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Abstract
Trusted platform modules (TPM) have become important safe-guards against vari-

ety of software-based attacks. By providing a limited set of cryptographic services

through a well-defined interface, separated from the software itself, TPM can serve

as a root of trust and as a building block for higher-level security measures. This

article surveys the literature for applications of TPM in the cloud-computing envi-

ronment, with publication dates comprised between 2013 and 2018. It identifies

the current trends and objectives of this technology in the cloud, and the type of

threats that it mitigates. Toward the end, the main research gaps are pinpointed and

discussed. Since integrity measurement is one of the main usages of TPM, spe-

cial attention is paid to the assessment of run time phases and software layers it is

applied to.
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1 INTRODUCTION

The cloud computing paradigm has facilitated access to enterprises to various computing resources including storage, server, and

application. Utilizing cloud services brings along competitive advantages, such as lower cost, higher performance, accessibility,

and scalability. These advantages have motivated enterprises to increasingly use clouds to deliver services to their customers

and it is critical to secure the cloud infrastructure and protect its data and computation from both insider and outsider attacks.

There is a large body of research on the security threats endangering cloud computing, and the security solutions to overcome

or minimize them.

Many of the recent attacks are performed by exploiting the vulnerabilities of the software-based security solutions. This

indicates that security solutions that are merely software based do not purvey full-proof security anymore. Therefore, in order to

provide more robust security, researchers and developers are leaning toward hardware-backed solutions such as trusted comput-

ing. Trusted computing technology is elaborated by the group known as trusted computing group (TCG)1 to tackle the computer

security problems via hardware security enhancements. This happens through utilizing a physical chip, called trusted platform

module (TPM) that protects the software and applications from tampering running on systems where the chip is integrated,

further ensuring that the system is functioning as expected.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
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1.1 Trusted platform module
Trusted computing (TC) refers to the technologies that use hardware-based roots of trust to improve computer security through

hardware enhancements and modification of the associated software. TC establishes a secure environment known as trusted

computing base (TCB) and provides trust and privacy. It guarantees that the system is secure and it behaves as expected.

Various major hardware manufacturers have developed and promoted specifications for protecting computer resources from the

malicious entities.

The TPM, which was conceived by the TCG consortium, is a tamper resilient coprocessor chip that provides various security

solutions to the hosting platform, such as trusted boot, remote attestation, integrity checking, and cryptographic functionalities.

Nowadays, a vast number of personal computers (PCs) and computing devices are shipped with TPM integrated and benefit

from its security solutions. TPM specification version 1.2 was published in 2011 and, in 2016, TPM 2.0 came to the market

with better support for algorithms and higher cryptographic capabilities.

TPM provides root of trust for storage, integrity protection, measurement, and reporting. This makes the act of authentication,

identification, integrity verification, and encryption of a device feasible. Remote attestation is the primary feature provided by

the trusted computing technology that extends the trust step-by-step from the lower levels up to higher levels and applications.

This is referred to as the chain of trust. In the chain of trust scenario, all the components that are going to be loaded are

considered untrusted, and therefore, need to be measured before being loaded. TPM encompasses protected memory locations

called platform configuration registers (PCRs), that store sensitive security information such as measurement information.

In addition to the strong isolated storage, TPM holds a unique endorsement key (EK), used for cryptography operations.

This key is generated at time of TPM manufacturing, and the private part of the keys never leaves the TPM. At the time of

remote attestation, for preserving the privacy of the identity of the platform, attestation identity keys (AIKs) are utilized. When

a platform (the attester) receives a request for remote attestation (from a verifier), it sends an integrity report composed of PCR

values and their digital signature that are computed with an AIK. Due to the fact that private part of the AIK has never left the

TPM, the integrity and authenticity of the report is guaranteed.2

1.2 Aims and research questions
The successful outcome of using TPM for security platforms and applications and providing trust to the systems has motivated

various execution environments to take advantage of the application of TPM. Mobile devices, IoT devices and cloud computing

are examples of such environments.

TCG has developed the mobile trusted module (MTM) to provide hardware root of trust for mobile devices. MTM supports

secure transaction, integrity protection, and secure storage of keys and certificates.

TPM equipped IoT devices can measure themselves and each other before establishing a telecommunications session. This

hardware root of trust supports secure boot, remote attestation, and device authentication.

Trusted computing has also led its way in cloud computing to address its security and establish trust between the cloud

service provider and its client. This motivated us to investigate in what way trusted computing has boosted the security in cloud,

what threats has it mitigated, and how the integrity is measured.

In this paper, we study the current trends of TPM application in cloud computing, in recently published literature, with the

aim of answering the following questions:

• RQ1: For what aims/purposes is TPM used in the cloud (eg, access right management, integrity measurement? This is further

discussed in Section 4.1.

• RQ2: What types of threats have been reportedly mitigated via the utilization of TPM in cloud (eg, man-in-the-middle attack,

tampering)? This is further discussed in Section 4.2.

• RQ3: If the paper is addressing integrity measurement, what is the exact component of the assessment? In other words, what

interpretations are given for integrity in cloud? This subject is discussed in Section 4.3.

• RQ4: At what level (eg, hardware, virtual machine [VM], application) are TPM primitives invoked? This question is discussed

in Section 4.4.

• RQ5: At which phase (eg, boot time, run time) are the TPM features used? Further discussed in Section 4.5.

This section presents the background on the terms and concepts related to this work, and the motivation behind this survey

and study. The remainder of this article is organized as follows: In Section 2 we discuss the method of study, the search criteria

and procedure, selection and the data extraction process. Section 3 presents the status of the field of research and Section 4
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F I G U R E 1 The process of search and selection. Six online databases and the number of papers collected from each is shown on the left side,

and the various phases of selection process with the number of papers after each filtration is shown on the right

presents the results of analyzing the collected data. Section 5 discusses the challenges and open issues of this field of research,

and sheds light on the future direction. Concluding remarks come in Section 6.

2 METHOD OF STUDY

The method of study we used for this work is systematic literature review (SLR), which is a method to identify, evaluate, and

interpret the well quality studies asociated with an area of research or a specific research question Kitchenham, 2013. A SLR

classifies and maps the scattered research studies and helps identifying the research gaps which directs baselines in future

research. We conducted an SLR to identify the studies that apply TPM in cloud computing environment, in order to point out

how cloud computing security could benefit from functionalities provided by TPM, and also what are the gaps in this domain. To

carry out this SLR, we followed the protocol designed by Kitchenham et al.3 In accordance to this protocol, before conducting

the search, we designed the search string to collect the publications from the online databases. We then defined the inclusion

and exclusion criteria, the research questions and planned the way to extract data from the collected publications, and synthesize

the results.

We perform the search and selection process in six different phases (Figure 1). We started the search process by first certifying

that there is a sufficiently large number of papers published in this domain to make a survey paper. Using the designed search

string, we collected the papers from the five online databases that are most commonly used in Computer Science, including

ACM Digital Library, IEEEXplore Digital Library, ScienceDirect, Wiley online library, SpringerLink, and dblp. Figure 1 shows

the process of data collection and the number of publications we had at each phase.

After collecting the papers, the duplicates were removed and we proceeded to the selection phases. We filtered the papers

according to the inclusion and exclusion criteria we had defined, first based on their title, then based on their abstracts and finally

based on their full-text. We only included the papers that were written in English language and peer-reviewed and they were

applying TPM in cloud architecture/environment aiming to improving the security in cloud. We excluded the papers that were

studying other means of hardware security (eg, SGX), other execution environments different from cloud computing, survey

papers that were not proposing/applying a novel technique, and the publications that were not available online and we could not

access them in any ways.
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F I G U R E 2 Publication forum types for the

studied publications in the considered time-span

After finalizing the screening phase, we ended up with 120 papers, from which we extracted data by answering the designed

research questions (RQ1-RQ5 in Section 1). We analyzed the collected data and classified them. The result of this analysis is

presented in Sections 3 and 4.

3 STATUS OF THE FIELD

As a result of the search and selection step, we collected 120 publications, from which we extracted data. These publications

were published in four different forms, including journal article, conference paper, book chapter, and workshop paper. Figure 2

presents the total number of published studies in the field in different years, and the number of publications in each forum type.

As is seen in the figure, the majority of the considered set of studies were published in conferences.

Identifying the annual increase/decline in the number of studies published in a studied field provides an idea on the interest

rate to the field. An upward trend could be an indication of rising interest, and a descending trend could be a sign that the

researchers have lost interest in this field. Figure 2 presents the annual distribution of the papers, the types of forums the studies

were published in, and the number of publications in each type. According to the numbers, in the past 6 years, there has been

a growth of interest to this field of study before 2015, and a decline afterward. One explanation to this decline could be the

appearance of other hardware means of trust and trusted execution environments, such as Intel SGX. However, we believe that

this fall in the number of studies does not mean that TPM and its useful functionalities are being replaced by other technologies.

Despite of the fact that SGX has been widely used for solving many security problems, it still suffers from vulnerabilities that

could be exploited and disclose the privacy of its users. To name some, we can refer to the side channel attacks that have been

successful in leaking the secrets out of the SGX enclaves. However, combining these technologies, TPM and Intel SGX or other

trusted computing technologies, and studying the possibility of their application in environments such as cloud computing has

become a significant research direction.4

Analyzing the affiliation data of the publications designates that the majority of studies in this field, in the considered

time-span, were the result of research done in academic sector (61%). Thirteen percent were made by industrial organizations

and 36% were resulting from the collaboration of academia and industry (26%). Figure 3 illustrates the associated sector of

the organizations as a function of the publication year, for the set of publications under consideration. From the 120 studied

publications, 73 of them are published by academic bodies. While this distribution is expected for theoretical research, on the

other hand, raises the concerns about the correspondence and applicability of this field of research.

We analyzed the affiliations of the authors of the collected publications, in order to connect the papers to their originating

countries and organizations. Figure 4 illustrates the top most affiliated countries in the studied publications. United States has

eminently the largest share (24.5% of the studies), followed by China (18.7% of the studies). United Kingdom, South Korea,

and Germany, respectively have 6%, 5.7%, and 5.3% of the publications.

Figure 5 illustrates the top most affiliated organizations in the studied publications. From this plot, it is notable that Rut-

gers University, Shandong University, and University of Oxford are the most active academic parties, and IBM research, SICS

Swedish ICT are the top industrial organizations in this field. It is worth noting that in this figure, we only plot the top organi-

zations that corresponds to three affiliations or more (35% of the total affiliations for these publications). This, arguably, imply

that large number of publications were produced by relatively limited set of organizations and the other 65% of the publications

could be traced to a single organization.
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F I G U R E 3 Organizations sector of the

studied publications in the considered time-span

F I G U R E 4 Top most affiliated countries in the studied publications

4 ANALYSIS OF THE RESULT

This section provides answers or analyses the identified research questions. Each research question is approached in its specific

subsection.

4.1 RQ1: Aims of using TPM in cloud computing
The usage of TPM in a cloud-computing environment can be applied to several different purposes, as a way of providing an

extra layer of security for operations, storage, communications, monitoring, and so on. The first research question analyses and

discusses the different applications that have been surveyed in the literature, and the different types of use cases for which TPM

was used for each of them (Figure 6). The following purposes were then identified:

1 Remote attestation: A TPM can be used to provide this method, which allows for an entity to authenticate itself, in terms

of software, hardware, or both, with another, remote, entity. This has several practical applications in cloud computing.
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F I G U R E 5 Top most affiliated organizations for the studied publications

F I G U R E 6 Aims of using trusted platform module (TPM) in cloud computing

In a way, the entity proves the requester that it is trustworthy and that its systems have not been tampered with. The

basic functioning of this operation is similar to how integrity measurement works, as it serves as the basis of the attes-

tation process, with it then being transmitted to the requester. The process works as follows: the requesting entity sends

a request to the remote entity, where a nonce is included. The receiving platform will then forward the request to the

TPM, that will perform an integrity measurement, and also sign the nonce sent to it. This is then sent to the requester,

that will verify the response with a trust attestation authority (TAA), verifying that (a) the TPM is genuine and (b) that

the received values match the known values. If everything is correctly verified, the requester will consider the entity to be

trustworthy.5 Javanmard et al,6 use the TPM to remotely attest VMs for their cytometry analysis system, which relies on

cloud VMs to process the cytometry data. Before sending the data, the trustworthiness of the VMs is remotely attested to

ensure that no tampering happened, through the virtualization of a physical TPM on the VMs (vTPM). In Reference 7, the

authors use remote attestation to verify the geolocation of cloud users through the GPS module of their mobile devices.
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They create a hypervisor that creates a secure channel, through the TPM, with the mobile device, and verifies the GPS

location data sent to ensure, that is, that the user is located in a region from which he is allowed to access the cloud

service.

2 Integrity measurement: The TPM is able to calculate and store in its registers hash values regarding different components

of a system. These different hashes are transformed in a hash chain, whose value that is then used to compare with the

stored value. This can be done both for hardware and software, to detect any unauthorized changes.8 It can also be used for

verifying data integrity. There are two main perspectives on types of integrity measurement: static, where the measurement

is made on binaries or firmware (eg, BIOS), before they are run, to ensure that no tampering has happened, and dynamic,

where changes are monitored and detected during run time, to ensure that no tampering or unauthorized changes were

done.9 In Reference 10, the authors present a model for integrity on data possession in a multiuser setting, where data can be

owned and shared across multiple users, with provable data integrity and freshness. Du et al11 propose a dynamic integrity

measurement model for the Xen virtualization platform, capable of both measuring statically, and dynamically during run

time, to ensure the VMs are not compromised.

3 Generation and secure storage of keys: Cryptographic keys can be both generated and stored in a TPM, to be then securely

used by, that is, a VM. The TPM can generate random secure keys, using entropy both within and outside of the TPM (from

where entropy is gathered is a user choice). Keys can then be generated through three different methods: from a seed, from

a random number generator, or directly imported to the TPM. The keys are then securely stored inside of the TPM. External

keys can also be stored inside of the TPM, where they are encrypted with the public part of the storage root key (SRK), a

key pair generated inside of the TPM.8 The storage process can either be a binding or a sealing of the key, which will be

explained in greater detail below. In Reference 12, the authors propose a Linux block device mapper capable of guaranteeing

data integrity during run time on a remote storage, where the keys are stored on the TPM. In Reference 13, cryptographic

keys are generated and stored with the TPM that are used to prevent man-in-the-middle (MitM) attacks between the user

and a security agent, for securing encryption and decryption operations in a VM.

4 Trusted boot: The TPM can use integrity measurement to provide this functionality. When a system starts its booting up

process, the TPM checks for the different hardware, software and/or firmware components and runs an integrity measure-

ment check on them, to ensure that the system was not tampered or changed before the startup process. In Reference 14, the

authors propose a hypervisor for PCs that utilizes trusted booting to ensure no malware or rootkit is running on the guest

OS of the device. Zou et al15 present a framework for monitoring the cloud platforms, where trusted boot is used to ensure

the integrity of the monitored environment, both for cloud tenants and provider.

5 Cryptographic operations: Included in the TPM is a coprocessor that handles cryptographic operations, such as hashing,

random number generation, asymmetric encryption, and key generation, that can be used directly or for several other

purposes (such as some of those referenced above and below, for example, integrity measurement or binding and sealing

of keys).8 All cryptographic operations on the TPM are hardware based, and use the SHA1, HMAC, and RSA algorithms.

In Reference 16, a distributed cloud storage is proposed, where TPM is used to authenticate clients and securely encrypt

their data. Chen et al17 present a verifiable resource accounting system for clients to verify that the reported consumption

on cloud resources are trustworthy. Reporting is signed through the TPM. Thilakanathan et al18 propose introduce a secure

data sharing protocol in which the data owner stores the data securely on an untrusted clouds. In this approach, an external

TPM-based device is used to address key management and to enable secure data transfer. The decryption keys are stored

on this external device, and therefore, only the device issuer can only decrypt the data.

6 Secure authentication and communication: A TPM can be used to authenticate a system and to secure communications

between two entities. The TPM, being a root of trust, can authenticate a system when other entities request it, as the

hardware of the TPM is certified through a certification authority.19 In Reference 20, TPM is used to authenticate remote

users on hybrid clouds when using the MapReduce framework. For communications, the TPM, through its AIK pairs, can

help establishing a secure channel so that information can be exchanged between two entities.8 In Reference 21, a secure

logger for medical devices, based on the cloud, is capable of creating a secure channel between a medical device and the

cloud logger, through the use of a TPM.

7 Binding and sealing of keys: TPM provides data protection through securely preserving the cryptographic keys and through

binding and sealing functions that it exposes. According to Reference 22, a message that has been encrypted/bound using

the public key of a particular TPM, can only be decrypted through using the private key of that TPM. Sealing functionality

is a special case of binding, in which an encrypted messages that has been produced through binding could be decrypted

when the platform is in a specific state to which the message is sealed. This state is defined by the PCR values. In this

way, it is assured that the message is decrypted by a platform that is found in a specific prescribed state. In Reference 23,

a trusted store cloud mechanism is presented, where data is sealed to a specific trusted host configuration.
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8 Identification: Through the TPM, it is possible to uniquely identify a user. A TPM has a single unique key, called the EK,

and embedded key pair unique to each TPM. This key pair also has a certificate associated with it, of which the public key

part of the EK comprises. This certificate ensures that the TPM conforms to specification. However, it is rarely used to

verify the TPM. This falls on the AIKs that are generated from the EK. The AIKs can then be used to verify the identity of

the user of that specific TPM.8 In Reference 24, the authors propose the use of TPM for ensuring the policies of an academic

organization in cloud services that can be enforced on the cloud service provider, including identity management. Krauß

et al25 present a method to detect the geographical location of a virtual resource, where the identity of a physical machine

is verified through the TPM to ensure that a resource is not moved by the cloud provider to a location undesired by the user.

9 VM migration: In cloud services, VMs are often moved between physical systems. This act is named migration, and it can

be a point of exploitation if not defended properly, as the VM may not be isolated during the process, and is physically

changing hosts. The trustworthiness of the new host needs to be attested, and the data in the VM protected.26 The TPM can

provide for these requirements, for example, through its cryptographic methods or its remote attestation properties. Syed

et al,27 propose a module that uses the TPM to secure data when migrating within the cloud. Openstack is used as a case

study for secure migration of instances. In Reference 28, the authors propose an architecture capable of providing secure

migrations through integrity measurement, capable of detecting when a hypervisor is compromised, in a way that it migrate

the VMs securely from a malicious hypervisor to a trusted one.

10 Data protection: In the scheme proposed in Reference 29 TPM offers remote attestation and integrity measurement of

the streaming data. This assures the secure collection and transmission of forensic data from cloud services, and prevents

manipulation and falsification of the forensic data. The monitoring data is collected from the VM instances and stored in the

log files. This data could be accessed and forged by a malicious insider or an external intruder. In the framework proposed

by Kanstrén et al30 TPM is used to support the trusted monitoring for conducting security measurements and to guarantee

the availability and integrity of the monitoring data in the cloud.

In several works encryption feature that the TPM offers, through its securely stored keys and binding feature, is leveraged

to protect.31,32

11 Hardware root of trust: A root of trust is a source that could be trusted in a cryptographic system. Cryptographic secu-

rity relies on the keys to perform functions such as encryption, decryption, and generating/verifying digital signatures.

Therefore, in such system a hardened hardware module is included that is not easily broken and provides a level of trust

that is guaranteed to be genuine. TPM has been a successful hardware root of trust to support secure boot,17,33,34 integrity

measurements of the components before being loaded and at run time cite,25 and to protect the measurement values.35

12 Bootstrapping: Prior to entrusting a computer with a secret, the user should get some assurance about the trustworthiness

of the computer. Using secure hardware mechanisms for monitoring and reporting the platform's software state is one way

of bootstrapping trust in a computer system.36 To this end, TPM has become a popular means to achieve this goal.37–39

With proper software support, TPM can measure and record the loaded and executed pieces of software, and can convey

this information securely to a remote party. Hence, TPM could establish trust in the platform's software.

Keylime scheme40 provides secure bootstrapping that enables the tenants of a system to securely install a root secret into

cloud nodes which becomes the long term cryptographic identity of the nodes. The tenant will chain other secrets to it for

enabling secure services. The authors present a bootstrap key derivation protocol, which integrates integrity measurement

and the tenant intent for installing secrets into the cloud nodes. In the P-Cop design,41 bootstrapping and attestation of

compute nodes check the SW configuration of a nodes and verify whether they are configured properly with a trusted

container run time.

13 VM monitoring: One of the services offered by TPM to the cloud infrastructure to increase the confidence in cloud is secure

monitoring of VMs.42–46 In Reference 43 the authors propose an architecture that uses TPM for trusted monitoring of the

host infrastructure and guest VMs on these infrastructures. TPM verifies the integrity of the probes and the measurement

results that they have provided. This ensures that the system is running in the expected way, the monitoring probes are not

altered and their integrity is preserved.

14 Access rights management: TPM could be used to control the access of a user to a cloud provider,47 and detecting an

unauthorized access.48 In the architecture proposed by Jayarathna et al,49 TPM is emulated to provide trust management

with hypervisor level policy based access control. This prevents the access of unauthorized users to the resources.

4.2 RQ2: Security threats mitigated in cloud computing using TPM
Vulnerabilities in computer systems make them prone to security threats, and consequently, security attacks. A

component/resource is vulnerable, if it is: corrupted (due to some unintended changes, the resources do not function as
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T A B L E 1 Top threats mitigated in cloud computing environment

through the use of trusted platform module (TPM)

Threats mitigated by TPM No. of papers

Tampering of data 15

Unauthorized access 13

Data leakage 11

Malicious cloud provider 10

Run time attack to software stack 10

VM tampering 9

Malicious insider 7

Stealing cryptographic keys and nonces 6

Tampering of audit log records 6

Malware 5

Reverse engineering of applications on the cloud 5

Repaly attacks 5

MitM 5

Malicious coresident VM 4

Measurement data tampering 4

Attacks involving privilege escalation 3

Leakage of geolocation 3

Identity privacy 3

Leakage of data from compromised platform 3

they should), leaky (if there is an unauthorized access to the resources), or unavailable (if the system is disabled or slow

to render services).50 Attackers can violate the system and harm the assets by taking advantage of the vulnerabilities. In the

cloud-computing environment, there are several different points that are prone to security attacks. Compromising of any of the

vulnerable parts will result in unavailability of resources, malfunctioning of the system, and disclosure of information to unau-

thorized parties. In the literature, there exist wide spectrum of security measures to impede the risk of these attacks. In the

following, we present how trusted computing technology has been used to mitigate the most common security attacks. Through

answering this research question (RQ2) we identify the types of threats that are mitigated with the help of trusted computing.

Table 1 presents the top threats that were mitigated using TPM and the number of papers that were addressing that threat using

TPM. We also discuss these threats in more detail and present a classification for them. Depending on the point in cloud com-

puting environment that the attack could potentially occur and the target of the attack, we have classified the security threats

into six main categories of (1) network attack, (2) application attack, (3) malicious/untrusted cloud service provider, (4) attacks

on cloud back-end, (5) data tampering, and (6) data leakage.

1 Network attack:

• MitM attack could occur on the remote attestation protocol. It comes between the verifier and the prover to intercept and

manipulate the communicated data, that is, the attestation information. The MitM attacker should be prevented from alter-

ing/manipulating/forging this information. In Reference 51, the hypervisor, after processing the integrity measurements,

stores the result of the measurements in TPM registers in a concealed manner.51 Each measurement is concealed through

using a pseudorandom value to avoid the extraction of the plain measurement values. Each TPM register holds measure-

ment values of a different VM. In Reference 13, TPM has been used to generate and hold a public-private key pair in

order to thwart MitM attacks between a security agent and the user. An eavesdropping attack occurs when the adversary

monitors the communication channels and takes advantage of the disclosure of resources to obtain unauthorized access

to confidential data. This type of attack does not disrupt the normal functionality of the system, so might not be detected

immediately. Encryption of measurement data before storing them on TPM protects them from eavesdropping attacks.21
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• The Replay attack can be regarded as the combination of two attacks; eavesdropping and injection attacks. In this

scenario, first the intruder intercepts the communication to capture the data on transit, and then she retransmits this

data to the receiving party.52 On that account, the attacker acquires access to confidential data. The attacker tries to

looks legitimate while carrying out the malicious intent. Nguye et al21 have designed a secure tamper-evident logging

system which leverages SGX and TPM to hamper the tampering of stored logs. Upon receiving the logs, the log-

ger encrypts the content, generates and signs the hash value of this new entry. The signed hash value is stored inside

TPM. Later, at the time of audit, the whole hash chain (from the first signed hash and the log entries) are recomputed

and compared with the last value stored on TPM to verify the signature and also to detect if any of the verifica-

tion steps fails. Any changes in the log information stored results in a dissimilar hash value and therefore dissimilar

hash chain, which makes the attacker being detected. Moreover, the logger detects replay attacks on the storage, in

which the adversary clones some version of logger storage and restores it later on. The data, although authentic, is

an old version. The logger can detect the attack by comparing the version of data with the latest hash value stored

on the TPM.21

• Denial of service and distributed denial of service (DDoS) attacks typically take advantage of the vulnerabilities in the

network to overwhelm and exhaust the services and resources in order to make them unavailable to legitimate users.

This risk could be mitigated by using a fine-grained access control method, guaranteeing the integrity, confidentiality,

and freshness of the data.20 In the scheme proposed in Reference 20, TPM has the role of ensuring the integrity and

the authenticity of the computation and providing communication security through binding keys to exchange the ses-

sion keys in a secure manner between the communicating parties. Wang et al25 persent a trust certificate hypervisor

module that provides the functionalities such as software authorization, read, and write operations in the authorized envi-

ronment with TPM based encryption, and counting the number of trust certificates issued for the guest OS and guest

service. Then they demonstrate a form of DDoS attack as an instance of internal security attacks that take advantage of

the split device driver and multitenancy characteristic of the cloud servers to launch the attacks. This experiment demon-

strated that the TPM based module restricted the scale of malicious services and mitigated the risk of internal DDoS

attacks.

• Attacks to steal cryptographic keys and secrets stored on TPM or vTPM allows the attacker to gain access to the encrypted

files and perform its malicious activity.13,53 For protecting against a local adversaries, TPM provides a secure storage for

the keys on an untrusted device.12 Also in order to avoid this type of attack, the security scheme Kernel-based virtual

machines tries to secure the vTPM, and its secrets are encrypted and stored on the host. This approach also supports

the migration of keys at the time of VM migration. In another work,54 the author presents an architecture that separates

the keys and cryptographic primitives from the VM clients, and stores them on a secure domain that is managed by the

hypervisor. FADE-TPM55 considers the key management issue from a different point of view. It assures that the files and

keys are not recovered by an unauthorized party after being deleted from the cloud. To achieve this, they have designed a

TPM-equipped key manager that resides on the client side and stores the encryption keys. The key manager encrypts the

files and data before storing them on the cloud using a control key, and also decrypts the data received from the cloud for

the client. Key manager removes this control key when a predefined period expires.

• Unauthorized access is the first step for an adversary to view, steal, or modify confidential data, or to make damage.

One of the consequences of the unauthorized access is a successful injection attack that occurs when the attacker gains

knowledge on the system and attempts to tamper with the communication channels with the aim of injecting false data or

wiping evidence from the logger. The adversary could inject new messages, or change/reorder the message content.21 In

this scenario, TPM could provide secure authentication in order to prevent the unwanted accesses.16 Paladi et al.23 propose

a trusted storage protection scheme that provides access control per-VM instance using storage management policies. This

allows the client to control the read/write access rights from/to the storage at launch time.

• Identification problems or identity spoofing; While the great opportunities the cloud computing brings with its open,

dynamic and large scale characteristics, the same characteristics has brought along security risks as well. One of the

security threat as consequence, is the authenticity of the user's identity. Therefore, one of the security measures that need

to be in place is the identification of the users, VMs and the platforms. Among all security measures, TPM has also had a

significant role to ensure the authenticity of the identification.56–58 The scheme proposed in Reference 52 provides identity

authentication of the users accessing cloud services with the help of trusted platform. TPM is used for identifying the user

and mutual authentication, as well as for generating keys, establishing communication channels between a remote user and

the cloud server in a secure manner, and performing encryption and decryption operations. In another framework,57 TPM

performs mutual attestation and renders platform verification checks in order to provide trustworthiness and authentication

in the cloud.
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2 Application attack

• Malware is a piece of software that is designed to cause an intentional damage to the system or conduct malicious actions.

In cloud infrastructures, TPM has been used to reduce the threats and costs of certain types of malware and installation

of malicious rootkits, for instance, by starting the system with a root of trust and measuring the launch environment, and

by verifying the integrity of the platform.59 Malware could also be residing in the OS, however, it cannot compromise

the BIOS, firmware, hypervisor and hardware devices, since they are protected by the trusted boot, and hardware-assisted

virtualization techniques. In the proposed scheme by Wang et al60 through the access control mechanism that is based on

domain-type enhancement, also the static and dynamic measurement of host and VMs, the system introduces in depth

security for the virtual machine monitor and the VMs. This defends against the Trojan horses and viruses that aim at

tampering the running environment of the system. In Reference 61, trusted system boot offered by TPM from lower levels

to upper levels introduces protection against the rootkits, bootkits, and the malware that could be initiates during the

system boot or after the launch of a VM.

• In order to prevent the malware from obtaining keys and making copies from them at the time of migration, and also

prevent the malware from leaking the keys to a malicious device, there needs to be a secure key exchange protocol.

TPM-equipped devices establish a secure communication channel and TPMs take specific steps to exchange the keys

without leaking them, even if the hosts are compromised and infected by malware.62

• (Run time) attacks to software stack; the modern cloud infrastructure offers new SW deployment model, which is inte-

grated in the cloud environment, its policies and configuration. This indicates that the cloud is not only facing new

challenges, but also suffers from the traditional challenges existing in the ecosystem of cloud software. Integrity of the

SW stack could be compromised either by an attacker, intentionally, or through human errors, unintentionally. Presence of

a vulnerable software could potentially affect the entire software stack and consequently the whole system. Some exam-

ples of threats that could compromise the vulnerable software stack are presence of malware, absence of proper security

software (eg, anti-virus, firewall), missing security patches to fix vulnerabilities, and also the misconfiguration of the

software which relates to the behavior of the software in unintended behavior due to the effect of malware/virus. Aslam

et al63 have proposed a platform security monitoring and verification model that utilizes TCG-SCAP synergy to shift the

source of user trust to a trusted third party instead of the platform owner. Software stack integrity is verified through

remote attestation. The SW stack presents a report to the remote attester/verifier that is created by the root of trust for

measurement mechanism of TCG.

• Furthermore, many of the recent attacks have proved that software based solutions could themselves be vulnerable to

attacks and therefore cannot provide full-proof security. On that account, hardware based solutions such as the use of TPM

has become helpful. One of the use cases of TPM is to provide hardware root of trust to alleviate the attacks on software

security solutions,27 for instance by securing the hypervisor and VMs. SIMM module27 enables the binding function of

trusted computing to improve the existing migration of the instances. Another use case of TPM is integrity measurement

(see Section 4.3). Measuring and monitoring the run time system integrity prevents the attacks on software stack that

compromise the data or code of the software running on the cloud such as buffer overflow attack.64 Zou and Zhang42

propose a method in which run time system integrity is measured through a monitoring tool that resides in a privileged

VM, dom0.

• -Reverse engineering of applications on the cloud and tampering them is the result of the exploitation of the run time

software vulnerabilities that impacts the trustworthiness of the cloud infrastructure, and therefore, needs to be protected.

CAFE65 is presented to assure the secure execution of the sensitive software logic and protect it from piracy and reverse

engineering, in a VM, even if the guest OS and its kernel is compromised. To do that, the developer delivers the pro-

gram binary in two different sets of public and private binaries. While the first is comprised of files associated with the

application, such as configuration files, the later is related to the confidential logic that should be protected. When an

application is executing in the VM of the user, secret binaries are fetched at run time upon demand. The hypervisor loads

the secret binaries securely through a cryptographically protected communication channel after authenticating the VM.

In this scenario, the role of TPM is to attests the integrity of the hypervisor and ensuring its genuineness. Moreover, TPM

creates a secure channel by generating the RSA key pair for the hypervisor and other secrets used for encryption. This pro-

vides higher level of security compared to the standard transport layer security (TLS). The RSA key pair is wrapped with

the SRK of the TPM, which is unique and nonmigratable. This feature makes the key to be only usable on that specific

machine, and the attacker cannot upwrap it without that particular TPM.

• Trusted cloud root broker66 is proposed to robustly guarantee the trustworthiness of the JVM based applications. The

broker which is the application-root of the trust evaluates the run time trustworthiness, and supports dynamic attestation of
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the integrity of an application with the help of a Java VM. In order to prevent the compromising of the code and software

running in the cloud, Wei et al64 have developed a dynamic analysis tool to detect scoped invariants. As a case study to

scoped invariants they have chosen Xen hypervisor, which is the foundation software for a vast number of cloud providers.

The developed tool identifies the scoped invariants that are important to the run time integrity of the Xen hypervisor. One

of the properties of such invariant is isolation of the guests, the violation of which shows that the adversary, to achieve

her goal, only requires modifying a single byte in the global descriptor table.

• Piracy, illegal reproduction of copyright-protected; one of the possible attacks on the software is the copying and piracy

of the software. One of the usages of the approach CAFE65 is to protect the software from illegal copying and reproduc-

tion. Also, in the digital right management (DRM) approach proposed by Lee et al,58 some of the TPM functionalities are

employed to impede the attacks on DRM and protect the digital contents. To this end, TPM is incorporated in the com-

pliant devices to offer the functionalities including attestation, memory containing, sealing, and isolation with the aim

of protecting illegal and unauthorized access to the content by modifying the device operations. More specifically, such

attacks could be thwarted by using the TPM's remote attestation protocol, and avoiding the use of system-wide secret keys.

3 Malicious/untrusted cloud service provider: One of the very significant threat types in cloud security are the risks associated

with the threats coming from the inside of the cloud service provider. This class of threats could appear in the form of cloud

mismanagement, malicious insider, adversarial administrator, and malicious cloud. Due to the fact that cloud administrators

hold high level of privileged access to the cloud nodes on which the customer data resides and their computation take place,

misuse of such privileges could introduce major harm. Hence, as like other security threats, it is very important to mitigate

this security threat as well. P-Cop41 is a scheme proposed to protect the Docker containerized PaaS services against threats

related to cloud mismanagement. It employs TPM to offer remote attestation capability by external clients and prevent the

access of untrusted cloud administrators to the guest containers. All the severs installed in the cluster are supplied with TPM

chips, that each has a unique AIK key pair. The private part of the key is bound to the chips and the corresponding public key

is certified by cloud service provider at the time hardware being deployed to ascertain the property of that server by the cloud

provider. P-cop keeps a list of verified nodes with trusted run time software, which could accommodate guest containers.

This verification is attained when the auditor validates and signs the software, and also the leveraging TPM attests that this

software is executing on cloud nodes.

• Sometimes the cloud infrastructure hosts sensitive data, such as medical data of patients. Therefore, it is essential to make

sure that the patient data is not placed on a malicious cloud server and is not tampered with or accessed by unauthorized

parties. Javanmard et al6 have presented a cloud-based framework for cytometry data analysis. In this framework, TPM

verifies the integrity of cloud VMs. A vTPM instance provides the TPM functionalities on each VM. Remote attestation

technique is used for platform authentication (ie, authentication of hardware and also software stack running on the cloud)

using the RSA key unique to the TPM, to prove the integrity of the cloud to the remote authorized users, and to identify

if any unauthorized alteration occurs to the execution environment. In Reference 29, the authors present a scheme for

collecting and transmitting forensic data from cloud services in a secure way. For instance, a course of snapshots of the

suspect VM are taken by cloud provider and sent to the forensic investigator. TPM is used to guarantee the authenticity

of custodies, that is, who owns, transmits, and receives these forensic data. To be precise, TPM is used for attesting the

trustworthiness of the nodes that the forensic data is collected from or destined to, conducting key migration between

the receiver and sender of the forensic data, and auditing the write and read activities of the custodies. In Reference 67,

TPM is used for location assurance (ie, identification of the physical machines and the trusted authority that verifies the

location), and for platform integrity attestation (ie, verification of the trustworthiness of the machine of the cloud operator).

Using TPM helps the users to locate their virtual resources and assure that the service provider is genuine. Moreover, this

mechanism prevents the cloud provider from moving the resources to an unwanted location. In a different work,68 again

the cloud operator (and not the cloud provider) is considered untrusted. Meaning that it could be malicious or the dom0

is compromised. This could result in compromising the VM of the costumer and the data on it. To hamper such threat,

TPM is used to verify the integrity of the VM management dashboard of the costumer and assure that the VM created

by the client is not tampered with. For assessing the trust level of the VM service, Wang et al25 proposed a limiting trust

capacity model. In this model, trust tokens are used to define the amount of resources a guest service could use. In the

case that a malicious service attempts to consume a lot of resources, trust tokens limit the capacity of the resources that

party could use and in this way, control the scale of the attack. TPM checks the integrity of the SW that is loaded on the

system for execution, and provides a chain of trust from BIOS as the root of trust to the upper levels and services.

• Malicious coresident VM could influence other VMs in the system. Therefore, the cloud provider needs to guarantee the

security of its VMs and the applications running on top of them. The risk of having a malicious VM could be alleviated
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by detecting the infected node through periodic attestation and isolation of invalid VMs from the environment.35 TPM

provides this attestation, node identification, integrity measurement, and acts as hardware root of trust for the nodes.

CloudMonatt69 is a trusted cloud-monitoring scheme that relies on property based attestation, which is implemented on

top of OpenStack. In this architecture, the VM health is monitored over its life cycle, and the overall goal is to avoid

coresident VMs from maliciously affecting other VMs and also mitigate the threats coming from applications within VM.

TPM is used to carry out remote attestation between the clients and their VMs through vTPM instances.

• Attacks involving privilege escalation is another consequence of a vulnerable cloud infrastructure. In this type of attack,

an adversary exploits the vulnerabilities in order to gain higher privilege level and then uses the compromised machines

to launch further attacks.70 One example of this class of attack is root take-over attack,71 in which an attacker disguises

himself as the root user or root system and takes advantages of this role for further attacks. In the proposed work in

Reference 56, a switch is unable to join a network without TPM. This, first prevents the compromise of the switch BIOS,

second ensures the credibility of the spanning tree protocol and prevents an illegal switch from participating in the protocol

and launching root take-over attack. Another example of attack in this threat category is when remote administrators

of the IaaS provider attains root access and replaces a VM with a malicious one.72 To mitigate this attack, the authors

present a protocol to launch the VM instances of the IaaS cloud in a trusted way. To do this, TPM verifies the integrity of

the VM images and also the compute host. A security profile is given to each of the compute hosts, based on which the

scheduler chooses the host on which to launch the VM. This decision is made according to the trust level of the host and

the trust lower bound demanded by the client when he requests launching a VM. Another proposed security architecture

(see70) tries to counter this type of attack by combining intrusion detection, access control, and trust management. TPM

is embedded on the physical machine to measure the state of the hypervisor and VMs at boot time and confirms their

trustworthy behavior.

4 Attacks on cloud backend concerns a category that classifies the attacks based on what part of the cloud architecture they

target. The attack may target any of the layers in the architecture from the low-level hardware (via BIOS manipulation or con-

ducting replay attacks on TPM messages73) to upper level applications. In Reference 59, an example of a potential attack on

BIOS and firmware attacks is given, and such attack could be mitigated by utilizing a root of trust and a trusted launch pro-

vided by trusted computing technology. Nanivati et al74 also discuss that attacks on BIOS could be mitigated through remote

attestation using TPM. From the architectural point of view, hypervisor bases the foundation of the virtualization platform,

and is responsible for memory management and isolation, CPU multiplexing, and provides the required functionalities for

hosting the VMs. Therefore, the compromise of the hypervisor could have a severe effect on the security of the upper layers,

and it needs to be protected.73,74 Trusted boot technology offered by TPM verifies the identity of the booted underlying plat-

form and ensures the trustworthiness of the loaded virtualization platform.74 In another layer, the attack could come from a

malicious underlying OS.75 Masti et al75 propose an architecture capable of securely creating and managing multiple, con-

current execution environments. Virtualized TPM in this architecture supports multiple dynamic concurrent requests for root

of trust from various VMs.

• Forking attack or roll back attack is one of the attacks that happens when the service provider is malicious. When ones

retrieves a root hash that is stored on a remote server, there is no way to know whether the server is returning the most

recent value or not. This scenario could happen when the server makes a snapshot of the recent data, for example, the root

hash, and then it accepts an alteration from the system of the user. When the user (or another authorized) user accesses

this data from a separate device, cloud provides the old copy of the snapshot. Therefore, these two versions could be

evolved separately from two separate devices. This results in forking the contents of the stored data into multiple histories

of modifications.10 Such could be resolved by the direct communication of the devices, but to minimize the level of trust

required, Tate et al10 have proposed to use TPM and its functionalities in a virtual monotonic counters that never get

repeated values.

5 Data tampering is the act of deliberately and maliciously altering/manipulating the data through unauthorized access. Data

may be at rest or in transit. One of the use cases of TPM is minimizing the risk of such threat. OB-IMA76 is an approach

proposed for measuring the integrity of the guest VMs and the processes running on them, through reading the syscall

parameters of these processes and using TPM for hashing the files. The hash of these new files are stored and the files that

had been already measured will be compared to the ones stored to assure that the files (primarily configuration files or script)

have not been modified. CUMULUS77 is another framework proposed for verifying the security properties and certificates

validity in all three architectural models, SaaS, PaaS, and IaaS. The framework works with issuing and revoking the security
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certificates based on monitoring, tests, and trusted computing monitoring. The evidences of the security properties which

are the results of tests and monitoring are store in a database. Security experts design security models based on which the

system is tested against. These models are also stored in the database. In this framework, TPM confirms the integrity of the

components that run the monitoring events, that is, collect and analyze the monitoring evidences, and as well the components

of the framework itself. In this framework, various threats could be defined as security properties to which the systems

should conform to. For instance, threats such as unauthorized access or alteration of e-Health data needs to be protected

against.

• Tampering of audit log records: Monitoring the security of the cloud-based systems is, in some ways, similar to the

procedure in-house networks, but different in the aspect that the hardware is hosted externally and out of our control.

Kanstrén et al30 discuss the opportunities of using TPM to increase the confidence and trust in security monitoring of

the cloud from the viewpoint of a customer. The authors of Reference 78 propose a framework for cloud provenance,

which centralizes the log records from various sources into a single database, separate from cloud resources generating

the log data. In this framework, TPM is used for measuring the integrity of all the physical layer devices, for protecting

the provenance data, and controlling access to the logs. In this way, it is ensured that the log records of the activities

happened in cloud environments is not tampered with, and access is only given to the trusted parties in case if incident

investigation required.

• Tampering of measurement data: In the proposed architecture in Reference 43, TPM verifies the integrity of the moni-

toring probes and the measurement data they provide. This ascertains that the system is executing in the expected way,

the integrity of the measurement data is being protected and, the monitoring probes are not tampered with. In another

work,51 measurement data is being protected by TPM offering secure storage. In the proposed system, the hypervisor by

implementing a multiplexing agent processes the measurements values and stores them securely on the TPM registers.

Each VM could also run a measurement agent which is in charge of calculating integrity measurement, monitoring file

execution, and communicating with multiplexing agent. The TPM registers not only hold the integrity measurement val-

ues, but also a unique identifier for each VM in the hash chain. Each measurement value is concealed via the usage of a

pseudorandom value that works like a salt, to protect plain measurement values from extraction. Each of the TPM register

holds measurements value of different VMs.

• Tampering of VMs and its data at the time of transmission: Migration of VMs has many advantages for the cloud infrastruc-

ture, such as load balancing. However, there are many risks involved in this transmission including the risk of moving the

VMs to an unauthorized and untrusted destination platform and alteration and tampering of data during such transmission.

TPM has been utilized to hinder these attacks by offering attestation service and encryption. Attestation establishes trusted

connection between the migration nodes, and helps the hypervisor to authenticate itself to a remote hypervisor. Also,

using the TPM keys, the (attestation) data is encrypted to be protected while being transmitted.31 Zhang et al26 discuss

the several risks threatening the VM migration, including data being snooped or tampered, presence of MitM on the

channel established between the migration source and destination, and replay attacks. To hamper such threats, they pro-

pose an approach to preserve the privacy and protect the integrity during and also after the live migration of the VMs.

TPM is used to perform remote attestation and secure the migration process. TASMR20 is an architecture proposed to

secure MapReduce computation in hybrid clouds. Through the use of TPM, it provides authentication and authorization,

integrity, confidentiality, and data auditing. It also prevents the tampering of target VMs. In another work by Wang and

Liu,79 a trusted measurement model relying on dynamic policies to protect the privacy of the VMs of users in an IaaS

is proposed. TPM is used to source secure random numbers and security keys and for integrity measurements in such

proposal.

6 Data leakage occurs when the data is maliciously exfiltrated electronically or physically to an unauthorized destination/

party. To address data leakage threats in IaaS clouds, Paladi et al23 propose a scheme for protecting the integrity and data

confidentiality. In this scheme, a TPM module is used for attestation, encryption/decryption, integrity protection, and storing

cryptographic keys. Hu and Ji80 discuss that Cuckoo attack could be practical on a computer with TPM, to gain control over

the communication between the TPM and the verifier. To solve this issue, they propose a protocol that makes a trust channel

client and server. In this protocol, TPM generates random numbers and keys, hashes the messages, and signs AIK. Sometimes

the data leakage threat is within the cloud infrastructure,15 for instance the data could leak from one tenant to another. To

solve this issue, a trust-monitoring framework is proposed that eliminates the privileged domain from the chain of trust and

also partitions the different cloud tenants. In this implementation, TPM is used for trusted boot and remote attestation of the

monitoring framework and virtual TPM is utilized to establish independent TCB for each tenant.
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• leakage of geolocation data occurs when an attacker obtains the physical location of the devices (eg, mobile devices).

Park et al81 propose a trusted geolocation framework that delivers a trusted channel between the mobile client with tiny

hypervisor and geolocation server and protects the cloud user device. TPM is used as for dynamic root of trust measure-

ment, generating and storing the RSA keys, and remote attestation of geolocations of the devices in order to detect if the

hypervisor is compromised. This also prevents the attacker to attain geolocation of mobile devices. Addressing the data

location problem, Noman and Adams82 present a cryptographic protocol through which the customers could verify the

accurate geolocation of their data within the cloud service provider infrastructure, for instance, in which data-center their

data resides. To do this, TPM is used for data possession proofs. Each of the data-center storage have built in GPS enabled

TPMs. After correctly identifying themselves, clients could establish a secure communication channel with these TPMs.

In this method, the TPM features such as remote attestation, integrity checking, and cryptographic functionality support

are used.

4.3 RQ3: Target of integrity measurement
This research question (RQ3) identifies the exact component of integrity assessment in the studied set of publications. Below,

we discuss these targets of assessments and present some examples from the studied set of publications. In some of the works,

the target of integrity measurement was a component of the cloud back-end, and in some other works the target of integrity

measurements were components not specific to the cloud back-end. We divide the discussion in two parts according to this

aspect:

• Components on cloud back-end: The studies that fall into this category aim at protecting the cloud back-end using trusted

computing technology:

– Cloud computing platform/hardware: In Reference 63, the authors propose a platform for security auditing and continuous

monitoring of the remote platforms. In this approach, TPMs are used for hash-based binary measurements to assert the

integrity of binaries and if the software is patched and up to date in order to avoid misconfiguration in the running software.

The work proposed in Reference 74 is an online verifiable resource scheme for memory and CPU allocation in cloud

computing. In this work, TPM assures the integrity of BIOS through remote attestation.

– Hypervisor: Cafe65 is a system developed to help developers to deploy software via a cloud marketplace that is protected

from illegal piracy and copying and the reverse engineering of the applications. In this work, TPMs are utilized to attest

the integrity of the hypervisors that host the VMs. The applications are installed and executed on these VMs. TPM RSA

key generation is also used for secret sharing purposes between the server and hypervisors in order to transmit binaries

securely.

– VM: The distributed trust protocol83 is proposed to provide trust between the cloud provider and customers in IaaS clouds.

In this approach, TPM is used to support the trusted boot and verify the integrity of the VMs in order to protect the VMs

from tampering.

– Operating system and software stack: On the approach proposed in Reference 84, the authors address the scalability

limitations that exist in the current trusted boot and integrity measurement approaches. Their middleware system closes the

gap between the applications and their integrity with the hardware infrastructure, and transforms the servers into trusted

IaaS platforms via the use of TPM features such as integrity measurement and monitoring. In another work,85 an auditing

and certification scheme that utilizes TPM for integrity measurement and integrity measurement to protect the complete

software stack is proposed.

• Other components:

– Data: In order to protect the confidentiality of data, TPM has been used to preserve data freshness and integrity,10,86

provide integrity attestation, verify client signature authenticity, and prevent the unauthorized access to the stored and

processed data.23 The medical logs could be protected, through ensuring the secure boot of the medical devices, verifying

the authentication, and detecting data tampering.21

– IoT device hardware and software: As a part of the architecture proposed in Reference 87, TPM is used to provide attes-

tation between the connecting nodes acting as root of trust for software stack. Secure storage of the TPM is used to hold

keys, and sealing functionality of TPM is used to bind the container's storage protection key to TPM and making sure it

is only unsealed if the container initiates in an expected way. In the authentication model88 proposed for IoT clouds, TPM

ensures the integrity of the software and hardware.
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– Code: In the solution presented in Reference 89, an XML-based language framework is proposed to for managing access

rights. The binding and sealing operations of TPM are used to encrypt data. This data can only be decrypted if the machine

is in the expected state and provides attestation. For providing this attestation, integrity of some pieces of code needs to

be assured.

– Files: The OB-IMA Scheme76 is proposed to measure the integrity of processes that run on VMs through using TPM

for hashing the file that are accessed and executed by a process. The main goal of this work is to prevent tampering of

these files. A similar approach has been used in another work90 to protect health information platforms through integrity

measurements. In this work, the files hashes are protected through static attestation, and running processes are protected

through dynamic attestation.

4.4 RQ4: Level of integrity measurement
Compared to conventional computing systems, in a virtual environment, there are additional layers to support the multitenancy

feature of the cloud. The hypervisor residing between the hardware and the OS, and the OS is now running on VMs on top of

the hypervisor. These added layers expand the attack surface and introduce new attacks in addition to the ones in traditional

computer systems. Hence, it is important that all these layers are being protected and trust is measured. To this end, trusted

computing technology has been widely used to offer security and trust in various layers. This research question (RQ4) is designed

to identify the different layers of cloud computing that TPM features have been leveraged in to present. In the following, we

present a categorization of these layers and some examples of the studied works that fall in these categories:

1 Hardware, platform, server: In distributed systems models such as IoT and cloud computing the security of the host platform

is highly critical as it is hosting the storage or the process of the (great amount of) data. TPM is one robust solution for

authentication of the platform as well as verifying its integrity. In the proposed solution in Reference 90, the HCloud (a

Private cloud for health-care data) is extended and TPM is embedded on the host platform to authenticate the clients, and

to measure the static and dynamic integrity. It is discussed that a trusted cloud could provide external certified services and

conduct internal trusted scheduling. Each service that is provided to external has a unique image/process running in memory.

This process needs to be verified when being loaded to the memory. Static measurement could be performed using TPM, to

verify the files and packages that are stored in the physical repository. Also, the integrity of the database is protected using

TPM signatures to provide hardware level security. For dynamic integrity measurement of the processes, TPM PCRs are

utilized to store and present the step-by-step measured values. Yang et al86 propose a design that provides guarantees to the

clients about the freshness, validity, and integrity of their data stored on the cloud. To achieve this goal, they use a trusted

hardware device on an untrusted server that enables the clients to validate the freshness and integrity of their data.

Before the system runs, it needs to be verified whether the platform has booted in the trusted way. Reference 91 discusses

the TPM as the root of trust for measuring the boot process and attestation of the critical steps for asserting the platform boot

integrity. In a virtual environment, TPM provides a chain of trust rooted in hardware that will be extended to the hypervisor.

Platform boot integrity is ensured if the key components (ie, BIOS, firmware, and hypervisors) have demonstrated their

integrity. To ensure the integrity of the launch components, two steps are required: first, the boot process is measured, and

second, attestation, that is, assurance and that the executed components are trusted components.

2 Hypervisor: A trusted geolocation framework which creates a trusted channel between the server and small hypervisors

on the mobile clients is presented in Reference 81. A TPM is embedded on these hypervisors to act as a root of trust and

provides dynamic trust measurements to attest the locations of the cloud devices. An attestation protocol verifies whether

the hypervisor is compromised. Wu et al28 discuss that at the time of VM migration there are two issues that need to be

addressed: first is the proper time to start the migration and second, the trustworthiness of the source hypervisor. To address

the later issue, they propose a secure migration framework based on the Xen hypervisor. This design uses trusted computing

and adjacent integrity measurement to dynamically monitor the integrity of the adjacent hypervisor. More specifically, to

ensure that the host is being monitored at all times, when a host initializes, TPM module verifies the hypervisor and sends

an update message to the integrity validation table (which holds the list of trusted hypervisors) and marks that hypervisor

as trusted. This means that if such message is not received, that particular hypervisor is considered untrusted. Moreover, the

running state of the hypervisor is dynamically monitored and, in case the hypervisor is compromised, a corresponding update

message is sent to report the compromised situation. Based on the result of this integrity table, the decision is made whether

the source hypervisor is trusted and the VM migration process should be initiated. In another work,92 an hypervisor-based

remote attestation scheme is proposed for virtualizing network functions and private clouds. This work supports a great

amount of VM attestations using a physical module.
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F I G U R E 7 Distribution of studies classified based on the phase

that trusted platform module (TPM) features are used

3 VM: Through the usage of trusted computing technology, the integrity of the VMs are verified at the time of launching

and booting them as well as later at the time of run. In the implementation of the monitoring framework in Reference 15,

the remote attestation functionality of TPM and its support for trusted boot are utilized for certifying the integrity of the

monitoring environment. To prevent and detect the attacks that misuse the cloud infrastructure to conduct their malicious

intent, Varadharajan et al93 propose an approach that, with the help of trusted attestation techniques certifies the security of

the cloud provider, its VMs and the services running on top of the VMs. If there is a discrepancy between the behavior of a

VM and the defined security properties, that VM will be isolated and terminated. To do this, using TPM, binary and property

attestation is performed between the tenant VM and the customer. Binary attestation certifies the state of the components

at boot time and property attestation indicate the run time state. Periodic attestation of the integrity provided by keylime

Scheme40 ensures the run time integrity of the system.

The use of TPM to support VM migration has been extensively studied. The research works in this area focus on proposing

a secure protocol71,80,83 to support the live migration with the use or propose approaches that leverage TPM to perform

integrity measurement and address the problem of untrusted source in VM migration,28 verify the integrity of the destination

platform and to ensure that only the destination node receives the migrated VM data,94 present attestation Services to establish

a trusted connection between the nodes of migration, provide keys used for encrypting data for attestation,31 and to provide

node attestation and generating EK.95

4 Application, software: Security and integrity of the SW stack is a crucial factor in the overall security status of the platform.

This means that the security of the platform improves through a secure SW stack, or could be degraded through SW exposure.

Although TPM is a physical chip residing on the hardware of the platform, its functionalities could be leveraged to secure

the application layer and the SW stack. Shield35 presents a hardware root of trust on the network nodes and protects the SW

stack from boot to the application layer, by measuring each component, securing the measurements with digital signatures,

and unique identification of the nodes. Jayaram et al96 propose using TPM as a hardware-rooted integrity verification means

to validate the integrity of the SW stack on IaaS. TPM measures the integrity of hypervisor, OS, the SW packages, and

also validates these measurements by interacting with the attestation services. Pasquier et al97 propose a hardware-backed

decentralized information flow control for managing data in a cloud-supported IoT. In this framework, trusted computing

offers remote attestation to elevate the trust level in the infrastructure. Remote attestation verifies the integrity of information

flows and validates the SW configurations. More specifically, TPM performs binary attestation and SW integrity verification.

The proposed scheme in Reference 27 uses hardware root of trust to support the VM migration and to mitigate the attacks on

SW security solutions. In the P-Cop approach,41 TPMs installed on the servers perform bootstrapping and attestation of the

computing nodes to verify the SW configuration of these nodes and check if they have been set up properly with a trusted

container.

5 Various layers: In a big portion of the studied papers, TPM features have been used to offer trust and integrity in various layers

in the virtual environment. For instance, integrity measurement was done in different layers, to present the hardware-rooted

chain of trust from lower layers to upper ones.25,98,99

4.5 RQ5: Phase of integrity measurement
Figure 7 illustrates the distribution of studies when categorized based on the phase in which the TPM features are used. These

phases are boot time and run time. In some of the studied works (ie, 34 papers) TPM primitives are invoked at both phases,

during the boot and at run time. It is worth noting that among the 120 studied publications, there were 13 cases in which the
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phase was not clearly discussed or was not possible to extract this data. In the following discussion, we discuss how TPM

features have been used in each of the phases.

• Boot time: One of the principles pursued in trusted platform technologies is verifying the trust and integrity of the critical

component before they are loaded and executed. Therefore, before the run time integrity checking, it needs to be ensured that

the system is correctly booted and an appropriate operating system is running. Trusted platform achieves this trust through

creating a chain of trust that starts with the core root of trust for measurement (CRTM) that is a trusted code in BIOS boot

block. CRTM measures the integrity value of the other entities, and remains unaltered throughout the lifetime of the platform.

CRTM is a supplement to the normal BIOS, and it first runs to measure the BIOS block and the hardware, and then passes

the control over to the bootloader. Then measures the OS kernel image before passing the control to the OS. At each step

in this boot process, the measurement value is taken and according to that the relevant TPM PCR value is extended. This

measurement process attests the system integrity, and ensures that the boot and OS software is the version intended by the

manufacturer and has not been tampered with by malicious third parties or a malware.100 Nanavati et al74 argue that in virtual

environments, trusted boot technology allows the users to attest the identity of the underlying booted platform, and also ensure

that the loaded virtualization platform is trustworthy. This gives a concrete guarantee to the users about the virtualization

platform to which they could commit critical data. TPM, by using cryptographic primitives, provides this trusted boot for

the virtualization platform and establishes root of trust for them. In the ALIBI trusted monitoring framework,17 TPM is used

to offer root of trust on the service provider platform. The TPM PCRs record the state of software that is executing on the

platform, and since the PCR values are append-only, the previous records are eliminated only via rebooting. TPM also holds

a public-private key-pair. The private key remains inside the secure environment of the TPM only, and is used to compute

the signature of the attestation value (the measurements accumulated from authenticated boot), that the TPM has generated.

Using the public key of the TPM, the external verifier could check the validity of the signature and deduce that the PCR

values present the state of platform software.

The TPM functionalities have been widely used for protecting the VMs, at the launch time and migration and throughout

the whole VM lifecycle. At the time of VM launch, it is essential that both the client VM and the cloud provider platform have

a mutual trust in each other. This guarantees the trustworthiness and reasonable security of the computing resources/host and

also guarantees the confidentiality and integrity of the VM instance. To address the limitations in the process of trusted VM

launch, Paladi et al72 have proposed a protocol that relies on TPM functionalities together with asymmetric cryptography and

hashing to provide assurance on the integrity of the host and the client VM image that has requested to launch. This protocol

eliminates the need of client-side prepackaging of VM images, in order to provide full scheduling flexibility on the cloud

IaaS side, and enables the cloud provider to choose a target trusted host without direct involvement of the client.

• Run time: After a trusted boot of the system, it is essential to ensure that the system is still behaving as expected and in a

trusted manner at all time during the execution. The dynamic attestation service offered by trusted computing attests the run

time behavior of the system and proves it run time integrity to a remote party. Keylime40 is a trusted cloud key management

system that offers bootstrapping hardware based cryptographic identities for the nodes of IaaS, and also integrity monitoring

of these nodes through periodic attestation. This periodic attestation monitors the integrity of the system continuously and

polls the integrity state of the cloud nodes periodically to determine to detect whether any run time policy was violated.

Trusted cloud root broker66 is another framework for evaluating the run time trustworthiness of the system through dynamic

attestation of the application.

Direct anonymous attestation (DAA) is a cryptographic protocol designed for remote attestation, to provide signer authen-

tication and privacy. However, this scheme is designed only for single trusted domain attestation, and therefore, it cannot be

deployed in the environments in which authentication servers and users belong to various domains, such as cloud comput-

ing, mobile networks, or IoT. Yang et al101 propose a scheme for DAA on cross trusted domains that adapts the TPM DAA

to allow users authenticate a computation platform when accessing a visiting trusted domain. This delegation model encom-

passes the two stages of domain attestation and platform attestation, to establish a trusted relationship model between various

domains.

VM migration is the process of moving a VM from a host, platform, or a storage location to another host. This migration

offers many benefits to the hosting organization, such as load balancing and disaster recovery. To support the secure migration

of the VMs, many approaches and measures are available. Among all, TPM has also been used to protects the cloud instances

and data at the time of migrating from a zone to another.26,27,31,95 SIMM27 enables the binding function of trusted computing

to protect the migrating instances. It first check, the migration feasibility between the two zones on the cloud and then, before

launching the live migration, encrypts the instance data on the source. This data will be decrypted on the destination using

the local TPM coprocessor. In another work that addresses the issues related to secure live migration of the VMs,95 authors
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use trusted computing for node attestation and guaranteeing the continuity and coherence of the trusted status throughout the

lifecycle of the VMs. TPM is also used for generating EK.

• Boot time and run time: In the studied set of papers, a wide number of papers were using TPM and trusted computing

technologies both for a trustful boot of the system and for run time integrity assurance. In Reference 42, trust computing's

sealed storage is utilized to improve the chain of trust and to ensure the system integrity at boot time through dual verifiable

bootstrapping. In the proposed approach, they monitor and record the run time status of the security of the critical applications

on the targeted VMs. Additionally, they have defined a way to report the run time trust status of the cloud environment to its

users via platform attestation. In Reference 48, an agent-based system is proposed, which is able to detect alterations, both

at boot time and run time, to software or hardware done by the cloud provider to obtain access to the data of the costumers.

Authors of Reference 25 present a trust capacity model to assess the trust level of services that are running on the VMs. TPM

measures the integrity of loaded software on the system for execution, and for creating a chain of trust, and verification of

transition of trust from the root of trust to a service.

5 CHALLENGES, OPEN ISSUES, AND FUTURE DIRECTIONS

Trusted computing offers various techniques for trust assurance in the system. Integrity measurement (=remote attestation) is

one of these techniques that guarantees that the system is in a good state.102 In the literature reviewed, the integrity is measured

at different phases and also different layers. The integrity of the system could be measured at boot time, load time, and run time.

At boot time, the platform is measured to make sure it is in trusted state. First, the state of BIOS is measured and the value is sent

and recorded in PCR, before it is being executed. After BIOS, the next components in the boot sequence are measured one after

another (like PCI option ROM, and boot loader). In other words, a chain of measurement happens from BIOS up to the kernel.

Load time integrity checking guarantees the state of the system when the program is loaded. However, load-time integrity

checking does not have a view to the code as it starts to run and the system configuration might change after the boot time.

Therefore, run time verification is still necessary to measure the run time state and detect possible modifications.103 Run time

integrity measurement assures that the program is still in a safe state as it is being executed. Sianipar et al48 propose a system

that monitors the integrity of the cloud at boot time and at run time using TPM.

We also observed several potential challenges and issues, as well as future work that can be developed, on TPM usage in Cloud

computing environments. For this, we propose and aim to answer five main questions that shape and present these challenges:

1 What is needed to have a wider adoption of TPM in the cloud ecosystem? The main steps have been taken toward the adoption

of TPM devices. The TPM 2.0 specification is ISO compliant, as the ISO/IEC 11889-1:2015,104 and it was ratified by several

governments, specially some of the largest economies, such as the USA, Japan, Russia, UK, and France, among others. More

recently, in 2018, an open-source middleware was made available by Infineon to use with TPM 2.0.105 What should now be

required is a simpler integration and adoption of TPM for the cloud, with specific middleware capable of interacting both

with hypervisors and VMs, that can be easily implemented without requiring extensive technical knowledge, or that can be

toggled as a simple configuration option.

2 Should TPM be delivered as a service in the cloud context? While not directly, the TPM can be used to provide security

in an IaaS cloud infrastructure, as depicted in,106 to ensure both VM and remote resources integrity. The vTPM approach

is another method of applying TPM in the cloud, that works as a service that is made available to all VMs running on a

given hypervisor. Through, it is possible to deliver TPM features to each individual VM, in a transparent manner to the end

user. Each VM can have its unique vTPM instance, to which other VMs have no access. This could be considered the wider

approach to use TPM as one would use on a regular machine/server, and will serve as a root of trust for each specific VM

that has a vTPM instance associated with it.107 However, if the TPM could be fully made into a service unto itself, it would

allow to have a centralized root of trust in the cloud, from where other machines could draw from to provide TPM features

to their hypervisors and VMs.

3 Should the set of provided TPM features be extended or reduced for the cloud context? The total TPM feature set includes

random number generation, remote attestation, authentication, secure generation of cryptographic keys, binding, and sealing.

Taking the cloud ecosystem into consideration, this feature set is fully applicable, and able to be used to its full extent.

If possible, the main expansion that could be performed would be the capability of the TPM to be aware of the cloud

infrastructure, so that it could directly adapt to enable and make its features available directly to the VMs, while keeping the

information between them separate.

4 Which layer requires more integration work? On hardware and infrastructure levels, the TPM is already fully useable to

perform its main functionalities, such as integrity measurement, as it can interact directly with the first and, as previously
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mentioned, indirectly with the latter, through systems similar to the vTPM. Greater integration is needed in the platform and

application layers, for the TPM to be aware of them and their specificities, so that TPM features can be applied and used in

a transparent manner in these layers.

5 How will TPM architecture in the cloud most likely evolve in the near future? TPM is often seen as a computer system

component that comes with every device. In the cloud this might not be case, as a central server might be providing attestation

services for several other servers, devices and applications. In such case, a form of root of trust might still be needed in each

server to support confidentiality and correctness of communications between the devices, as well as a protocol to enable

interactions between it and the virtualized hosts.

6 CONCLUSION

In this paper, we surveyed the literature for applications of TPM in the context of cloud computing, with publication dates

between 2013 and 2018. As the result of this research, we collected 120 papers, from which we extracted data and analyzed

them. Through this study, we were able to identify the current trends and objectives of this technology in cloud computing. We

learned that Remote attestation and integrity measurement were the main purposes of utilizing TPM in cloud computing. We

also presented a classification of the security threats and discussed in detail how they are thwarted by the use of TPM. Due to

the fact that integrity measurement is one of the main utilities provided by TPM to assure that the system is in a good state,

we gave special attention to this feature in our study. More specifically, we studied at what phase and at which software layer,

the integrity is measured and at what phase/layer there is still room for research. Toward the end, the main research gaps were

pinpointed and discussed.
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