8 research outputs found

    Tunable, Concurrent Multiband, Single Chain Radio Architecture for Low Energy 5G-RANs

    Get PDF
    This invited paper considers a key next step in the design of radio architectures aimed at supporting low energy consumption in 5G heterogeneous radio access networks. State-of-the-art mobile radios usually require one RF transceiver per standard, each working separately at any given time. Software defined radios, while spanning a wide range of standards and frequency bands, also work separately at any specific time. In 5G radio access networks, where continuous, multiband connectivity is envisaged, this conventional radio architecture results in high network power consumption. In this paper, we propose the novel concept of a concurrent multiband frequency-agile radio (CM-FARAD) architecture, which simultaneously supports multiple standards and frequency bands using a single, tunable transceiver. We discuss the subsystem radio design approaches for enabling the CM-FARAD architecture, including antennas, power amplifiers, low noise amplifiers and analogue to digital converters. A working prototype of a dual-band CM-FARAD test-bed is also presented together with measured salient performance characteristics

    An Independently Tunable Tri-band Antenna Design for Concurrent Multi-band Single Chain Radio Receivers

    Get PDF
    In this paper, a novel tunable tri-band antenna is presented for concurrent, multi-band, single chain radio receivers. The antenna is manufactured on a 50×100 mm FR4 printed circuit board (PCB), and is able to provide three concurrent, independently tunable operating bands covering a frequency range from 600 MHz to 2.7 GHz. The antenna performance is investigated for both numerical and experimental methods when using, first, varactor diodes and, second, digitally tunable capacitors (DTCs) to tune frequencies, which shows the antenna gain can be improved by up to 2.6 dBi by using DTCs. A hardware-in-the-loop test-bed provides a system level evaluation of the proposed antenna in a direct RF digitized, concurrent, tri-band radio receiver. By measuring the receiver’s error vector magnitude, we demonstrate sufficient isolation between concurrent bands achieving 30 MHz of aggregated bandwidth as well as strong resilience to adjacent blockers next to each band. The data reported in this article are available from the ORDA digital repository (https://doi.org/10.15131/shef.data.5346295)

    Direct IF sampling receivers for 5G millimeter-wave communications systems

    Get PDF
    Reducing receiver complexity and power consumption are important design goals in fifth-generation (5G) millimeter-wave (mm-wave) communications systems. One approach for achieving these goals is to employ direct intermediate frequency (IF) sampling at sub-Nyquist rates in a superheterodyne receiver architecture using digital downconversion of the IF signal. This paper presents original measured results characterizing in detail the signal-to-noise-ratio (SNR), error vector magnitude (EVM), and block error rate (BLER) performances of a direct IF subsampling mm-wave receiver with subsampling rate as a parameter. A software-defined radio (SDR) receiver using direct IF subsampling was implemented in a 28GHz, beamforming, over-the-air (OTA), hardware-in-the-loop (HWIL), SDR testbed using a 2.52 GHz IF. For a quadrature phase shift keying (QPSK) modulated long-term evolution (LTE) signal subsampled at 500 MHz, a small SNR penalty of Ëś3dB at 5% BLER was obtained over a 10 GHz Nyquist sampling benchmark

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Quantum Dash Multi-Wavelength Lasers for Next Generation High Capacity Multi-Gb/s Millimeter-Wave Radio-over-Fiber Wireless Communication Networks

    Get PDF
    The ever-increasing proliferation of mobile users and new technologies with different applications and features, and the demand for reliable high-speed high capacity, pervasive connectivity and low latency have initiated a roadmap for the next generation wireless networks, fifth generation (5G), which is set to revolutionize the existing wireless communications. 5G will use heterogeneous higher carrier frequencies from the plentifully available spectra in the higher microwave and millimeter-wave (MMW) bands, including licensed and unlicensed spectra, for achieving multi-Gb/s wireless connectivity and overcoming the existing wireless spectrum crunch in the sub-6 GHz bands, resulting from the tremendous growth of data-intensive technologies and applications. The use of MMW when complemented by multiple-input-multiple-output (MIMO) technology can significantly increase data capacity through spatial multiplexing, and improve coverage and system reliability through spatial diversity. However, high-frequency MMW signals are prone to extreme propagation path loss and are challenging to generate and process with conventional bandwidth-limiting electronics. In addition, the existing digitized fronthaul for centralized radio access network (C-RAN) architecture is considered inefficient for 5G and beyond. Thus, to fully exploit the promising MMW 5G new radio (NR) resource and to alleviate the electronics and fronthaul bottleneck, microwave photonics with analog radio-over-fiber (A-RoF) technology becomes instrumental for optically synthesizing and processing broadband RF MMW wireless signals over optical links. The generation and distribution of high-frequency MMW signals in the optical domain over A-RoF links facilitate the seamless integration of high-capacity, reliable and transparent optical networks with flexible, mobile and pervasive wireless networks, extending the reach and coverage of high-speed broadband MMW wireless communications. Consequently, this fiber-wireless integration not only overcomes the problem of high bandwidth requirements, transmission capacity and span limitation but also significantly reduces system complexity considering the deployment of ultra-dense small cells with large numbers of 5G remote radio units (RRUs) having massive MIMO antennas with beamforming capabilities connected to the baseband units (BBU) in a C-RAN environment through an optical fiber-based fronthaul network. Nevertheless, photonic generation of spectrally pure RF MMW signals either involves complex circuitry or suffers from frequency fluctuation and phase noise due to uncorrelated optical sources, which can degrade system performance. Thus simple highly integrated and cost-efficient low-noise optical sources are required for next-generation MMW RoF wireless transmission systems. More recently, well-designed quantum confined nanostructures such as semiconductor quantum dash/dot multi-wavelength lasers (QD-MWLs) have attracted more interest in the photonic generation of RF MMW signals due to their simple compact and integrated design with highly coherent and correlated optical signals having a very low phase and intensity noise attributed to the inherent properties of QD materials. The main theme of this thesis revolves around the experimental investigation of such nanostructures on the device and system level for applications in high-speed high-capacity broadband MMW RoF-based fronthaul and wireless access networks. Several photonic-aided high-capacity long-reach MMW RoF wireless transmission systems are proposed and experimentally demonstrated based on QD-MWLs with the remote distribution and photonic generation of broadband multi-Gb/s MMW wireless signals at 5G NR (FR2) in the K-band, Ka-band and V-band in simplex, full-duplex and MIMO configurations over 10 to 50 km optical fiber and subsequent wireless transmission and detection. The QD-MWLs-based photonic MMW RoF wireless transmission systems’ designs and experimental demonstrations could usher in a new era of ultra-high-speed broadband multi-Gb/s wireless communications at the MMW frequency bands for next-generation wireless networks. The QD-MWLs investigated in this thesis include a simple monolithically integrated and highly coherent low-noise single-section semiconductor InAs/InP QD buried heterostructure passively mode-locked (PML) laser-based optical coherent frequency comb (CFC) and a novel monolithic highly correlated low-noise semiconductor InAs/InP buried heterostructure common-cavity QD dual-wavelength distributed feedback laser (QD-DW-DFBL). The performance of each device is thoroughly characterized experimentally in terms of optical phase noise, relative intensity noise (RIN), timing jitter and RF phase noise exhibiting promising results. Based on these devices, different long-reach photonic MMW RoF wireless transmission systems, including simplex single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) and bidirectional configurations, are proposed and experimentally demonstrated with real-time remote electrical RF synthesizer-free all-optical frequency up-conversion, wireless transmission and successful reception of wide-bandwidth multi-level quadrature amplitude modulated (M-QAM) RF MMW wireless signals having bit rates ranging from 4 Gb/s to 36 Gb/s over different hybrid fiber-wireless links comprising of standard single mode fiber (SSMF) and indoor wireless channel. The end-to-end links are thoroughly investigated in terms of error-vector-magnitude (EVM), bit-error-rat (BER), constellations and eye diagrams, realizing successful error-free transmission. Finally, novel high-capacity spectrally efficient MIMO and optical beamforming enabled photonic MMW RoF wireless transceivers design and methods based on QD-MWLs with wavelength division multiplexing (WDM) and space division multiplexing (SDM) are proposed and discussed. A proof-of-concept implementation of the proposed photonic MMW RoF wireless transmission system is also simulated in a simple WDM-based configuration with bidirectional 4×4 MIMO MMW carrier streams

    Reconfigurable Antenna Systems: Platform implementation and low-power matters

    Get PDF
    Antennas are a necessary and often critical component of all wireless systems, of which they share the ever-increasing complexity and the challenges of present and emerging trends. 5G, massive low-orbit satellite architectures (e.g. OneWeb), industry 4.0, Internet of Things (IoT), satcom on-the-move, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, all call for highly flexible systems, and antenna reconfigurability is an enabling part of these advances. The terminal segment is particularly crucial in this sense, encompassing both very compact antennas or low-profile antennas, all with various adaptability/reconfigurability requirements. This thesis work has dealt with hardware implementation issues of Radio Frequency (RF) antenna reconfigurability, and in particular with low-power General Purpose Platforms (GPP); the work has encompassed Software Defined Radio (SDR) implementation, as well as embedded low-power platforms (in particular on STM32 Nucleo family of micro-controller). The hardware-software platform work has been complemented with design and fabrication of reconfigurable antennas in standard technology, and the resulting systems tested. The selected antenna technology was antenna array with continuously steerable beam, controlled by voltage-driven phase shifting circuits. Applications included notably Wireless Sensor Network (WSN) deployed in the Italian scientific mission in Antarctica, in a traffic-monitoring case study (EU H2020 project), and into an innovative Global Navigation Satellite Systems (GNSS) antenna concept (patent application submitted). The SDR implementation focused on a low-cost and low-power Software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. In a second embodiment, the flexibility of the SDR paradigm has been traded off to avoid the power consumption associated to the relevant operating system. Application field of reconfigurable antenna is, however, not limited to a better management of the energy consumption. The analysis has also been extended to satellites positioning application. A novel beamforming method has presented demonstrating improvements in the quality of signals received from satellites. Regarding those who deal with positioning algorithms, this advancement help improving precision on the estimated position

    Analogue filter networks: developments in theory, design and analyses

    Get PDF
    Not availabl
    corecore