311 research outputs found

    Development of tunable and miniature microwave filters for modern wireless communications

    Get PDF
    Due to the increasing demand for new wireless services and applications, the high level of integration and the coexistence of multi-standard (MS) or multi-band operations into a single device are becoming defining trends in designing microwave filters. This has driven considerable technological advances in reconfigurable/tunable and miniaturized filters. More specifically, reconfigurable/tunable filters that tune to different frequency bands instead of classical filter banks have great potential to significantly reduce the system size and complexity; while reducing the filter size becomes essential to achieve the highest degree of integration density in compact and portable wireless devices. In the light of this scenario, the objective of this dissertation is to develop the new design technologies, concepts and filtering configurations for tunable microstrip filters and compact passive microwave filters. To this aim, this dissertation is divided into two main parts. The first part (Part I) focuses on the designs of novel varactor-tuned microstrip filters with advanced performances. In this aspect, new topologies for realizing tunable lowpass and highpass filters are firstly developed. State-of-the-art performances, including wide tuning range, high selectivity with multiple transmission zeros, low insertion loss and compact size for all the tuning states are obtained in both of these filters. Secondly, two novel classes of tunable bandpass filters are presented. One of them is designed based on varactor-loaded parallel-coupled microstrip lines (PCML) and short-circuited stubs, which allows the lower passband edge together with two transmission zeros located around the lower passband skirt to be reconfigured separately. While the other tunable bandpass filter is constructed by the combination of tunable bandpass and lowpass filters, featuring both centre frequency and bandwidth tunabilities, as well as high selectivity with abundant transmission zeros. Furthermore, a new concept of tunable lossy filter is demonstrated, which attempts to achieve an equivalent high-Q tunable performance by using low-Q resonators. This concept makes the presented tunable combline filter interesting for some frequency-agile applications in which the low in-band loss variation and high selectivity are much desired while the absolute insertion loss can be a tradeoff. The second part (Part II) is devoted to the design of miniaturized passive microwave filters with improved characteristics. For this, the concept of artificial right-handed and left-handed transmission lines are applied to the signal interference filtering topology, which results in a compact circuit size and good out-of-band performance. In particular, for a further size reduction, such filter is implemented in the forms of multilayered structure by using liquid crystal polymer (LCP) technology. Additionally, another two types of miniaturized bandpass filters using stepped impedance resonators are demonstrated, which are implemented based on different fabrication processes (i.e. LCP bonded multilayer PCB technology and a standard planar PCB technology). Among their main features, the compact size, wide passband, broad stopband with multiple transmission zeros and circuit simplicity are highlighted. For all the proposed design techniques and filtering structures, exhaustive theoretical analyses are done, and design equations and guide rules are provided. Furthermore, all the proposed schemes and/or ideas have been experimentally validated through the design, implementation and measurement of different filters. The fabrication processes of multilayer technology utilized: liquid crystal polymer (LCP) technology and liquid crystal polymer (LCP) bonded multilayer printed circuit board (PCB) technology, are also demonstrated for reference. All of the results achieved in this dissertation make the proposed filters very attractive for their use in modern wireless communication systems

    Development of turnable and miniature microwave filters for modern wireless communication

    Get PDF
    Due to the increasing demand for new wireless services and applications, the high level of integration and the coexistence of multi-standard (MS) or multi-band operations into a single device are becoming defining trends in designing microwave filters. This has driven considerable technological advances in reconfigurable/tunable and miniaturized filters. More specifically, reconfigurable/tunable filters that tune to different frequency bands instead of classical filter banks have great potential to significantly reduce the system size and complexity; while reducing the filter size becomes essential to achieve the highest degree of integration density in compact and portable wireless devices. In the light of this scenario, the objective of this dissertation is to develop the new design technologies, concepts and filtering configurations for tunable microstrip filters and compact passive microwave filters. To this aim, this dissertation is divided into two main parts. The first part (Part I) focuses on the designs of novel varactor-tuned microstrip filters with advanced performances. In this aspect, new topologies for realizing tunable lowpass and highpass filters are firstly developed. State-of-the-art performances, including wide tuning range, high selectivity with multiple transmission zeros, low insertion loss and compact size for all the tuning states are obtained in both of these filters. Secondly, two novel classes of tunable bandpass filters are presented. One of them is designed based on varactor-loaded parallel-coupled microstrip lines (PCML) and short-circuited stubs, which allows the lower passband edge together with two transmission zeros located around the lower passband skirt to be reconfigured separately. While the other tunable bandpass filter is iii constructed by the combination of tunable bandpass and lowpass filters, featuring both centre frequency and bandwidth tunabilities, as well as high selectivity with abundant transmission zeros. Furthermore, a new concept of tunable lossy filter is demonstrated, which attempts to achieve an equivalent high-Q tunable performance by using low-Q resonators. This concept makes the presented tunable combline filter interesting for some frequency-agile applications in which the low in-band loss variation and high selectivity are much desired while the absolute insertion loss can be a tradeoff. The second part (Part II) is devoted to the design of miniaturized passive microwave filters with improved characteristics. For this, the concept of artificial right-handed and left-handed transmission lines are applied to the signal interference filtering topology, which results in a compact circuit size and good out-of-band performance. In particular, for a further size reduction, such filter is implemented in the forms of multilayered structure by using liquid crystal polymer (LCP) technology. Additionally, another two types of miniaturized bandpass filters using stepped impedance resonators are demonstrated, which are implemented based on different fabrication processes (i.e. LCP bonded multilayer PCB technology and a standard planar PCB technology). Among their main features, the compact size, wide passband, broad stopband with multiple transmission zeros and circuit simplicity are highlighted. For all the proposed design techniques and filtering structures, exhaustive theoretical analyses are done, and design equations and guide rules are provided. Furthermore, all the proposed schemes and/or ideas have been experimentally validated through the design, implementation and measurement of different filters. The fabrication processes of multilayer technology utilized: liquid crystal polymer (LCP) technology and liquid crystal polymer (LCP) bonded multilayer printed circuit board (PCB) technology, are also demonstrated for reference. All of the results achieved in this dissertation make the proposed filters very attractive for their use in modern wireless communication systems.MultiWaves Project (PIRSES-GA-2010-247532) of the Seventh Framework Programme (FP7), European Commission

    GaAs MMIC nonreciprocal single-band, multi-band, and tunable bandpass filters

    Get PDF
    This article reports on the RF design and practical development of active MMIC single-band, multi-band, and tunable bandpass filters (BPFs) with lossless and nonreciprocal transfer functions. They are based on series-cascaded lumped-element frequency-selective cells that are coupled with MMIC-based FETs. The FETs introduce gain and counteract the loss of the lossy elements. Furthermore, due to their unilateral behavior, nonreciprocal transfer functions can be obtained. This allows for an RF codesigned filtering isolator functionality to be created within a single RF component. By cascading multiple frequency-selective cells, both single-band and multi-band transfer functions with and without transmission zeros (TZs) can be realized. The basic operating principles of the MMIC concept are first described through parametric studies on different types of frequency-selective cells. These are followed by tunable and higher selectivity design methodologies. For practical demonstration purposes, four MMIC prototypes were designed, built, and measured using a commercially available GaAs process. They include a three-cell frequency-tunable BPF, two dual-band BPFs, and a quasi-elliptic BPF

    Microwave Filters in Planar and Hybrid Technologies with Advanced Responses

    Full text link
    [ES] La presente tesis doctoral tiene como principal objetivo el estudio, diseño, desarrollo y fabricación de nuevos dispositivos pasivos de microondas, tales como filtros y multiplexores con respuestas avanzadas para aplicaciones de alto valor añadido (i.e. comerciales, militares, espacio); orientados a distintos servicios, actuales y futuros, en sistemas inalámbricos de comunicación. Además, esta investigación se centrará en el desarrollo de filtros encapsulados de montaje superficial y con un elevado grado de miniaturización. Para ello, se propone investigar distintas técnicas que consigan respuestas muy selectivas o con unas características exigentes en rechazo (mediante la flexible introducción de ceros de transmisión), así como una excelente planaridad en banda (aplicando técnicas tales como la mejora del Q o el diseño de filtros con pérdidas, lossy filters), obteniendo de este modo respuestas mejoradas, con respecto a soluciones conocidas, en los componentes de microondas desarrollados. De forma general, la metodología seguida se iniciará con una búsqueda y conocimiento del estado del arte sobre cada uno de los temas que se acometerán en esta tesis. Tras ello, se establecerá un procedimiento de síntesis que permitirá acometer de forma teórica los objetivos y especificaciones a conseguir en cada caso. Con ello, se establecerán las bases para iniciar el proceso de diseño, incluyendo co-simulación circuital/electromagnética y optimización que permitirán, en última instancia, implementar la solución planteada en cada caso de aplicación concreto. Finalmente, la demostración y validez de todas las investigaciones realizadas se llevará a cabo mediante la fabricación y caracterización experimental de distintos prototipos.[CA] La present tesi doctoral té com a principal objectiu l'estudi, disseny, desenvolupament I fabricació de nous dispositius passius de microones, com ara filtres i multiplexors amb respostes avançades per a aplicacions d'alt valor afegit, (comercials, militars, espai); orientats a oferir diferents serveis, actuals i futurs, en els diferents sistemes sense fils de comunicació. A més, aquesta investigació es centrarà en el desenvolupament de filtres encapsulats de muntatge superficial i amb un elevat grau de miniaturització. Per a això, es proposa investigar diferents tècniques que aconsegueixin respostes molt selectives o amb unes característiques exigents en rebuig (mitjançant la flexible introducció de zeros de transmissió), així com una excel·lent planaritat en banda (aplicant tècniques com ara la millora de l'Q o el disseny de filtres amb perdues, lossy filters), obtenint d'aquesta manera respostes millorades, respecte solucions conegudes, en els components de micrones desenvolupats. De forma general, la metodologia seguida s'iniciarà amb una recerca i coneixement de l'estat de l'art sobre cadascun dels temes que s'escometran en aquesta tesi. Després d'això, s'establirà un procediment de síntesi que permetrà escometre de forma teòrica els objectiusi especificacions a aconseguir en cada cas. Amb això, s'establiran les bases per iniciar el procés de disseny, amb co-simulació circuital / electromagnètica i optimització que permetran, en última instància, implementar la solució plantejada en cada cas d'aplicació concret. Finalment, la demostració i validesa de totes les investigacions realitzades es durà a terme mitjançant la fabricació i caracterització experimental de diferents prototips.[EN] The main objective of this doctoral thesis is the study, design, development and manufacture of new passive microwave components, such as filters and multiplexers with advanced responses for commercials, military and space applications; oriented to other different services, in current and future wireless communication systems. In addition, this research will focus on the development of surface-mounted encapsulated filters with a high degree of miniaturization. With this purpose, it is proposed to investigate different techniques that achieve highly selective responses or with demanding characteristics in rejection (through the flexible introduction of transmission zeros), as well as an excellent in-band planarity (applying techniques such as the Q enhancement or lossy filters), thus obtaining improved responses, with respect to known solutions, in the developed microwave components. In general, the followed methodology will begin with a search and knowledge of the state of the art on each of the topics addressed in this thesis. After that, a synthesis procedure will be established, which will allow the achievement of the objectives and specifications in a theoretical way, for each case. With this, the bases will be established to start the design process, with circuital and electromagnetic co-simulations and optimizations that will allow, ultimately, to implement the proposed solution, in every application case, specifically. Finally, the demonstration and validity of all the investigations will be carried out through the manufacture and experimental characterization of different prototypes.Marín Martínez, S. (2022). Microwave Filters in Planar and Hybrid Technologies with Advanced Responses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18894

    Planar groove gap waveguides

    Get PDF
    With the increasing demand for wireless services and applications, the integration and coexistence of multi-standard and multi-band operations into a single device has led to intensive research in the design of tunable and reconfigurable planar devices. A planar medium to achieve this integration is the Substrate Integrated Waveguide (SIW). However, due to a lack of DC isolated planes of the structure, bridging wires or concentric etched rings are often used to enable active device biasing. This research presents a novel planar structure referred to as the Planar Groove Gap Waveguide (PGGWG). The new structure has similar modal characteristics to air-filled machined Groove Gap Waveguide (GGWG), but in a low-cost fabrication technology that is readily integrated with surface mount components. The structure provides two DC isolated conducting planes, while still providing a low loss planar transmission medium. Simulation results demonstrate the existence of a TE10 propagating mode within the artificially created bandgap. There is good agreement between de-embedded simulated and measured results over the usable bandwidth of the waveguide (28 to 40 GHz). A passband is measured having an average insertion loss of 1.2 dB and 0.5 dB insertion loss variation implemented on a substrate of relative permittivity r of 3.5, and loss tangent of 0.004. The broadband characterization of the transmission line loss and phase constant for PGGWG at Ka-band shows that PGGWG has comparable attenuation over the band of interest to SIW. The transmission line Q-factor is found to vary from 135 to 140 over the band of interest, which is comparable to SIW in the same medium. PGGWG is also found to have a phase constant of nearly double that of comparable SIW, which is a significant results for system miniaturization. The unloaded Q-factor of a 33.5GHz PGGWG rectangular cavity resonator is measured to be 209. This is found to be comparable to an SIW resonator on the same substrate and frequency band. This work further explores the DC isolation property of the PGGWG by presenting electrically tunable PGGWG resonant cavities. It is found that a simple biasing network can be applied to the cavity using a varactor diode to vary the resonant frequency of the cavity. This is done without bridging wire and concentric etched rings as a direct result of the DC isolation of the PGGWG. A tuning range of 4.5% is achieved in measurement. From the experiments conducted, it is concluded that PGGWG can be used as an alternative planar waveguide media. The PGGWG platform can be used in the design and implementation of RF front-end components at millimeter waves. Its DC isolated conducting planes also provide a simple way of biasing active components in frequency agile applications

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    Passive Planar Microwave Devices

    Get PDF
    The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide

    Synthesis of acoustic wave filters : ladder and transversal topologies : towards a practical implementation

    Get PDF
    The meteoric growth of the mobile communication market for the last three decades has been strongly related with the evolution of the electroacoustic (EA) filter technology. With way over 5 billion cell phone users worldwide in 2017 and 5G standard in the horizon, the radiofrequency spectrum is becoming increasingly crowded whereas demand for mobile data has no expected limits in the short to medium term. In this scenario, where a unique filter needs to be designed for each band of operation, requirements for advanced filtering solutions continue to grow as well as the average value of the RF solutions and the RF content per mobile device. RF and microwave devices based on EA resonators such as Bulk Acoustic Wave (BAW) and Surface Acoustic Wave (SAW) filters overcame the limitations of the existent technologies back in the 1980’s thanks to its compatibility with the manufacturing process of standard Silicon Integrated Circuits (Si-IC). Nowadays sophisticated RF Front-End (RFFE) Modules based on System-in-Package (SiP) are the key solution to integrate the increasing number of electronic parts - Power Amplifiers (PAs), Low Noise Amplifiers (LNAs) and switches - that accompanies acoustic filtering devices like filters, duplexers and multiplexers. Even though the level of complexity and accuracy present on the current EA devices is extraordinary, the design procedures for acoustic filters are still based on the optimization of built-in performance parameters from behavior-based compact models of resonators and the success on this duty relies mostly on the expertise of the designers. However due to the stringent technological constrains and the increasing complexity of the RFFE module architectures devoted to satisfy demanding specifications of the current and forthcoming communications standards, the challenging work of the designers is never getting easier. The aim of this work is focused on providing valuable insights that might help to overcome some of the existent limitations in the design of EA filters. Wider bandwidths, prescribed inclusion of external elements or multiplexing features are taken into consideration. On one hand we show a synthesis formulation and an automated procedure to carry out the synthesis for current well-known topologies, i.e. ladder, taking into consideration realistic values and specifications. On the other hand, a synthesis formulation for novel topologies, named here transversal, is provided. Success of this novel topology will certainly help to guarantee the prevalence of EA filters in the future communication standards, along with the extension to other applications with more stringent requirements and different operating frequencies. The first part of the work is devoted to explain the basic theory related to filter synthesis and its applicability to filters based on EA resonators. Subsequent chapters elaborate the theory to explain the procedures followed to obtain both synthesis and their limitations. Finally, a Chapter devoted to study cases shows the results of applying the filter synthesis to real case scenarios.El creixement meteòric del mercat de comunicacions mòbils durant les últimes tres dècades ha estat fortament relacionat amb l'evolució de la tecnologia de filtres electroacústics (EA). Amb més de 5 bilions d'usuaris de telefonia mòbil al món i amb implantació del 5G a l'horitzó, l'ocupació de l'espectre de radioelèctric és cada cop més gran, mentre que la demanda de dades mòbils no para de créixer exponencialment. En aquest escenari, on s'ha de dissenyar un filtre únic per a cada banda d'operacions, continuen creixent els requisits per a solucions de filtratge avançades, així com el valor mitjà de les solucions RF i el contingut de RF per dispositiu mòbil. Els filtres de radi i microones basats en ressonadors EA com Bulk Acoustic Wave (BAW) i Surface Acoustic Wave (SAW) filtren la superació de les limitacions de les tecnologies existents a la dècada de 1980 gràcies a la seva compatibilitat amb el procés de fabricació de circuits integrats de silici estàndard (Si -I C). Actualment, els sofisticats mòduls de front-end RF (RFFE) basats en System-in-Package (SiP) són la solució clau per integrar el nombre creixent de peces electròniques (amplificadors de potència (PA)), amplificadors de baix soroll (LNAs) i interruptors - que acompanya. dispositius de filtratge acústic com filtres, dúplex i multiplexors. Tot i que el nivell de complexitat i precisió presents als dispositius EA actuals és extraordinari, els procediments de disseny dels filtres acústics continuen basant-se en l’optimització de paràmetres de rendiment integrats a partir de models compactes de ressonadors basats en el comportament i l’èxit d’aquest servei es basa. principalment en l’experiència dels dissenyadors. No obstant això, a causa de les estrictes limitacions tecnològiques i la creixent complexitat de les arquitectures del mòdul RFFE dedicades a satisfer les especificacions exigents dels estàndards de comunicació actuals i propers, el treball desafiant dels dissenyadors no és mai fàcil. L'objectiu d'aquest treball està enfocat a proporcionar informació valuoses que puguin ajudar a superar algunes de les limitacions existents en el disseny de filtres EA. Es tenen en compte grans amplades de banda, la inclusió prescrita d’elements externs o les funcions de multiplexació. D’una banda mostrem una formulació de síntesi i un procediment automatitzat per realitzar la síntesi per a topologies conegudes actuals, és a dir, escala, tenint en compte valors i especificacions realistes. D'altra banda, es proporciona una formulació de síntesi per a noves topologies, anomenades aquí transversals. L’èxit d’aquesta nova topologia ajudarà sens dubte a garantir la prevalença de filtres EA en els futurs estàndards de comunicació, així com l’extensió a altres aplicacions amb requisits més estrictes i diferents freqüències de funcionament. La primera part del treball està dedicada a explicar la teoria bàsica relacionada amb la síntesi de filtres i la seva aplicabilitat als filtres basats en ressonadors EA. Capítols posteriors elaboren la teoria per explicar els procediments seguits per obtenir tant la síntesi com les seves limitacions. Finalment, un capítol dedicat a casos d’estudi mostra els resultats de l’aplicació de la síntesi del filtre a escenaris de casos reals.Teoria del Senyal i Comunicacion
    • …
    corecore