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Abstract. Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging
and promising technologies, however their adoption is hampered by data security
concerns. At the same time, Trusted Computing (TC) is experiencing an increasing
interest as a security mechanism for IaaS. In this paper we present a protocol
to ensure the launch of a virtual machine (VM) instance on a trusted remote
compute host. Relying on Trusted Platform Module operations such as binding
and sealing to provide integrity guarantees for clients that require a trusted VM
launch, we have designed a trusted launch protocol for VM instances in public IaaS
environments. We also present a proof-of-concept implementation of the protocol
based on OpenStack, an open-source IaaS platform. The results provide a basis
for the use of TC mechanisms within IaaS platforms and pave the way for a wider
applicability of TC to IaaS security.
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1 Introduction

One of the distinguished trends in IT operations today is the consolidation of IT systems
onto common platforms. A key technology in realizing this is system virtualization [?].
System virtualization makes it possible to streamline IT operations, save energy and
obtain better utilization of hardware resources. A virtualized computing infrastructure
allows clients to run own services in form of Virtual Machines (VM) on shared computing
resources. This approach however introduces new challenges, as it means that information
previously controlled by one administrative domain and organization, is now under the
control of a third party provider and that the information owner loses direct control over
how data and services are used and protected. IaaS [?] is one of the business models based
on system virtualization and security aspects are among the main identified obstacles for
its adoption 3. The problems with securing IaaS are evident not least through the fact
that widely known platforms such as Amazon EC2, Microsoft Azure, services provided
by RackSpace and other IaaS services are plagued by vulnerabilities at several levels of
the software stack, from the web based cloud management console [?] to VM side-channel

3 AFCEA Cyber Committee – October, 2011, http://www.afcea.org/mission/intel/

documents/cloudcomputingsecuritylessonslearned_final.pdf
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attacks, to information leakage, to collocation with malicious virtual machine instances
[?].

A promising approach towards handling IaaS security threats and a mean to provide
service confidence is the use of Trusted Computing technologies as defined by the Trusted
Computing Group (TCG) [?]. The core component in the TCG-defined security archi-
tecture is the Trusted Platform Module (TPM), a hardware module that can be used
as a trust anchor for software integrity verification in open platforms that also offers
protected storage for sensitive parameters. TPM usage and deployment models for IaaS
clouds are currently an active research area [?,?,?,?,?,?]. Earlier research has introduced
principles of a trusted IaaS platform [?], later extended to cover both trusted VM launch
[?] and VM migration [?]. These research results demonstrate principles of combining
basic TPM attestation mechanisms with standard cryptographic techniques to design an
infrastructure for VM protection. However, such solutions have limitations with respect
to security, complexity and target compute host selection procedures.

In this paper we describe a trusted VM launch process that addresses these limitations
and present a trusted launch protocol that does not require secure pre-packaging of the
VM image on the client side. Furthermore, in order to be usable in a significant proportion
of IaaS deployment scenarios and to provide full scheduling flexibility on the IaaS side,
the protocol allows the IaaS provider to select a target trusted compute host without
directly involving the client. The main contributions of this paper are:

1. Description of a trusted launch protocol for VM instances in public IaaS environ-
ments.

2. Implementation of the proposed protocol based on a widely-known IaaS platform.

The paper is further organized as follows: In section 2 we define the trust and attack
models, formulate the problem area and define requirements for a scheme to address
the identified issues; section 3 presents the main contribution of the paper, namely a
platform-agnostic protocol for trusted virtual machine launching. In section 4 we per-
form a security analysis of the proposed protocol and continue with a description of the
prototype implementation based on the OpenStack IaaS platform in section 5. In section
6 we provide summaries of significant related work within trusted computing in IaaS
environments. We conclude in section 7 and provide a set of further research suggestions.

2 Trust and attack models, problem description and
requirements

Next we describe the trust and attack models we assume in this paper, list the top security
and general design requirements applicable given the defined trust and attack models and
revisit virtual machine images in the context of a trusted VM instance launch. We also
discuss the characteristics that can be expected from a well-designed VM instance launch.

2.1 Trust and attack models

In the trust model and consequently the attack model used in this paper, the client does
not implicitly trust any aspect of the IaaS provider. Although potentially true for many
IaaS environment types, this trust model should be particularly relevant to public IaaS
environments (according to the definition in [?]), where the relationship between the
client and the IaaS provider is often formal and lacks prerequisites for implicit trust.
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We share the attack model with [?,?,?] which assume that privileged access rights can
be maliciously used by IaaS provider remote system administrators (Ar). This scenario
assumes that Ar can log in remotely to any host maintained by the IaaS provider and
obtain root access. However, in this model Ar does not have physical access to the hosts.
The only possibility for Ar to circumvent this constraint is by succeeding to force a client
to launch their VM instance on an Ar-controlled compute host outside the physically
secured IaaS provider perimeter. Furthermore, we assume that an Ar obtaining remote
root access to the compute host will not be able to access the volatile memory of any VM
residing on the compute host at that time, i.e. the compute host offers VMs a closed box
execution environment 4. This assumption is required in order to ensure that Ar can not
access the nonce provided by C and its implementation is out of the scope of this paper.

In a trusted VM launch context this means that we consider both the attack where
Ar attempts to launch a VM instance on a non-trusted compute host instead of on a
trusted one and the attack where Ar attempts to substitute the VM image requested by
the client with a maliciously modified VM image.

In the current attack model, a VM instance is considered trusted if and only if it
fulfils the following criteria:

1. The VM image used for the instance is itself trusted;
2. The VM instance is started on a trusted compute host;
3. The VM instance has the client-generated verification token injected (see section ??)

2.2 Virtual machine images

As an implication of the above trust and attack models, we consider the following two
properties of virtual machines in the context of trusted computing:

– No VM instance, or any entity communicating with the VM instance, can determine
whether the hypervisor the VM instance is running on is trusted or not.

– A VM instance cannot be trusted to reliably determine if it has the configuration
originally requested by the client.

To overcome these issues, we suggest a launch protocol where we use standard TPM
v1.2 functionality to first ensure that the client can detect the situation when it is commu-
nicating with a VM instance that is not launched on a trusted platform and subsequently
utilize the trusted platform to verify the integrity of the VM image prior to VM launch.

It is essential, in the scope of the protocol, that no modifications or customizations
of the VM image to be launched are performed by the IaaS provider without the client’s
knowledge.

2.3 Requirements for a trusted VM launch protocol

Considering the trust and attack models above, it is important for the client to be
able to obtain reasonable security guarantees from the IaaS provider. These include
both trustworthiness of the computing resources, as well as guarantees regarding VM
integrity and confidentiality. In order to also be cost and implementation efficient, the
underlying infrastructure should provide such guarantees with a minimal operational
overhead without increasing structural complexity. The expectations can be summarized
as a set of basic requirements towards a trustworthy VM launch process:

4 This does not include any VMs which are part of the hosting infrastructrure, such as Xen
dom0 VM)
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– R1: The client shall have the mechanisms to ensure that the VM instance has been
launched on a trusted compute host.

– R2: The client should have the possibility to reliably determine that it is commu-
nicating with a VM instance launched on a trusted compute host, and not with a
different VM instance.

– R3: The integrity of the VM image scheduled to be launched must be verifiable by
the target trusted compute host.

– R4: The trusted VM launch procedure should be scalable and have a minimum impact
on the performance of the IaaS platform.

– R5: Clients should have a transparent view of the trusted launch procedure.

3 A trusted launch protocol for virtual machine images in IaaS
environments

Based on the above requirements for a trusted launch protocol for VM instances in IaaS
environments, we present a platform-agnostic protocol that shows principles of using
TPM functionality to ensure the integrity of the compute host and of the VM image re-
quested to be launched by the client. The below protocol addresses the security concerns
presented above by focusing on simplicity, transparency, scalability and minimal inter-
ference with the currently known setup of the IaaS implementations. Furthermore, the
protocol is based on widely-used and verified techniques, such as hashing and asymmetric
cryptography in combination with TPM functionality.

The protocol requires the participation of four entities, three of which are typically
involved in VM launch procedures in IaaS architectures:

1. Client (C) is a IaaS user and intends to launch a VM instance. In this paper, C is
considered to be a non-expert, i.e. one not capable of assessing the security of platform
configurations based on values contained in the measurement list. C requires a VM
instance to be launched on a trusted platform. Furthermore, it is important for C to
be able to either verify or trust the security of VM images provided for launch.

2. Scheduler (S) is responsible for receiving requests for VM instance launches from C,
as well as scheduling and rescheduling of VM instances on available compute hosts
at the IaaS provider. S should be able to function with minimal involvement in the
security-specific message passing.

3. The compute host (CH) is the target resource that will be chosen by S to run the
particular VM instance. CH represents a physical or virtual server that is able to host
one or more VM instances (however, this paper considers exclusively the case when
the CH is a physical server). For the purposes of the proposed protocol, a CH must
also be equipped with a TCG-compliant TPM as well as be immune to modification
attempts when in a trusted state.

4. The Trusted third party (T T P) is, as the name implies, trusted by both the Client
and the IaaS provider and can not be controlled or manipulated by the IaaS provider.
The recent breaches of Certificate Authorities have emphasized the drawbacks of cen-
tralized security models and their susceptibility to attacks [?]. The more complex the
operations performed by the T T P, the higher the probability of it having exploitable
vulnerabilities. It is therefore important to keep the implementation of the T T P as
simple as possible. The main task of the T T P is to attest the configuration of the CH
that will host the VM instance and assess its security profile according to predefined
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policies. Within the current trust model, T T Ps could be implemented by an expert
C, as long as the IaaS provider agrees to that and C has the capability to set up and
operate an attestation and evaluation engine.

For the purpose of the protocol, we also introduce the concept ‘security profile of a
CH’:

Definition 1. A security profile (SP) is a verified setup of an OS including underlying
libraries and configuration files, which is considered to be trusted by all parties. SP can
range on an ascending integer scale which reflects the level of verification, from least to
most strict (and hence more restrictive).

The information needed to calculate the SP and also to compare the setup of two CHs
is stored in the integrity measurement log (IML), as the IML contains hashes of the
components that were loaded or used during the boot sequence of the CH. The validity
of the IML is confirmed through a signature using the attestation identity keys (AIK) of a
TPM. The AIK are persistent, non-migratable keys that are used to sign and authenticate
by the means of an AIK certificate (denoted by AIK−cert) the validity of the information
provided by the TPM in case of an external attestation [?]. We thus assume that the
SP of any given CH can be deterministically calculated by each of the parties involved
in the protocol. 5

3.1 Platform-agnostic protocol description

The following steps are required in order to perform a trusted VM launch (Fig. ??, the
steps of the protocol correspond to the steps in the figure 6).

1. Before initiating the launch procedure, C generates a sufficiently long nonce N , to be
used as a proof token in communications between C and the VM instance and must
be kept confidential to untrusted parties throughout the launch process.

2. C creates a token which we denote by T , representing a data structure with informa-
tion necessary for the trusted VM launch. T contains N , the minimum SP and the
hash of the VM image used for launch, denoted by HVMimage

7. Finally, the token is
encrypted with the public key of T T P, represented by PKTTP , while the encrypted
token is represented by TPKTTP

.
3. C provides the scheduler (S) the following parameters:

– VM image identifier and optionally the VM image to be launched;
– SP;
– URL of the T T P;
– Encrypted token TPKTTP

generated in step (2);
SP will determine the lower bound of trust level required from CH on which the VM
will run, with stricter security profiles accepted.

4. S schedules a VM on the appropriate CH, depending on its membership in the
respective security profile group and sends the CH a request to generate a bind
key PKBind, also providing the URL of the T T P.

5 The methodology for calculating the SP of a CH is out of the scope of this paper.
6 Due to space limitations, ”Attestation data” was chosen as the condensed notation for:
TPKTTP , PKBind, TPM CERTIFY INFO, HTPM CERTIFY INFO

AIK , IML,AIK − cert
7 If non-repudiation of VM launch is required, the client should also sign the VM image hash

and include the signature and corresponding client certificate into the token.
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5. Once the destination CH receives the bind key request, it retrieves a PCR-locked non-
migratable TPM-based bind key PKBind. This key can be periodically regenerated
by CH according to a administrator-defined policy, using the current platform state
represented by the TPM PCRs. It is important to note that the values of the PCRs
should not necessarily be in a trusted state in order to create a trusted state bind
key.

6. In order to prove that the bind key is a non-migratable, PCR-locked, asymmetric
TPM key, CH uses the TPM CERTIFY KEY TPM command in order to retrieve the
TPM CERTIFY INFO structure signed with the TPM attestation indentity key [?], which
we denote by PKAIK ; we also denote the signed structure by
HTPM CERTIFY INFO

AIK . The TPM CERTIFY INFO data structure contains the hash
of the bind key and the PCR value required for the key usage.

7. CH sends an attestation request to the T T P through an HTTPS session using the
URL supplied by C. The following arguments are sent in the request to T T P:
– Client-provided token TPKTTP

– Attestation data, which includes the public bind key, the TPM CERTIFY INFO struc-
ture, the hash of TPM CERTIFY INFO signed with the AIK8, the IML and the
AIK-certificate collectively represented as:
PKBind, TPM CERTIFY INFO, HTPM CERTIFY INFO

AIK , IML, AIK-cert .
8. T T P uses its private key PrKTTP , which corresponds to the public PKTTP to

attempt to decrypt the token TPKTTP
.

9. T T P validates the attestation information obtained from CH as follows:
– Validates the AIK certificate;
– Validates the structure of the AIK-signed TPM CERTIFY INFO;
– Validates the key PKBind by comparing its digest with the digest received in

TPM CERTIFY INFO;
– Calculates the hash of the PCR values HPCR based on the information in the

IML and compares it with the hash of PCR INFO, which is a component of
TPM CERTIFY INFO

10. T T P examines the entries in the IML in order to determine the trustworthiness of
the CH and decides whether SP is satisfied.

11. If step 10 is true, T T P encrypts N and the hash HVMimage with the bind key
PKBind obtained from CH, to ensure that N is only available to CH in a trusted
state. By sending N and HVMimage encrypted with the public key PKBind available
to the trusted configuration of CH, the security perimeter expands to include three
parties: C itself, T T P and CH in its trusted configuration. This implies that all
actions performed by CH in its trusted configuration are trusted by default.

12. Prior to launching the VM, CH decrypts N and HVMimage using the TPM-issued
PrKBind, which is available to it in its trusted configuration but stored in the TPM;
next, CH compares HVMimage obtained from the T T P with the hash of the VM
image to be used for launch and accepts the image only in case the values are equal.

13. CH injects N into the VM image prior to launching the VM instance.
14. CH returns an acknowledgement to S to confirm a successful launch.
15. To verify that the VM instance has been launched on a trusted platform, C challenges

the VM instance to prove its knowledge of N .

The fact that N is kept confidential allows it to be used as an authentication token
while establishing a secure communication channel between C and the launched VM

8 Expressed as HTPM CERTIFY INFO
AIK
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instance. N can be used as the pre-shared secret in order to add protection against
man-in-the-middle attacks when using Diffie-Hellman key exchange, as specified in the
password-authenticated key-exchange protocol [?].

Some of the operations can be optimized taking into account the operational environ-
ment. For example, the validity period of PKBind created in step (5) can be adjusted.
In a similar way, T T P can have a cache of the PKBind keys created by CHs with veri-
fied trusted configurations. In this case, steps (9) and (10) can be skipped for a certain
number of cases, which can also be regulated by an administrative policy. However, it
is important to remember that the use of such a cache introduces further complexity to
T T P, the analysis of which is out of the scope of this paper.

4 Protocol security analysis

In this section we present a critical review of the protocol and highlight improvement
areas that were left as future work. We begin with a security analysis of the protocol, in
order to outline its strengths and weaknesses.

Returning to the security concerns expressed in the requirements on the trusted launch
protocol formulated in section ??, they are addressed as follows. Let ϕ be the guest VM
instance launched on CH, then:

– R1: Following above protocol, C and ϕ have a shared secret N . The fact that ϕ is
running on a trusted platform is ensured by the properties of the bind key used to
seal the shared secret N to the trusted configuration of CH;

– R2: The fact that C is communicating with ϕ and not any other unexpected VM
instance ϕ′ is ensured through the combination of: a. verification of CH by the T T P,
b. presence of the tokenN injected into ϕ whereN is only available to CH in a trusted
state; c. the VM image integrity verification performed by the CH prior to the launch.
A failure at any of the steps of the above sequence would prevent the trusted VM
launch, a fact that would be verifiable by C.

– R3: Integrity of the VM image is ensured through the verification performed by CH
in a trusted state, prior to the trusted VM launch. Thus, the VM image is verified
using the hash value obtained from the TTP. By comparing the hash of the VM image
with the expected HVMimage provided by C, CH ensures a one-to-one correspondence
between the VM image to be used for launch and the VM image expected by C. The
chain is completed once C verifies the presence of N injected into ϕ. The presence of
the correct token N guarantees the integrity of ϕ requested by C.

– R4: Scalability of the protocol is ensured by the lightweight nature of operations that
must be performed by both T T P and CH and the flexibility in the choice of T T P.
While a challenging topic, especially in the case of high-availability and heavy load
IaaS setups, the design of a scalable T T P architecture is out of the scope of this
paper.

– R5: Transparency of the trusted VM launch procedure is ensured by the introduction
of client parameters, such as the URL of the T T P, the trust level of CH and the
secret token generated by C. The ability to choose T T P opens the possibility for C
to ensure the trustworthiness of the CH attestation procedure, either through audit
controls of the T T P or by itself serving the role of T T P.
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Fig. 1. Trusted VM launch protocol: C: Client; S: Scheduler; CH: Compute Host; T T P:
Trusted Third Party;

:C :S :CH :T T P:C :S :CH :T T P

1. Generate nonce

N

2. E(N ,SP,HV Mimg)

TPKTTP

3. V M type, SP,
URL, TPKTTP

ok

4.
URL, TPKTTP
Gen. bind key

5. Create TPM Bind Key

PKBind

6. Sign PKBind

HTPM CERTIFY INFO
AIK

7. Attestation data

8. D(TPKTTP
:PrKTTP )

N ,SP,HV Mimg

9. V alidate attestation

V alid ∨ Invalid

10.Eval(IML)1SP

True ∨ False

11. Return encrypted token
{N ,HV Mimg}PKBind

12. Unseal N ,HV Mimg

Eval(HV Mimg = HIaaSvm)

13. Inject N , launch V M

OK

14. Confirm launch to S

OK

ok

15. Challenge N

Return challenge N
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4.1 T T P verification model

The stateless architecture of the T T P implies that it does not maintain knowledge of
N except for at the moment of sealing it to CH and does not maintain any session
state at any point of the protocol. As a result, an Ar can only obtain N from T T P if
they obtain T T P’s private key PrKTTP . Furthermore, assessment of the trust level of
a CH according to a deterministic algorithm which only takes two inputs (in the form
of static set of reference measurement data and dynamic attestation calls from any CH)
will be easily traceable and reproducible based on the original input data, without the
need to recreate or rely on a certain state of the TPP’s internal data. Finally, a stateless
architecture of the T T P contributes indirectly towards requirement R4.

4.2 Protocol caveats

One aspect that requires more attention is the possibility of a post-launch modification
of the software stack of CH. The runtime process infection method, which is a method
for infecting binaries during runtime 9 is one of the malicious approaches that could be
used to this end. This scenario is in fact a common threat to all TCG-based systems,
also touched upon in [?], described in detail in [?] and should thus be prevented using
means within the platform which is part of the trusted computing base verified at boot
time, the presence of which is verified by the above protocol.

5 Protocol implementation

In order to validate the assumptions made during the protocol design phase, we have
implemented it as an extension to OpenStack, an open source IaaS platform chosen
given the open access to its codebase, its large community and the traction it has gained.
This section briefly introduces the OpenStack architectural model and changes made for
the prototype implementation.

5.1 OpenStack IaaS platform

The Essex release of OpenStack comprises five core components (projects), namely Com-
pute (Nova), Image Service (Glance), Object Storage (Swift), Identity Service (Keystone)
and Dashboard (Horizon). Nova has several sub-components: nova-api, nova-compute,
nova-schedule, nova-network, nova-volume, plus an SQL database and message queue
functionality to pass messages between sub-components. OpenStack components affected
by the protocol implementation are mentioned here in more detail:

– Nova-api is the interface for nova- compute and volume API calls. It is through this
interface most of the cloud orchestration operations are performed. The interface
supports both the OpenStack and Amazon EC2 API.

– Nova-compute handles VM instance life cycle tasks through hypervisor API calls.
Notably the libvirt and XenAPI hypervisor APIs are supported.

– Nova-schedule is responsible for selecting CH(s) to run VM instances on. The CH
selection process is determined by which scheduling policy/algorithm is employed.

9 Runtime process infection, http://www.phrack.org/issues.html?issue=59&id=8&mode=txt

http://www.phrack.org/issues.html?issue=59&id=8&mode=txt
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– The nova SQL database holds tables and relations to describe the state of nova, such
as launched instances and network configurations.

– The Dashboard is a web based GUI for OpenStack operation and administration. It
interfaces nova-api.

5.2 Prototype implementation

Below are the main additions to OpenStack required for the prototype implementation.

Nova SQL database The nova SQL database has been extended to include tables to hold
the available CHs and their SPs:

– An SP is an integer in the range 1-10, with a higher number being more trusted than
a lower number.

– The security profile of a CH is global, rather than specific per e.g. tenant.

Dashboard and nova-api The Dashboard web based GUI has been extended to include
the option to request CH attestation, minimum SP selection, token TPKTTP

entry and
T T P URL provision (3) into the “Launch Instance” dialog. This information is included
in the OpenStack API HTTP payload to nova-api, which propagates the information to
the scheduler.

In the prototype implementation, steps (1) and (2) are performed by a script which
outputs TPKTTP

, which then can be manually input into the Dashboard dialog. Note
that it is not an option to let Dashboard provide functionality for generating TPKTTP

,
since Dashboard is not trusted by C.

Scheduler, compute host and virtualization driver The nova scheduler S is a central
component as it decides on which CH a certain VM instance will be launched. Each S
works according to a specific configurable algorithm and several S implementations are
available in OpenStack by default. In the SimpleScheduler implementation, S identifies
the least loaded CH and schedules the VM instance to be launched on that CH.

We extend the behaviour of the SimpleScheduler to include the policy that a CH
must belong to a certain SP or stricter in order to be acceptable for hosting the VM
instance. This policy is realized as follows: first S looks up the recorded SP of CH in
the nova database and proceeds if SP is sufficient compared to the requirements of C
(corresponds to (4)). The second step is to request CH to attest itself with T T P. If SP
was not sufficient, the next eligible CH is selected.

Steps (5)-(7) are perfomed by CH, followed by T T P in steps (8)-(11).
Token TCH = {N , HVMimage}PKBind

is returned from T T P to CH after which CH
includes the token in the return message to S . If the attestation was successful, S requests
the now trusted CH to launch the VM instance and includes TCH in the request.

Next, CH decrypts TCH and obtains N and HVMimage. To verify the integrity of the
VM image, HVMimage is included in the call to the virtualization driver (libvirt is used
by the prototype), which fetches the VM image from Glance and caches it locally on CH.
The hash of the cached image is calculated and compared to HVMimage. If the hashes do
not match, an exception is raised. Otherwise, the launch procedure continues (12) and
the file injection capability of Nova is used to inject N into the file system of the VM
image (13). The VM image is then used to launch the VM instance on CH and steps
(14) and (15) are completed.
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6 Related work

Application of trusted computing principles within IaaS environments has been the focus
of several research papers examined below.

Santos et al propose the design of a “trusted cloud compute platform” (TCCP) that
ensures VMs are running on a trusted hardware and software stack with a remote and
initially untrusted CH [?]. The authors propose a remote attestation process where a
trusted coordinator (T C) stores the list of attested CHs that run a “trusted virtual
machine monitor” which can securely run the client’s VM. A trusted CH maintains in
its memory an individual trusted key (TK) used for identification each time the client
C instantiates a VM on the trusted CH. The paper presents a good initial set of ideas
for trusted VM launch and migration, in particular the use of a T C. A limitation of this
solution is that the TK resides in the memory of the trusted CH, which leaves the solution
vulnerable to cold boot attacks [?] with keys extractable from memory. Furthermore, the
authors require that the T C maintains information about all CH deployed on the IaaS
platform, but do not mention mechanisms for anonymizing this information, making it
valuable to an attacker and unacceptable for a public IaaS provider. Finally, the solution
lacks both mechanisms for revocation of the TK and considerations for the re-generation
of TK outside of CH reboot.

A decentralized approach to integrity attestation is adopted by Schiffman et al in
[?]. The primary concerns addressed by this approach are the limited transparency of
IaaS platforms and the limits to scalability imposed by third party integrity attestation
mechanisms, as described in [?]. The authors examine a trusted cloud architecture where
the integrity of the IaaS CH is verified by the IaaS client through a “cloud verifier”
(CV) proxy that resides in the application domain of the IaaS platform provider and is
accessible by the client. Thus, in the first step of the protocol the client evaluates the
integrity of the CV in order to include the CV into its trust perimeter if the integrity level
of the CV is considered satisfactory. Next, the CV sends attestation requests from CH,
i.e. the CH where the guest VM instance can potentially be deployed, thus extending
the trust chain to the CH. Finally, CH verifies the integrity of the VM image, which
is countersigned by the CV and returned to the client which evaluates the VM image
integrity data and allows or disallows the VM launch on the CH.
While the idea of increasing the transparency of the IaaS platform for the client is
indeed supported in industry [?,?], the authors do not clarify how the introduction of
an additional integrity attestation component in the architecture of the IaaS platform
has positive effects on the transparency of the IaaS platform. Furthermore, the proposed
protocol increases the complexity model for the IaaS client both by introducing the
evaluation of integrity attestation reports of the CV and CH and introduction of additional
steps in the trusted VM launch, where the client has to take actions based on the data
returned from the CV. This requires either human interaction or a fairly complex integrity
attestation evaluation component (or a combination thereof) on the client side, making
a wide-scale adoption of the solution difficult.

In [?], Aslam et al proposed principles for trusted VM launch on public cloud plat-
forms using trusted computing techniques. In order to ensure that the requested VM
instance is launched on a CH with verifiable integrity, the client encrypts the VM image
(along with all injected data) with a symmetric key sealed to a particular configuration of
CH, which is reflected through the values in the platform configuration registers (PCR)
of the TPM deployed on the CH. The solution proposed by Aslam et al presents a suit-
able model in the case of trusted VM launch scenarios for enterprise clients. It requires
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that the VM image is pre-packaged and encrypted by C prior to IaaS launch. However
the proposed model does not cover the very common scenario of launching an unmodi-
fied VM image made available by the IaaS provider or uploaded by C. Furthermore, we
believe that reducing the number of steps required from C will facilitate the adoption of
the trusted IaaS model. Likewise, direct communication between C and CH, as well as
significant changes to the existing VM launch implementations in IaaS platforms hamper
the implementation of this protocol. This paper reuses some of the ideas proposed in [?]
and directly addresses the above limitations, namely actions to be performed by C, also
touching upon the requirements towards the launched VM instance and required changes
to the IaaS platform.

7 Conclusion

In this paper we have presented a detailed trusted launch protocol for VM instance launch
in public IaaS environments. Furthermore, we have provided a prototype implementation
of the launch protocol in OpenStack. Detailed performance measurement and evaluation,
as well as alternative implementation choices have been left for future work.

The presented results make a case for broadening the range of use cases for trusted
computing by applying it to IaaS environments, especially within the security model of an
untrusted IaaS provider. Trusted computing offers capabilities to securely perform data
manipulations on remote hardware owned and maintained by another party by potentially
preventing the use of untrusted software on that hardware for such manipulations. The
presented design is directly applicable to the process of developing a trusted virtualized
environment, e.g. a public IaaS service.

Future research recommendations can be grouped into three categories:
First is the extension of the trust chain to other operations on VM instances (migra-

tion, suspension, updates, etc.), as well as data storage and virtual network communica-
tion security.

The second category includes addressing certain assumptions of the proposed launch
protocol, e.g. the assumption that the CH configuration is not changed after the trusted
launch of the VM instance, since even in the case of a bona fide IaaS provider the CH
can be compromised through runtime process infection. A technique to enable C to either
directly or through mediated access discover such events and protect the data used by
the VM instance is a promising research topic.

The third category focuses on the design and implementation of the evaluation poli-
cies of the TTP. The current assumption is that the TTP has access to information
regarding “secure” configurations and the PCR values, something which needs to be
directly addressed as evaluating exactly how secure a certain software stack is, is a
challenge. Furthermore, taking into account the diversity of available libraries as well
as the different combinations in which they can be loaded during the boot process,
verification of PCR values (such as values stored in PCR10 and reference values in
binary runtime measurements) becomes a less trivial task.
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