264 research outputs found

    Using the smartphone in carpooling for new mobility services

    Get PDF
    The principle of dynamic carpooling is in local real-time to send the "user-carpooler." If we choose to travel with standard vehicles, we can contact the service a few minutes before departure. The service then searches for the best driver to give the desired car-sharing service on the chosen route. In recent years, there has been growing creation of modern information and communication technology, particularly with the growth of the Internet and mobile telephones. New knowledge and networking systems are therefore closely linked with the changing area of mobility. Policies and processes introduced for sustainable mobility in this field. New forms of transportation aim to find a space for them and promote emerging mobility technologies such as shared cars. It has been shown that these programs utilize modern knowledge and communication technology, particularly recently, to evolve via telephone. The aim of this project is, in this sense, to decide how often smartphone car sharing access can be utilized. This tool seems important in specific typical vehicle use encounters and seems a significant factor in growing its scope by simplifying access and use. The method is versatile and provides a high standard of operation with a reasonable number of participants: the probability of having a shared vehicle is reasonable. This scheme complements mass transit – on-demand and daily – and complementary options such as bicycle terminals

    Exploration of the Current State and Directions of Dynamic Ridesharing

    Get PDF
    Dynamic ridesharing (DRS) is an emerging transportation service based on the traditional concept of shared rides. DRS makes use of web-based real-time technologies to match drivers with riders. Enabling technologies include software platforms that operate on mobile communication devices and contain location-aware capabilities including Global Positioning Systems (Agatz, Erera, Savelsberg, & Wang, 2012). The platforms are designed to provide ride-matching services via smartphone applications differing from early systems that used non-real time services such as internet forums, or telecommunications, where responses were not immediate. The study of DRS is important when considering its role as an emerging transportation demand management strategy. DRS reduces travel demand on singleoccupancy vehicles (SOVs) by filling vehicle seats that are typically left vacant. The most recent statistics of vehicle occupancy rates were measured in 2009 by the National Household Travel Survey (NHTS), conducted by the U.S. Department of Transportation. According to the NHTS, the 2009 occupancy rate for all purposes was a meager 1.67 persons per vehicle (Federal Highway Administration, 2015). Vehicle occupancy rates examined against the total of all registered highway vehicles in the U.S. as of 2012, calculated at 253,639,386 (Bureau of Transportation Statistics, 2015), reveals the magnitude of the impact of SOVs. Left unattended, the ramifications for environmental outcomes is substantial. Among the major energy consuming sectors, transportation\u27s share is largest in terms of total CO2 emissions at 32.9% (Davis, Diegel, & Boundy, 2014, p. 11-15). DRS offers promise to fill empty vehicle seats. Evidence indicates that specific demographic subgroups are inclined to use DRS services. For example, data suggest that the subgroup of 18 to 34-year-olds, the so-called millennials , have negative attitudes towards private car ownership unlike previous age groups (Nelson, 2013). Data collected for this study revealed that the millennial subgroup represents half of all DRS users. Millennials also revealed they tended to use DRS more than other subgroups to replace a private vehicle. Further research is needed to determine if the trend towards DRS by 18 to 34-year-olds represents current economic factors or a fundamental cultural shift away from the SOV transportation model

    Software Protection and Secure Authentication for Autonomous Vehicular Cloud Computing

    Get PDF
    Artificial Intelligence (AI) is changing every technology we deal with. Autonomy has been a sought-after goal in vehicles, and now more than ever we are very close to that goal. Vehicles before were dumb mechanical devices, now they are becoming smart, computerized, and connected coined as Autonomous Vehicles (AVs). Moreover, researchers found a way to make more use of these enormous capabilities and introduced Autonomous Vehicles Cloud Computing (AVCC). In these platforms, vehicles can lend their unused resources and sensory data to join AVCC. In this dissertation, we investigate security and privacy issues in AVCC. As background, we built our vision of a layer-based approach to thoroughly study state-of-the-art literature in the realm of AVs. Particularly, we examined some cyber-attacks and compared their promising mitigation strategies from our perspective. Then, we focused on two security issues involving AVCC: software protection and authentication. For the first problem, our concern is protecting client’s programs executed on remote AVCC resources. Such a usage scenario is susceptible to information leakage and reverse-engineering. Hence, we proposed compiler-based obfuscation techniques. What distinguishes our techniques, is that they are generic and software-based and utilize the intermediate representation, hence, they are platform agnostic, hardware independent and support different high level programming languages. Our results demonstrate that the control-flow of obfuscated code versions are more complicated making it unintelligible for timing side-channels. For the second problem, we focus on protecting AVCC from unauthorized access or intrusions, which may cause misuse or service disruptions. Therefore, we propose a strong privacy-aware authentication technique for users accessing AVCC services or vehicle sharing their resources with the AVCC. Our technique modifies robust function encryption, which protects stakeholder’s confidentiality and withstands linkability and “known-ciphertexts” attacks. Thus, we utilize an authentication server to search and match encrypted data by performing dot product operations. Additionally, we developed another lightweight technique, based on KNN algorithm, to authenticate vehicles at computationally limited charging stations using its owner’s encrypted iris data. Our security and privacy analysis proved that our schemes achieved privacy-preservation goals. Our experimental results showed that our schemes have reasonable computation and communications overheads and efficiently scalable

    Legal infrastructure and urban networks for just and democratic smart cities

    Get PDF
    This article positions itself within the urban law and policy scholarship as a contribution to the creation of a subsection of this body of law, the urban law of services and assets. It shows that in three kind of urban infrastructure and networks (i.e. transport, energy, digital) there is growing attention towards a new general legal principle of urban law, the principle of tech justice which can be the center pillar of a more comprehensive legal infrastructure, the internet of humans. This legal infrastructure is necessary if public authorities want to design and shape just and democratic smart cities. Concepts like the Internet of Things, Internet of Everything and Internet of People suggest that objects, devices, and people will be increasingly inter-connected through digital infrastructure able to generate a growing gathering of data. At the same time, the literature on smart city and sharing city celebrate them as urban policy visions that by relying heavily on new technologies bear the promise of efficient and thriving cities. When addressing the impact of technological innovations, law and policy scholarship has either focused on questions related to privacy, discrimination, security, or issues related to the production and use of big data, digital public services, egovernment. Little attention has been paid to the disruptive impact of technological development on urban governance and city inhabitants\u2019 rights of equal access, participation, management and even ownership, in order to understand whether and how technology can also enhance the protection of human rights and social justice in the city

    MOBILITY ANALYSIS AND PROFILING FOR SMART MOBILITY SERVICES: A BIG DATA DRIVEN APPROACH. An Integration of Data Science and Travel Behaviour Analytics

    Get PDF
    Smart mobility proved to be an important but challenging component of the smart cities paradigm. The increased urbanization and the advent of sharing economy require a complete digitalisation of the way travellers interact with the mobility services. New sharing mobility services and smart transportation models are emerging as partial solutions for solving some tra c problems, improve the resource e ciency and reduce the environmental impact. The high connectivity between travellers and the sharing services generates enormous quantity of data which can reveal valuable knowledge and help understanding complex travel behaviour. Advances in data science, embedded computing, sensing systems, and arti cial intelligence technologies make the development of a new generation of intelligent recommendation systems possible. These systems have the potential to act as intelligent transportation advisors that can o er recommendations for an e cient usage of the sharing services and in uence the travel behaviour towards a more sustainable mobility. However, their methodological and technological requirements will far exceed the capabilities of today's smart mobility systems. This dissertation presents a new data-driven approach for mobility analysis and travel behaviour pro ling for smart mobility services. The main objective of this thesis is to investigate how the latest technologies from data science can contribute to the development of the next generation of mobility recommendation systems. Therefore, the main contribution of this thesis is the development of new methodologies and tools for mobility analysis that aim at combining the domain of transportation engineering with the domain of data science. The addressed challenges are derived from speci c open issues and problems in the current state of the art from the smart mobility domain. First, an intelligent recommendation system for sharing services needs a general metric which can assess if a group of users are compatible for speci c sharing solutions. For this problem, this thesis presents a data driven indicator for collaborative mobility that can give an indication whether it is economically bene cial for a group of users to share the ride, a vehicle or a parking space. Secondly, the complex sharing mobility scenarios involve a high number of users and big data that must be handled by capable modelling frameworks and data analytic platforms. To tackle this problem, a suitable meta model for the transportation domain is created, using the state of the art multi-dimensional graph data models, technologies and analytic frameworks. Thirdly, the sharing mobility paradigm needs an user-centric approach for dynamic extraction of travel habits and mobility patterns. To address this challenge, this dissertation proposes a method capable of dynamically pro ling users and the visited locations in order to extract knowledge (mobility patterns and habits) from raw data that can be used for the implementation of shared mobility solutions. Fourthly, the entire process of data collection and extraction of the knowledge should be done with near no interaction from user side. To tackle this issue, this thesis presents practical applications such as classi cation of visited locations and learning of users' travel habits and mobility patterns using historical and external contextual data

    The Collaborative Economy and new business models

    Get PDF
    Treball Final de Grau en AdministraciĂł d'Empreses. Codi: AE1049. Curs 2020/2021The collaborative economy has meant a change in the economic, social, labour and legal paradigm, where for the first time consumers are the protagonists in the exchange of goods and services. Factors such as the Internet, new technologies and the financial crisis have led to the emergence of a global movement based on cooperative and collaborative initiatives. At the same time, the rapid development of this phenomenon has posed a major challenge for both institutions and traditional economic operators and regulators. A new economic and social reality that has called into question the current regulations, forcing these organisations to develop new, specific, fair and efficient regulations, aimed at optimising the numerous advantages for the economy and society. Sectors such as housing, transport and finance are some of the sectors that have most experienced the advance of the collaborative economy, where in just a few years it has driven new forms of production and consumption of goods and services. This study will analyse the different economic, social and legal factors posed by the new business models based on the collaborative economy raise, showing as an illustrative example the case of the transport sector in Spain

    Networking Transportation

    Get PDF
    Networking Transportation looks at how the digital revolution is changing Greater Philadelphia's transportation system. It recognizes several key digital transportation technologies: Artificial Intelligence, Big Data, connected and automated vehicles, digital mapping, Intelligent Transportation Systems, the Internet of Things, smart cities, real-time information, transportation network companies (TNCs), unmanned aerial systems, and virtual communications. It focuses particularly on key issues surrounding TNCs. It identifies TNCs currently operating in Greater Philadelphia and reviews some of the more innovative services around the world. It presents four alternative future scenarios for their growth: Filling a Niche, A Tale of Two Regions, TNCs Take Off, and Moore Growth. It then creates a future vision for an integrated, multimodal transportation network and identifies infrastructure needs, institutional reforms, and regulatory recommendations intended to help bring about this vision

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Interaction in Digital Ecologies with Connected and Non-Connected Cars

    Get PDF
    • …
    corecore