7 research outputs found

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    FEDGEN Testbed: A Federated Genomics Private Cloud Infrastructure for Precision Medicine and Artificial Intelligence Research

    Get PDF
    The cloud computing space is enjoying a renaissance. Not long ago, cloud computing was confined to the wall of high-revenue companies, but in recent times a growing number of businesses, public and private institutions are turning to the cloud computing platform to reap the benefits of a self-service, scalable, and flexible infrastructure. Moreover, with the increased implementation, advantages, and popularity of artificial intelligence, the demand for computing environments to solve age-old problems such as malaria and cancer is on the rise. This paper presents the implementation of a cloud computing infrastructure, the FEDerated GENomics (FEDGEN) Testbed, to provide an adequate IT environment for cancer and malaria researchers. The cloud computing environment is built using Openstack middleware. OpenStack is deployed using Metal-As-A-Service (MAAS) and Juju. Virtual Machines (Instances) were deployed, and services (JupiterHub) were installed on the FEDGEN testbed. The built infrastructure would allow the running of models requiring high computing power and would allow for collaboration among teams

    Recent trends in applying TPM to cloud computing

    Get PDF
    Trusted platform modules (TPM) have become important safe‐guards against variety of software‐based attacks. By providing a limited set of cryptographic services through a well‐defined interface, separated from the software itself, TPM can serve as a root of trust and as a building block for higher‐level security measures. This article surveys the literature for applications of TPM in the cloud‐computing environment, with publication dates comprised between 2013 and 2018. It identifies the current trends and objectives of this technology in the cloud, and the type of threats that it mitigates. Toward the end, the main research gaps are pinpointed and discussed. Since integrity measurement is one of the main usages of TPM, special attention is paid to the assessment of run time phases and software layers it is applied to.</p
    corecore