated with the fiber Bragg grating and fiber Fabry-Perot sensor respectively. The fiber Fabry-Perot sensor provides an increase in the strain resolution over the fiber Bragg grating sensor of greater than a factor of 10. The fiber Bragg gratings are low reflectivity and could be fabricated during the fiber draw process providing a cost effective method for array fabrication. This system would find applications in several health monitoring applications where large sensor counts are necessary, in particular acoustic emission

    Fibre Bragg Grating Sensors for Acoustic Emission and Transmission Detection Applied to Robotic NDE in Structural Health Monitoring

    Get PDF
    Distributed acoustic emission sensors are used in structural health monitoring (SHM) for the detection of impacts and/or strain, in real time. Secondary damage may result from the initial impact or strain. This damage may include surface pitting, erosion, or cracking. This type of damage may not be detectable by the SHM system, specifically in passive fiber optic based sensing systems. The integration of non-destructive evaluation (NDE) by robots into SHM enables the detection and monitoring of a wider variety of damage. Communicating via acoustic transmissions represents a wireless communications method for use by NDE inspection robots to communicate with an integrated SHM system that does not require any additional hardware, as piezoelectric transducers are commonly used in the NDE of materials. In this paper, we demonstrate the detection of both acoustic emissions and transmissions with a fiber Bragg grating (FBG) sensor. The acoustic communications channel comprises of a piezoelectric transmitter, an aluminum panel as the transmission medium, and a FBG receiver. Phase Shift Keying was used to encode the acoustic transmissions. Results for the frequency and transient response of the channel are presented
    corecore