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Abstract

Smart mobility proved to be an important but challenging component of the smart
cities paradigm. The increased urbanization and the advent of sharing economy re-
quire a complete digitalisation of the way travellers interact with the mobility services.
New sharing mobility services and smart transportation models are emerging as partial
solutions for solving some traffic problems, improve the resource efficiency and reduce
the environmental impact. The high connectivity between travellers and the sharing
services generates enormous quantity of data which can reveal valuable knowledge and
help understanding complex travel behaviour. Advances in data science, embedded
computing, sensing systems, and artificial intelligence technologies make the devel-
opment of a new generation of intelligent recommendation systems possible. These
systems have the potential to act as intelligent transportation advisors that can offer
recommendations for an efficient usage of the sharing services and influence the travel
behaviour towards a more sustainable mobility. However, their methodological and
technological requirements will far exceed the capabilities of today’s smart mobility
systems.

This dissertation presents a new data-driven approach for mobility analysis and travel
behaviour profiling for smart mobility services. The main objective of this thesis is
to investigate how the latest technologies from data science can contribute to the
development of the next generation of mobility recommendation systems.

Therefore, the main contribution of this thesis is the development of new methodologies
and tools for mobility analysis that aim at combining the domain of transportation
engineering with the domain of data science. The addressed challenges are derived from
specific open issues and problems in the current state of the art from the smart mobility
domain. First, an intelligent recommendation system for sharing services needs a
general metric which can assess if a group of users are compatible for specific sharing
solutions. For this problem, this thesis presents a data driven indicator for collaborative
mobility that can give an indication whether it is economically beneficial for a group
of users to share the ride, a vehicle or a parking space. Secondly, the complex sharing
mobility scenarios involve a high number of users and big data that must be handled by
capable modelling frameworks and data analytic platforms. To tackle this problem, a
suitable meta model for the transportation domain is created, using the state of the art
multi-dimensional graph data models, technologies and analytic frameworks. Thirdly,
the sharing mobility paradigm needs an user-centric approach for dynamic extraction
of travel habits and mobility patterns. To address this challenge, this dissertation
proposes a method capable of dynamically profiling users and the visited locations in
order to extract knowledge (mobility patterns and habits) from raw data that can be
used for the implementation of shared mobility solutions. Fourthly, the entire process of
data collection and extraction of the knowledge should be done with near no interaction
from user side. To tackle this issue, this thesis presents practical applications such
as classification of visited locations and learning of users’ travel habits and mobility
patterns using historical and external contextual data.
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Introduction and State of the Art





1
Introduction

This chapter begins by explaining the context and motivation of this dissertation, fol-
lowed by the objectives of the thesis and the challenges addressed. Finally an overview
is presented of the contributions of the thesis and its structure.

Contents
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . 4

1.2 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . 7

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Contributions and thesis structure . . . . . . . . . . . . . . 14
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Chapter 1. Introduction

1.1 Context and motivation

1.1.1 A digitally empowered next generation of transport sys-
tems

The transportation industry is on the edge of unprecedented change which will im-
pact the way people work, plan activities, organise their schedule and travel for leisure
or work. These changes will contribute to a revolution in the way society evolves in
synergy with new communication technologies and new sources of energy. The Euro-
pean Union calls for a digitally connected smart Europe and is laying the groundwork
for the Third Industrial Revolution (TIR) [138] (called also the Digital Revolution)
which considers transportation as an important element that can enable a new all-
encompassing economic paradigm all over Europe. Starting from the 1980s, TIR refers
to the advance of digital technology available today, including the personal computer,
the internet, and Information and Communications Technology (ICT). It is foreseen
that the mobility as we know it today will be completely digitalised and changed.

It is estimated that there will be more than 100 trillion sensors connecting people, in-
frastructure and environment by 2030, allowing the entire human population to collab-
orate directly with one another but also with a wide range of devices and autonomous
services, decentralising economic life [138]. The transportation industry is expected
to spend $85 billion on the Internet of Things (IoT) solutions by 2020. Moreover, re-
garding which technologies will impact the transportation domain the most, a survey
shows that 81% of respondents believe IoT will revolutionise the transport sector [115].
The advent of IoT during the last decade has enabled the complete and continuous
connectivity of people, goods, means of transportation and the entire transportation
infrastructure. The result is an unparalleled amount of data (three Zettabytes of data
in the digital universe collected each year) delivered at revolutionary speed (by 2020
1.7 megabytes of data created every second for every person on earth) and in contin-
uous expansion (data production will be 50 times greater in 2020 than it was in 2010)
[144].

All the afore-mentioned advances have brought us to the threshold of the Fourth In-
dustrial Revolution (4IR) [72] or the Industry 4.0 built on the Digital Revolution. The
present is marked by emerging technology breakthroughs in a number of fields, includ-
ing robotics, Artificial Intelligence (AI), IoT and autonomous vehicles, representing
new ways in which technology becomes embedded within societies and even the hu-
man body [72]. Using the IoT, cyber-physical systems communicate and cooperate
with each other and with humans in real-time, with advances in communication and
connectivity coupled with new technologies [146]. One of the design principles is that
the systems must be able to support decentralized decisions, which enable the ability
of cyber physical systems to make decisions on their own and to perform their tasks as
autonomously as possible. This provides an enormous wealth of information that can
be exploited to improve organisational decision making but at the same time raises big
challenges. Some of the challenges in the transportation domain are explored through-
out this thesis and practical solutions are provided. One of them is the autonomous
capability that the transportation systems must have to manage efficiently an enor-
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mous number of users, goods and transportation resources, with very short and stable
latency times and with a minimum of information as possible (in order to not stress out
the users or to be blocked because of the lack of information). In this sense, the latest
information and communication technologies like big data analytics, Machine Learning
(ML), AI and cloud computing are the means by which the 4IR will be implemented
and explored throughout this thesis.

It is well-known that people desire to be better informed so as to be able to take
better decisions independently and in near real-time. For example, people that are
better informed about all the mobility alternatives and traffic conditions, can choose
shared mobility options and also alternative routes in order to save money, reduce
their environmental impact and their travel time. In the same time, a multitude of
options can make it difficult for the users to find the best solution(s). This calls for
intelligent systems that can choose the best options based on the users’ preferences.
Consequently, Intelligent Transportation Systems (ITSs) must evolve from classic sys-
tems that receive, store, analyse, process and send outcomes, to complex intelligent
agents which must continuously analyse their context to autonomously take actions in
near real time for a meaningful synchronisation of all the above entities. This requires
the sensing systems that we daily interact with (e.g., the sensors from smartphones)
to be coordinated with all the users and the transportation resources. In this scenario,
the benefits would be enormous: saved time and money, lower environmental impact
and even saved human lives.

Therefore, the main motivation of this thesis is to investigate how the latest methodolo-
gies and technologies from data science and computer science domains can contribute
to the compulsory transition of ITSs in order to meet the standards of the 4IR. The
main contribution of this thesis is the development of multi-dimensional data-driven
methodologies and tools which can realise the fusion of two distinct domains: on the
one hand the transportation academia and industry; and on the other hand the latest
data science concepts, methods and technologies (big data management, knowledge
discovery, ML, AI). Throughout this dissertation, all the above entities are combined
in a single framework, which in turn can drive the required dynamic and near real-time
analytic processes.

1.1.2 Towards a clean and efficient transport: the era of shar-
ing economy

At the same time, the transportation industry remains the sector with the fastest-
growing concerns in terms of emissions. Passenger and freight transport volumes will
continue to expand and due to the combination of population growth, urbanisation, and
globalisation, carbon dioxide emissions from transport are expected to increase 60%
by 2050. As new technologies and changed behaviour lead to significantly less CO2
being emitted, an improved technology can provide about 70% of the possible CO2
reductions until 2050. The final recommendations are that we need to both accelerate
innovation and make radical policy choices to decarbonise transport [87]. Therefore,
there are imperatives for the transportation industry to undergo technological changes
in order to counteract the increased global movement especially by developing and
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fostering/promoting shared mobility solutions, changes in supply chains and even new
transport modes.

Working in this direction, the Luxembourgish government published in 2015 a plan
which contains the objectives for the future of sustainable mobility called “Mobilité
Durable,” Sustainable Mobility (MoDu) [80]. For Luxembourg this is an urgent prior-
ity, as such small country has the highest number of cars per capita in Europe (0.672,
while the average is 0.486) [69] and according to MoDu the mobility is composed of
72.5% trips done by motorized individual vehicles. In order to accelerate this process,
MoDu 2.0 was released in 2018 which reveals the objectives for 2025 [81]. One of
the four main objectives is the fostering of sustainable mobility through shared trans-
port in a multimodal environment. Solutions like car sharing, carpooling and parking
sharing have a potential to reduce traffic, reduce the cost of mobility and use the
available space more efficiently. MoDu implementation strategy foresees connecting
and involving public and private players (i.e., employers, the government, citizens and
local administrations) in a common effort to realise the transition to a shared economy
where the main focus is to use the existing transportation resources in a more efficient
manner.

Worldwide, sharing mobility is experiencing an exponential growth and the demand
is projected to increase five-fold by 2020 [138]. This creates a high scale of disrup-
tion caused by the rapid shift towards a sharing economy. For example, Uber was
able to operate in more than 250 cities in only five years and was valued at $41.2
billion, which is more than the market capitalization of the largest airlines companies
[170]. In the same time, the implementation of massive decentralised platforms for
collaborative mobility challenges analytics platforms to discover knowledge from data
in motion, extract travel habits and provide reliable and faster sharing mobility ser-
vices in dynamic contexts. The general direction is tailored to a Mobility as a Service
(MaaS) paradigm which should completely change mobility as we know it today [19].
This enables disruptive services and technologies to emerge in an accelerated trend.
An example can be seen in some prototypes of Autonomous Travel Suite concepts
[5] or Toyota e-Palette concept [14]. This integrates transportation and hospitality
through a driver-less, mobile suite offering door-to-door transportation service. Using
autonomous driving technology, the travel suite takes passengers to multiple destina-
tions, serving as a personal vehicle and simultaneous mobile hotel room but also mobile
home as they can work, sleep, wash, eat and relax while they are travelling. Accord-
ingly, the ITSs must be able to dynamically adapt in short time to new concepts of
home, work and totally new travel behaviour and decision-making mechanisms. This
will inevitably change the ITSs from conventional technology-driven systems into a
more powerful multifunctional data-driven ITSs [229] which can enable an efficient
shared mobility paradigm.

The above-mentioned trends constitute another motivation for this thesis. Through-
out this dissertation different Collaborative Mobility Solutions (CMSs) are used as use
cases (e.g., car sharing, carpooling, parking sharing services and solutions). In par-
ticular, we demonstrate that using a combination of state-of-the art technologies from
the data science domain coupled with methodologies from the transportation domain,
it is possible to implement with parsimonious resources (in order to be possible the
implementation at the level of low-resources mobile devices), the next generation of

6



1.2. Objectives of the thesis

autonomous sharing mobility services (i.e., long term and on demand parking sharing,
combinations of car sharing and ride sharing). Powered by intelligent Recommenda-
tion Systems (RSs) which process the data in motion, the objective is to autonomously
match people and transportation resources in an efficient way in order to make sharing
system more attractive and in turn reduce traffic congestion, save time and money,
and efficiently use the available space by reducing the parking spaces. This requires a
suite of complex operations which are examined throughout this thesis like the extrac-
tion from raw data, without any user input and in near real time valuable knowledge
(i.e., to learn travel habits and location visit patterns, perform location labelling, ac-
tivity classification) and match people with transportation resources while considering
personal preferences, the flexibility and limitations of each individual.

1.2 Objectives of the thesis

As we discussed in Section 1.1, the future of mobility points towards a hyperconnected
paradigm through the sensing systems and IoT which will generate and rely on a
tremendous amount of data. Consequently, ITSs must evolve and adapt to this new
scenario. Data collected must be analysed in a dynamic way and for some services
(e.g., dynamic ride sharing) in near real-time. Automatic knowledge discovery pro-
cesses must extract meaningful information from raw data, thus enabling autonomous
reasoning and decision-taking tasks. In order to explore the latest methodologies and
technologies from other domains which can contribute to the evolution and optimisa-
tion of the CMS, a series of objectives translated in Research Questions (RQs) can be
then formulated, presented in the remaining of this section.

Thus, the main RQ can be formulated as follows:

Main RQ.
How data science-driven methods can be leveraged to dynamically analyse, profile and
match people in order to synchronize and optimize collaborative mobility services and
exploit shared mobility solutions?

Throughout this dissertation, we explore different facets of the Main RQ and the pre-
sented contributions in Part II, which provides new ways for using data science-driven
methods to perform the dynamic analysis of data generated by the sensing systems
in the transportation domain. First, Chapter 3 presents a data-driven indicator for
assessing the compatibility of users with different shared mobility solutions, which will
be used and complemented in the next chapters by data-driven methods and technolo-
gies. Because the indicator was tested only with a small dataset and a low number of
users, a modelling framework for big data analytics is developed in Chapter 4. This
makes use of specific data science-driven methods and technologies that enable the
introduction of a complete framework capable of offering the required features of the
ITSs (e.g., fast data storage and access through temporal graphs, what-if analysis,
deep search and query capabilities). Then, as the CMSs require a more user-centric
approach (in order to address the problems of each user) and less input data from the
user, Chapter 5 describes a new method for dynamic profiling in time and space which

7



Chapter 1. Introduction

can extract users’ travel habits, using the latest methods and technologies for index-
ing, processing and location/activity classification. Finally, Chapter 6 presents new
methods for improving the location/activity profiling presented in the previous chap-
ter, using heuristic and Bayesian rules, coupled with Geographic Information System
(GIS) external contextual data.

Research Questions Addressed by Contributions

RQ2.

A modeling framework over temporal graphs 

for big mobility data analytics

Which are the methodologies and 

technologies from data science and 

computer science that can be 

implemented to handle big data 

and complex scenarios?

Temporal graphs in dynamic multi-dimensional data 

models enable descriptive and predictive analytics in 

real-world case studies with massive amounts of 

continuously changing data in motion.

Chapter 4

RQ3.

An user-centric approach for dynamic profiling 

of travel habits and visited locations

How profiling analysis of people’s 

habits can be exploited to infer and 

gain insight into complex mobility 

patterns? A scalable method for dynamic profiling allows the 

extraction of users' travel behaviour and valuable 

knowledge about visited locations, using only 

geolocation data collected from nomadic devices.

Chapter 5

RQ4.

Learn complex mobility patterns and habits 

using external contextual data

How can we leverage contextual 

data and travel behaviour models 

in combination with users' data to 

learn complex mobility patterns? Automated classification of visited location type and 

user’s travel habits which allows the detection of 

activity perfomed and learning of complex mobility 

patterns with no inputs from respondents.

Chapter 6

RQ1.

A data-driven indicator for collaborative 

mobility solutions

How can the sensing systems 

contribute to automatically match 

people and transportation resources 

in collaborative mobility solutions? The use of passive data collected through nomadic 

devices are exploited to derive an indicator which 

reveals potential users’ compatibility for different 

shared mobility solutions in an economically efficient 

manner.

Chapter 3

Figure 1.1: Research questions and contributions

As the Main RQ is an extended and generalised objective which applies to all the
contribution from Part II of the thesis, a series of secondary RQs can be formulated
and individually answered with respect to each contribution. In the rest of this section
we discuss the RQ in relation to the chapters where each of them are addressed. A
flowchart with the RQs and the corresponding chapters where each of them is addressed
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can be seen in Figure 1.1.

RQ1.
How can the sensing systems contribute to match people and transportation resources
in CMS?

The IoT is adopted at scale in the transportation domain as drivers and passengers are
connected through their sensing systems by nomadic devices, vehicles are permanently
connected to the internet and goods that need to be transported have identification
tags or even chips that allow near real-time tracking. This environment generates
important data regarding the position and status of each entity in the smart mobility
environment.

The RQ1 is addressed in Chapter 3. Using data (i.e., Global Positioning System
(GPS) position, WiFi and Bluetooth connections) collected through the nomadic de-
vices (smartphones, smartwatches), the objective of Chapter 3 is to propose a method-
ology that can be used to extract individual travel habits and derive an indicator for
revealing potential collaborative mobility options between individuals. This indicator
can be used by a recommendation system to find all combinations of collaborative
mobility sharing systems (e.g., carpooling, parking sharing, car sharing) which can be
used by groups of people. As the proposed indicator is able to take into consideration
individual preferences, schedule an entire chain of activities and remain sensitive to
dynamic changes in different scenarios, compatible people can be matched for sharing
services and transportation resources (e.g., cars, parking spaces).

Massive amounts of data must be collected, analysed, and queried, and knowledge must
be extracted from raw data to use it in complex problems and possible combinations of
mobility solutions between humans, vehicles and goods. Similarly, in the contributions
from this thesis, data collected from nomadic and wearable devices is used to extract
insights and knowledge that allows the implementation and optimisation of CMS.

This leads to the next RQ, which can be formulated as follows:

RQ2.
Which are the methodologies from data science (i.e., efficient data indexing, simula-
tions) and technologies from computer science (i.e., database management, fast and
dynamic frameworks) that can be implemented to handle data at scale and explore
complex scenarios?

In order to meet future requirements, ITSs need to become increasingly intelligent and
to learn from historical data as the CMS and use case scenarios which are sometimes
repeatable over time. Even if some of them will evolve/change over time, some situa-
tions can be predictable at design time [174]. For example, a travel assistant for shared
mobility solutions can advise a carpooling user to change the regular schedule in order
to find matching users to perform e.g., a ride sharing. In the hypothetical case that
the user cannot change the schedule for a specific activity, the recommendation system
can offer other options for using CMS (e.g., carsharing, bike sharing, public transport).
This is possible if the system automatically learns that this is a good solution, from
previous experiences with other users. In order to be able to implement this type
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of intelligent and autonomous systems, the solution is to combine domain knowledge
from the transportation industry with data science methods and techniques that allow
extraction of data knowledge, as well as reason and autonomously react or adapt to
new, unpredictable situations.

In order to provide a solution to the RQ2, Chapter 4 proposes an adapted data-driven
methodology from data science, implemented through a data modelling framework
that can process massive amounts of data in motion, which can be used in the smart
mobility complex scenarios. The features of the proposed framework meet the require-
ments for massive data collections and complex scenarios. First, the framework allows
data modelling through temporal graphs which speed up the deep search and query
capabilities in large data collection but also with data that is collected in a continuous
manner through the nomadic devices. Second, it allows the what-if analysis by ex-
ploring different alternatives, performing multiple parallel simulations in order to find
the best solutions for complex smart mobility scenarios. Finally, the scalability and
possibility of implementing any ML algorithm make this framework a perfect solution
for the smart mobility domain. The practical usage and benefits are explained in a case
study of a complex collaborative mobility scenario. The framework’s performance is
tested with a large-scale dataset, performing complex tasks and providing interactive
real-time data visualization.

Even if ML methods and algorithms can help to extract commonalities over big
datasets, there are cases where different entities behave very differently and common
behavioural model can be unsatisfactory. In this case, each entity (e.g., user) is trans-
formed in a so-called ”system of systems” [174]. The solution is to design the system
in a more user-centric approach by individual profiling of users’ travel habits, activ-
ities and visited location. Then appropriate solutions can be found by searching for
personalised solutions that match users’ travel habits and preferences. Consequently,
this approach calls for the next RQ which can be formulated as follows:

RQ3.
How can profiling analysis of people’s habits give new insights and offer a new per-
spective on the study of people’s behaviour

The transportation industry advocate the necessity of shifting from classical ITS to
Smart Social Mobility Services [181]. This implies an integrated and cooperative ap-
proach to sense users’ individual patterns, interactions and offers user-centred mobility
services. The main idea is to dynamically sense the specific mobility needs of users and
recommend the best possible solutions through CMS. Such processes consist of a series
of tasks, starting with detecting users’ mobility needs, identifying a set of solutions
to address the needs, and sending personalised recommendations for transportation
sharing services to similar users with similar profiles. Profiling users and locations
reveals valuable insights, travel patterns and changes of habits which are extremely
useful for CMS in order to match people and transportation resources, taking into
consideration personal preferences and the overall impact at the system level for any
given recommendation.

Chapter 5 answers RQ3 by proposing a scalable method for dynamic profiling. The
proposed method allows extraction of individual users’ travel behaviour and valuable
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knowledge about visited locations, travel habits and patterns in an automatic way,
using only geolocation data collected from mobile devices, without any user input.
Through this chapter, we explore and provide the foundation for the next generation of
smart mobility recommendation systems, which can extract knowledge from raw data
and then profile each individual, register each activity performed and each location
visited accordingly. The profiling is done without any user input (except the GPS
data from Google Map) and can be used simultaneously by a multitude of shared
mobility applications (e.g., , ride sharing, parking sharing, car sharing applications).
Each of them can search for solutions to match people with similar travel patterns
and habits, in order efficiently to share transportation resources (e.g., cars, parking
spaces).

Logically, the next research question can then be formulated as follows:
RQ4.
What is the impact of the proposed contributions in practical applications?

In Part II of the dissertation, different case studies are presented which demonstrate
the usage of the profiling method, through practical applications in the shared mo-
bility domain. Chapter 6 delves into practical application by demonstrating how the
profiling is successfully used to extract users’ travel patterns and habits, based on the
historical visit patterns (i.e., time of the day and duration of each location visit). The
main contribution is that the profiling is done automatically, without any user input
or intervention, using only the GPS data collected passively (without any user inter-
vention) through the nomadic devices (i.e., , via Google Map data). This means that
the presented methodology leaves the door open to the next generation of recommen-
dation systems, which will be able to make use of the automatic knowledge discovery,
travel habit and patterns from raw data. The methodology combines the modelling
framework proposed in Chapter 4 with the dynamic profiling method from Chapter 5
to automatically perform the classification of location type and activities performed on
each location. The end result is represented by the probability of performing a certain
activity at a certain location. We demonstrate also that additional rules (i.e., a heuris-
tic rule and a Bayesian update rule) can improve the estimations by considering the
value of the information over time. Moreover, better results have been obtained when
the final result is coupled with GIS data about the number of facilities located in a
certain area. This information can be downloaded in near real-time from existing GIS
platforms (e.g., OpenStreetMaps) to further improve the overall estimation by looking
at the existing facilities that match the probabilities obtained. Then, since the location
profiling reveals the users’ visit pattern of any location, different reasoning actions can
be automatically performed i.e., location type identification, labelling, classification
of each location (e.g., home, work, shopping, restaurant). The knowledge extracted
automatically from raw data can enable the autonomous recommendation systems for
sharing mobility, which will use this information to match users and transportation
resources in an efficient way.

Throughout this dissertation, several challenges arose when seeking to achieve the
objectives and answering the above RQ. In the following section an overview of the
general challenges is presented, followed by the challenges addressed in each of the
contributions from the Part II of this thesis.
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1.3 Challenges

This section presents the challenges addressed in this dissertation. Each chapter dis-
cusses a challenge derived from the contribution section, pointing to the provided
solutions. Each challenge corresponds to a concrete issue occurring in the transporta-
tion domain, particularly in the shared mobility topic. Very often solutions from data
science domain are employed. Figures 1.2 presents a flowchart with the challenges and
the addressed chapters.

Challenge Addressed by Contributions

Challenge #2

A modeling framework over temporal graphs 

for big mobility data analytics

Implement a framework which can 

manage the distributed, dynamic, 

heterogeneous big data from smart 

mobility and analyse data in 

motion while exploring the 

hypothetical actions of recommen-

dation systems.

The proposed framework uses multi dimensional data 

models with big data in motion, temporal graphs and 

time series to enable real time analytics and parallel 

simulations and deep search capabilities.

Chapter 4

Challenge #3

An user-centric approach for dynamic profiling 

of travel habits and visited locations

Develop a method capable of 

dynamically profiling users and all 

the visited locations in order to 

extract knowledge from raw data 

(travel habits and patterns) that can 

be used for the implementation of 

shared mobility solutions.

Special indexing techniques through temporal graphs 

and deep search capabilities, the proposed method 

allows the dynamic profiling in time and space which 

is used for profiling users and visited locations.

Chapter 5

Challenge #4

Learn complex mobility patterns and habits 

using external contextual data

Integrate data science and travel 

behavioural methods to learn 

complex mobility patterns and 

travel habits while performing 

advanced analytics automatically, 

without any respondent's input.

The dynamic profiling allows the learning of users’ 

travel habits and classification of visited location type, 

making use of external contextual data and behavioural 

methods, with no intervention from respondents.

Chapter 6

Challenge #1

A data-driven indicator for collaborative 

mobility solutions

Develop a generic methodology to 

compute metrics that can evaluate 

the compatibility of people and 

transportation resources for 

different shared mobility solutions

An indicator that can assess if a group of users are 

compatible for a shared mobility solution and if it is 

overall economically advantageous, i.e., if each 

benefits by sharing a ride, a car or a parking space.

Chapter 3

Figure 1.2: Challenges and contributions flowchart
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Challenge #1:
Develop a generic methodology to compute metrics that can evaluate the compatibility
of people and transportation resources for different shared mobility solutions.

Sharing travels, parking spaces and transportation resources (i.e., cars, bikes) promise
to be an effective way to increase the mobility resources usage rates and to reduce
the number of cars and consequently road congestion. However, the literature shows
many problems must yet be solved to achieve this objective, involving both operations
issues (i.e., how to best match users’ in time and space) and behaviour challenges
(e.g., specific conditions that users consider when choosing to travel together, or ar-
rangements for accepted detour and rescheduling) [211]. One of the biggest challenges
is that different sharing services and solutions (e.g., carpooling, parking sharing, car
sharing) have different constraints, requirements and methods of finding compatible
users, times and routes, all of which can satisfy all the travellers. At the same time, all
the solutions found must reduce the cost and/or time of travel, at the level of both the
individual and the exploitation system. Solutions must also offer a degree of flexibility
in order to maintain the mobility service quality level and user satisfaction.

In order to respond to this challenge, the contribution from Chapter 3 is the intro-
duction of an indicator that can be successfully used to assess if different users are
compatible and whether is economically advantageous to share the ride or parking
space for both the short or long term. The proposed method is designed in such a way
that not only takes into consideration all the variables (e.g., schedule, personal pref-
erences, flexibility) and possible costs (e.g., travel cost, parking fee), but also provides
an implementation usable by future ML based RS.

Challenge #2:
Implement a framework which can manage the distributed, dynamic and heteroge-
neous big data from smart mobility and analyse data in motion, while exploring the
hypothetical actions of recommendation systems.

One of the biggest challenges in the smart mobility domain is the use of data science
as an enabler for implementation of large scale transportation sharing solutions. In
particular, the next generation of ITS requires the combination of ML, AI and discrete
simulations when exploring the effects of what-if decisions in complex scenarios with
millions of users. This challenge is addressed in Chapter 4, which develops a multi-
functional framework that can satisfy the requirements of descriptive and predictive
analytics in real-world shared mobility scenarios (i.e., carpooling, car sharing, parking
sharing). We demonstrate that the proposed framework is able to handle massive
amounts of continuously changing data coming from data in motion. Moreover, the
proposed methodology is capable of merging the discrete simulations and statistical
results in a single framework in a fast, efficient and complete architecture that can be
easily deployed, tested and used.

Challenge #3:
Develop a method capable of dynamically profiling users and all the visited locations
in order to extract knowledge from raw data (i.e., travel patterns and habits) that can
be used for the implementation of shared mobility solutions.
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Statistical methods are widely used in the transportation domain to extract commonal-
ities and similar behaviours for a large number of users [212], [191]. However, providing
personalised shared mobility solutions for each individual using a common behavioural
model cannot provide all the time satisfactory results. This challenge is addressed in
Chapter 5, where, for the first time, a method is proposed for dynamic profiling of
users and visited locations. The resultant profiling method is used to extract insights,
travel patterns and habits, using only the GPS data collected from nomadic and wear-
able devices, without any travel survey or user input. Using this method, valuable
knowledge regarding travel habits can be discovered, which can be used for recommen-
dation systems to match people and shared mobility services in an autonomous, fast
and dynamic way.

Challenge #4:
Integrate data science and behavioural methods to learn complex mobility patterns
and travel habits while performing advanced analytics automatically, without any re-
spondent’s input.

Until now, extraction of daily and weekly activity/travel patterns and habits has been
done using manually user reported information, coupled with GPS loggers that record
the movement automatically [194], or the collection of data using smartphones [20].
However, all these methods have required a certain degree of user input in order to
extract knowledge from raw data and to reason about the travel habits and patterns
of each individual. The result: an expensive data collection process resulting in less
data collected, due to a lower number of respondents willing to engage in this activ-
ity. Although a completely independent data collection and analysis method could
be a solution, this represents a big challenge, as the data collected has no seman-
tics interpretation or meaning in this case. This challenge is addressed in Chapter 6,
where practical examples of learning complex mobility patterns and inferring urban
mobility and habits are presented. Therefore, complex analytic and reasoning actions
were performed automatically, without any user intervention e.g., classification of the
activity performed in each location and reconstruction of complex mobility patterns.
We demonstrate also that the use of external contextual data from GIS information
coupled with different rules can improve the overall accuracy of the proposed model.

1.4 Contributions and thesis structure

This thesis is composed of three parts. Part I introduces the thesis (with context,
motivation, objectives of the thesis and the addressed challenges), background and
state of the art. Part II proposes solutions to address the research questions and main
challenges. Finally, Part III concludes the thesis. The overall structure of the thesis is
presented in Figure 1.3.

Part I: Introduction and state of the art. Chapter 1, introduces the context
of the thesis, the motivation behind the research, an overview of the general chal-
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Figure 1.3: Thesis structure
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lenges from the smart mobility and data science domains, and finally the challenges
addressed in this thesis. Chapter 2 presents the background and the state of the art
of transportation engineering and data science in the context of smart mobility.

Part II: Contributions. The second part of the thesis addresses all the RQs pre-
sented in Section 1.2 and challenges presented in Section 1.3. Chapter 3 focuses on
the transportation domain methodology and presents the collaborative mobility issues
and challenges that must be solved in the smart mobility and shared mobility domains.
The main contribution is the theoretical foundation for an indicator that can match
people with a combination of shared smart mobility services, which answers RQ1 and
Challenge 1. Experiments have been performed with a small dataset. The remaining
challenges are the dynamic requirements and scalability of the proposed methodology
which will be solved in the next chapters.

Chapter 4 solves the Challenge #2 and RQ2 by implementing a new modelling frame-
work from data science over temporal graphs, adapted and modified to be used with
geolocation data in the transportation domain and in particular in the collaborative
mobility systems. The dynamic and scalable features of the framework are tested for
large datasets and in a practical case study. The remaining challenges are represented
by the need for a more centric approach (that deals with individual users’ requirements
and preferences), addressed in the following chapter.

The main contribution of Chapter 5 reside in the development of a methodology for
profiling in time and space of mobility patterns, detection of habits and change of habits
that can be used by future RSs. This chapter answers RQ3. Challenge #3 is addressed
through the applications which are evaluated and results discussed for different shared
mobility solutions and tasks i.e., ride sharing and parking sharing user matching,
activities and location classification, and profiling of non-recurrent trips (e.g., holidays
and business trips).

Chapter 6 presents the study of profiling users, activities and locations by using the
methodology presented in the previous chapter and the users activity matrices from
different travel surveys. This study answers RQ4, using only user data collected by
smartphones. The main contribution of this chapter addresses Challenge #4 by propos-
ing a new way of inferring urban mobility and user habits from passive smartphone
data collection (i.e., without any user input or intervention). In order to be more
accurate, the results are empowered with extra data obtained from other external data
sources, which reinforce the dynamic and real-time aspect of the proposed profiling
method.

The contributions presented in this part are based on work that has been presented in
the following papers:

• Usage of Smartphone Data to Derive an Indicator for Collaborative Mobility between
Individuals
B Toader, F Sprumont, S Faye, M Popescu, F Viti
ISPRS International Journal of Geo-Information 6 (3), 62

• A new modelling framework over temporal graphs for collaborative mobility recom-
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mendation systems
Bogdan Toader, Assaad Moawad, Francois Fouquet, Thomas Hartmann, Mioara
Popescu, Francesco Viti,
2017 IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC)

• A Data-Driven Scalable Method for Profiling and Dynamic Analysis of Shared Mobil-
ity Solutions
Bogdan Toader, Assaad Moawad, Thomas Hartmann, Francesco Viti
IEEE Transactions on Intelligent Transportation Systems (submitted in 2018, unpub-
lished to date)

• Using Passive Data Collection Methods to Learn Complex Mobility Patterns: An
Exploratory Analysis
B Toader, G Cantelmo, M Popescu, F Viti
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2
Background and state of the art

This chapter presents the general background for this dissertation, before the state of
the art is discussed in the following chapter. It first introduces important terms and
techniques for smart mobility and data science. The chapter then details relevant topics
and a related literature review in order to correctly frame the contributions presented
in the second part of the thesis.
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2.1 Background

The rapid large-scale adoption of IoT has caused issues in different industries and
domains. An example of a domain that uses a methodology similar to the one proposed
in this dissertation is the electrical smart grid domain.

Big data collected continuously from smart meters must be handled efficiently. Using
a fusion of methodologies and technologies from data science and domain specific
knowledge, it was possible to build a proper knowledge representation of the context
and to take adequate actions for continuously sensed data, analysing complex data
in motion at scale with temporal graphs [108], [107]. The objective is to analyse
data collected in a cyber-physical system in near real-time, and to ultimately support
decision-making processes based on the results of this analysis [106].

Similarly, ITS drives the implementation of data science techniques for real-time data
analytics in the transportation domain. This means that new methodologies must be
able to handle not only data at rest applications (i.e., data collected is analysed after
the event occurs) but also data in motion (i.e., the analytics occur in real-time as
the event happens). Data in motion gathered from advanced sensing (such as built-
in sensors from mobile devices) and other types of traffic information (such as traffic
metering) can be combined to better analyse users’ travel behaviour in near real time
and derive specific mobility habits and travel patterns. Travel behaviour analysis is
the core of modern smart mobility, from which sustainable solutions for collaborative
mobility services can be derived. In order to study users’ habits, mobility patterns
must be extracted, analysed and solutions must be provided at different scales.

Over time, the literature [27] emphasizes that the contribution of ITSs can dramatically
improve urban mobility. Following the recommendations from [87], additional research
must be done as the ITSs must be prepared for analysing data in motion in near
real-time, learning users’ behaviour and performing fast searches in large datasets,
which could instead contribute to a more integrated, fast and flexible method for
implementing collaborative mobility services at different levels and for different needs.

2.2 State of the art

This section discusses the state of the art and literature review related to the work
presented in this dissertation. The content from each section is relevant for a good
understanding of the contributions from the second part of this thesis. In the first part,
Section 2.2.1 presents the relevant state of the art from the smart mobility domain. In
the second part, Section 2.2.2 presents a review of the data science methods, challenges
and technologies used in the in context of smart mobility, presented in the contributions
from Part II.
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2.2.1 Smart Mobility

The smart mobility research domain is a wide topic, referring mainly to the study of
methods and technologies related to shared and soft mobility, including ride sharing,
car sharing, public transportation, walking, biking, and more. In order to correctly
frame the research area of this thesis and the motivation behind the state of the art,
we need to look at a complete application which is developed throughout this thesis.
In Figure 2.1 we can observe a complete flow and main processes from a smart mobility
recommendation system. In the rest if this section, we dedicated a subsection for each
part of this process flow.
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Figure 2.1: The phases and process flow of a smart mobility recommendation system

First of all, the main contribution of this thesis is related to research and development
which can contribute to the advancement of CMS. Although this thesis does not aim
to develop a functional recommendation system, the proposed study represents the
foundation for future research in this direction. Therefore, Section 2.2.1.1 presents
the state of the art of CMS, with a review of the issues and problems which need to
be solved, concepts and methodologies which are used in the literature, and historical
advances in this topic. This represents the theoretical foundation of the contributions
from the second part of this thesis. Thus, a future RS can be defined as an intelli-
gent system which can autonomously process a flow of data, reason about the input
information and the context of all the involved entities, and provide personalised rec-
ommendations. For example, in the case of the application presented in Figure 2.1, the
RS receives the input of users’ profiles and travel habits. Therefore, the system can
match users with similar mobility patterns to efficiently use shared mobility solutions
or recommend similar locations to visit, based on the historical visited locations.

The above process flow has different phases and starts with the data collection phase.
Data can be collected using different digital methods, devices and sensing systems.
There is no restriction on the type of data which can be collected (e.g., GPS location,
Wifi and Blutooth connections, motion data). The type of data depends on the fea-
tures of the devices used for data collection and the embedded sensing systems (e.g.,
motion sensors, GPS modules, connectivity components). In order to have the basic
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understanding and to motivate the choice of the methods and technologies used in the
contributions from this thesis, Section 2.2.1.2 presents a historical summary and the
evolution of data collection methods and technologies used, from the basic paper-based
travel surveys right through to the latest passive sensing systems.

Once the data is collected, the following stage is the data preprocessing. In this
phase, basic preprocessing tasks are performed e.g., data cleaning and reconstruction
of missing data, data structure (in the example from Figure 2.1, data structure de-
fines the users, context and visited locations). Section 2.2.1.3 presents a review of
the methodologies used in the literature for the automatic extraction of the activity
location and duration. Based on this review, the contribution from Chapter 3 uses
one of the presented methodologies to clean and reconstruct the missing data collected
with the smartphones. This stage is important in order to provide the most accurate
information for the profiler.

The following stage is the knowledge discovery from the data received as input from
the preprocessing phase. Section 2.2.1.5 also presents a review of the methods used
in the literature for profiling user travel behaviour and visited location. This review
is useful for understanding the contribution from Chapter 5 a user-centric approach
for dynamic profiling of travel habits and visited locations is proposed. Similarly,
Section 2.2.1.4 presents a review of the methods used for inferring travel behaviour
and trip information from raw data without any user intervention/input. Related to
this, Chapter 6 presents a practical application to learn complex mobility patterns and
habits using external contextual data. In the rest of this section we present a review
of the main topics from Figure 2.1.

2.2.1.1 Collaborative mobility services

Nowadays, quick and easy transportation has been an essential part of modern society.
Nevertheless, increased urbanisation makes traffic congestion worse unless there are
big changes in citizens’ travel behaviour to promote more efficient, sustainable and
environmental travel alternatives [114]. In order to solve this issue, different solutions
have been explored and it is important to know what actually is causing traffic conges-
tion. Interesting to note, the average number of passengers per car (assuming standard
vehicles with five passengers including the driver) for European countries is approxi-
mately 1,45 passengers. This means that vehicles are often running at low occupancy,
with only 29% occupation rate [9].

Collaborative mobility solutions such as transportation sharing services (e.g., carpool-
ing, ride sharing, car sharing) caught the attention of a larger number of researchers.
Numerous studies have already shown the impact of collaborative mobility on the en-
vironment and its effects on the behaviour of people (see e.g., [152], [86], [121], [157],
[58]). Other studies analyse factors influencing shared mobility activities. For exam-
ple, [135] conducted a survey to analyse people’s views regarding carpooling activities.
The results showed that 55% of the respondents did not carpool because of difficulties
in finding compatible users (with similar location and schedule) and 45% prefer the
flexibility of solo driving. Another survey showed that the poor carpooling schedule
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and trust level between strangers are two major obstructions for carpool activities
[188].

At the same time, the study individual activity travel patterns has shown that the
repetitiveness of individuals’ activities is influenced by several factors e.g., the types
of activities, accessibility of different locations and different commitments. Also [197]
showed that different types of activity have different pattern of repetition. Interest-
ingly, [33] demonstrate that in a period of six week study, 70% of all the trips have a
repetitive behaviour of visiting the same 2–4 locations. This means there are incen-
tives to exploring travel behaviour in an attempt to extract travel patterns and habits
which can be used by CMS to match people and transportation resources efficiently.
The question that arise in this context is how we can integrate all the components in
an intelligent system which can provide advisory/recommendation services in order to
attract more people towards collaborative mobility for a more efficient use of trans-
portation resources. To answer this question, it is important to understand which
are the available shared mobility solutions and their issues, limitations and promis-
ing research direction to improve and integrate them in an unified and synchronised
manner.

Different shared mobility solutions are available, in the form of private and public ser-
vices, which involve different resources, conditions and operating procedures. We can
categorize these services into joint sharing and concurrent sharing services. While in
joint sharing (e.g., carpooling) the objective is to group more people in fewer cars, in
concurrent sharing (e.g., carsharing, parking sharing) the target is to intensify the re-
source usage. The question that arise is how the collaborative mobility can be assessed
in a combination of services in such a way that all those services can complement each
other. Thus, the concept of CMS must be characterized by the following rules and
features:

• Shareable resources among users can be both private resources (e.g., private cars)
and public or private third parties (e.g., cars haring system, parking lots)

• The ITS collects on a continuous basis the travel patterns and preferences for all
users in a closed environment system

• For joint sharing services users must be matched for simultaneous usage of a
transportation resource (e.g., a car). This requirement is applicable for both
recurring trips (carpooling) and for instant ridesharing (dynamic ridesharing)

• For concurrent sharing services, compatible users must be matched so that they
can use the resources without overlapping

• ITS acts as a recommendation/advisory system, measuring compatibility of dif-
ferent combinations of resources by a group of users

• The objective of CMSs at the system level is to match users in order to maximise
the resources’ usage, combining different services to be used by compatible group
of users. The objective is to assure that the total cost per traveler is lower than
if the passenger did not use the collaborative sharing system
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Even if the existing literature has emphasized the importance of the above mentioned
solutions to traffic congestion problems, much of the literature pays particular attention
to only parts of those services and objectives and rarely in a combined methodology.
In the rest of this section we present the challenges, additional work related to CMSs
and we point to the solutions proposed in this dissertation.

Matching compatible users for shared mobility solutions has recently attracted more
attention in the literature [218]. For example, some studies focused on the optimization
problem of finding efficient matches between passengers and drivers [18]. Optimiza-
tion algorithms for complex matching rides systems are also explored in [95]. A real
challenge for high-dimension matching problem is the development of complex rec-
ommendation systems which can find compatible users and sharing solutions. Some
studies explore the required functions that must be implemented in the future recom-
mendation systems for scaling the ride sharing matching problem [101]. For example
fast algorithms are proposed to generate the shortest path considering different re-
quirements ([113], [79]), but they do not consider the involved cost evaluation of each
provided solution. There are studies which evaluate the matching of individuals in
shared mobility systems using only preferred departure times and different matching
strategies in near real time ([23], [35]). Other studies quantified the reduction in travel
costs when sharing rides ([94], [123]).

Another form of joint sharing services is the semi-organized ride sharing practice,
defined as flexible carpooling in the literature ([132], [189], [48], [121]). This is gaining
popularity especially where high occupancy vehicle lanes are implemented because
individuals want to benefit from using those faster lanes and reduced tolls. In this
type of shared mobility solutions, passengers and drivers meet spontaneously in specific
locations without any notice or exchange of information. An advantage of the flexible
carpooling scheme is the convenience provided without any specific commitment. The
disadvantage is that requires a large number of users.

With the emergence of the internet, a number of private matching agencies emerged to
provide diverse ride sharing services for travellers. An extended review of these agencies
shows that still the ride sharing has continued to decline [92]. The main difficulties
identified are: schedule incompatibility between users; cost-sharing difficulties; and the
lack of methods for choosing a specific route which is advantageous for every passenger.
These challenges demonstrate the need for innovative systems and services that can
actually successfully redirect people’s behaviour towards a more efficient, sustainable
and friendly environment thanks to the sharing economy.

Recently, new user-centric services are transforming urban mobility by providing timely
and convenient transportation through Mobility-on-demand (MoD)) systems, led by
companies such as Uber, Lyft, Blablacar. Studies shows that ride-pooling services
can provide substantial improvements in urban transportation systems [21]. These
decentralised systems based on shared economy principles, provide a reliable mode of
transportation which is focused, used and run by individuals who can both operate and
access the services on demand. These services provide access to mobility by reducing
the cost, the waiting times and the stress associated with travel.

Privacy is another challenge in the sharing services scheme. One concern is the risk
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of exchanging private information with strangers [60]. The loss of privacy due to
systematic data collection of private information is another major concern [24]. We
address this issue by proposing the implementation of sharing services schemes at the
organisational level. In the second part of this thesis we explore different case studies in
a closed environment where trust is much higher between individuals and organisations
have motivation to securely keep sensitive anonymised information in-house. Moreover,
the solutions provided also have the ability to hide sensitive information, using specific
blurring techniques i.e., for geolocation data, a blurring method is the limitation of
accuracy at higher levels (e.g., one kilometre).

Recent technological advances in nomadic and wearable devices (smartphones and
smartwatches) combined with the market penetration of portable technologies and
the latest developments in transportation are emerging as an attractive option for
large-scale sensing of human behaviours which can contribute to the evolution of the
ITSs [64]. Sensor technologies embedded in the mobile devices carried by travellers
can generate unprecedented amount of data related to human mobility patterns [130].
One can argue that today we have the technologies and tools to solve those issues. The
solution can be the combination of the collaborative mobility schemes with the existing
technologies and the development of new data-driven ITS [228]. In this context, ITS
should offer individual based, real-time information about all the users and sharing
alternatives and advise them which sharing solution to choose in order to save money,
time and have a decent degree of flexibility. In this context it is crucial to automatically
collect and process the massive datasets generated, in order to detect travel patterns
and possible interaction between the system participants without the intervention of
the respondents [232].

Working in this direction, the contribution from Chapter 3 proposes a data-driven
indicator for collaborative mobility which aims to extend the functionality of the RSs,
not only for the first-come-first-served but also for long term services (e.g., planned
carpooling). In this case, it is possible to evaluate the recurrent but also the dynamic
ride sharing compatibility between users in a single metric. This allows one to find the
best option for a group of users, based on the compatibility score between individuals
and available sharing solutions. Moreover, in the case that no matching has been
found between a group of users, or that the compatibility score is low, a future RS can
send personal advices on how travel behaviour can be changed (e.g., rescheduling and
reordering of activities) in order to increase the matching rate and the compatibility
score between individuals.

In order to solve the above challenges and overcome related limitations, the entire
process should be automated and a method must be devised to assess all service-specific
variables and constraints in a single metric, which can consider individual preferences
and maximize user flexibility. Automation of the entire process is attractive because it
removes the users’ burdens not only of manually inputting and constantly editing the
journey plan, but also of searching for the best sharing solutions and compatible users
for CMSs. Therefore, location, origin, destination, departure time and sequence of
activities must be automatically extracted from the data collected. In Section 2.2.1.3
we inspect the methodologies for extraction of activity duration and location from raw
GPS data in order to automatically identify the sequence of activities and individual
travel patterns. The obtained patterns can be used by a future recommendation system
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to automatise the extraction process, using the specific profiling techniques presented
in the contribution from Chapter 5 and used in applications to learn complex mobility
behaviours, as can be seen in the contribution from Chapter 6.

The very first step in this process is mobility date collection. The following section
presents a summary of the evolution of data collection methods from the most primitive
to the latest passive sensing systems.

2.2.1.2 Data collection methods and technologies

Thanks to the digital revolution in the transportation domain, classical data collec-
tion methods (such as traditional travel diary) are being replaced by an increasing
number of digital surveys. As technology has evolved, different nomadic devices (i.e.,
smartphones, smart watches) have been used in order to increase data collection accu-
racy and relevance, starting with the classic GPS-based logging surveys, to GPS data
collection using smartphones and the latest smartphone prompted-recall based travel
survey. These applications, including their usefulness and limitations, will be explored
in the rest of this section.

Traditional travel data collection methods using paper-based surveys required signifi-
cant contributions from survey respondents, which usually have to manually record all
trip sequences and activities information. As a result, travel surveys usually run for
a limited amount of time (not more than a few weeks) and, due to the self-reporting
process, include a degree of under-reported or incomplete information (such as wrong
departure times or missing activities) [236]. Such limitations make traditional survey-
ing methods inadequate to capture variations in travel behaviour that do not occur
within a short time period [15]. With the advent of technology, digital travel surveys
have proven to be a valid alternative to overcome these limitations.

A number of studies [15], [207], [230] have shown how digital travel surveys or travel
diaries (via e.g., smartphones) reduce survey burdens while increasing data accuracy.
In other words, we can collect data that is more accurate for a longer time period [15].
The reason is that automatic surveying leverages powerful ML techniques to infer ac-
tivity and/or mode information, meaning that users have to validate and eventually
correct their information instead of introducing it manually [160]. Moreover, after
an initial phase of training, the system learns user preferences, thus further reducing
respondent’s efforts [230]. Hence, such survey methods can overcome the main prob-
lems of collecting travel diaries, mainly their high costs, their accuracy and the limited
collection times.

The first digital data collections were represented by the GPS-based logging surveys.
The usage of GPS devices has many advantages, such as reduction in respondents
burden, higher data accuracy, detailed trip route and the ability to extract additional
information such as vehicle speeds [61]. This type of survey has been widely imple-
mented, most of the time as a complementary solution to household travel surveys
[41], [59]. Even though there are obvious advantages to these passive travel surveys,
equipping the respondents with those devices is not only expensive, but also generates
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additional problems, such as the need to charge and carry on additional equipment,
followed by a recollection phase which brings along other problems [194], discussed
below.

Although device-based logging has been widely adopted worldwide, it still relies on
some additional devices that users have to carry all the time [230]. In practice, there
are two options. On one hand, the agency conducting the survey can provide a wearable
device, such as a smartwatch, with a sufficient number of sensors and dedicated software
[196]. However, good wearable loggers are expensive and become obsolete quickly.
Moreover, users might forget to carry them, thus introducing errors and unreported
trips.

A second option is using smartphone-based travel surveys, which rely on applications
that can be downloaded and run in the background [230]. Recent technological ad-
vances in smartphones combined with the increased market penetration of portable
technologies emerged as an attractive option for large-scale sensing of human behaviour
[65]. Using the additional embedded sensors for proximity, motion and connectivity,
generates unprecedented amount of data related to human mobility patterns [131].
Moreover, as most of the time respondents possess a personal smartphone, there is no
need to carry additional devices or to recollect the data, this taking full benefit from
the au- tomatic data transmission over internet [32], [47]. As respondents install the
software on their personal smartphone, the probability of securing more comprehen-
sive information rises. Additionally, smartphones have a variety of sensors, such as
GPS, accelerometer and proximity sensor. These can infer both activity and mode
information [15]. However, smartphones are powered from batteries with a limited
capacity, mean- ing that power consumption is a limiting factor. Even though many
applications claim to have low power consumption, battery duration, reliability, and
lifetime depends on the manufacturers. Moreover, the higher the number of sensors,
the higher the power consumption.

The latest generation of travel surveys combines the pervasive and advanced sensing
smartphone data collection with a prompted-recall based travel survey [231], in order to
extract additional information that was not possible to be extracted automatically, such
as activity type performed in a specific location. Because the respondents still have the
burden to manually complete or confirm part of the survey, there have been attempts
to make the data collection process semi-automatically [161]. Different systems have
been proposed such as SmartMo [37], MEILI [20] and rMove [100], but all of them
require a certain degree of user reporting.

To exploit the big data when extracting the travel patterns, in the second part of this
thesis we explore methods that make use of passive data collections (i.e., contribution
from Chapter 5 which presents a method for dynamic profiling and Chapter 6 which
presents an application for learning complex mobility patterns). In these studies, the
data is obtained through the sensing systems embedded in the nomadic devices. The
novelty of our approach is that the extraction of travel patterns and habits is performed
without any additional user-submitted information or intensive data processing. This
not only reduces the respondent’s burden but can reveal new complex insights that
cannot be captured through traditional methods.
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After the collection phase of mobility data, specific methodologies for extracting activ-
ity duration and location must be employed. The following section presents a review
of the main methodologies found in the literature.

2.2.1.3 Methodologies for extracting activity location and duration

The study of travel behaviour and mobility patterns mandates the automatic extraction
of activities locations and places of interest. As we discussed in the previous section,
this must be accurately done by nomadic and wearable devices, which can collect a
large amount of location points, represented by position coordinates as well as the date
and time when the sensor captured the location information. In order to transform the
raw position points data into knowledge that a machine can understand or humans can
visualise and interpret, this data must be transformed into so-called places of interest
and trip information/routes (defined as origin and destination points). In this section
we present and compare the most relevant methodologies and algorithms used by
researchers for extracting activity duration and location, using different data sources,
devices, sensors and algorithms. Chapter 3 presents a contribution which makes use
of a methodology presented in this section.

In the past, researchers used data obtained from different GPS devices and other
traditional sources. For example, Ashbrook and Starner, 2003 [30] used a wearable
GPS receiver and a GPS data logger to collect data from six users for seven months.
Clusters of places using a variant of the k-means clustering algorithm has been used
in order to detect users’ locations and sub-locations. They integrate the results in
a system that can incorporate these locations into a predictive model of the user’s
movements. Several potential applications of such models are presented, including
single and multi-user scenarios. The precision of the method was not tested, but they
argued that this methodology can be the basis of future prediction algorithms, as well
as relative frequency and probability of locations in time.

Hariharan et al., 2004 [105] collected data using hand-held GPS devices carried on by
two persons for one year. Using the classical approach, the method employed takes
the temporal sequence of recorded locations and uses a set of decision rules based on
distance and time between points in order to identify clusters of GPS points which
represent visited locations. This agglomerative algorithm iteratively tests GPS points
to determine if they remain within a given threshold distance. If the time between the
first and last observed point exceeds a predefined stay duration, a cluster is assigned.
Probabilistic models were developed for modelling a location history and probabilities
of being in a specific location, within a given recurring time interval. Even if the
method precision is not evaluated, this may serve as a starting point for exploration
of probabilistic models of location histories.

In a similar fashion, Agamennoni et al., 2009 [17] used a speed threshold criterion
in order to identify activity locations from GPS records of the trucks in an open-pit
mining site. Even if the presented algorithm is very fast, this is mainly due to the fact
that the calculations are very simple, with data obtained from low-speed areas having
no high variations and without taking time into consideration. Because the method
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accuracy was not tested, this would probably serve better as a complementary method
for identifying GPS errors (so called ”supersonic jumps”), rather than an efficient
method for extracting activities location and duration.

Technological advances in mobile devices and sensing systems have made data col-
lection and processing much easier and more accurate. The study done by Xiang et
al., 2016 [219] proposed methods to extract stops from single trajectories using the
sequence-oriented clustering method. In this method, spatial and time information are
adopted as input. The proposed algorithm is able to detect effective stops and discard
the false positive stops. The reachability is represented in a graph which illustrates the
clustering structure and different levels of a specific trajectory. Even if the algorithm
has a very high precision of 91.3% in recognizing the effective stops and eliminating
false positive stops, it was tested only on small datasets for short distances on a small
scale. The proposed method requires high computation, loading all the GPS locations
and then computing using different tools, being suitable for small and very accurate
distances. This can be a good complementary method for detecting false positive stops.

Besides the GPS data, Ohashi et al., 2015 [164] used also accelerometer data from
smartphones, with five features derived on the basis of the sensors’ characteristics and
specific human-travel behaviour. They propose a novel method for automatically ex-
tracting trips on the basis of continuously collected data. While conventional methods
based on detecting stay areas with a boundary suffer from errors for short-distance
trips, the authors showed that the proposed method was able to correctly extract the
trips and suppress outliers in classifying each GPS point either in a stay or trip point.
Moreover, the method uses the GPS-positioning error as a positive feature in order
to classify an indoor location as a stay point. Even if the proposed method showed
a promising 89,4% precision and correctly classified short-distance trips, this is more
suitable for extracting trips than locations. Nevertheless, a continuous and intensive
use of the GPS and accelerometer sensors can have negative effects in the energy
management and the resources used.

To the best of our knowledge, one of the most advanced methodologies to discover
places-of-interest from multi-modal smartphone data is presented in a study by Mon-
toliu et al., 2013 [156] which consider two different levels of aggregation or clustering
in order to obtain the points of interest. In the first level of clustering, the location
points are grouped in places of interest using a time-based clustering method. In the
second level, the stay points are grouped in stay regions, using a grid-based clustering
algorithm. A client-server system has been installed on smartphones, which collects
location information by integrating GPS, WiFi, Global System for Mobile communi-
cations (GSM)) - and accelerometer sensors, among others. The method employed an
algorithm to learn places of interest not only from the GPS data but also from the
WiFi, bluetooth and GSM cell phone towers. Data is stored in a local database of lo-
cations associated with each entity scanned on a continuous basis. This is an efficient
method of obtaining location from multi-modal mobile phone data with good accuracy
even from indoor locations. This strategy results in significant savings of battery life,
switching to different power saving modes (e.g., GPS being programmed to switch
off automatically when the location is obtained with the WiFi map or the phone is
static). Moreover, using this method it is possible to reconstruct the missing location
data (e.g., if the GPS is not turned on, the location is set by the WiFi network). This
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Table 2.1: Comparison table between methodologies.

was one of the most suitable methodologies reviewed, given that it has been tested in
a case study similar to the contribution referred to in Chapter 3. The only drawback is
that it is much harder to replicate the same results from this study because the frame-
work and algorithms were implemented in a private mobile application. Replicating
this would be an arduous, time-consuming task and it is not the core of this thesis.

In order to obtain similar results using fewer resources and less effort in implementation,
we use the methodology developed by Thierry et al., 2013 [198] in the contribution
from Chapter 3. The proposed algorithm differs from the traditional approach because
it does not analyse data points sequentially, but it uses GPS points to build a kernel
density surface. The peaks are selected as possible location stops and the GPS points
are categorised as belonging to a trip or a stop location. The proposed algorithm has
a precision of 92.3%, tested with an artificial dataset. Moreover, the code is available
as a tool that can be used together with ArcGIS 10.

A side by side comparison between the presented methodologies with their features
and performances can be seen in Table 2.1.

In the following section we present a review of the methods for inferring travel be-
haviour and trip information from the information extracted from raw data.

2.2.1.4 Inferring travel behaviour and trip information

The increasing availability of data coming from different sources, processes and de-
vices offers new perspectives for research in the transportation sector. As a matter
of fact, in the last two decades extensive interest has emerged in data-based explo-
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ration of all matters relevant to the smart mobility paradigm. For example, travel
behaviour data analytics has recently received much attention, because of the complex
and dynamic character of human mobility patterns. As oversimplified assumptions on
user behaviour will always lead to oversimplified mobility patterns, a broader knowl-
edge about mobility needs is required in order to properly evaluate effective mobility
solutions e.g., collaborative mobility services (sharing mobility, mobility-on-demand
solutions, etc.). This brings new challenges to both data collection and meaningful
data extraction from big data. This dissertation aims to contribute in this direction,
providing new methods for travel patterns and habits extraction from raw data.

Since travel behaviour analysis is the study of individuals’ patterns, an increasing
number of mobility issues were solved through a more user-centric approach. This
trend has been highly associated with the future research directions for more powerful
multifunctional data-driven intelligent transportation systems [229]. This approach
highlights the study and understanding of the complexity of human mobility behaviour
and activities by fusing transportation engineering, data science and computer science
[200].

Even if complex models capable of considering these phenomena already exist, they
need individual and accurate inputs in order to provide realistic outputs. Those inputs
can be obtained by combining data collected through smartphone sensing capabilities
with user-reported information, thus making possible the activity detection and mod-
elling. Although the data obtained is more accurate and relevant, this increases the
respondent’s burden when prompted to recall, annotate and classify the activities per-
formed in different locations.

In the last decade, inferring trip information through data fusion of GPS traces and
external contextual sources like GIS data have been proposed by different authors [42],
[136]. The main idea is that GIS information can be combined with some heuristic
rule about activity scheduling and duration in order to infer activity location – in the
case of services – and mode of transport – in the case of transport facilities. However
as mentioned in the previous section, this GPS logging approach requires carrying an
extra device and prior information about home and – usually – work locations [42].

Additionally, land-use (location of residences, work places and other activities) changes
continuously over time, meaning that the GIS database needs also to be constantly
updated. This is the main limitation when the main interest is to collect activity
information over a long period. To avoid this limitation, other authors proposed
smartphone-based applications that do not require an additional device [15], [230].

While almost any method successfully identifies home and work location, recent studies
show that last generation surveying methods show better accuracy and higher resolu-
tion in representing leisure activities [160]. While different systems have been proposed
[99], [230],[160], all of them require a certain degree of user reporting. By way of com-
parison, other authors suggested the use of ML techniques to extract activity location
from trajectories, as suggested in [215]. Lastly, some authors tried to exploit mobile
phone location history [50] to model individual human mobility. The study present
a methodology to extract individual mobility patterns from mobile phone traces of
millions of users. However, these data are provided by a phone operator, which limits
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their usefulness in modelling behaviour at an individual or household level [50]. By
contrast, in the case of contributions from Chapter 6 we use fewer traces that are
available through automatic passive data collection applications (e.g., Google Maps)
but for a longer period, meaning that underlying behaviour can be detected.

Concerning the methods available for inferring trip information, existing works use
different techniques to infer travel information, which may be classified into two main
groups: heuristic and learning-based approaches [15]. The main difference is that
heuristic models rely on simple rules related to recurrent user behaviour (such as
activity scheduling or duration) to learn trip characteristics [205]. This group of models
may be considered model-driven, as it combines traces with land-use (or GIS) data in
order to exploit existing knowledge about the transportation system [205], [195].

The main limitation is that these approaches are usually not general as they depend on
a specific region or transport system [15]. For this reason, learning-based models have
also been developed to derive these rules from some data through ML or data mining
techniques [49]. However, in this case, the main problem is that different machine
learning techniques will classify data in a different way causing different errors, which
can be difficult to identify and fix.

Some of the most common approaches involve Neural Network (NN) [49] or Support
Vector Machine (SVM) [163]. The main difference is that the former provides prob-
abilistic results whereas the latter yields a deterministic value. Even in this case, to
detect the ideal algorithm is far from trivial. While SVM has more appealing math-
ematical properties in term of convergence, NN better represents hidden phenomena
such as risks associated with biased information. Finally, unless a large number of
sensors is adopted, these methodologies can identify only a limited number of features
[15].

As we saw in this section, inferring travel behaviour and trip information offers new
perspectives of research in travel behaviour and travel patterns. In the following sec-
tion we present a review of the travel behaviour analytics methods presented in the
literature.

2.2.1.5 Travel behaviour profiling and advanced analytics

In general, data-driven travel behavioural profiling applied to ITSs refers to the pro-
cess of constructing and applying various learning techniques, using the mobility data
generated by users and other entities (e.g., sensors from different means of transporta-
tion, traffic counters). In the transportation domain, profiling is a method used in
various topics, with different objectives. Driver behaviour has been profiled using
advanced motion sensors from cars and smartphones to detect driving events and to
classify drivers according to specific categories. Profiling methods are used in fleet
management, insurance policies, fuel consumption optimization or gas emission reduc-
tion [56], [166], [119], [63], as well as in route choice in multimodal networks in order
to consider the individual preferences in route recommendation systems [52] and in
Internet oriented user centric ITSs [53].
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More recently, attention has focused on understanding human mobility using the pro-
filing of users [97]. Data generated by static and mobile sensors implemented in dif-
ferent transportation systems and smartphones allow an understanding of large-scale
patterns and habits of citizens [203]. This is used for semantic information ex- trac-
tion about user mobility , as well as spatio-temporal variations in travel regulations
through transit data [143]. Mobility user profiles can offer valuable information for
understanding the disaggregate and aggregate spatiotemporal activity patterns [96]
However, the proposed methods are static and do not take into consideration data in
motion. Furthermore, performance has not been tested with large datasets.

Profiling is also used in the study of human activities in space and time, which has
been an important research topic in recent years. Mobility user profiles can offer
valuable information for understanding the disaggregate and aggregate spatio-temporal
activity patterns. Ghosh et al. [96] analysed a year of mobility trace data collected by
wireless network connections in order to determine users’ mobility profiles. A mixture
of Bernoulli’s distribution is used as the clustering algorithm in order to perform hub-
level location predictions. Even if the method is efficient for so-called sociological
behaviour analysis, it is not suitable for smart mobility recommendation systems. The
presented profiling is static, does not take into consideration data in motion and the
performance has not been tested with large datasets.

Data analysis about travel behaviour is often studied using statistical methods, which
are useful in analysing aggregated characteristics of individual activities [213], [186].
The same cannot be said about using these methods for the analysis of individual
mobility patterns and interactions considering jointly space and time [169]. A number
of studies have focused on the visualisation and exploration of individual level activity
data in a space/time context, starting from Hägerstrand’s time geography conceptual
framework for analysing the individual activity patterns with different constraints in
space and time [104], until more recent works, which study also the user interaction
aspect [122], [127], [187].

One of the most important research questions and objectives in exploring the individ-
ual mobility patterns is related to the similarity of spatio-temporal activity patterns.
Different measures have been proposed to compare the level of similarity, including
dynamic time warping [180], the longest common subsequence [137] or the Fréchet dis-
tance [22]. As these measures explore the similarity of mobility traces as spatial shapes
without explicitly considering space and time in an integrated manner, they may fall
short when not considering variables such as activity duration or time constraints,
which are important components of scheduling users’ activities.

Other studies consider space and time as an integrated measure with multi-level clus-
tering methods, which represents a method of data visualisation and exploration. Using
an individual-level activity diary dataset, [62] presents a geographic information sys-
tem extension, which is able to cover a set of functions using different methods such
as space-time path generation, segmentation and filtering. But these studies do not
scale well on big datasets.

Several issues have been identified for further research in order to effectively profile user
behaviour in smart mobility systems, including the learning issues for missing values,
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data cleansing, dimension reduction, sparse learning, and heterogeneous learning [229].
Massive amounts of raw data collected by nomadic devices (e.g., smartphones) must be
cleaned, aggregated and then processed using state-of-the-art methods and algorithms
from data science.

Previous research focused on the investigation of ride sharing opportunities [38] showed
that through mobility data analysis, efficient solutions for extraction of suitable infor-
mation from mobility traces can be used to identify ride sharing opportunities. As the
ride sharing solutions must provide access to door-to-door transportation, the techno-
logical advances and the growing ubiquity of internet enabled mobile devices enable
the implementation of dynamic ride sharing. The literature shows there is a need for
optimisation of these systems, which are employed to solve different problems related
to the required features and characteristics e.g., the dynamic character, automated
matching and cost sharing [18]. A suggested solution comes from a good understand-
ing of users’ behaviour and preferences, which is an essential feature when designing
dynamic shared mobility systems.

In order to make use of collected data for large scale mobility sharing services, users’
travel behaviour and preferences must be extracted from raw data. The very first step
in this process is the extraction of the duration and location of activities from raw data.
A detailed review and comparison of the methodologies from literature is presented
in section 2.2.1.3. However, all mentioned methodologies suffer from limitations when
applied to dynamic and live profiling on large datasets. More precisely, those method-
ologies use pre-defined parameters for a one-time extraction of different statistics and
analytics. In practice, RSs require the profiling of users in an environment with con-
tinuous data generated by dynamic movements of users and means of transport. They
need to extract knowledge that can contribute to the mobility services to understand
the human travel behaviour and automatically recommend suitable sharing services
for each individual. Moreover, the analytics must be done at different levels of aggre-
gation and resolutions, with dynamic precision and scaling e.g., ride sharing requires
a higher accuracy than the classification of secondary activities (e.g., shopping, gym
or restaurant).

In a next step, using the detected locations from the previous step, special methodolo-
gies must be implemented in order to learn user mobility patterns and to perform the
knowledge discovery from raw data. An example of knowledge discovery from literature
is the trip purpose identification from GPS tracks [155]. The study identified two main
groups of trip purpose imputation routines in the literature: rule-based systems based
on the position of the activity, timing, and GIS data; and machine learning approaches
which focus more on the activity and less on position. Montini et al. [155] used ran-
dom forests [45], a machine learning algorithm that has been successfully applied in
different transport-related classification problems. The input data is represented by
the GPS, accelerometer data and a travel diary. The respondents were asked to correct
an automatically generated travel diary that was used to extract specific features for
semantic interpretation of the data.

A similar application used in the current dissertation is the identification/classification
of each activity/visited location (e.g., home, work). The proposed profiling method-
ology from Chapter 5 uses only the GPS data, specific data science techniques for
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indexing, clustering and querying, alongside the training data represented by a set of
known location visit patterns for each location type. The key novelty of this approach
is that our methodology is able to capture detailed and complex visit patterns of users
and locations through the profiling layer, which can be used in a multitude of applica-
tions simultaneously. Some usage examples are explained and evaluated in the second
part of the thesis which deals with the practical applications from Chapter 6 (e.g.,
parking sharing, ride sharing, location type and activity classification). Moreover, we
provide a complete implementation which is fast, light (uses minimum of resources
to the extent that can be deployed even with the resources of a mobile device) and
scalable for large datasets.

2.2.2 Data science in the context of smart mobility

This section presents a review of the relevant data science methods, techniques and
technologies in the context of smart mobility. First, Section 2.2.2.1 present a back-
ground which links this section to the material already presented in this chapter. Sec-
tion 2.2.2.2 reviews the most popular data science modelling frameworks, followed by
Section 2.2.2.3 which examines data analytics platforms and processing frameworks.
Finally, Section 2.2.2.4 surveys applications from the domain of smart mobility which
use AI technology. A synthesis of the material concludes the section in 2.2.2.5.

2.2.2.1 Background

As we discussed in the previous sections, large-scale data derived from mobile devices,
vehicles and traffic information systems have facilitated the understanding of human
mobility patterns and similarities. The sharing economy in the transportation domain
experienced exponential growth in recent years and the benefits are well known [223].
Private cars, public transportation and parking places must be used in a more resource-
efficient manner by ITSs. These systems present the challenge of processing massive
amounts of continuously changing data emitted by mobile devices and traffic sensors.

Different sharing solutions have been implemented and their impact is extensively
discussed in the literature [92, 152, 121, 157, 58]. Nevertheless, even if all the above
services use similar methods and technologies to collect and process the data, each of
them has different requirements, challenges and optimisation objectives. For example,
while for joint sharing solutions (e.g., carpooling) the objective is to reduce the number
of cars used by grouping more people into fewer cars, in the concurrent sharing solutions
(e.g., car sharing, shared parking), the objective is to increase the usage of available
resources.

Data science and ICT methods and technologies promise great potential for solving
these challenges in the transportation domain. A single domain cannot completely
solve the problem in a scalable manner and implement it as a service in the real world.
Hence the need for an interdisciplinary solution.

Given these realities, data processing in smart mobility becomes one of the most impor-
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tant components in a response to the challenge of performing complex processing tasks
and rapid scaling in short time. The implementation of Collaborative Mobility (CM)
as a service therefore calls for the design of scalable and specialised analytic solutions
able to cope with the transportation domain specific complexity and the diversity of
underlying data models. Efficient frameworks and platforms, including predictive and
prescriptive analytics, complex simulations, ML techniques and AI decision, will need
to be merged into a single complex intelligent system.

In summary, the following sections will review the methods, technologies, modelling
frameworks, data analytics platform and specialised processing frameworks found in
the data science domain which can perform the following operations simultaneously:

1. Analyse frequently changing data. Data in motion generated on a very large
scale by a wide range of sources, especially sensors embedded in nomadic devices
(smartphones, smartwatches), must be processed in near real time in order to
deliver a solution at a magnitude of seconds.

2. Explore many different hypothetical actions. The future smart mobility
recommendation systems will act like a travel advisory which explores all the
possible shared mobility alternatives to provide the best solutions for each user.

3. Reason over distributed data in motion. The RSs must take in to account
context, user preferences and reason in order to provide advice/recommendations
regarding the best transportation resources to be used, and to find compatible
users able to efficiently share the available transportation resources (i.e., vehicles,
parking spaces).

4. Combine domain knowledge and machine learning at the same time.
On the one hand, the transportation engineering domain knowledge is necessary
at the design time to provide all the variables, functions, limitations and to ensure
that the entire process flow provides good results. On the other hand, all the
relevant information must be extracted autonomously from the raw data using
specific methods from the data science domain, coupled with ML techniques and
algorithms which can learn and reason about user travel habits and mobility
patterns.

In order to perform the above mentioned operations, a complete system is required,
composed of a modelling framework, a data analytics platform and specialised process-
ing frameworks which meet the requirements of the CMS case study. The following
section presents a review of the modelling frameworks found in the data science domain.

2.2.2.2 Modelling frameworks

The modelling represents an abstraction of a subject one wants to reason about and
is a fundamental process in software engineering. The subject can be defined as an
entity from the real world which receives a certain purpose.
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The next generation of smart mobility recommendation systems must be able to adapt
to people’s needs and preferences, as opposed to the current mobility scenarios where
people must adapt to the services and variables proposed by the system. In order to
achieve this, context awareness is a first step needed to trigger system adaptations.
Similar examples can be found in the case of ambient intelligent applications which
require augmenting the environment with sensing, computing, communicating, and
reasoning capabilities [153] or the live analytics requirements for cyber-physical systems
in the case of smart grids [106]. This is also the case of ITSs, where their distributed and
heterogeneous nature lead to an important complexity when it comes to representing
their current context, in order to later reason about it. Therefore, various methods
must be implemented to structure and organize the data, in order to process it for a
later reasoning.

We will employ contributions made by specific modelling techniques from Model-driven
engineering (MDE), which we noted in the second part of this thesis. MDE enables the
specification of formal models that express designs in terms of specific application do-
mains (e.g., transportation domain). This technology provides the necessary features
to address an increased complexity by combining the domain-specific modelling
languages (which enable the use of dedicated languages and tools dedicated for each
specific domain) and transformation engines and generators (”that analyse cer-
tain aspects of models and then synthesise various types of artefacts, such as source
code, simulation inputs, Extensible markup language (XML) deployment descriptions,
or alternative model representations” [182]).

Another important requirement for a model able to support a dynamic recommenda-
tion system is the enabling and support of self-adaptive systems, which may be used
both at design and in runtime. Over the past years, a new paradigm called mod-
els@run.time [158]has emerged, as a response to the need to equip self-adaptive sys-
tems with a model continuously connected to their current state. The model@run.time
it is defined in the literature as: ”a causally connected self-representation of the as-
sociated system that emphasizes the structure, behavior or goals of the system from a
problem space perspective” [39]. As the models provide a semantic valid way to define
the context of the system which uses them to reason about the tasks and processes to
be performed, the main advantage of the models@run.time is that any change of the
abstraction implies an automatic adaptation of the system at runtime.

One of the most popular frameworks considered as the de facto standard for modelling
is the Eclipse Modeling Framework (EMF) [193]. Thanks to its flexibility, EMF is
able to define models in multiple ways e.g., annotated Java, MDE, textual modelling.
EMF does, however, have a drawback: it has been developed primarily for systems
which apply modelling more at design time and less for those using runtime mod-
els. Hence, there are significant limitations when the model is used in the context of
models@run.time [89].

Another modelling framework developed specifically to meet the models@run.time re-
quirements is GreyCat [110], formerly known as Kevoree Modeling Framework (KMF)
[90]. Other features also recommend the GreyCat as optimal for the CMSs as follows
[88], [89]:
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1. Reduced memory requirements. This is a mandatory requirement in the
case of CMSs where nomadic devices (smartphones, smartwatches) with limited
resources are used by the users of shared mobility applications. Therefore, the
model should be compatible with deployment on these remote devices without
negatively affecting the user experience due to intensive resource depletion (e.g.,
using too much memory and power, leading to drained batteries).

2. Thread distribution. In complex smart mobility CMSs, the modeling layer
should enable concurrent access of multiple applications (e.g., carpooling, car
sharing, parking sharing) in order to offer multiple solutions and recommendation
to shared mobility users. Moreover, as these systems can have a large scale of
users, the processing should be implemented on multi-core/thread nodes, both
at the server side and at the end user’s device.

3. Efficient model cloning. Because of the high data volume and processing
demand, the future smart mobility recommendation systems should be able to
clone and use the users’ nomadic devices to perform fully independent local
reason tasks. Consequently, the model should allow efficient cloning and syn-
chronization in the use of remote devices, not only as sensing systems which col-
lect, send/receive data, but also as processing and local reasoning points (e.g.,
clean/reconstruct/query the data collected).

4. Lazy loading ability. The model should be continuously available, but a good
strategy for resources optimisation and performance enhancement is to be loaded
only when needed (i.e., only the useful parts of the model are loaded and only
when needed at the nodes where tasks are processed).

We choose to use the GreyCat model throughout the contributions presented in the
second part of the dissertation rather than EMF for several additional reasons. First,
GreyCat is a more lightweight framework specifically designed to be deployed at the
level of nomadic devices with limited resources. Secondly, GreyCat is more suitable to
process the large datasets generated by the sensing systems which continuously collect
mobility data (e.g., GPS, motion data, connectivity modules i.e., WiFi, Bluetooth).
Thirdly, GreyCat allows the usage of different storage technologies, e.g., key-value
stores. This is important for the collaborative mobility ITSs, since the large amount of
data generated at the users’ device level cannot be stored completely in memory but
must be sent and loaded from external servers. Fourthly, GreyCat also offers a complete
environment as a processing framework and data analytics platform, which allows the
processing the big data in motion using graph processing methods. Moreover, GreyCat
provides near real time analytics powered by specialised ML techniques and offers the
possibility of performing parallel simulations with what-if scenarios for prescriptive
analytics.

2.2.2.3 Data analytics platforms and processing frameworks

The challenges of big data analytics platforms in the context of IoT and sensing systems
have been extensively identified as an open issue by the industry and academia [117],
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[176], [192]. Similar challenges can be found also in the transportation engineering
domain and in particular the case study of ITSs which manage the CMSs, as follows:

1. Real-time analytics. In the case of CMS, users access the shared mobility
services via smartphones applications and perform requests for personalised mo-
bility services, usually on demand, without any advanced planning (e.g., the case
of Peer to Peer (P2P) services like Uber). Therefore, the future recommendation
systems must find a suitable solution to match multiple compatible users with
similar travel behaviour, in order to create a compatible group able to use a
shared mobility solution. This requires near real-time analytics to explore the
travel habits of all the users which are part of the shared mobility system and to
find a solution at a magnitude of a couple of seconds.

2. Complexity generates high performance requirements. The paradigm of
smart mobility systems has a high complexity, involving the fusion of interdisci-
plinary methods and technologies. This generates high performance requirements
for a number of interconnected distributed systems which must be perfectly syn-
chronised.

3. Continuously knowledge discovery. An important challenge resides in the
transformation of continuously collected raw data generated by the sensing sys-
tems into usable knowledge, using the latest ML methods, algorithms and tech-
nologies.

In recent decades we have observed rapid advances in the development of data man-
agement systems. These systems were forced to evolve and to push the limits of data
analytics by handling ever larger amounts of data. In the rest of this section we present
a review of the data analytics platforms and processing frameworks.

Since 1990’s, a new type of database processing called Online Analytical Processing
(OLAP) [67] addressed the lack of traditional database processing. OLAP was im-
plemented in many commercial database systems. This was one of the attempts to
analyse data in multiple dimensions. The dimensions were represented by perspectives
in this work, whereas in this dissertation we refer to dimensions as different types of
data i.e., time, spatial coordinates, specific attributes of the involved entities. The
techniques offered by OLAP were also unsuitable for the case of ITSs, which have
complex motion data changing frequently over time.

In a more recent work, Cohen et al., [68] presented a Magnetic, agile, and deep (MAD)
data analysis inspired from traditional business intelligence. The work described the
best practices for big data analytics called ”MAD Skills”, in an attempt to better
address the large scale of data which analytics platforms must face. However, instead
of providing new methods for data analytic platforms, the work presents recommen-
dations instead about the use of already existing technologies, suitable for centralised
analytics rather than for a decentralised paradigm as required by the CMSs.

Another popular approach used for data analytic platforms is the Apache Hadoop
framework [2]. Featuring distributed storage and processing for big datasets, the frame-
work was built to rapid scale from a low number of computers to big clusters composed
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of multiple machines. Using the map-reduce [74] approach, this was successfully im-
plemented across many big companies e.g., Facebook, LinkedIn and Yahoo!. However,
the Hadoop stack was essentially designed as a batch processing system. This means
that even if the framework is designed to process massive datasets, does not provide
native support for all of the four challenges presented in Section 2.2.2.1.

A notable framework among the big data analytic frameworks which become an Apache
top project is the Spark stack [4]. Spark’s main contribution is in the performance of
in-memory computations on big clusters. It is a faster alternative able to replace
Hadoop’s computation performance. Because Spark provides only the computing core
and data structures, it requires additional interconnected components, e.g., Spark
Streaming, Spark SQL, GraphX, MLlib, Velox, in order to be used as a complete data
analytics framework. Although it is possible to efficiently process mini-batches through
components like Spark Streaming, the core of Spark is pipeline-based and is therefore
unsuitable for systems requiring immediate reactions e.g., IoT and ITSs.

Other types of big data analytics frameworks are the stream processing frame-
works designed to address specifically the challenge of near real-time data analytics
and are suitable for ITSs e.g., Storm [204], Heron [128], Flink [1], S4 (Simple Scalable
Streaming System) [162], Samza [12], Stream Processing Core (SPC) [25]. Hartmann
[106] provides an extended review of these frameworks. Even if their design is interest-
ing for the case of ITSs, they lack the features needed for analysing data of complex
smart mobility recommendation systems. First, the model’s simplistic representation
complicates the representation of complex relationships between all entities from the
CMS, as well as the exploration of different hypothetical actions. Second, the design
does not support natively complex data representation, like graphs, which makes also
inhibits the integration of ML algorithms and techniques.

Recently, graph processing frameworks gained a lot of interest because of their
capabilities for representing various data and complex relationships [185]. Graphs are
for representing the context of general cyber-physical system and in similar way of ITSs
and have influenced the design of the GreyCat (which is the framework implemented
for the contributions from the second part of this thesis). Hartmann [106] provides a
detailed review of the most popular frameworks from this category e.g., Pregel [142],
Giraph [7], GraphLab [141], PowerGraph [98], GraphChi [129], GRACE [214], Trinity
[185], GraphCEP [147]. The results of the comparison between all the above graph
processing frameworks shows that none of them are fully compatible with the context
of CMSs. First, some require the graph to be completely stored in memory in the case
of nomadic devices. In contrast, GreyCat offers the advantage of storing the graphs
on secondary storage (i.e., nomadic devices’ storage) which is both much cheaper
and usually available. Secondly, the graph abstraction does not support the concept of
analysing many different hypothetical actions required by the recommendation systems
when searching for shared mobility combinations in parallel simulations. Thirdly, none
of the reviewed graphs allow the modelling of data collected, of domain knowledge and
ML in the same model.

Instead, the GreyCat [110] framework addresses all the above challenges and meets the
requirements of the CMS case study. The framework is described in detail in Chapter
4 and practical applications using this framework are presented in Chapter 5 and 6.
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2.2.2.4 Artificial Intelligence applications in Smart Mobility

The accelerated adoption of IoT facilitates the implementation of smart mobility an-
alytics, thus providing a wealth of knowledge which may be exploited to improve
organizational decision making. The availability of large-scale data from mo- bile de-
vices, vehicles and traffic information systems have facilitated the understanding of
human mobility patterns and similarities. People, private cars, public transportation
and parking places must be synchronised and informed by intelligent systems that pro-
cess massive amounts of continuously changing data from mobile devices and traffic
sensors. The problem becomes even more complicated when all the above-mentioned
solutions must be integrated into a single system which must manage everything at
different scales and almost in real time.

The above-mentioned problems from the smart mobility domain are solved in this
thesis using a combination of methodologies and techniques from the ICT and data
science domain. In this sense, data processing in smart mobility presents the challenge
of performance optimisation while executing complex reasoning processes to support
exponential scaling in short time e.g., when finding compatible users to share a ride on
demand. The massive amount of data used in the transportation economy has called
for the next generation of intelligent travel assistants, powered by AI techniques.

Although the AI keyword is abundantly used in industry and business today, an exact
definition of AI is surprisingly elusive. A simplistic explanation would describe it
as the intelligence demonstrated by machines, in contrast to the natural intelligence
displayed by humans. Kaplan and Haenlein provide a more precise definition: ”a
system’s ability to correctly interpret external data, to learn from such data, and to use
those learnings to achieve specific goals and tasks through flexible adaptation” [120]. In
the same work, the authors defines three stages or generations of AI, which adapted
to the smart mobility domain can be explained as follows:

1. Artificial Narrow Intelligence (ANI) - first generation of AI that can only
apply the intelligence to specific designed tasks e.g., self-driving car technology,
route planners - already considered near ubiquitous.

2. Artificial General Intelligence (AGI) - the second future generation of AI
is expected to autonomously identify and solve even problems for which they
were never designed. An example (linked with the topic of this dissertation)
is the future generation of intelligent travel advisors/recommendation systems,
which will autonomously and efficiently organise and plan humans’ schedule of
activities in order to solve traffic problems, reduce environmental impact and
enhance the quality of human life. Such a RS should be able to detect changes
in users’ travel behaviour, which in turn can generate issues regarding the way
transportation system is designed. Consequently, RS should be able to optimise
transportation solutions and automatically adapt to the users’ needs.

3. Artificial Super Intelligence (ASI) - might be possible to see the truly self-
aware and conscious AI systems ”that, in a certain way, will make humans re-
dundant” [120]. Such systems could apply AI to use scientific creativity in order
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to design and develop new modes of transportation, services and organise the
mobility for an entire society. This is the reason for which some call ASI as the
true artificial intelligence.

Over the past few years, smart mobility and sharing mobility RSs increasingly made
use of AI technology in various applications. Even if this dissertation does not seek to
develop a complete RS, the methods and technologies presented constitute a theoret-
ical and practical foundation which may be used in future research towards the next
generation of AI-powered RSs for sharing mobility.

Machine learning makes the AI behind the RSs possible. ML is a topic which com-
bines the statistics domain, optimisation techniques and computer science technologies.
It is ”an evolution of pattern recognition and learning theory in artificial intelligence”
[153]. Looking back in the history, ML ”was born as one branch within the major field
of artificial Intelligence” [28] with the objective to perform autonomous data-driven
operations (e.g., take decisions, make predictions), using models generated from previ-
ous example inputs. The mathematical models can represent any domain notions (e.g.,
profiles, patterns, correlations) that fit previous observations and are able to extrapo-
late new observations [153]. A multitude of ML techniques and algorithms are used to
solve various types of problems (i.e., hypothesis based, density estimation, classifica-
tion, clustering, anomaly detection, dimensionality reduction, recommendations), ap-
plying both different types of learning (i.e., supervised, unsupervised, semi-supervised,
reinforcement learning, meta-learning) and frequency of learning (i.e., online learning,
lazy learning, batch learning) [167], [153], [106]. While an extended review of these
techniques is out of scope of this thesis, it is important to note that all these advance-
ments in the ML made possible the implementation of AI which is embedded in the
RSs.

While an extended review of these techniques is beyond the scope of this thesis, it is
important to note that all these advances in the ML made possible the implementation
of AI, which is embedded in the RSs.

Recommendation Systems are utilized in a variety of domains including e-
commerce (e.g., online shops for products, services, applications), entertainment (e.g.,
platforms for movies, music, online dating, social networks), research (e.g., research
articles, books), search engines, general services (e.g., financial, insurance, restaurants,
collaboration) [16], [177], [85]. The general objective of RSs is to suggest/recommend
specific items/alternatives/solutions of potential interest for a user [116]. The recom-
mendations relate to a decision-making process, such as what products to purchase,
what movie to watch, but may also link to what transportation solution to choose in
different contexts. Therefore, RSs are primarily directed toward users who do not have
sufficient experience or available time to evaluate the seemingly limitless alternatives
which a specific service may offer [179].

Back in 2005, a RSs survey [16] showed that this topic had become an important re-
search area since the mid-1990s, with the introduction of the first collaborative filtering
methods [178]. First, the RSs were used mainly for websites to help users dealing with
the overload of information and to provide personalized recommendations for products
and services. In our own day RSs applications extend to almost every business domain,
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using the latest trends and technologies. For example, Felfernig et al., [85] provides
an overview of the existing work related to the applications of recommendation tech-
nologies in IoT scenarios.

Recommendation systems for Smart Cities. In the smart cities paradigm, the
RSs make use of contextualised service delivery methods to provide smart services
for solving urban problems [220]. Contextualisation may be defined as the process of
identifying relevant data to an entity (e.g., a person or a city) based on the extracted
contextual information from various sources [221]. Intelligent RSs then perform an
Observation, Orientation, Decision, and Action (OODA) loop [220]. This is also the
case of the RSs implemented in the ITSs domain, which involve Observation - collecting
various information from all the entities using multiple sensing sources, Orientation
- contextualisation of the extracted information to solve specific needs, Decision -
autonomously reason and take appropriate decisions, and Action - perform specific
actions and send recommendations based on the decisions taken in the previous steps.

Location based recommendation systems (LBRSs) represent the first RSs which
made use of location-based data, trajectories and geo-tagged media to recommend lo-
cations, routes, activities of potential interest to a user. Rehman et al., [177] presents a
systematic review of the literature related to the LBRSs and a qualitative comparison
of the techniques and algorithms used in the literature (e.g., content-based, collabora-
tive filtering based or hybrid methods). By using the geolocation data and the users’
profile information from the social networking services, it was possible to connect the
gap between the online services and the physical world. Therefore, the authors clas-
sify the LBRSs both in sequential location recommendation (which makes use of users’
GPS trajectories and geo-tagged social media information) and also stand-alone lo-
cation recommendation (based on the location history, users’ trajectories and users’
profile).

Travel recommendation systems (TRSs). The first RSs which embedded AI
techniques to provide personalized travel recommendations were used in the tourism
domain. The tourism/travel recommender system employs AI techniques to generate
personalized recommendations regarding touristic information and services. Ravi et al.,
[175] presents a review of RSs which make use of social network data and geolocation
data by considering usage of various recommendation algorithms, functionalities of
systems, different types of interfaces, filtering techniques, and artificial intelligence
techniques. Cha et al., [57] proposed for the first time real-time RSs that uses the
geolocation data from smartphones in order to recommend touristic Points of Interests
(POIs) and services in order to create a new type of touristic experiences through the
application of user contexts.

Smart Mobility. Increased interest has been directed over the past few years toward
context-aware RSs, which use external contextual sources to provide personalised smart
mobility recommendations [26], [140], [139], [209]. The main idea is to use external
contextual data in addition to the location attributes in order to offer personalised
recommendations for potential POIs. Amoretti et al., [26] use a combination of user
profiling and context-based data filtering techniques in a smart mobility application
that recommends POIs to end users. Logesh et al., [140] propose an user travel behavior
based recommendation approach, using basic user profiling techniques from GPS data
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and social networking services [139]. This approach is used in a later work to implement
an application which can predict personalized list of travel locations by generating a
heat map of already visited POIs [209].

The RSs were gradually introduced also in other topics from the smart mobility do-
main. Thus, the RS was used as environmental travel assistant [183], bike sharing
journey advisor [222] or for comfortable public transport recommendations [208]. The
PEACOX project [183] proposed a persuasive advisor for CO2-reducing cross-modal
trip planning. The aim is to make travellers more aware of the environmental con-
sequences associated with their transport behaviour. The advisor was implemented
through a smartphone application which had the objective both to highlight emissions
arising from users’ existing behaviour and to suggest more sustainable travel alterna-
tives. At the end of the project, however, the research showed that while the provision
of emissions may increase awareness of environmental problems, it alone cannot change
the users’ travel behaviour [44]. Therefore, other projects use the RSs as a mean to
incentivise travellers to use existing smart mobility alternatives, providing advice and
important information which can increase the rate of usage. Cityride application [222]
proposes a personal journey advisor for helping people to navigate the city using the
available bike-sharing system. The objective is to minimize the overall ravel time and
to maximize the probability of finding available bikes at the stations. The ComfRide
application [208] proposes a smartphone based system for comfortable public transport
RS, which provides recommendations regarding the most comfortable routes according
to users’ preference and travel time constraints. The research is supported by existing
studies which reveal that different personalized and context dependent factors influ-
ence passenger comfort during public transport and consequently has an influence on
the rate of usage [91], [43].

Sharing mobility. Similarly, RSs were implemented in the sharing mobility domain
for various shared mobility services such as ride sharing, carpooling, parking and mul-
timodal mobility applications, which will be reviewed in the remaining of this section.

• Ride sharing. In ride sharing platforms, RSs are used to find compatible users
and recommend sharing the ride. Junior et al., [118] proposed a RS to match
groups of users with similar preferences and recommend them to share the trans-
portation resources. The RS creates the user profiles using data collected from
a questionnaire and information extracted from online social networks. Then
the users are matched based on profiling classification techniques, performed
through different ML algorithms. Finally, recommendations are used to suggest
users with similar hobbies and preference for ridesharing, which improve users’
quality of experience in ridesharing services. RSs are used also to provide recom-
mendations for combinations of taxi services and carpooling [226], [227]. Wang
et al., [216] proposes a framework which employs a supervised learning model
for discovering potential road clusters, which is incorporated into a recommender
system for taxi drivers to seek passengers.

• Carpooling. In carpooling services, the RSs are used for different objectives.
For example, in order to optimise the carpooling routes, the RSs are used to pro-
pose optimal carpool driving route options that users may choose from [133]. Rec-
ommendations for optimal carpool routes are made by grouping users who share
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common trajectories along their trip. Other RSs recommend either vacant/semi-
occupied taxicabs in a similar direction for a carpooling service with the minimum
detour, without assuming any knowledge of destinations of passengers already
in taxicabs [225]. While most of the available approaches and carpooling RSs
are route oriented, ComeWithMe application [73] uses the destination as a type
of activity instead of a specific location. This novel matching method aims to
increase the carpooling rides if passengers accept to perform the same activity
(e.g., shopping, eating) in a different location. The authors suggest that this
activity-oriented carpooling hugely increases the number of rides, which is not a
common phenomenon in traditional carpooling services.

• Parking recommendation. Parking space management is a constant issue
in big cities [168]. Yavari et al., proposed an approach to contextualise IoT
data which is used by a smart parking space recommender application. The
RS considers not only the parking information (e.g., available parking spaces)
but also takes into account each driver’s context and preferences (e.g., type of
proffered parking, driving experience, the car’s location, the vehicle’s properties).
Thus, their approach provides a unified solution for extracting knowledge from
data obtained from various sensors (i.e., cars’ sensors, nomadic devices), and
advise each driver accordingly. In order to address overcrowding of parking
spaces, Martino and Rossi [77] propose a car-based multimodality RS, which
recommend that users leaves their car in a Park-and-Ride infrastructures and
reach their destination by public transportation.

2.2.2.5 Synthesis

Whereas much interesting work has been done in the domain of RSs and smart mo-
bility through specialised AI powered applications, existing solutions do not meet the
requirements for the next generation of RSs within the AGI paradigm, which will be
discussed in the remainder of this section. This thesis provides new methods, tech-
nologies and practical applications as solutions and advances in this direction. In the
remainder of this section we present a summary of the open issues extracted from the
literature in the above sections and their respective contributions.

As we observed in the previous section, the TRSs provide potential POI, activities and
services as suggestions according to users’ preferences, however the system needs a lot
of information to be manually provided by the users and the travel planning needs
to be build manually. LBRSs make use of additional data (e.g., trajectories, social
network services) to automatically extract user information, however every classical
approach (e.g., content-based, collaborative, hybrid) suffers in providing personalised
suggestions and recommendations for each user. In order to address this issue, it
is important to build the profile of each individual user. We address these issues in
Chapter 5, where a new profiling method is proposed for building an individualized user
profile. In this way, the RS can offer personalised recommendations regarding sharing
mobility services which best match each user’s travel behaviour and preferences.

Context-aware RSs use external contextual data to extract additional information in
order to build a basic user profile. However, the profiling should provide much more
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knowledge (e.g., mobility patterns, travel behaviour) than simple user preferences.
Moreover, the profiling should be built dynamically in order to capture travel be-
haviour’s variations and users’ mobility patterns extracted from the history of visited
locations. Thus, the employed profiling methods should be able to extract important
knowledge that can be used by specialised learning techniques to automatically cap-
ture the user interactions, travel behaviour and mobility patterns. In order to ensure a
good user experience, the entire process of data collection and extraction of the knowl-
edge information should be done with nearly no interaction from the user side. This
brings another common issue of the RSs, the so called cold-start problem [51]. The
problem is that if a new user joins a RSs, the system cannot send recommendations
because of lack of previous information about the user profile and preferences. Thus,
special profiling techniques and reasoning processes must be employed to automatically
extract the relevant user information from raw data with no user intervention. The
practical application from Chapter 6 represents a possible solution to these issues. We
demonstrate how it is possible automatically to extract the mobility patterns through
using the profiling method presented in Chapter 5 and to extract valuable knowledge
without any user input. Precisely, the proposed method can automatically classify
the type of each visited location (e.g., work, home, restaurant, gym) without any user
intervention.

In order to handle the above presented process flow, the next generation of smart mo-
bility RSs should be able to passively collect information from additional data sources
(e.g., data collected from the sensing systems of nomadic devices). Therefore, spe-
cialised modelling frameworks and data analytics platforms should be able to meet
the requirements of analysing complex and frequently changing data from the CMS
paradigm. Moreover, because there are multiple smart mobility applications which
provide different sharing services, the next generation of smart mobility RSs should of-
fer personalised recommendations from a single intelligent trip advisor. This challenge
is addressed by the contribution from Chapter 4 which presents a fast and lightweight
data driven modelling framework which can analyse frequently changing data in mo-
tion and can be deployed even at the level of the nomadic devices. The framework can
combine domain knowledge and ML techniques at the same time and explore many
different hypothetical recommendations and actions from multiple services simultane-
ously. Moreover, because the framework can reason over distributed data in motion,
specialised AI techniques can be implemented in order to increase the usage of shar-
ing services but also to increase the user quality of service by offering personalised
recommendations, according to the context of each individual user.

46



Part II

Contributions





3
A data-driven indicator for collaborative

mobility

The main objective of this chapter is to derive an indicator for revealing potential
collaborative mobility options between individuals using automated data collected from
smartphone sensors. This indicator can be used by ITS in order to provide recommen-
dations for all combinations of collaborative mobility sharing systems (e.g., carpooling,
parking sharing, car sharing). The proposed indicator must take individual preferences
into consideration, schedule the entire chain of activities, and be sensitive to dynamic
changes in different scenarios.
This chapter is based on work that has been published in the following paper:

• Usage of Smartphone Data to Derive an Indicator for Collaborative Mobility
between Individuals
B Toader, F Sprumont, S Faye, M Popescu, F Viti
ISPRS International Journal of Geo-Information 6 (3), 62
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Chapter 3. A data-driven indicator for collaborative mobility

3.1 Introduction

The main objective of this chapter is to extract the human mobility patterns from GPS
traces in order to derive an indicator for enhancing Collaborative Mobility (CM) be-
tween individuals. The first step - extracting activity duration and location - is done
using state-of-the-art automated recognition tools. Sensors data are used to recon-
struct an individual’s activity location and duration across time. For constructing the
indicator, in a second step, we defined different variables and methods for specific case
studies. Smartphone sensor data was collected from a limited number of individuals for
one week. This data was used to evaluate the proposed indicator. Based on the value
of the indicator, we analysed the potential for identifying CM among groups of users
such as sharing travelling resources (e.g., carpooling, ridesharing, parking sharing) and
time (rescheduling and reordering activities).

The proposed collaborative mobility indicator is defined in Section 3.2, followed by
the experimentation and results in Section 3.3. Finally we outline the discussion and
perspectives in Section 3.4 followed by the conclusions of the study in Section 3.5.

3.2 Methodology

In this chapter we propose an indicator to assess the collaborative mobility between
individuals, providing a single score defined hereafter as an index/indicator. The
problem consists of generating a score of compatibility for carpooling, car sharing and
parking sharing between two or more individuals willing to share the resources. The
value of the index indicates if there is compatibility between a group of users for using
sharing services, as well as the level of compatibility. This indicator has the following
features and objectives:

System optimisation. At the system level the objectives are to provide a compat-
ibility score between individuals for using sharing services in order to reduce carbon
emissions, traffic congestion on the roads, and the need for parking spaces, subject to:

a) Minimising the sum of total costs (reduce the cost of shareable resources);

b) Maximising the number of users using the sharing services simultaneously (group-
ing more people in fewer cars).

Individual optimisation. At the individual level the objective is to minimise the
cost of each participant in the collaborative mobility scheme.

Single metric. The index provides a compatibility score combining carpooling, park-
ing sharing and car sharing in a single indicator.
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Sensitive. The value of the index reflects any change in the schedule of individuals,
the number of users that share the resources, the travel path chosen or the number of
shared resources.

Flexible. The indicator can be used to asses the compatibility between individuals
for long-term sharing services but also for instant sharing services.

3.2.1 General conceptual model of collaborative mobility in-
dicator

The indicator should evaluate not only the total cost of the system, but also the indi-
vidual cost of every user, considering different trade-off strategies in some cases. The
mathematical problem developed here is challenging in many respects. For instance,
implementing the right trade-off rules is far from trivial, given that travellers’ char-
acteristics may change over time [210]. It is a multi-objective optimisation problem,
involving more than one objective function to be optimized simultaneously.

All variables and cost values used in this study are explained in the following list. The
default cost values used in the examples and case studies presented in this study are
similar to the values found in specialised literature (see e.g., [210]). Also because the
case studies are done in Luxembourg, the parking fee cost is based on the public local
rates.

I Collaborative mobility index value
C Individual cost without using sharing services
CS Individual cost when using sharing services
Cr Cost ratio between CS and C
Ccp Carpooling cost
Cps Parking sharing cost
Ccs Carsharing cost
F Distance based costs 0,15 e/km
Tt Travel time cost 0,17 e/min
Tr Rescheduling time cost 0,17 e/min
P Parking cost 17,42 e/day
Tp Parking time
O Other trip related costs e.g., toll, vignette etc.
α, β, γ, δ, ε Weight variable for a specific cost
n Total number of users

Shareable costs are defined as the costs that can be shared between the individuals
when using sharing services: F , P , O

Non-shareable costs are the costs that cannot be shared between the individuals
when using sharing services: Tt, Tr
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Distance in Time (DT) between two activities a and b, is defined as the time
difference between the starting (ts) time of activities:

DT (a, b) = ts(a)− ts(b) (3.1)

Distance in Space (DS) between activities, is represented by the shortest path
distance in road network between activities’ locations.

DS(li, lj) = Distance([xi, yi](li), [xj, yj](lj)) (3.2)

where li, lj representing the location index and x, y are the latitude and longitude of
each location.

The general mathematical formulations and constraints for the proposed indicator are
defined using the generalised cost as follows:

I =

∑n
i=1CS(i)∑n
i=1C(i)

(3.3)

where
CS(i) = αi(Ccp(i)) + βi(Cps(i)) + γi(Ccs(i)) (3.4)

C(i) = αj(C(i,j)) + βj(Tt(i,j)) + γj(Tr(i)) + δj(P ) + εj(O) (3.5)

subject to

I < 1 (3.6)

Cr(i) < 1 (3.7)

where

Cr(i) =
CS(i)

C(i)
(3.8)

The compatibility between a group of users exists when both (3.6) and (3.7) are met
simultaneously. This ensures that the sharing services are efficient both at the individ-
ual level but also at the system level. Equation (3.6) ensures that the sum of individual
costs when persons are using sharing services is less than the sum of individual costs
when they not. Equation (3.7) ensures that the individual cost for each single person
when is using sharing services does not exceed the cost when the individual is not
using the services. The index value also denotes the level of the compatibility between
individuals using the sharing services. The lower the value below 1, the lower the cost
resulting in a higher compatibility.

Therefore, the proposed indicator is sensitive to any individual cost as following:
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• Shareable costs costs are divided by the number of individuals who share a
resource for a specific trip segment/time period.

• Travel time is the individual total travel time, which increases in the case of
detours and is not shareable.

• Reschedule time represents the time cost for each individual user who must
reschedule the regular activities in order to synchronise with other travellers.

• Weight cost variables represents the weight of the cost for each individual.
This offer a realistic cost calculation because e.g., a user might not care about
saving shareable costs but has no flexibility for rescheduling some rigid activities
(e.g., the working schedule). In this case the weight of shareable costs may be
zero.

In the next subsections we present in detail the conceptual model of each of the sharing
services i.e. carpooling, parking sharing and car sharing.

3.2.2 Collaborative mobility indicator for assessing carpool-
ing

Carpooling is the sharing of car journeys so that more than one person travels in a car.
When travellers are carpooling, they are sharing the cost of the fuel. In our conceptual
model, the costs are shared by the segment of the trip where users are sharing the car.
The cost is divided by the number of people in the car for that segment.

In this case, the collaborative mobility indicator applied for carpooling is defined as in
(3.3), where:

CS(i) = Ccp(i) (3.9)

Ccp(i) = αi(
F(i,j) +O(i,j)

n
) + βi(Tt(i,j)) + γi(Tr(i)) (3.10)

C(i) = αj(F(i,j)) + βj(Tt(i,j)) + γj(Tr(i)) + δj(O) (3.11)

subject to (3.6) and (3.7).

The value of the index applied to carpooling represents the compatibility between two
or more travellers who are carpooling together. The lower the value of the index is,
the lower the cost of carpooling, resulting a higher compatibility between users, in
accordance with (3.6) and (3.7).
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3.2.3 Collaborative mobility indicator for assessing parking
sharing

Using the same indicator model it is possible to analyse the compatibility index between
individuals for parking sharing services. The conceptual model for parking sharing is
defined as in (3.3), where:

CS(i) = Cps(i) (3.12)

Cps(i) = αi(
P

n
) (3.13)

C(i) = αj(P ) (3.14)

subject to (3.6) and (3.7).

In order to demonstrate different applications of parking sharing index, we will consider
the following case studies and define the model and conditions for each of them. In
the first case study we define the conditions for parking sharing between a group of
car-dependent users who are willing to share the parking place in order to reduce the
cost. The second case study deals with the usage of parking sharing in combination
with carpooling.

3.2.3.1 Parking sharing compatibility index for car-dependent users

Compatibility for parking sharing between a group of car-dependent users is defined as
in Section (3.2.3) with the condition that the intervals when they are using the parking
place to not overlap. Figure 3.1 presents an example of how the parking is used by two
persons during one day. Time of the day in which P1 and P2 use the parking. In this
example, ai, bi are the arrival time in the parking, and a(i+n),b(i+n) are the departure
time from the parking.

Figure 3.1: Example of parking sharing usage for two users

The intervals when each of them are using the parking place are:

54



3.2. Methodology

P1 = [ai, a(i+n)] P2 = [bi, b(i+n)]

In this case, the condition for parking sharing is:

ai+n < bi (3.15)

Constraint (3.15) ensures that there will be no overlapping between parking usage
periods.

3.2.3.2 Parking sharing index in combination with carpooling

The conceptual model for assessing the parking sharing between individuals in combi-
nation with carpooling is defined as in (3.3), where

CS(i) = αi(
F(i,j) +O(i,j) + P

n
) + βi(Tt(i,j)) + γi(Tr(i)) (3.16)

C(i) = αj(F(i,j) +O(i,j) + P ) + βj(Tt(i,j)) + γj(Tr(i)) (3.17)

subject to (3.6) and (3.7).

3.2.4 Collaborative mobility indicator for assessing carsharing

Carsharing is a resource that has a similar conceptual model and constraints as parking
sharing. A vehicle booked by an individual cannot be used simultaneously by other
users, as (3.15). There is only one exception: when a group of users needs to use simul-
taneously the carsharing system and the DS and DT for the origin and destination
are zero, then they can instantly carpool using the carsharing system.

The most efficient way of using the carsharing system in a collaborative mobility scheme
is in combination with other sharing services, in our case carpooling and parking
sharing. In this case, the indicator must be evaluated over a chain of activities, for a
longer period e.g., the chain of activities and the related trips between activities over
a full day. The conceptual model for assessing the carsharing for a chain of trips and
in combination with carpooling is actually defined as in (3.3), (3.4) and (3.5), subject
to (3.6) and (3.7).

Basically the index is evaluating the cost of using carpooling for part of the trip chain,
of sharing the parking cost and using the carsharing system for the other part of the
chain trips, versus the cost of using the private car for the entire trip chain e.g., over
a full day.

All the conceptual models defined above will be tested and evaluated with real data,
in different scenarios performing various experiments, in the following section.
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3.3 Experimentation and results

3.3.1 Data collection and processing

3.3.1.1 Architecture of the Sensing System

The studies conducted as part of this study are based on SWIPE, an open-source
platform for sensing, recording and processing human dynamics using smart devices
[83] [84]. Figure 3.2 gives an overview of the SWIPE architecture, which consists of two
main parts: a local sensing system composed of one or several smartphones, and an
online analytics platform where the data from multiple users and devices is aggregated
and analysed. Interested readers may refer to [83] to get more information about the
data collection parameters (e.g., sampling and recording rates) and existing energy
optimization strategies.

Figure 3.2: Overview of our Sensing System.

3.3.1.2 Data collection

Our study was tested inside the University of Luxembourg, where the data was col-
lected from five employees of the university, both students and teachers, during approx-
imately one week. The participants received a smartwatch and a mobile application
that had been installed on their Android smartphone. The application was collecting
the data from smartphone and smartwatch sensors in the background, sending the
data to a server when the smartphone was connected to the internet.

Even if data was collected from all the sensors, in this study we use only the data
regarding the location (GPS latitude and longitude) and the WiFi connections.

Table 3.1 gives a summary of the data collection.
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Table 3.1: Data collection summary.

User Covered No. of original Frequency of Frequency of Total distance
ID period data points points(seconds) points(meters) covered(km)

1 181h,25min 6083 149 204 892.93
2 175h,40min 6588 172 70 256.04
3 191h,57min 6263 117 106 622.18
4 167h,57min 2300 280 211 457
5 149h,48min 2362 492 86 95

As may be observed, each user reported a different number of data points collected
and the difference between some users can be quite significant. This is due to the fact
that it was not possible to collect geolocalised data all the time. In some cases we
observed that users turned off the GPS or switched the smartphone to the flight mode
e.g., during the night, when they travel or to save the battery power. In other cases
the GPS was turned off accidentally or by the operating system in order to save energy.
Once switched off, users must re-activate the GPS in order to relaunch collection of
data points. This explains the difference between the different numbers of location
data points between e.g., user P2 and user P5.

From the data collection summary we can also observe that users reported a different
total distance covered. This is related to the different travel behaviour of different type
of users. In our case, students and professors participated in the data collection. From
their travel behaviour different hypotheses may be extracted e.g., user P1 reported a
short trip outside the country during the week and other trips between campuses. This
behaviour is more appropriate to a professor than to a student, with more flexibility
and travelling outside the country during the weekdays.

3.3.1.3 Data processing

Data collection methods usually contain errors, resulting in out-of-range values (e.g.,
vehicle speed: 1500 km/h) or missing values (e.g., data collected without any GPS
points). Using this type of data can produce errors if the system is not designed to
filter and process this type of data [171].

In order to clean the data we calculated the speed between each consecutive point
in order to remove any “supersonic jump” with unusually high speed. Then all the
remaining points without GPS location were removed because those points were not
only useless for the algorithm employed for the extraction of activities, but could also
produce errors because of gaps in the data without any information.

3.3.1.4 Data mining for reconstruction of missing locations

Location data may be collected with errors due to several reasons. First, the GPS
may be turned off accidentally by the user during data collection. In such cases, the
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system collects data from other sensors but not the location data. Second, due to the
urban canyon effect and the smartphone position during travelling or sitting location,
the GPS is unable to detect the location or the geospatial coordinates recorded may
be erroneous [70].

For the reconstruction of the missing locations, a data mining process has been applied
using existing GPS locations and WiFi information in order to reconstruct individual’s
daily activity locations. Approximately one third of the GPS data has been recovered.

3.3.1.5 Extracting activity duration and location

In the contribution from Chpater 3 we used the methodology developed by [198] using
the ArcToolbox [13]. The algorithm requires the definition of a spatial and temporal
parameter. The spatial parameter, or bandwidth value, corresponds to the kernel
bandwidth (KB). The temporal variable defines the minimal duration of stay that a
point must meet in order to qualify as a stop location where an activity is performed
or as a trip point. Also, other parameters must be defined like resample frequency or
minimum duration for a visit to a location in order to keep as activity. The following
values for the parameters were used, following the recommendation and experiments
of the authors and some testing done to observe the highest possible accuracy: KB =
275, Resample frequency = 180, Minim visit duration = 360, minDuration2keepHS =
360.

In our particular case study, since we are studying the collaborative mobility inside a
closed network of respondents having the same workplace, our hypothesis was that the
most frequent locations visited by the respondents are the home and work locations.
Since the work location is known, we performed some calculations in order to derive an
automatic way to extract the home location. First we inspected the frequent activities
performed by the respondents in the 9PM - 9AM time interval and preassigned those
locations with the home semantic. Another general way to find the home and workplace
locations following our hypothesis is by computing the total time spent in each location.
In Table 3.2 we can observe that for all the respondents, the location where they are
spending most of the time during the week is the home, followed by the workplace.
Also we can see that the total time spent in other locations is in general less than the
time spent at the workplace.

From Table 3.2 we can observe that there is a significant gap between e.g., time spent
at home for P5 and the rest of the users. This denotes that the algorithm was not able
to classify the raw GPS points as a location because either the GPS was turned off or
it was not possible to acquire the location from the respective building.

The extracted home locations of each respondent (P1 to P5) are plotted in Figure
3.3 with blue and the common workplaces is highlighted in red. Those locations are
used in the current study to evaluate the indicator for assessing the compatibility of a
group of people for using carpooling, share the parking or car but also scenarios with
a solution combining all those options.
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Figure 3.3: Home (P1 to P5) and work (W) locations of respondents.

Table 3.2: Time spent in all locations.

User ID Time spent at home Time spent at work Time spent in other locations

1 68h, 32min 19h, 40min 30h, 49min
2 111h, 5min 21h, 23min 12h, 31min
3 117h, 18min 43h, 59min 4h, 9min
4 108h, 34min 20h, 21min 7h, 51min
5 8h, 15min 21h, 3min 1h, 42min

3.3.1.6 Distance in time and space between activities

The distance in the network between the location of activities is an important piece
of information used in this study. After the extraction of location and duration for
the activity of each user, the distance in network between all the extracted locations
was calculated, using the Friendly Batch Routing [148]. Figure 3.4 shows the matrix
of distances between all the 28 locations extracted from all five users.

From Figure 3.4 we can observe that some locations are very short, under 100 meters.
We refer to those points as common locations between users. Because the respondents
from our data collection are co-workers, the common locations can be identified as
representing the workplace. Other locations are separated bt more than 20 km distance
from others meaning that the user travelled outside the city or country.

The extraction of activity duration and location data followed by the computation
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Figure 3.4: Distance matrix between the locations with different main distance groups

of the distances between activities, as described in the previous sections, provide the
necessary data which will help us to further analyse the collaborative mobility.

Plotting the DT between the extracted activities we obtained the sequence of activities
for each individual. Figure 3.5 gives an overview of the extracted activities sequences,
for all five users.

00:00 13:08 12:09 01:51 17:13 10:58 00:01 13:38 13:47 10:02 23:50 13:57

P1

P2

P3

P4

P5

Tue Wed Thu Fri Sat Sun Mon Tue

Common location 1 Common location 2 Different locations

Figure 3.5: Sequence of activities.

The activities performed in a common location are highlighted in red. In our particular
case study, the common location for all users is the University of Luxembourg where all
the respondents are working. The activities performed in different locations are showed
in grey. The gaps between the highlighted activities represents the time periods when
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the algorithm has not classified the points as a location. This happens either if the
respondents are moving or if it was not possible to acquire the GPS position. Also we
can see that user P4 and user P5 visited the same location in different time periods,
highlighted with green.

The distance in network between home and workplace locations from Figure 3.3 is
presented in Table 3.3.

P5 P4 P3 P2 P1 W

P5 0
P4 3,7 0
P3 1,6 1,4 0
P2 1,7 3,6 2,6 0
P1 9,0 8,1 9,5 7,1 0
W 5,4 5,8 4,3 5,1 10,5 0

Table 3.3: Distance matrix in km between the common workplace and residence of all
users.

The topological graph of distances in network between home and work locations com-
puted using the data from Table 3.3 is presented in Figure 3.6.

Figure 3.6: Topological graph of distances between home and work locations of re-
spondents.

This will be our input data for assessing the collaborative mobility between individuals
in different scenarios in order to test the behaviour of the proposed collaborative index.
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3.3.2 Collaborative mobility index for carpooling

3.3.2.1 Carpooling compatibility

In this example we test the compatibility for carpooling between P3 and P5 for work
commuting. It is assumed that all users in the system have access to a private car and
they can drive alone or can offer a ride to other users. Also we consider the weighted
cost variable for each user (α, β, γ) equal to 1. This makes the assignment of the trips
easier and also leaves the focus on the index computation.

The shortest path between P3, P5 and the workplace is P5 → P3 → W . Using the
equations and constrains from Section 3.2.2, the computations are as following:

Ci(P5) = F(P5,W ) + Tt(P5,W ) = 1, 91e

Ci(P3) = F(P3,W ) + Tt(P3,W ) = 1, 52e

Ccp(P5) = F(P5,P3) + Tt(P5,P3) +
F(P3,W

)

2
+ Tt(P3,W ) = 1, 76e

Ccp(P3) =
F(P3,W

)

2
+ Tt(P3,W ) = 1.19e

Cr(P5) = Ccp(P5)

Ci(P5)
= 0, 92

Cr(P3) = Ccp(P3)

Ci(P3)
= 0, 78

I = Ccp(P5)+Ccp(P3)

Ci(P5)+Ci(P3)
= 0, 86

(3.18)

As we can observe from the carpooling index, the requirement (3.6) for compatibility
is met. Moreover, the condition (3.7) is fulfilled meaning that the carpooling cost for
each passenger is less than the cost of travelling alone with the own private car. Also
we note that carpooling is even more convenient for user P3, because it is possible to
share the entire cost of the trip with P5, without any extra time because of the detour
involved. For P5 also the carpooling is more convenient than travelling with the private
car even with a detour, because the cost of the second segment trip is shared with P3.

This example shows how the indicator automatically indicates if the overall carpooling
is efficient for any trip, and also provides the benefits for each single individual. This
means that based on the individual score, each user can evaluate if the economic
benefit is great enough and accept or deny a carpooling proposal. Even if this solution
is foreseeable and can seem very simple, this method replicates human thinking and
the probability that a user will accept a sharing proposal increases respectively. Of
course each individual perceives cost and economic benefit differently. This will be
explored in the next examples, where cost weight variables have different values and
results.
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Ci(P1) = 3, 17e Ccp(P1) = 5, 52e Cr(P1) = 1, 48
Ci(P2) = 1, 80e Ccp(P2) = 3, 01e Cr(P2) = 1, 66
Ci(P3) = 1, 52e Ccp(P3) = 1, 65e Cr(P3) = 1, 08
Ci(P4) = 2, 05e Ccp(P4) = 2, 00e Cr(P4) = 0, 97
Ci(P5) = 1, 91e Ccp(P5) = 1, 26e Cr(P5) = 0, 66

3.3.2.2 Carpooling incompatibility

One of the main objectives of collaborative sharing is to group more people in fewer
cars. Maximising the number of passengers and minimising both overall and individual
costs is a challenge in a dynamic ride sharing problem. Using the provided dataset,
we will assess the collaborative mobility for all users together. Similar with Example
3.3.2.1, it is assumed that all users have access to private cars. Moreover Tr = 0
meaning that their schedule is synchronised.

Similar with Example 3.3.2.1, the carpooling index computation and the cost variables
results between all five users are the following:

In order to carpool together, one driver must pick up all the rest of the passengers.
The problem consists of finding the shortest path in the network that passes through
all user residences and reach the final destination at the common workplace for all
the users. This can be solved with the well-known Dijkstra algorithm, as a solution
to find the shortest path from a source to all other nodes in the graph, producing a
shortest-path tree. The shortest path presented in Figure 3.7 is the following: P1 →
P2 → P4 → P3 → P5 → W .

In this particular example, the group formed by all five users is not compatible with
carpooling. The total system cost when users are carpooling is higher than if they are
each travelling with their private cars. Interestingly, as we can see from the Cr values,
user P4 and P5 are the only ones who benefit in this case.

ICP =
Ccp(P1) + Ccp(P2) + Ccp(P3)

Ci(P1) + Ci(P2) + Ci(P3)
= 1, 22 (3.19)

As described in the previous subsections, equation 3.19 represents the ration between
sum of individual users’ costs when carpooling and when not carpooling.
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Figure 3.7: Shortest path between all the residences and workplace.

The question that arises is what is the maximum number of users that can carpool
together in this case study? In order to provide an answer we compute the index with
different number of users. The results plotted in Figure 3.8 show that in this particular
case study, the best index can be obtained by grouping the last three users in order to
have the lowest index value below 1 with the maximum number of users.

This experiment demonstrates that the collaborative mobility index can be used at the
system level to group more people in fewer cars, but at the same time at an individual
level so that all users may benefit from using sharing services. The indicator is sensitive
to dynamic changes e.g., the maximum number of users that can join in a carpooling
trip from one origin to a destination or the efficiency at the system and individual level
if a specific user is joining the carpooling trip. We can conclude that the indicator is
flexible and has the potential to be used also in real time carpooling assignment and
the system can recommend e.g., to a user which is driving that on the route of the
trip can pick-up other compatible users and all the passengers will have an economic
benefit. This can be useful for individuals who are commuting or travelling but also to
e.g., taxi and carpooling companies which can find new customers ad-hoc in real time
without any other intervention. The requirements for this type of sharing services
demand that the system to be provided with the origin-destination information for
each user.
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Figure 3.8: Index value for different number of users.

3.3.2.3 Carpooling index with rescheduled activities

In this example we aim to assess the carpooling compatibility between user P3, P4 and
P5 in the case when their activities are not synchronised. Tr and weight cost variables
are considered, as defined in (3.10). In Figure 3.9 we can observe the DT between
activities of all users for a day, extracted from Figure 3.5.

Figure 3.9: Distance in time between activities of all users for one day.

From Figure 3.9, both P3 and P4 start work at almost 10:47. Therefore they are well
synchronised and the DT between them is very small. The computed carpooling index
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values are I = 0, 80, Cr(P3) = 0, 78, Cr(P4) = 0, 82 with the result that they are very
compatible for carpooling; both (3.6) and (3.7) constraints are met.

It might be possible also for P5 to join the ride sharing but we can see that P5 usually
arrives at work 45 minutes earlier then P3 and P4. In this situation users must resched-
ule their activities in order to achieve the synchronization and be able to carpool.

We therefore consider the three following scenarios. In the first scenario it is assumed
that P5 with the result that for him α = 1, β = 1 and γ = 0 as defined in (3.10) and
the reschedule is not seen as a cost. Consequently this scenario reshapes as a perfect
synchronization between individuals because Tr(P5) = 0. In the second scenario P5

accepts to reschedule the activity, but α, β and γ are considered by the user (equal to
1) for all users resulting that for P5 the related reschedule has an extra cost. The third
scenario is similar with the second, with the difference that P3 and P4 will reschedule
their activity, thus both of them will have reschedule time cost.

The comparisons of the index value and the cost for each individual in the proposed
scenarios are captured in Figure 3.10.

Figure 3.10: Carpooling index and individual user costs for different rescheduled op-
tions.

From this case study we can argue that the proposed carpooling index is sensitive to any
additional cost in any situation. Based on the index value, a recommendation system
that has multiple options for user synchronization can choose the optimal solution for
advising users how to reschedule or reorder their activities in order not only to minimise
the overall system cost, but also to balance the individual cost for all users. Moreover,
the indicator is sensitive to the individual’s cost perception, computing the index value
considering the weight value for each involved variable. The indicator is sensitive to
any change in the weight of cost variables for each user and the final indicator value
for a group of individuals can be highly influenced by the weight that each individual
assigns to the cost variable. This means that a group of users can be compatible or
not just because they have different perceptions of the economic benefit and the trade-
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off between comfort, saving money or flexibility e.g., to reschedule the departure or
arrival time. Users synchronisation and usage optimisation of existing resources are
other objectives where the proposed indicator model can contribute.

3.3.3 Collaborative mobility index for parking sharing

3.3.3.1 Parking sharing compatibility index for car-dependent users

In this scenario it is assumed that there is a daily parking fee at the workplace. This
cost can be shared between multiple persons if they use the same parking place. The
problem consists of finding car-dependent compatible users who match (3.15). In order
to find compatible users, we compute the DS and DT between the parking location
and the users activities. Figure 3.11 shows the results for two users during one day.

Figure 3.11: DS and DT between parking place and activities of user P1 and P2 for
full day.

When the distance is zero, users perform an activity in a location near the parking
place. In our case study it is the workplace parking spot. From Figure 3.11 we observe
that the intervals in which P1 and P2 are in the parking place meet the constraint
(3.15), with the result that they are compatible for parking sharing. If this repetitive
behaviour can be observed over long time periods, they are compatible for long-term
parking sharing.

Having travel behaviour data for a long time period and for a higher number of re-
spondents, using the proposed indicator it is possible to compute at large scale the
compatibility between all users for long term parking sharing. In this way the parking
lot can be used more efficiently and the number of parking places required can be
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reduced. This can be useful both to individuals who wish to share the parking cost,
but also to organisations which aim to reduce the parking space and the correspond-
ing costs. The indicator can also capture long-term dynamic changes that appear in
the travel behaviour of each user and suggest different sharing solutions based on the
new knowledge e.g., change of residence or workplace but also new frequent locations
visited e.g., a new restaurant, new friends etc. The only requirement is a historical
database of locations visited and a learning method used by a recommendation system
that detects changes in the behaviour of each user and suggests new solutions.

3.3.3.2 Parking sharing index in combination with carpooling

In this case study we evaluate how the indicator behaves when a scenario is considered
with daily parking fee in combination with a carpooling service. For this case study
we use the input data from Example 3.3.2.2 from which we have the indicator values
for a situation in which all five persons might carpool and in the absence of a parking
fee and we compute the index as defined in Section 3.2.3.2. We compare the results
from Example 3.3.2.2 with the situation when there is a shareable daily parking fee in
order to observe how the parking fee policy can influence the perception and costs of
the carpooling service. The results are presented in Figure 3.12.

Figure 3.12: Comparison of index value and individual costs ratio Cr with and without
parking fee.

From Figure 3.12 we observe that in the situation when there is no parking fee, the
index value indicates no compatibility for carpooling, with the index value higher than
1. In this case they will not carpool together meaning more parking places occupied. In
the situation when they have to pay a parking fee, the index value indicates an excellent
compatibility when sharing the ride and parking cost, both at the system level but also
at the individual level. The results from this case study show that the index can be
used as an indicator for assessing the impact of different parking fee policies and prices.
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The proposed indicator can be part of a recommendation system for advising users for
sharing the parking cost with other compatible users in combination with other sharing
services, in this case carpooling.

3.3.4 Collaborative mobility index for carsharing

In order to evaluate the indicator for carsharing we consider a case study that combines
carsharing, carpooling and parking sharing. Also we consider the entire activity chain
of an entire day, as discussed in Section 3.2.4. Figure 3.13 presents a similar situation
as in Example 3.3.2.1. From this example we know that P3 and P5 are compatible for
carpooling when they commute from home to work in the morning and from work to
home in the evening, and when they also share the parking cost. In this case study
the difference is that P3 must travel from the initial workplace (W1) to a meeting
in (W2) and return back to (W1). In this case the chain of activities for P3 is:
P3→ W1→ W2→ W1→ P3.

Figure 3.13: Case study with combination of carpooling, parking sharing and car
sharing.

For the trips P3 → W1 and W1 → P3 the user plans to commute by carpooling
and share the parking cost with user P5. But because of the need to travel an extra
W1→ W2→ W1 segment trip and because of the lack of any other user with whom
to carpool, the user plans to use the private car for the entire day because of the tight
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schedule and the risk of losing precious time. This certainly means extra cost because
it is not possible to share the costs in this situation.

In another possible scenario, we assume that the users have access to a carsharing
system. This option gives them the flexibility of carpooling for the trips P3 → W1
and W1 → P3 with user P5 and of using the carsharing system for the trip W1 →
W2→ W1.

In order to evaluate the indicator behaviour in this case study, we compute the indi-
cator when P3 use the private car for the entire tip chain, versus the situation when
commuting by carpooling and sharing the parking cost with P5 and using the carshar-
ing system. The computations as defined in (3.3), (3.4) and (3.5) are:

Ci(P3) = F(P3,W1) + F(W1,W2) + F(W2,W1) + F(W1,P3) + P = 26, 45 e

Ci(P5) = 1, 91 e

Cs(P3) =
F(P3,W1)

2
+ F(W1,W2) + F(W2,W1) +

F(W1,P3)

2
+ P

2
= 10, 51 e

Cs(P5) = 1, 76 e

Cr(P3) = 0, 39

Cr(P5) = 0, 92

I = 0, 43

In this case study the indicator values show that the best option for P3 is to carpool
for the commuting trips and to use the car sharing for the other trips. Also P3 and
P5 are compatible for using sharing services, both of them saving the related trip and
parking costs.

We can argue that the proposed indicator can be used to evaluate collaborative mobility
between individuals in a closed environment, considering the entire chain of activities
and combinations between all the sharing services. The values obtained can be used by
an ITS that acts as a travel advisor which automatically finds the most efficient sharing
services and recommends to each individual user in the system, considering not just
only one-time-service usage but the entire trips chain for one day. Moreover, the indi-
cator is able to evaluate and optimise combined sharing schemes and modes in a single
indicator, quickly and simply. The travel advisor may try different combinations and
propose various solutions from which users can choose, depending on their preferences
and constraints. The model proposed may be used for both a multi-objective opti-
misation approach and for more complex problems where different providers, schemes
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and solutions can be considered.

3.4 Discussion and Perspectives

In this study we explore the usage of ITS in combination with the actual technologies
and with the sharing services as an effective solution for traffic congestion problems.
The current study together with others from the literature review emphasised the need
for a change in citizen’s travel behaviour towards sustainable and efficient collaborative
mobility among groups of users. In this case the ITS must pro-actively give recom-
mendations to users and incentivise them to reschedule, reordering and re-routing their
activities in order to group as many travellers in fewer cars but also giving advice on
how, when and with whom to share the resources and combine the costs involved e.g.,
parking fees, fuel cost.

This process must be fully automatized by using methodologies similar to those pre-
sented in this study. Data must be accurately collected (individual based and available
in real-time from mobile devices) and processed. The framework presented in the cur-
rent study aims to take the full benefits of the data collected and transform it into
knowledge. More complex Machine Learning and Data Mining methods and algo-
rithms can be used in order to extract the knowledge from raw data, using a data
fusion strategy from all the sensors built in the mobile devices. This means that the
ITS must take full benefit from the geospatial Big Data and larger market penetration
of portable technologies. With this, the next generation of collaborative ITS platforms
would be able pro-actively to give advice in order to change the user’s travel behaviour
in the interest of more efficient, sustainable and environmentally friendly sharing so-
lutions. ITS must act as an advisor that assists citizens in their daily choices in order
to achieve significant travel behaviour change.

The indicator developed in this study aims to fill the gap between the ITS and the
user needs and preferences. Using this indicator an ITS can assess collaborative mo-
bility between users in a faster, more flexible and more reliable fashion. As presented
with real case studies in the current study, the system can automatically find sharing
opportunities and recommend different behavioural changes in order to be compatible
with other users for sharing services.

From the case studies presented, we can argue that such a travel advisor is suitable
for different types of organisations and communities. In this model, members will be
advised by the ITS to reorder or reschedule their activities in order to be compatible
with other users inside the organisation for using sharing services in a CM system.
This will lead to great benefits at the company level because e.g., , fewer employees
will commute with their private cars. This can result in savings for large companies
which normally need to rent large parking lots for their employees. The case studies
presented in this study suggest that a parking fee can incentivise more people to adopt
the shared commuting option. Also the proposed indicator can be used as a tool for
assessing the effects of different parking policies at the organisation’s level.

At a higher level (e.g., at the city level), fewer people will commute with their pri-
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vate cars, resulting in reduced traffic congestion at the peak hours. The indicator’s
values include also the system cost variable. A general perspective regarding the or-
ganisation’s system costs can be a good indicator for evaluating the impact of different
policies planned by local authorities.

The collaborative mobility scheme presented in this study may also have great benefits
at the micro level for each individual user in the system. Cost savings e.g., fuel, parking
fees and time lost in lengthy commutes, are strong incentives to attract more and more
travellers towards an environmentally friendly and sustainable travel behaviour.

Because user’s activities are repetitive, all the computations made for different users
and scenarios can be stored and reused by an ITS for speed optimisation. This is
mandatory when a massive number of computations must be made for large commu-
nities. Finally, the entire process must be fully automatised so that the user will not
have to manually perform queries in the system (e.g., , searching for a ride or for a
colleague to share the parking fee). The entire human-machine interaction should be
minimised until the point that the user will have only to press one button in order to
confirm that the system correctly predicts the next destination and the user accepts
the system’s recommendation.

We can argue that the proposed method has multiple strengths described in the pre-
sented proof-of-concept examples. We have demonstrated that the method can evalu-
ate combined sharing schemes, sharing modes and resources in a single indicator. It is
sensitive to dynamic changes, flexible and can be used in multi-objective optimisation
problems. However, the results and accuracy of the model are dependent upon the
quality of the input data. This means that in order to be used, the indicator must be
integrated as a component, part of both a complex system where the data is collected,
aggregated and processed in an automatic fashion, and a recommendation system
which performs different computations based on the model proposed and chooses the
best solutions, having taken into account all the objectives, users preferences and con-
straints. Some variables e.g., the weight of the cost for each user might be very hard
to obtain and those are mandatory elements that can have a high influence on the
final result. The indicator has been tested only on a small dataset, with a limited
period of time and only five users. Even so, because there are many variables, routes,
sharing schemes and modes, user preferences and constraints, but also multi-objectives
solutions, the computation becomes quickly very intensive and this can require large
computing resources and optimisation methods for computation.

3.5 Conclusion and future work

In this study we have proposed an indicator for enhancing collaborative mobility, which
can be used by a travel advisor to proactively recommend different actions towards
environmentally friendly and sustainable travel behaviour. The research presents dif-
ferent constraints and variables which should be taken into consideration when assess-
ing the collaborative mobility between individuals based on different sharing solutions.
Car-pooling, parking sharing and car sharing experiments and case studies were ex-
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plored using the real data collected from mobile devices. These experiments confirmed
that the proposed indicator is sensitive to dynamic changes, flexible and can be used
in multi-objective optimisation problems. We conclude that the behaviour of com-
bined sharing schemes and modes can be assessed in a single indicator. This can be
used for evaluating the collaborative mobility for individuals at micro level but also by
organisations for simulating the effects of different policies.

There are many directions for extending this work. The methods presented in this
study represent the theory that has to be combined with complex ML and artificial
intelligence methods in order to develop the engine of an ITS that has a bright future
in the next generation traffic systems. The challenge will be to develop the prototype
of an elaborated ITS that will be able to execute complex tasks and operations e.g.,
automatic learning, prediction, optimisation and management of collaborative systems
for sharing resources.

In the current research we have used mainly the geospatial data collected from mobile
devices. Future exploration of sensing systems will also be done in order to use the
data fusion of all the mobile sensors available from the nomadic and wearable devices
like smartphones and smartwatches. Each additional sensor brings important data
which should be exploited in order to acquire new knowledge.

While we consider the problem of collaborative mobility, our approach is still at a small
scale, mainly because of the limited data collection and the focus on the theoretical
aspect rather than real-world implementation. Other challenges related to the large
scale real data usage collected from smartphone are the data collection high cost and
privacy aspect. Authorisations must be obtained from specialised authorities for sur-
veys and data collections that contain sensitive information. Then data anonymization
protocols must be implemented using different types of information sanitization with
the intent of privacy protection. Encryption protocols, blurring techniques for loca-
tion privacy or removing personally identifiable information from data sets are some
of the protocols that can be used so that the users from whom the data is collected
can remain anonymous.

In the following chapter, similar scenarios will be used for larger datasets with a higher
number of users and for a long time period. This approach presents complex problems
because larger datasets require specialised methods, tools and optimisations for running
intensive computations. Also, the knowledge extracted must capture similar travel
behaviour of the real users’ mobility patterns. In this sense, a new modelling framework
that uses temporal graphs and time series in multi-dimensional data is presented in
the following chapter.

73





4
A modeling framework over temporal
graphs for big mobility data analytics

In this chapter, we present an innovative data modelling framework that can be used
for ITS to deal with big mobility data. We demonstrate that the use of graphs and
time series in multi-dimensional data models can satisfy the requirements of descrip-
tive and predictive analytics in real-world case studies with massive amounts of con-
tinuously changing data. The features of the framework are explained in a case study
of a complex collaborative mobility system that combines carpooling, carsharing and
shared parking. The performance of the framework is tested with a large-scale dataset,
performing machine learning tasks and interactive real-time data visualization. The
outcome is a fast, efficient and complete architecture that can be easily deployed, tested
and used for research as well in an industrial environment.
This chapter is based on work that has been published in the following paper:

• A new modelling framework over temporal graphs for collaborative mobility rec-
ommendation systems
Bogdan Toader, Assaad Moawad, Francois Fouquet, Thomas Hartmann, Mioara
Popescu, Francesco Viti,
2017 IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC)
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Chapter 4. A modeling framework over temporal graphs for big mobility data
analytics

.

4.1 Introduction

In this chapter, we propose an innovative data-driven framework that can be used in
the transportation domain with large-scale datasets and makes possible the implemen-
tation of different data science methodologies, techniques and ML algorithms. The
main contribution of this chapter is the implementation of a framework that combines
the analytical and statistical results (i.e. from the data science domain) with discrete
simulations (i.e. evaluation of alternative actions), adapted for the requirements of the
transportation domain and in particular for the case study of collaborative mobility.

The remainder of this chapter is organized as follows. First, Section 4.2 introduce a
collaborative mobility case study, which motivates the research behind this contribu-
tion. Sections 4.3 introduces the methodology behind the main concepts and features
needed in the transportation domain. We thoroughly evaluate our approach in Section
4.4. The related work is discussed in Section 4.5 before concluding in Section 4.6.

4.2 Motivating case study

This study was motivated by the methodology presented in Chapter 3, which describes
an indicator that can be used for assessing the CM between individuals. In particular,
based on the value of the indicator, the authors analysed the potential for assessing
collaborative services among small groups of users for different combinations of sharing
services (carpooling, carsharing, shared parking). Our objective is to develop a multi-
functional framework that can be used for implementing the CM indicator at a large
scale. Moreover, we extend the study’s applicability in the dynamic ridesharing domain
by the framework features proposed. In the remainder of this section, we present
the technical and methodological requirements that can solve the above mentioned
problems, extracted from [202].

In large scale ride-sharing systems, sensors from mobile devices and cars positioning
systems are sending data continuously. Storage, management and fast access to a
temporal unstructured dataset is not trivial [78]. The challenge increases when we take
into consideration the complexity of underlying data models and patterns combined
with the relationship between entities (people, locations, cars, personal preferences).
Analysing such large historical datasets where the context and input values change
over time as the entities are constantly moving calls for advanced time series analytics
and technologies. While this topic has been explored by the database community [184],
it is lately gaining popularity also in the ITS domain.

Time management is a critical component in smart mobility systems. Different services
make resources available simultaneously or over time. Therefore, the system must
be able to analyse data over time and perform deep and complex temporal search
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queries. GPS location data and timestamps are received with different frequencies and
sometimes data values are missing (e.g., mobile phones with GPS deactivated). When
e.g., a request is made for a carpooling activity, filtering and searching in time and
space operations must be performed, returning the possible candidates for carpooling.
Often, the exact position of each rider is not exactly known and the system must
return either the last known values or an extrapolation of the missing data based on
the history and on specific domain rules.

Over the years, data analytics in the ITS domain shifted from descriptive data ana-
lytics, represented by the understanding of past events, to the emergence of predictive
analytics, i.e. techniques which make predictions about the future based on learning
from historical data. Therefore, different ML techniques can be implemented (e.g.,
profiling, prediction, clustering, classification) in order to extract knowledge from un-
structured data. The ML component must be able to continuously learn and the rec-
ommendation system must use the results almost in real-time. The work from Chapter
3.1 [202] supports the idea that the large scale implementation of CM services calls for
the next generation of prescriptive analytics, capable to take efficient decisions using
recommendation systems. In the ridesharing systems the current state of each entity
(e.g., location of users) is known from the data received, as well as the desired state
expected and results (e.g., grouping more users in fewer cars). Prescriptive analytics
can be used to perform an what-if analysis [103] by exploring different alternatives.
The final goal is to give recommendations (e.g., with whom an user can carpool) re-
garding the actions that should be done in order to reach as close as possible from the
initial state to the desired state, almost in real-time (e.g., shifting the departure time
in order to be compatible with more users).

These are the basic requirements that the next generation of smart mobility systems
must meet. This motivates our work on implementing a new modelling framework over
temporal graphs that satisfies the requirements of CM recommendation systems. In the
next section, the methodology behind each proposed framework features is presented,
as long with the implementation details. Although in this study we use mainly a similar
case study as [202], the framework can be applied to many other domains [112, 109].

4.3 Features and methodology

This study introduces a new modelling framework that satisfies the requirements of
the next generation of recommendation systems, based on the unique combination of
the integrated core features. The proposed solution has the foundation in the GreyCat
[71] framework, formerly known as KMF [90]. In this section, the methodology behind
each core feature is presented, together with a summary of the implementation.

4.3.1 Modelling with graphs

Graph theory has long been used in multiple domains and applications [76]. Figure 4.1
presents the general components and the information processing flow in the case of a
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recommendation system that can be implemented for assessing CM using the indicator
developed in [202]. The components included in the square with the dashed line are
implemented and used in the current study.

User ID
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GPS lat

GPS long

     ....

RAW data Temporal graph

Profiler

Users

Locations

Context
Recommendation

System

Recommend 

similar users

Recommend 

similar locations

Figure 4.1: Meta model of the graph and system components

The temporal graph is used simultaneously as storage after raw data processing, as
an input for the profiler component and as validation for the recommendation system.
In this case, the graph stores the data in nodes represented by users, locations and
context. Each node has its own attributes according to its type e.g., latitude, longitude,
timestamp, sequences of locations, user preferences etc. Between each node, the edges
of the graph are represented by the relationships between the nodes.

4.3.2 Temporal aspect

The relationships between nodes (e.g., in our case study users and locations) can evolve
over time. Graph structure evolution over time is presented in Figure 4.2.
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Figure 4.2: Graph structure evolution in time between users and locations

As we can observe, at each timepoint tn the graph captures the relationships between
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users and locations, which constantly change over time. The advantage of this type of
structure is that similarities and behavioural patterns between users can be identified
by comparing their evolution over time. Moreover, new users can enter the system and
others leave, a typical behaviour of users in any ride sharing system.

One major advantage of intelligent systems dealing with time series data is their ability
to continuously analyse their context in order to autonomously offer recommendations
[111]. In the case of smart mobility systems, the dynamic context of continuously
moving of users force the reasoning processes to analyse and compare the current
situation with the trend created by the past events. Even if a common approach
consists in a temporal discretization, this will lead to large data mining [111]. Figure
4.3 presents the framework’s concept of storing only the relevant data (data points
marked with a black dot). Data represented by a cross (×) is discarded for compression.
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Figure 4.3: Time management and irregular data frequency.

In smart mobility systems, the GPS location data (ln) is constantly received from Pn

users’ smartphones. In this case, the system must manage irregular frequency data
rates and optimise the storage by discarding redundant data. The proposed model will
store new locations (data points marked with black dots) only if the users change their
locations. If the users don’t change the location, the data points (represented with ×)
are discarded. Let us consider the situation when the system is performing a query at
the time t12. In this case, only the user P1 can return the actual location. For the rest
of the users, traversing back in time to the last known location is necessary to estimate
the current position. In the case of missing data, different extrapolation methods can
be used [154]. This technique allows every node to evolve independently of the other
in time and greatly contributes to the compression of data storage and access speed.

4.3.3 What-if analysis exploring alternatives

According to [202], in order to asses the CM indicator between a group of n riders,
(n× (n− 1))/2 calculations of different combinations can be made to group the riders
that can share a trip. Using the Quadtree indexing [126] in a graph structure has the
advantage of reducing the number of calculations to nlog(n). Similar, the number of
steps to traverse a graph is log(n), compared with n−1 steps in a classic flat structure.

79



Chapter 4. A modeling framework over temporal graphs for big mobility data
analytics

As [103] stated, what-if analysis is a mandatory component in this case. Our proposed
framework can generate a large number of what-if scenarios, e.g., find the maximum
number of riders that can carpool at a certain moment in time. Hartmann [106]
introduces the notion of Many World Graphs (MWGs), which can be defined as hy-
pergraphs, which structure and properties can evolve along time and parallel worlds.
Each simulation is done in a parallel world, used as an identifier. In Figure 4.4 is
presented the general concept of MWG, as a solution for multiple parallel simulations.
The worlds that are represented by a continuous line are resolved, while those with
dashed lines are discarded as the solution provided is not fitting the objective function.
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Figure 4.4: Many Worlds Graph as a solution for multiple parallel simulations

We define the first created world (W0) as the root (parent) world, defined by the
collected real data. All other worlds can be created at any time, diverging from the
root world (e.g., W1, W2, W3, W4, W8). Then, from any other created world, other
secondary worlds can occur (e.g., W5, W6, W7, W9, W10, W11).

In the ridesharing case study, the root world is represented by the real data collected
by the riders’ mobile devices. When e.g., the driver is asking for riders to share a trip,
the framework performs multiple simulations in parallel worlds to test the indicator
value for different combinations of grouped riders. If the indicator’s computation
shows that the riders are compatible for carpooling, the world (e.g., W3) is solved
as represented by a continuous line in Figure 4.4. The scenario is then considered as
successful and the recommendation system can inform the driver about the compatible
rider(s). A simulation is either successfully completed and merged in W0, or discarded
and represented by a dashed line. If the simulation e.g., W4 is successful, it is also
possible to perform another what-if analysis for finding an additional compatible rider
for that trip. The process can be repeated until has reached the maximum capacity of
the car. If W7 has successfully resolved, all the parent worlds are closed and merged.
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Regarding the support for prescriptive analytics, [106] showed that MWG is able to
handle efficiently hundreds of thousands of independent worlds. Moreover, every node
can fork independently and when forked, differential information is stored, resulting in
a faster process with data compression.

4.4 Experiments

4.4.1 Dataset and experimental setup

In order to test the proposed framework, the Geolife dataset [151] is used. This publicly
available dataset contains over 25 millions GPS points, collected in the Geolife project
[233] from 182 users with smartphones and GPS loggers in a period of five years. There
are 17,621 trajectories represented by sequences of time-stamped points, which contain
the latitude, longitude and altitude with a variety of dense representation sampling
rates, e.g., 1-5 seconds. The characteristics of the dataset are suitable for testing the
performance of real-time large scale systems and platforms. The dataset was used
in many research fields, such as mobility pattern mining [235] and study of human
behaviour [234].

Even if the main focus in this study is not related with the performance testing of ICT
systems, one of the mandatory conditions of the real-time recommendation systems is
the speed of loading, processing and data learning. Experiments are performed using
an end-user laptop (Processor: quad-core 2,8 GHz Intel Core i7, RAM: 16 GB 1600
MHz DDR3, Disk: 1TB SSD). LevelDB [134] is used as database management system
for its excellent capabilities of storage compression and querying speed.

In order to test the above features of the framework, in the next subsections different
experiments are performed. The complete source code of the implemented framework
is available from [11].

4.4.2 Scalability

Data received in real-time from different sources must be processed with the following
main operations: parsing, learning and saving to the database. The entire dataset
was processed in 63,1 seconds with an average of 416.787 values/second. The most
consuming operation was as expected the profiling (64,18%), followed by the parsing
from CSV (28,68%) and saving in the database (7,13%).

4.4.3 Profiling

The ML component was tested using a Gaussian Mixture Model algorithm [124] for
profiling users’ location probabilities by the day of the week and hour. In total we
created 336 profiles for each user, according to each day of the week at half hour
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interval. The results can be visualised live in the browser while the system can perform
in parallel computations and update the results in asynchronous mode. In Figure 4.5
is presented a snapshot of the interface which can be accessed online [6].

Figure 4.5: User profiling probability map

By selecting any user, a day and hour of the week, the system performs a query in the
database and navigates over temporal graphs at the selected timepoint. Then returns
the probability map of all the visited locations, learned from the historical data.

4.4.4 Deep search and query capabilities

The very first test was to assess how well the users dynamic movement over the 168
hours of the week was captured.

As mentioned above, the location is stored only when the users move. As a result, the
number of users that send new data in each hour of the week over the entire five years
represents an indicator of the user’s movement dynamics. Performing a deep search
query with the average users that are moving for each day of the week, we obtained
the results shown in Figure 4.6.

The observed distribution confirmed the hypotheses of the users’ typical movements:
the working days of the week have a similar pattern with a peak of traffic in the morning
and one in the evening (specific to the commuting time period). In the weekend, the
patterns are different with a maximum of movement on Saturday evening followed by
very low movement on Sunday morning.
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Figure 4.6: User movements over the weekdays

4.4.5 Exploring alternatives for carpooling scenario

In order to perform a what-if analysis experiment, we selected from the users movement
distribution over the week presented in Figure 4.6 the day and the hour of the weeks
the maximum number of users was moving. There are 112 users travelling around 7
pm on Saturday.

The experiment consists on finding compatible users for a carpooling activity, using
the users profiles from the learning of their five years of data. According to [202] the
condition for a group of users to carpool is that the distance in time and space at
departure and arrival to be minimal in order to avoid the driver to make a big detour.

The first step was to calculate the distance in time and space between the 6 most
probable locations between each user, using the indicator developed in [202]. The goal
is to create a score between all the users which will be used as a compatibility classifier
between the selected users. In order to use a single measure unit for the distance in
time and space, we transformed the geodistance in time, using an average speed of 50
km/h.

The second step is to explore all the possible alternatives for finding users compatible
for carpooling, using parallel simulations in MWGs. The computation was done for a
hypothetical departure (Saturday at 7pm) and arrival (half an hour later). Our aim is
to find users that belongs to the same cluster in both times, which are then compatible
for carpooling.

The cluster analysis with the results from the departure time can be visualised using
clustered graphs as presented in Figure 4.7.

Compatible users are linked and clustered in the same group colour. For the users that
are represented with the grey colour in the centre of Figure 4.7, no compatible users
for carpool was found at the selected day and hour.

The same experiment is also performed half an hour later and the results are presented
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Figure 4.7: Clustering of compatible users for ridesharing departure at 7pm

Figure 4.8: Clustering of compatible users for ridesharing at 7.30pm
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in Figure 4.8. We can observe five coloured groups, represented by users that are
clustered in the same group in both Figure 4.7 and 4.8.

Interestingly, the clusters evolves over time and new users can be added or removed
from a group. If we look e.g., at the green cluster in both figures, more users are
compatible at the arrival time. This means that further analysis can be done if some
of the new added users can be picked up along the trip path.

4.5 Related work

Although ridesharing can provide many benefits, there are still challenges that have
restricted its widespread adoption [92]. The research community confirms that there is
a need for scalable spatio-temporal stream computing frameworks that can operate big
data streams, clustering and queries [93]. There are technologies and methodologies
for implementing parts of the features required for the smart mobility systems. For ex-
ample, Hadoop [3] and Spark [224] have powerful data analytics. Graph representation
and processing solutions are offered by Neo4j [8] and GraphLab [141]. What-if analy-
sis combined with hypothetical queries are explored in different database communities
[36]. Different methodologies and frameworks have been also proposed for parts of the
CM requirements. Mapping and clustering have been explored using data from social
media [59]. The existing literature on activity analytics uses synthetic simulations [34].
More recent attention has focused on the human mobility patterns and predictability
[173]. Our implementation offers the combination of all the above solutions in a single
complete framework that can be used for CM applications.

4.6 Conclusions

We proposed a novel data modelling framework over temporal graphs that can be
implemented in the ITS domain. We explained how our implementation can effi-
ciently solve complex scenarios with multiple optimization levels of objectives in the
CM applications. The presented implementation introduces, for the first time in the
transportation domain, the capability to merge the discrete simulations and statistical
results in a single framework.

The results obtained from the performed experiment can be used by a future recom-
mendation system. If the system learns the users’ profiles, in the case that an user
requests a ride, the search will be performed first on the cluster where the user belongs
to. The advantages over classical solutions are the speed of computation and the abil-
ity to deal with the missing data which can be replaced by the highest probabilities
obtained from the cluster analysis.

The presented framework can be used in any transportation related problem that
deals with large-scale datasets and ML algorithms. The algorithms library, the real-
time geospatial and timeline visualisation components make the framework a complete
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tool for the transportation engineers. Moreover, our implementation is able to unify
the functionality development phase with the implementation and final production in
an single stage.

Although the results from this chapter presents a framework that can manage large-
scale datasets and multiple users in the same time solving efficiently complex tasks, a
collaborative mobility recommendation system requires a more user-centric approach.
This is important as each user has different preferences when using shared mobility
services. The contribution from the following chapter will continue the research in this
direction, using the concept of users’ profiling. This method is able to extract individual
user’s travel behaviour from raw data which can be used by a recommendation system
to propose additional actions that the user can perform in order to increase the chances
to find compatible users, e.g., to reschedule the departure hour or position. This will
increase the chances to be included in a cluster and to be compatible with other users
for an eventual ride sharing.
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5
An user-centric approach for dynamic

profiling of travel habits and visited
locations

In this chapter, a scalable method for dynamic profiling is introduced, which allows
the extraction of users’ travel behaviour and valuable knowledge about visited locations,
using only geolocation data collected from mobile devices. The methodology makes use
of a compact representation of time-evolving graphs that can be used to analyse complex
data in motion. In particular, we demonstrate that using a combination of state-of-
the art technologies from data science domain coupled with methodologies from the
transportation domain, it is possible to implement with the minimum of resources, a
demonstration of autonomous sharing mobility services (i.e. long term and on demand
parking sharing, combinations of car sharing and ride sharing) and extract from raw
data, without any user input and in near real time valuable knowledge (i.e., location
labelling and activity classification).

The content of this chapter has been partially submitted to the following journal and
its content is unpublished to date:

• A Data-Driven Scalable Method for Profiling and Dynamic Analysis of Shared
Mobility Solutions
Bogdan Toader, Assaad Moawad, Thomas Hartmann, Francesco Viti
IEEE Transactions on Intelligent Transportation Systems (T-ITS)
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.

5.1 Introduction

In this chapter, we propose a method for dynamic and near real time profiling of travel
behaviour in time and space, using data in motion. In our case, profiling means the
extraction of user habits for visiting a specific location. The real time aspect is a
mandatory requirement of some specific applications like safety applications or real
time control applications. In our days, the same thing applies also for shared collab-
orative systems (e.g., car sharing, parking sharing) where a large number of people
and goods are moving at high speeds and solutions to combine them in an efficient
way must be provided in an order of magnitude of milliseconds (e.g., on the move
ride sharing applications which dynamically search for additional passengers while the
vehicle is moving). As the status of the involved entities (i.e. car, passengers) change
continuously, reasoning processes typically need to analyse and compare the current
context with the historical patterns extracted and autonomously provide actions.

In this sense, the proposed methodology makes use of machine learning techniques to
automatically build the profile as soon as the data becomes available and proposes
efficient techniques to store the results in a temporal index for fast access. Thus, the
contribution of this study resides in the dynamic profiling of travel behaviour, which
can contribute to multiple transportation problems, such as collaborative services,
location classification, prediction, travel habits understanding and changes of habits.

The remainder of this chapter is organised as follows. First, section 5.2 presents a
background of this study making the link with previous work and the minimal infor-
mation needed for a proper understanding of the contribution and challenges involved.
We then describe the proposed methodology for activity profiling and classification in
section 5.3. The evaluation of the proposed method is presented in section 5.4, along-
side with practical usage examples in section 5.5 and future work in section 5.6. We
conclude the paper with a discussion of future directions in section 5.7.

5.2 Background

Multi-dimensional and dynamic profiling requires technologies which allow the fast
processing, indexing and querying of big data sets. In the remainder of this subsection,
we present the data modelling framework which incorporates graphs and time series in
multi-dimensional data models, alongside with the major technological implementation
challenges.

The GreyCat [71] framework, formerly known as KMF [90], presented in Chapter 4, is
a solution for analysing complex data in motion at scale with temporal graphs [107].
There are a number of required features (e.g., modelling with graphs, temporal aspects,
what-if analysis exploring different alternatives) presented in [201], which makes the
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selected framework suitable for intelligent transportation systems and, to the best of
our knowledge, the most efficient solution suitable in the current study.

Another feature that is important in big data systems is the ability to lazy load nodes,
meaning to load into main memory only the necessary data that need to be processed
rather than to load and query each time the entire dataset. Naturally, many analytic
tasks are processing only parts of the dataset. This also counts for the case study
of this paper. Therefore, we suggest to load data, i.e. the nodes of our data graph
only on-demand, while the graph is traversed. As an example, even if high accuracy
datasets are available at an order of a few meters, if the application needs to profile to
a maximum of e.g., one kilometre accuracy, there is no need to load and process the
data at a higher resolution. This will save both resources and time.

To achieve this, the graph is decomposed into a set of key/value pairs, representing the
graph. More specifically, every node value contains its attributes and the relationships
to other nodes (in form of sets of IDs). Then, a node value is stored/loaded via an
identifier in/from a key/value store. Depending on the requirements of an application,
different key/value pairs stores can be used as backend: from simple key/value stores to
scalable, replicated and distributed high-frequency stores. To ensure concurrency and
fault tolerance, we use a per-node lock policy and we rely on the concrete underlying
storage implementation to ensure concurrency and distribution.

If in the previous chapter the proposed framework is used for the first time in the
transportation domain to find possible groups of users that can use a ride sharing
system using data at rest, the current work proposes a more user centric approach
that can handle data in motion at scale for multiple applications (e.g., parking sharing,
location classification, non-recurrent trips profiling).

As the data in motion must be indexed and complex searches must be performed in
near real time, a map-reduce-like approach is used. The MapReduce [66] paradigm
aims at processing and generating big data sets with a parallel, distributed algorithm
on a cluster. At the same time it is a flexible data processing tool [75] which simplifies
data processing on large clusters [74] and allows the implementation of machine learn-
ing technologies on multicore processors [66]. As the name suggests, MapReduce is
composed of two distinct methods: Map() and Reduce(). The former has as objectives
to filter and sort, the later performs a summary operation. At the infrastructure level,
MapReduce manages the communication and data transfer between various parts of
the system, which is an essential feature for complex and dynamic ITS systems.

5.3 Methodology

5.3.1 Generic overview

In this chapter, we present a new way of profiling multi-dimensional and temporal data,
specifically designed to deal with large quantities of data—in live and with different
physical constraints, such as limited memory or processing power (as is the case of
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nomadic devices like smartphones).

Our methodology is generic in the sense that it can use any specific profiling algorithm
that uses a tree-like structure to divide a parent space into two or more children
subspaces. For instance: binary trees, quadtrees, octrees, and K-d trees are all easily
implementable and can be integrated in our methodology.

The proposed architecture shown in Figure 5.1 has three independent layers. The base
layer is the lowest level which represents the Raw data layer, dealing with data manage-
ment (e.g., collect and store data). The Processing layer deals with data processing to
produce well structured and fast to query spatio-temporal profiles. Finally the highest
layer is the Application layer where any specific transportation problem can be trans-
lated in high level profile queries. The main advantage of the proposed architecture
is that the profile layer is built once and then shared across several transportation
applications hence reducing the required infrastructure and resources.

Raw Data 

Query API 

Profiling

Reduce

Map

Trees

App 1
Parking

Sharing

App 2
Ride 

Sharing

App 3
Location 

Classification

App 4
Location 

Prediction

Application layer

Processing layer

Raw data layer

Figure 5.1: Architecture and abstract layers

5.3.2 Terminology

As the current work includes terms from different domains, it is necessary to define
the terminology that will be used through the entire work.

• Tree : a directed acylic graph starting from a root node.
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• Space coverage : the N-dimensional min-max vectors that define the boundaries
of the space covered by the subtree.

• The root node is the top node in the tree. It covers the widest N-dimensional
space of the tree.

• Child node : a node directly connected to another node when moving away
from the root node. Child nodes have always a smaller space coverage than their
parent nodes.

• Parent : the opposite notion of a child.

• Leaf node : a node without children.

• Siblings: a group of nodes with the same parent.

• Degree : the number of children of a node.

• Path : a sequence of nodes connecting a node with a descendant.

• Level : the number of connections between the root and the node. The root
node is of level 0.

• Size : of the tree is the total number of data indexed in the tree.

• Height : the height of a tree is the maximum level reached by its nodes.

• Resolution : the smallest space coverage allowed for the leaf nodes. It is an
N -dimensional vector representing the minimum difference allowed between the
minimum and the maximum on each of the N dimensions.

• Number of dimensions represents the number of different features we want
to profile (e.g., day of the week, time of the day, geolocation). By default, the
proposed architecture support until 32 dimensions that are easily extensible to
64.

• Max buffer size the maximum size of the data stored in a node before creating
a sub-level of child nodes.

• Timeline : a sequence of ordered timepoints.

• Temporal resolution : represents the maximum quota in time for each profiling
tree before creating another tree.

5.3.3 Live profiling, indexing and preprocessing

As mentioned in the previous subsection, the live profiling process is composed by
several steps and includes several layers, as can be seen in Figure 5.1. In this subsection
we describe specifically the preprocessing step, in which the data in motion is indexed as
soon as it is received from specific sensing systems (e.g., mobile devices) or databases.
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The following example deals with location data represented by points in the geograph-
ical space, represented in Figure 5.2. We describe how each tree structure is created
based on the space partitioning and indexing of each quadrant, from the root (Level
0 ) to the leaf level (in our example Level 3). It is important to stress that the indexing
and profiling methods are completely independent of the final applications that will
access and use the data on the application layer.

The profiling methodology can be summarised as the following chronological steps,
which are continuously performed as soon as new data is available:

a) Start with an empty timeline.

b) Create the first profiling tree once the data is loaded from a dataset or received
through a sensing system, as can be seen in Figure 5.2, at Level 0.

c) Once the buffer is full at the root Level 0 (reached the max buffer limit of data
stored at the node level, defined at design time), create child nodes of Level 1 and
redistribute the data into the corresponding sub-spaces. Any new data received
at Level 0 will be automatically forwarded to Level 1 sub-spaces. At this step,
the node at Level 0 is transformed from a node that store data in a router node,
defined as a node that has no data but acts as a path that connects the node
with it descendant sub-spaces.

d) Each subspace has its own buffer, and divides the parent dimension boundaries
by two or more on each dimension. In the case of geolocation data, Figure 5.2
shows how the space is divided in quadrants. At Level 1, there are four subspaces:
(1) A, (2) the quadrant formed by B, C, D, and two empty, (3) the quadrant
formed by E, F, G and one empty, (4) H.

e) Repeat steps 3 to 5 recursively until one of the following conditions are met:

(a) The temporal resolution of the current profiling tree has expired. As an
example if we set the maximum temporal resolution to one hour, even if the
max buffer size was not reached, a new tree will be created.

(b) The tree reaches the maximum allowed size. This is a requirement to keep
the process as fast as possible, as if we allow big trees it’s harder to search
inside.

We can observe in Figure 5.2 that the nodes (2) and (3) created at Step 4 on
Level 1 are split again in four children and transformed from nodes with data in
router nodes. The same process continues also at Level 3 until one of the above
conditions are met.

f) Once a tree is complete, it is stored and the process continues with the creation
of a new tree. As can be observed in Figure 5.4 the new tree will have a new
timepoint and the entire process from 3 to 6 will be repeated.
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5.3.4 Querying and postprocessing

The multi-dimensional and temporal features of the proposed profile offers several
ways to query it in order to allow a wide range of applications to be built on top of
it. A query can specify a range in time, specific days and hours of the week, a level of
precision in the multi-dimensional space, and can ask either for all the results within
a specific range, or the top N results from a specific complex query. The entire flow
of the query process is described in Figure 5.4 and will be described in the remaining
of this subsection.
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Figure 5.4: Data structure, query and process flow

In order to demonstrate the process flow, in the remaining of this section we present
the example of a smart mobility shared system (e.g., car sharing, carpooling, park-
ing sharing) that provides the geolocation data for a number Un of users through a
smartphone application using the integrated sensing system. This type of user centring
system is indexing and profiling each user in time and space. The system can then
perform specific complex queries which must return a result in an order of milliseconds.
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For example, a ride sharing system can perform a query to get all the locations that a
user visited in the last two years in a specific geographical region, in specific days of the
week and specific time intervals during the day, with a specific geographic resolution.
This can be useful to find possible matches with other users that have similar profiles.

Another example can be a location classification application that extracts the user
visit pattern for all the visited locations that have been visited at least N times during
a specific time period and a specific geographical area. This can be useful to instantly
filter trajectories points that don’t represent a specific location and to classify the
filtered locations based on specific location duration and time of the day.

Moreover, a query can become even more complex and can be used to show the top
N locations visited, in a specific day of the week and interval of the day. This query
can be used to detect the most visited locations and to quickly detect e.g., home and
work location, in order to propose a personalised itinerary end e.g., at the user’s home
or to be used to match users that are compatible for parking sharing.

It is important to mention that for all of the above examples and independent of any
other application, the same process flow is applied. This is described below:

a) The data is captured and processed according to the temporal resolution, in
specific time intervals tn. This temporal resolution must be set in the very
beginning and represents the minimum time interval needed to index two specific
trees.

For example, if from the applications domain it is known in advance that no
application that uses the profiling data will need a higher time resolution than
one minute or a higher geographical resolution than four meters, there is no
sense to set this limit lower. A lower time interval than the minimum required
will also require more resources or time to process the entire flow, providing
also redundant data. There is no upper limit but just the one given by the
indexing method (e.g., for the geographical space, a quadrant, no matter of the
dimension in measurement units). This dynamic is important to mention as in
some applications like carpooling it is possible to perform different queries with
different parameters and to increase/decrease the resolution to determine e.g.,
which specific routes the user uses. This information can be useful to calculate
the compatibility for matching different profiles.

There are some important aspects to mention regarding the data management
and temporal resolution. First, if a user is changing the location between two
consecutive tn, tn+1 data points, the geolocation is stored in a node. Second, if
the user is in the same location for more than two consecutive time intervals,
the same data is not replicated through consecutive timepoints but is discarded,
represented in Figure 5.4, Raw Data layer with x. Thus, for a visited location,
only the arrival and departure timestamp are stored, which helps in cleaning the
dataset of duplicate values and reduce the required storage resources. Third, if
at any time tn a query is performed and no points are found at tn, the data from
tn−1 will be returned, the process begins to backtrack until a stored point will be
found.
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b) Profiling phase: the trees are created for each time interval, following the method-
ology from section 5.3.3.

c) Map phase: when a query is performed, the query is divided into several sub-
queries touching several trees and several sub-spaces (e.g., return the top n points
from a specific time interval, specific day of the week and hour, from a specific
geospace, with a specific accuracy). The search phase can be distributed among
any number of computation units and threads as needed, according to each ap-
plication and specific domain requirements.

d) The results are then collected, then the Reduce phase does the synchronisation,
waits for all the running threads to finish, removes the duplicates, sorts the
results, and does a final post-filtering if needed.

Another important feature in the context of profile sharing with multiple applications is
the ability to have a high level of parallelism. This feature brings important advantages:

a) All queries can run in parallel: this is an important requirement when multiple
applications share the same profiling layer, multiple queries can be performed,
in the same time, on the same tree indexing.

b) Each query can be mapped to one or several profile trees according to the targeted
time range of the query. The search within the targeted trees can be done as
well as in parallel.

c) Since a query can involve several sub-spaces within a tree, the search within these
sub-spaces can be executed in parallel as well.

5.3.5 Location visit pattern extraction

In addition to filter in near real time the visited locations based on spatio-temporal
complex queries, the final result of the entire process flow (i.e. starting from indexing
and preprocessing, live profiling, querying and postprocessing) is used also to extract
the weekly activity pattern visit for each location visited. This is done by clustering
all the visit records from the time range specified in the query parameters in a matrix
with an dimension of 24 hours an the seven days of the week. Each matrix element
represents the number of times a person visited a specific location, normalised by 1000,
as can be seen e.g., in Figure 5.6.

5.3.6 Location profiling and activity classification

An earlier exploratory study from a previous work [199] presents the extended method-
ology behind the classification methodology. To summarise, the classification and la-
belling of each location is done by computing the Euclidean distance (between 0 to
1) from a generated training matrix representing a known location type (e.g., home,
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work) and the matrix obtained for each location visit pattern. The smaller Euclidean
distance is obtained, the higher probability is that the profile of a specific location can
be labelled as a type of a specific location. Figure 5.5 shows an example of the training
matrix for a home location, where the total sun of all values must be normalised by
1000.

Figure 5.5: Generated matrix for location classification training process

Similar matrix can be generated for other types of locations and activities (e.g., work,
restaurant, shopping, sport). Figure 5.6 shows an example of the classification result
for a location that has 94.15% confidence level that is a home location.

Figure 5.6: Example of home location classification

Evaluation and usage examples of location profiling and classification are presented in
sections 5.4 and 5.5.

5.4 Evaluation

5.4.1 Datasets description

In this study, two types of datasets were used in order to perform different evaluations
of profiling results. Each dataset has different purposes and requirements, as follow.

First, a dataset for which we have the ground truth was used in order to evaluate
the location classification and labelling accuracy based on the profile extracted for
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each location visited by the users. For this type of evaluation, the dataset must be
accurate with less GPS errors and the results must be validated by the respondents.
As the validation is done on the individual level, we didn’t use a huge data set for
the validation. The dataset used was based on data of 17 users collected using Google
Maps, from the University of Luxembourg, it is individual based and each respondent
was able to easily test and validate online and the results [165]. Moreover, the data
comes already error-filtered as the data is collected using not only the GPS sensors
from the smartphones but also a fusion of sensors like Bluetooth, Wifi, motion sensors,
which are used to validate the location even when the GPS signal is poor e.g., inside
the buildings.

Second, a larger dataset was used in order to evaluate the computational speed, per-
formance when scaling and accuracy. For this type of evaluation, the most important
aspects are the size of the dataset, i.e. the period of time covered and the number of
users. This dataset must be very large, covering a long time period and provided for
a large number of users in order to test the computational requirements when scaling.
The dataset used was the the Geolife dataset [151]. This publicly available dataset
contains around 24 millions of GPS points from China, collected in the Geolife project
[233] from 182 users with smartphones and GPS loggers in a period of five years.

5.4.2 Location classification accuracy

The evaluation of location classification accuracy was performed by a group of 17
respondents who uploaded their GPS data exported from GoogleMap to the publicly
online version of the tool developed in the current research [165]. The respondents were
then asked if the home and work location were accurately detected. The results show
that 100% of the respondents stated that the home and work location were correctly
classified and labelled with the highest confidence level. Of course one can argue that
the home and work location are trivial to be used as an example of classification but
the scope of our evaluation is only to demonstrate that the proposed framework and
methodology are able to automatically classify locations and activities performed in
near real time, without any user input and only based on the GPS data. Chapter 6 will
extend the evaluation and methodology also for other type of locations and activities
(e.g., restaurants, shopping, sport activities).

5.4.3 Computational speed

First, in order to test the computation speed of the proposed profiling method when
scaling, multiple tests have been performed with different amounts of data. Figure
5.7 shows the results obtained when processing 12 different amounts of data, from 1
million to 24 million valid points. Moreover, as can be seen in Figure 5.7 the general
trend line when scaling is close to logarithmic, something that confirms the complexity
reduction explained in Section 5.2.

Second, a speed comparison has been performed between a classical linear computation
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Figure 5.7: Computation speed when scaling

in comparison with a multi-tree profiling method, presented in Figure 5.8. In this
experiment, 9 speed tests have been performed, with data from different number of
users, from 20 to 180. The results are displayed on a log scale at y axis. The experiment
clearly shows that the speed of using a multi-tree architecture is around 102 faster
compared with a classic linear architecture.

Figure 5.8: Linear profiling vs multi-tree profiling speed

Another important aspect in practical implementation of fast processing is the amount
of resources needed. Most of the time, the bigger the size of the dataset is, more
processing resources are needed in order to have the highest speed. The database
research community identified Graphics Processing Units (GPUs) as the most effective
co-processors for parallel data processing [46] mainly because the dataset is processed
by hundreds or thousands of small CPUs nodes.

99



Chapter 5. An user-centric approach for dynamic profiling of travel habits and
visited locations

Table 5.1: Resources and performance comparison

Speed (ms) Cost(EUR) Hardware Scaling Method Summary

0.5 - 20 40000 8x Nvidia Linear Load all x BIG Data on

Tesla K80 in hardware Tesla K80 BIG Hardware

36 - 51 2000 User PC Log in time Multi-tree BIG Data on

or hardware profiling Small Hardware

+ Smart Models

6895 - 7579 2000 User PC Linear Linear parsing BIG Data on

on time or hardware Small Hardware

To the best of our knowledge, one of the fastest massive parallel architecture is MapD
[159]. Recent experiments show that massive datasets with billions of geolocation
routes can be processed and visualised in milliseconds [145]. But everything comes
at a cost. Table 5.1 shows a comparison of speed and resources needed to process
the GeoLife dataset using MapD with a linear in hardware scaling method and a very
powerful but costly hardware, compared with a multi-tree profiling performed by a
user PC which is a logarithmic in time or hardware method.

5.4.4 Accuracy

The dynamic aspect of the profiling is given not only by the capability to load different
amount of data asynchronously but also using different precisions (resolutions) from
a minimum of 4, 77 x 4, 77 m (the minimum precision value of a regular smartphone)
to a maximum of 5000 x 5000 km. The list of all the used resolutions can be seen in
Table 5.2.

The profiling accuracy of any point P (x, y) depends on the distance from the centre
of the smallest sub-space resolution unit needed L, presented in Figure 5.9.

The error of any point P (x, y) in the LxxLy space is represented by the Pythagorean
distance between the point and the centre of the sub-space surface. Thus, the general
mathematical error can be expressed as shown in equation 5.1:

√
(
Lx

2
)2 + (

Ly

2
)2 (5.1)

The highest accuracy can be obtained if the point P (x, y) is located at centre of the
sub-space surface O(Lx/2, Ly/2) while the highest error can be obtained if the point
is located at the edge of the surface.

The average error is the double integration of all possible points within the LxxLy
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2
)2dxdy (5.2)

where Lx and Ly represent the width and height of the sub-space, x and y the coordi-
nates of any point P (x, y) from Figure 5.9.

Since the profiling is done for different sub-spaces sizes (resolution), the accuracy is
highly correlated with the resolution (the smaller resolution the better accuracy) and
the number of levels that need to be queried to reach from the root to the leaf level
(more levels means higher details, but longer time to search).

In our specific case, the accuracy depends on the size (width and height) of each
resolution. Using the GeoLife dataset, accuracy tests have been performed and the
results are presented in Table 5.2 from a minimumof 4,77 x 4,77 m to a maximum of
5000 x 5000 km.

The experiments confirm that the dataset average error is very close to the mathemat-
ical predicted error, computed using Equation 5.1. The provided results can be used as
a guideline for choosing the minimum resolution for each transportation application,
based on the average and maximum error of each resolution. Thus, for any type of
application it must be assessed if the average and maximum error are acceptable and
tolerated in the domain. Different transportation applications require different preci-
sion and maximum errors. Table 5.3 presents an example of comparison for different
applications with the precision and amount of data needed.

For some application like ride sharing, the accuracy is important as e.g., the meeting
point of different users that can share the same car cannot have large error. A study
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Table 5.2: Accuracy table

Lx Ly Unit Worst err. Dataset avg. err. Math. err.

4.77 4.77 m 3.372899 1.824923 1.824993

38.2 19.1 m 21.354449 11.330335 11.330761

153 153 m 108.187337 58.537250 58.537314

1.22 0.61 km 0.682000 0.361813 0.361873

4.89 4.89 km 3.457752 1.870842 1.870902

39.1 19.5 km 21.846398 11.589896 11.590412

156 156 km 110.308657 59.691685 59.685239

1250 625 km 698.771243 370.746174 370.771200

5000 5000 km 3535.533906 1913.060314 1912.992000

Table 5.3: Usage examples

Type Precision Maximum Amount of data

needed error needed

Ride sharing High < 50 m Medium

Location/activity classification High < 50 m Small

classification

Parking sharing Medium < 150 m High

Non-recurrent trips Low < 50 km Medium

[31] shows that on average only about 60% of the passengers will accept to walk
150 meters for transit to another bus stop and 90% of the passengers will accept
to walk 50 meters. The same strict requirement has also the location classification
(e.g., home, work, shops, restaurants) or activity classification (e.g., sport, shopping)
systems. In order to keep a higher quality of service and a higher rate of user retention,
the maximum error must be lower than the acceptable distance that a passenger has
to walk if e.g., the suggested location/meeting point is not precisely in the location
designated by e.g., a recommendation system/trip planner.

For other transportation problems like parking sharing the error can be a bit higher as
is not unusual to park the car and walk for a decent distance until the destination, but
again under the limit of the maximum user’s tolerated error [206]. There are also other
applications where the error can be bigger, there is no need of very detailed profile and
the error can be much higher, of an order of a dozens of kilometres. This is the case of
non-recurrent trips analysis e.g., holidays or business trips where anyway the clusters
and visualisation are much bigger than the above examples.
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The capability to be versatile in order to handle various application requirements in
the same system represents a requirement in a shared architecture. In the next section
will be presented practical usage examples of all the applications compared in Table
5.3.

5.5 Usage examples

The proposed profiling methodology can be applied in various topics within the ITS
domain, due to the features presented: first the compatibility with various data types
and secondly the dynamic characteristics of modelling the analytic parameters. The
former feature allows the usage of any mobility data type, provided as a data collec-
tion (e.g., databases of entity attributes) or as data input which is sent from sensor
systems (e.g., geolocation, additional real time information like traffic condition). The
latter feature provides the possibility to analyse and process the data using dynamic
parameters, which can be modified at any moment, without the need of re-processing
the entire dataset. This is an important feature, especially applied in the analysis of
smart mobility services, which will be exemplified in the rest of this section.

Collaborative mobility services (e.g., ride sharing, car sharing, parking sharing) rep-
resent one of the best case studies of the methodology presented in Section 5.3. The
dynamic profiling provided by the proposed methodology can be used to asses the
profile similarity of different users in order to find users that can share existing mobil-
ity resources and which can collaborate on various combinations of sharing services.
This is a NP-hard problem as different types of data collected from users’ smartphones
represent a new dimension that adds an additional grade of complexity on finding
efficient solutions for combining users and transportation resources in complex collab-
orative systems e.g., finding compatible users to share a car or a parking place, taking
into account the user’s schedule and personal preferences - everything in a tolerated
time interval of milliseconds. Each dimension is represented by the properties of those
entities, combined with the types of queries which are performed, e.g., day, hour,
location, age, sex etc. Some of them have sub-dimensions, e.g., the location where
users perform activities can have as sub-dimensions the starting and ending hour of an
activity, the geographic coordinates of the location (represented by the latitude and
longitude), and the radius of the geographic space that represents a location. In this
study, the multi-dimensional profiling refers to the concept of profiling on all of these
dimensions, where each entity has specific properties.

5.5.1 Parking sharing

A group of two or more users can share the same parking place if they use it at different
times of the day. In other words, the more dissimilar the users’ profiles are for the same
location, the higher compatibility for parking sharing there is. The dynamic character
of the proposed profiling methodology makes possible the assessment of parking sharing
both for (a) planned long term parking sharing and (b) short term or ad hoc parking
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sharing. In order to demonstrate the usefulness of a flexible, dynamic and fast profiling
framework we present the following case study.

Figure 5.10: Profile of User 1 for long term parking sharing

Figure 5.10 shows the profile of User 1 which works in the proximity of the home of
User 2. User 2 is part of a Peer-to-peer (P2P) parking sharing application. As we
can observe, for User 1 the highest probability to be in the parking location is from 9
AM to 7 PM, from Monday to Friday. Similar, Figure 5.11 shows the profile of User
2, which has the lowest probability to be in the same location when User 1 is in the
same location.

Figure 5.11: Profile of User 2 for long term parking sharing

With this information, a system can match the two profiles with highest compatibility
index (i.e., the highest Euclidean distance between the profiling matrices) to share the
same parking location as they partly overlap. Moreover, this is done without asking
the users any prior information but profiling their behaviour, extracting their pattern
to visit the location, classify the location and match profiles that are synchronised for
specific sharing services.

The results denote a good example of how the presented profiling methodology can
be used to asses the compatibility for long term parking sharing of two or more users
using e.g., specific indicators for collaborative mobility between individuals presented
in Chapter 3. More precisely, the profiling can be used to search in a specific region,
users that have profiles that match other users for specific applications/sharing services.
Nevertheless, there are some conditions that must be met to have an accurate long
term profiling.

First, there should be enough time data in order to have an accurate profiling. This
will ensure that the location profile has a specific pattern over time and is not just a
location that is visited randomly. Home and work locations are typical examples of
locations that have a specific pattern over time.
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Second, it is not required for the location accuracy to be extremely precise, as in the
case of long parking duration, people are likely willing to walk for a decent location
from the parking lot to destination [206].

In the same way, a P2P parking sharing service can be used also for ad hoc or instant
parking sharing, presented in the following example. Particularly, if an user is part of
the P2P parking sharing application and during a trip notifies the application that must
perform a stop for a specific time period in a specific place, the application can instantly
search for other users in the system which has free parking slots during that specific
time interval. In order to test this case study, using the Geolife dataset described in
section 5.4.1, we took a random user and a random visited location and perform a
search for compatible users to simulate a match of an ad hoc P2P parking sharing
request. Table 5.4 presents the results of different searches, at different resolutions.

Table 5.4: Ad hoc p2p parking sharing matching

Lx Ly Unit Users’ matched Max error

4.77 4.77 m 0 3.372899

38.2 19.1 m 0 21.354449

153 153 m 3 108.187337

1220 610 m 7 682.00000

4890 4890 m 11 3457.752000

39100 19500 m 24 21846.398000

As can be observed, at very small resolutions (i.e. 4.77x4.77m and 38.2x19.1m) no
compatible user has been found, as the search is too detailed. When increasing the
resolution to 153x153m, three compatible users were found and the maximum error can
be 108.187337m which is acceptable. If we increase the resolution, more compatible
users are found but also the maximum possible error increases, to the extent that
some results are not relevant, as the walking distance will be then too long and most
likely not acceptable for the user to walk. In this case, we can argue that the best
resolution would be in this case 153x153m, which can give the best results regardless
the maximum possible error.

This concrete example demonstrates the capabilities that the proposed profiling
methodology offers: fast processing large quantity of data, on demand and in near
real time, coupled with the ability to extract user insights, behaviour and travel pat-
tern with minimum of computation, storage resources and user input. This is of great
importance for the next generation of AI autonomous travel planners and sharing ser-
vices, as in most of the cases, the data collection and processing are done through
the passenger’s mobile device. In a matter of seconds, the system must process years
of geolocation data, extract the insights, user habits, preferences and provide reliable
services. The fact that now it is possible to use the online tool [165] on any browser
without installing any software and all the computation is done locally on the device
is inline with the requirements of mobile devices which have limited autonomy and
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computation resources. In the same time fits also the mobile applications’ user pref-
erences because asking continuously user input information is no more applicable and
sustainable in our days.

5.5.2 Ride sharing

The profiling of users’ mobility for the days and hours of the week is an important
information that can be used for a recommendation systems in order to analyse which
users can match for ride sharing/carpooling. There are some conditions that should be
met in order to organise a ride sharing between two or more users, such as the departure
and arrival position to be suitable for all the participants and that the departure and
arrival time to synchronise matching at best their schedule. The latter condition can
be assessed by analysing the probability to be in a specific location, by the days and
hours of the week and used in a collaborative mobility system [202].

In order to exemplify this case study, we searched in the small database presented in
section 5.4.1 for compatible respondents that can match a carpooling service. Figure
5.12 presents the extracted weekly heatmap of time spent in the residence for two
neighbours (User 1 and User 2) that are working also in the same area, as can be seen
in Figure 5.14. This is a typical situation where users can participate in a long term
ride sharing, as their schedule is pretty fixed in most cases.

As can be observed from the heatmap, they are at home typically outside of the working
hours. Moreover they both leave the house during the week around 9 AM and they
return at home around 7 PM, resulting in a good synchronisation.

Figure 5.13 shows the schedule that they have for the work location, make it suitable
for a long term carpooling as they can share the same car for commuting to work.

In the same time, we noticed also that also User 3 works close to User 1 and User 2
and when available, User 3 can join the ride sharing. Analysing Figure 5.14 we can
observe that in order to pick-up User 3, the trip must be rerouted and will be four
minutes longer, but another passenger will be picked-up in the same car and there will
be a car less on the road. The same principle can be applied to the entire community,
which will result more people in less cars and less traffic congestion.

This concrete example shows how the profiling can be used both for long term carpool-
ing and short term ride sharing as combined services. It is important to observe that
using the proposed profiling methodology, all the necessary steps for matching people
and sharing services (i.e. location visit pattern extraction, search of compatible users
and trip planner) can be done automatically and dynamically, without any user input
but only the access of history GPS data, which in our days can be easily obtained via
mobile devices.
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Figure 5.12: Home location profile for User 1 and User 2

Figure 5.13: Profile of visit work location for User 1 and User 2
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Figure 5.14: Ridesharing example three users example
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5.5.3 Location type and activity classification

Profiling the pattern for visiting specific locations gives also a possibility to automat-
ically classify the location to a specific category. As we can observe in Figures 5.10,
5.11, 5.12 the location visit patterns obtained can be clearly identified as Home and
Work locations and dynamically displayed as in Figure 5.15.

Figure 5.15: Location type classification: Home and Work classification. Residence
and workplace change detection.

The same can be done with any type of location for which there are defined patterns
which can be identified and the classification can be done automatically. In an extended
exploratory study [199] we showed that using the combination of the proposed profiling
method combined with observed user habits learned from surveys and extracted as
activities matrix was possible to automatically classify the type of activity performed
in a specific location.

Moreover, as the profiling can take a large time period into consideration, it is now
possible to detect changes of user travel habits by detecting changes of regular visit
to specific locations. In Figure 5.15 we can see that for the same user two homes and
workplaces are detected, as the profiling detects recursive similar patterns in different
time periods. This means that the proposed profiling method can not only detect
recurrent habits to secondary activities, but also change of habits, something that is
not easy to detect with a static method. The insights obtained based on these changes
can be used to adapt and personalise transportation services to match the passenger’s
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habits, which will result in a better service quality.

5.5.4 Non-recurrent trips profiling

Another application of the proposed methodology is the profiling of non-recurrent trips
i.e. holidays and business trips. For this type of profiling the accuracy can be very
low, to an order of dozens or hundreds of kilometres. Figure 5.16 shows a typical
non-recurrent trips profiling, with the main countries and parts of the world where the
user travelled.

Figure 5.16: Non-recurrent trips profiling

This knowledge is very important for tourism application systems as in an order of
milliseconds, the tourist’s habits and preferences for visit certain places or parts of the
world can be learned. This knowledge is extremely valuable for the next generation of
AI trip advisers which will be able to offer support and personalised recommendations
for tourists before, during and after their trip. The proposed profiling methodology is
suitable for this, as in most of the cases the tourists use a mobile application which they
download and in a matter of seconds they need reliable services. The ability to extract
very fast insights from historical data without the need of the user input and perform
all the computations locally on the device, minimising the resources and quantity of
information that need to be transmitted over internet are of a great importance.
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5.6 Future work

Future work includes potential optimisation on the technological part but also on the
addition of new features and capabilities. Some technological optimisation can be
included

Finding common sub-queries across several requests and execute them once it is some-
thing that can reduce the number of operations and tasks executed. In the case when
multiple queries are performed simultaneous, where it is possible these can be com-
bined e.g., if two simultaneous queries are performed with a temporal range from 8 to
18 and 10 to 17, this might be combined. In the same time, caching techniques can
be useful in the future to store temporally the results of the most asked queries on
the most recent trees e.g., if there is a regular query that is searching for how many
points are in a particular region. Another optimisation would be the implementation
of a subscription system which will perform automatically live updates of latest queries
and trees.

The presented usage examples show that only using the geolocation data it is already
possible to support some sharing services (e.g., parking sharing, car sharing - as for
those services only presence/absence of users/resources in time and space is needed),
detect travel habits and identify/classify location and activities. In the future, an
implementation of a route planner can offer the possibility to have a complete ride
sharing service which can match people and vehicles. On the other hand, the usage of
semantic external data of visited locations (e.g., type of facilities from existing maps)
can better infer secondary activity types and reduce the identification and classification
errors.

5.7 Conclusion

The contribution of this chapter is twofold: on the one hand, we present a novel
methodology that provides a dynamic profiling of users’ mobility and locations visit
pattern. The proposed profiling method can be used in many applications and even
in a simultaneous manner. The usage examples explained and evaluated throughout
the current paper (i.e. parking sharing, ride sharing, location type and activity classi-
fication) provides the first directions on how the profiling can be used for a dynamic
analysis of sharing mobility users and solutions.

On the other hand, using state-of-the art technologies from data science and computer
science we provide a complete implementation of the proposed methodology which can
be tested through an online demonstrative prototype. The demo application demon-
strates how is possible to load the data and extract complex profiles from geolocation
data (i.e. location data from Google Maps), with different accuracy levels and spatio-
temporal scales, in an order of magnitude of milliseconds. Moreover, for any visited
location, a classification is dynamically performed, which demonstrates that different
actions and computations can be performed in motion, at scale and in near real time.
Different evaluations were performed in order to assess the speed, scalability and to
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evaluate the required resources for implementation, which demonstrates that the pro-
posed profiling can be implemented in a distributed way at the smallest hardware level
(e.g., micro computers or mobile devices).

In the following chapter, we present an enhancement of the estimation/learning of
complex mobility patterns by using a combination of user data, GIS and specific rules
derived from utility theory.
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6
A hybrid model and data-driven approach

to learn complex mobility habits

The core contribution of this chapter is related to the extraction of locations of indi-
viduals’ daily and weekly activity-travel patterns, based on the historical visit patterns.
Using raw GPS data, special indexing techniques, and a set of aggregate statistics about
activity scheduling and preferences, the proposed methodology provides the probability
to classify the activity performed in each location. Then, a heuristic rule improves
this estimation by considering the value of the information over time, coupled with
GIS data about the number of facilities located in a certain area to further improve the
overall estimation. Results of this exploratory study support the idea that the proposed
approach can reconstruct complex mobility patterns while minimizing the number of
inputs from the respondent.

This chapter is based on work that has been published in the following papers:

• Using Passive Data Collection Methods to Learn Complex Mobility Patterns:
An Exploratory Analysis
B Toader, G Cantelmo, M Popescu, F Viti
2018 21st International Conference on Intelligent Transportation Systems (ITSC)

• Inferring Urban Mobility and Habits from user location history
Guido Cantelmo, Bogdan Toader, Constantinos Antoniou, Francesco Viti
22nd EURO Working Group on Transportation Meeting, EWGT 2019, 18 - 20
September 2019, Barcelona, Spain (submitted in 2018, unpublished to date)
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6.1 Introduction

In this chapter, we propose a method to automatically detect the respondents’ activity
performed in each location, using only the GPS data collected by the smartphones,
without the need of any user reported information. The core contribution is related to
the extraction of locations’ weekly visit pattern, based on the number of visits, time of
the day, and day of the week. Using raw GPS data, special indexing techniques, and
a set of aggregate statistics about activity scheduling and preferences, the proposed
methodology provide the probability to classify the activity performed in each location.

The remainder of this chapter is organised as follows. We describe the methodology for
activity classification and extraction of mobility pattern in section 6.2. The evaluation
of the proposed method and results are presented in section 6.3. We conclude the
study with a discussion of future directions in section 6.4.

6.2 Methodology

The proposed theoretical foundation and methodology from this study consists of sev-
eral analyses and methods which will be presented in the following sections.

First, in section 6.2.1 we empirical analyse data on the relationship between different
mobility patterns and set the foundation for the automatic classification of the loca-
tion/activity performed in each visited location. The methods used for each stage of
this process are presented in the rest of this section.

Section 6.2.3 presents the automatic classification process which begins with the ex-
traction of the weekly visit pattern for each location where respondents spent some
time. The clustering technique used to perform the extraction of the visit pattern
matrix, it is introduced in the following sections.

Section 6.2.4 presents the methodology behind the automatic location/activity type
classification, using only the user’s historical mobility patterns collected through the
sensing systems of nomadic devices. Based on the visit patterns of each location, we
calculate the degree of similarity among different activities with observed visit pat-
terns from travel surveys (which represents the training data used in our classification
process).

Then, section 6.2.5 presents an improvement of the location classification method’s
accuracy from the previous section, using a heuristic rule which adds a weight on the
probability/confidence level, according to the importance of the mobility pattern of
different times of the day.

Finally, section 6.2.6 presents a Bayesian updating rule of the classification method
described in the previous sections, enriching the classification model with external GIS
contextual data.
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6.2.1 Individual and aggregate mobility patterns

In this section, we investigate the relationship between individual and aggregate mo-
bility patterns. The first step consists in identifying the right number of activities to
profile. For instance, if many similar options are considered, the model would probably
fail to distinguishing events like ”gym” and ”swimming pool”. On the other hand, to
considering only a few activities would result in an oversimplified problem and pat-
tern. Thus, in this section, we perform a cluster analysis in order to identify the correct
number of activities to consider in the model.

Specifically, we assume that activities can be classified in two main groups: rigid
activities e.g., work, and flexible activities, e.g., daily shopping. It is intuitive to
realize that rigid activities are easier to identify, as typical user behaviour is highly
repetitive by definition. People sleep almost always in the same location - home -
and spend most of their time during working days in their office. On the other hand,
flexible activities are more difficult to detect, as they are influenced by different factors,
including traffic conditions and household composition. Cantelmo [54] defines in an
extended work specific categorisations of activities. Based on these considerations, we
identify at least three groups of activities as follows:

a) Within-Day-Systematic Activities (DSA): Activities in which activity scheduling
is not flexible.

b) Within-Week-Systematic Activities (WSA): Activities that are not systematic
within the day but recur regularly, e.g. every week (i.e. swimming pool, weekly
shopping).

c) Not-Systematic Activities (NSA): Flexible activities that represent extraordinary
events with respect to the usual user activity scheduling (i.e. visiting the doctor).

We then propose to perform a cluster analysis to classify activities based on two vari-
ables:

• NT
a represents how many people joined activity ”a” during the reference time

period ”T”.

• Nd
a represents how many people joined activity ”a” at day ”d”.

For instance, if we observe two users going to work from Monday to Friday for one
week, then we will have that T = 7 (i.e. one week of observations), NT

work = 10 and
NMonday

work = 2 (i.e. we observed 10 times activity work over one week, two of which
on Monday). Given NT

a and Nd
a , we can compute N t

a by sorting Nd
a in ascending

order. This means that for t = 1, N t
a represents the day with the lowest number of

observations for activity ”a”, while for t = T we will have the highest participation
ratio:

N t=1
a ≤ N t=2

a ≤ ... ≤ N t=T−1
a ≤ N t=T

a (6.1)
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The cumulative of the frequency for each value of t can then be calculated as

P t
a =

N t
a

NT
a

(6.2)

We refer to P t
a as cumulative probability in the rest of this study. Fig. 6.1 represents

how P t
a looks like for activities work and Home, given fourteen weeks of observations

for one hundred users, all systematically commuting five days a week.

Figure 6.1: Cumulative representation of the probability of the activities Work and
Home

For the activity work it is intuitive to see that there is a probability equal to zero during
weekends, while it is uniform during the working days. Similarly, the probability to
go back home is constant regardless the day of the week, as people always return back
home. Clearly, this is a rather naive example where we assume extremely regular
travellers, who work five days/week and always return home after work. In reality,
these sharp and regular relations are smoothed by factors like part-time jobs, out-of-
office work days, vacations, etc. While this is an illustrative example, as we will show
in the empirical data analysis, similar patterns can be identified for all activities.

Moreover, using the probability to visit a specific location combined with the visit
pattern of each location, in the following sections we demonstrate how it is possible
to classify each location and/or the activity performed (e.g., work, home, restaurant,
shopping, gym). The first step in this process is to extract the visit pattern of each
visited location, which is described in the following section.
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6.2.2 Cluster Analysis

In this section, we present present the cluster analysis method and the databases used
for this.

a) The first one is the ”Behaviour and Mobility Within the Week” (BMW)[55]. This
travel survey, collected in the region of Ghent (Belgium), contains information
from 717 different individuals in the form of Travel Diaries, covering a period of
three months (from 08 September 2008 to 07 December 2008).

b) The second database is the ”Multiday travel Survey” (MS) collected at the Uni-
versity of Luxembourg in 2015 [190]. In this work, we use travel surveys from 52
users observed for a two weeks period (15-30 of June).

Both databases have the same structure, and provide the following information: de-
parture time, arrival time, the origin of the trip, the destination of the trip, activity
type, sequence of activities and mode of transport.

In both cases, 12 different types of activity have been reported. Fig. 6.2 shows the list
of activities together with the cumulative probability P t

a for each activity in the case
of the BMW database. Similar results have also been obtained for the MS database.

Figure 6.2: Cumulative probability and list of activities for the BMW database

Fig. 6.2 shows that, although different from those showed in Fig. 6.1, activities work
and home show the expected trend. The probability for home is almost constant over
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time, while for work we see two trends, one for the weekends and one for the working
days. It is also interesting to see that Not-Systematic Activities, such as Walking/Rid-
ing, have an exponential trend, meaning that observations are concentrated over a few
days. Finally, within-Week-Systematic Activities, such as Personal Business, have a
more linear trend, indicating a more variable frequency of visits across the observed
population.

By taking into account these four fundamental shapes, we created four artificial func-
tions, named [DSA-Home, DSA-Work, WSA, DSA] which represent the typical shape
for each activity according to the classification proposed in section 6.2.1. We then
performed the hierarchical cluster analysis using the euclidean distance as index of
similarity among activities. Fig. 6.3 and 6.4 shows the results for both the BMW and
MS databases.

Results support two interesting points. First, based on the ”Dissimilarity”, in both
cases it is possible to cluster all 12 activities in four clusters, without losing too much
information. Second, clusters are very similar in both cases. This was expected, as
typical habits are similar in Belgium and Luxembourg. However, we can also see some
major differences. Activities ”eat”, ”Visit family/friends” and ”other” belong to the
WSA cluster in the BMW, while to the NSA in the MS.

There are two possible explanations for this. First, even though similar, we are still
analysing two different populations with different habits. The BMW is a less biased
group of respondents being selected from an entire region and without any specific
selection criteria while the MS represents only the University staff, including Ph.D
students. It is thus possible that e.g., this population eats more often at the canteen
of the University rather than going somewhere else. Another possible explanation is
that, since the MS database is relatively small, there are not enough observations to
properly represent these three activities. However, the cluster analysis provides in our
opinion a satisfactory result in both cases, showing that activities can be aggregated
and differences among different populations can be observed. In the rest of this study,
we will adopt the data from the BMW travel survey to profile users, as these data are
statistically more representative.

The results of cluster analysis are represented in Fig. 6.5, where the activities per-
formed by respondents have been clustered in five main groups (i.e., Home, Work,
Restaurant, Daily Shopping, Sport). Using the surveys’ aggregate results, a visit pat-
tern matrix has been generated for each group of activities.

As discussed in the Section 6.2.2, since the probability for home is almost constant, the
matrix has been generated manually. We choose this also to reduce the respondents
error on recording the home location time arrival and departure, since the arrival
should be recorded in the previous day of departure.
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Figure 6.3: Hierarchical Cluster Analysis for the BMW database

6.2.3 Mobility patterns extraction from raw data

The weekly activity pattern for each location visited is generated by clustering all the
visit records from the beginning of data collection. The clustering technique is based
on specific indexing techniques using temporal graphs (such as ND-tree). More details
about this technique can be found in [125], [172].

The cluster unit of analysis is one hour, resulting in a matrix with an dimension of 24
hours an seven days of the week. Each matrix element represents the number of times
a person visited a specific location, normalised by 1000. In figure 6.9 we can observe
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Figure 6.4: Hierarchical Cluster Analysis for the MS database

an example of matrix obtained using this method.

The location clustering performs the extraction based on temporal and spatial param-
eters. A demo location profiling tool can be accessed and tested online [10] with a
provided demo dataset or by uploading individual user data which can be downloaded
from Google Map. The application has different settings which control the temporal
and profiler parameters, as seen in Fig. 6.6:

a) Date range: The time interval on which the clustering is performed. If nothing
selected, the entire dataset time interval will be taken by default.

b) Specific days and hours of the week : Can be selected specific days and hours
of the week. Locations that are visited outside the selected range will not be
excluded.

c) Precision: Clustering size groups the visited points in the selected range. The
precision varies from a few meters to thousands of kilometres, which can be used
to profile activities which do not require high precision e.g. holiday profiling.

Using the visit pattern obtained using the method described in this section and a train-
ing dataset obtained from travel surveys, the following section presents the methodol-
ogy used for classification of any visited location and consequently the probable activity
performed in each location.
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Figure 6.5: Matrix of activities used as training data, obtained from aggregated travel
surveys
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Figure 6.6: Profiling parameters interface

6.2.4 Location/activity type classification

The classification of each location based on the profiling results is done by computing
the Euclidean distances between the vectors obtained from two types of matrices:

a) The real data visit pattern matrix which is generated with the pattern extraction
method from the previous section. This matrix is extracted for each visited
location point, from user’s data collected through nomadic devices (smartphones,
smartwatches). An example of this matrix can be seen in figure 6.9.

b) The training visit pattern matrix samples from travel surveys. In the following
sections, the datasets and the methods used to generate these matrix will be
described in details. Thus, for each location type (work, home, restaurant, shop-
ping, gym) a visit pattern matrix is generated. Examples of such matrix can be
seen in Figure 6.5.

The classification process consists of computing the Euclidean distances between the
matrices described at point (a) with the set of matrices described at point (b). The
process can be described as follows:

1) For any selected location, extract the visit pattern matrix (a) from the data
collected using the nomadic devices.
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2) Compute the Euclidean distance between the extracted matrix (a) and each of
the training sample matrices (b).

3) Compute the probability that the selected location can be classified as one of the
training sample matrix (b).

The computing final value belongs to the (0, 1) interval. As a result, the smaller
Euclidean distance is obtained, the higher probability that a specific location is one
of the five activities represented in Fig. 6.5 (home, work, restaurant, daily shopping,
sport). In other words, if the matrices are almost identical, the distance is close to
zero and the probability that a location can be classified as one of the pre-specified
categories is higher. Consequently, the bigger the distance, the more dissimilar the two
matrices, resulting in a kind of penalty (a method used often for solving constrained
optimization problems), which increases the distance and the final result goes close to
one.

In order to increase the accuracy of the proposed model, in the following section we
present a heuristic rule which aims to improve the final estimation.

6.2.5 Home - work location classification: a heuristic rule

The pattern extraction phase (described in section 6.2.3) provides a first input for
a coarse estimation of the probability to perform an activity in a certain location
(presented in section 6.2.4). Specifically, the clustering phase calculates the similarity
between mobility data collected using the nomadic devices and observations extracted
from travel surveys. However, human behaviour is not explicitly modelled within this
framework, which is purely data driven.

For instance, the method does not take into account that the utility derived by per-
forming a certain activity changes over time. This also means that some time intervals
carry more information than other intervals. For instance, it is very likely that users
will be at home between 3-4AM on a working day (which can help us to reason that
a location where this behaviour is seen very often can be classified as home), whereas
not the same can be said about a location visited after work (which can be home,
restaurant, shopping or gym). Hence, we introduce a weight that modifies the clas-
sification method by stressing that information during some specific time intervals is
more relevant. In order to better identify work and home location, in the rest of this
section we introduce some weights within the location classification phase.

An example is shown in Figure 6.7. By focusing on activity home, Figure 2 shows that
the information at late night (3-6AM) is considered up to three times more important
than during the previous time intervals. Similarly, we consider up to three times more
valuable the information of being home or not during the working hours. In other
words, this means that we expect users to be home at night and not to be there
during working hours. If one of the two conditions is not satisfied, then we strongly
decrease the probability of performing activity “home” in that location. Similarly, for
“work” we consider the information at late night more important because people are
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not supposed to work in those hours. Similarly, we increased the weight at 11AM
and 4PM, as users are very likely to be at work during those hours. Finally, we
decreased the relevance of the information during the early morning, lunch-time, and
late afternoon to capture both the elasticity of the demand (i.e., not everybody arrives
at the same time) and the lunch break (people might leave the working place).

In other words, in order to obtain a better classification, during the time periods of the
day when users most likely are in a certain type of location, a bigger penalty is applied
if the user is not in that location. This will reduce the final probability and confidence
that the location can be classified as one of the defined types of location/activity.
Consequently, if the user visits the location during the peak time intervals when the
penalty is higher, the final probability and the total confidence level will increase.

Figure 6.7: Weights of the information over time for activities “Home” and “Work”.

While Figure 6.7 represents a very simplistic way of defining the weight for a working
day, in general, we derive a more sophisticated heuristic rule derived from utility theory.
By defining W t

a the weight of activity a at time t, and assuming that each activity has
a utility function U(t) , as discussed in [82], the heuristic rule proposed in this paper
can be written as:

a) If U(t) is close to a local minimum or U(t) = 0, then W t
a > 1

b) If U(t) is not a local minimum, then W t
a = 1

c) If U(t) 6= 0 and it is next to the beginning/end of the activity, then W t
a ≤ 1

Rule (a) is a must-be (since U(t) is a local minimum the information is maximum),
rule (c) takes into account the flexibility of the demand (it is more likely to have larger
errors next to the beginning/end of the activity), and rule (b) takes into account all
other scenarios.
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Even if the methodology presented in this section has the objective to improve the
classification process, the method described takes into consideration only the user’s
historical mobility patterns. In the following section, we present an extension of this
methodology which takes into consideration external contextual GIS data which can
additionally improve the identification and classification accuracy of visited locations.

6.2.6 Bayesian updating rule

While the simple heuristic rule discussed in subsection 6.2.5 could represent any activ-
ity, we prefer limiting its application to model “home” and “work”. The obvious reason
is that it is easy to implement such a rule to capture a highly repetitive behaviour,
while it would probably fail in capturing dynamics that are more complex (e.g., to
identify locations like restaurants, shopping centres or gym facilities). Thus, in order
to increase the reliability of our results, we introduce a probabilistic approach based on
GIS data. Specifically, we exploited the read-only “Overpass” API to retrieve online
data through OpenStreetMap [217].

In this study, we focused on three specific secondary activities: shopping, sport and
food. We adopted the following process to extract how many services are located in a
certain location:

a) Provide a location (x, y), where x and y are the coordinates of the point.

b) Identify edges of the surrounding area [(x + r, y + r), (x − r, y − r)], where r is
the radius of the area we want to consider.

c) For each element e within the area [(x+ r, y + r), (x− r, y − r)]:

• Draw activity type from tag {amenity, shop, leisure, sport}
• Assign activity type to one of the categories { shopping, sport, food }

d) Count the number of locations na for each activity type a.

For more details about Overpass and OpenStreetMap, we refer to their official docu-
mentation [217]. We then use a Bayesian updating rule to combine this information
with the probability previously calculated in subsection 6.2.4. Specifically, the index-
ing techniques provides the posterior probability Pa(U |L) of user U doing an activity
a given a location L, meaning that we can write the Bayesian updating rule as:

P a(L|U) =
P a(U |L)Pa(L)

P a(U)
(6.3)

With:

- P a(U) the probability of user U doing activity a;
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- P a(L) the probability of performing activity a in location L;

- P a(L|U) the posterior probability of performing activity a in location L, given a
certain user U and the location history.

In order to calculate P a(L|U), we define P a(U) and P a(L) as:

P a(U) =
1

Number Activities
(6.4)

P a(L) =
e
na+ε
θ∑

a e
na+ε
θ

(6.5)

Equation 6.4 implies that the prior probability P a(U) follows a uniform distribution
(in this case we consider 5 activities, thus P a(U) = 0.2). To calculate P a(L), we
leverage the GIS data and the number of activity location na. In essence, if there are
two restaurants and no sport centers, the probability for activity “food” will be higher.
The error term ε in equation 6.5 takes into account that, even though OpenStreetMap
has a rich database, our information could be incomplete (i.e., unreported activities).

Moreover, home and work location are clearly not in the database, so the probability
of performing work related (out-of-office) activities is penalized. To overcome this
issue, we define as “shadow locations” those locations that are not described within
our database. Then, we can introduce the number of shadow locations - nS - which
represents the trust we have in our database. A high value of nS means that the
available database poorly represents activities in that location. We can now calculate
the error term as:

ε =
nS

Number Activities
(6.6)

Equation 6.6 assumes that shadow locations are uniformly distributed with respect to
the different activities we are considering. This also means that for ε → ∞ equation
6.5 becomes also a uniform distribution (which is expected, since we do not have
information about activity distribution in location L).

6.3 Model testing, evaluation and results

This section presents the analysis performed based on the provided methodologies from
section 6.2, together with the evaluation of each method and the results obtained.

6.3.1 Location profiling and classification results

In order to test the profiling method presented in section 6.2.4, we used the data of
five respondents from University of Luxembourg. Data is collected from history of
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locations recorded by Google Map from respondents’ smartphones. The time for each
user varies from four to eight years. The tool can be accessed online [150] and tests
can be done using the demo data provided or by loading any Google Map dataset,
following the instructions provided.

The process of profiling and classification employed in this evaluation is presented in
section 6.2.4, which begins with (1) the extraction of the visit pattern matrix (presented
in section 6.2.3) from the raw data collected using the Google Map application, followed
by (2) the computation of Euclidean distances between the extracted matrices for
each location and the matrix from Figure 6.5, and finally (3) the computation of the
classification probability for each of the main five selected activities.

A visual example with some classified activities can be seen in Figure 6.8 which displays
side by side (a) the matrix of aggregate activities from the data obtained from travel
surveys and (b) the matrix extracted from the historical visits of a specific location.

Figure 6.8: (a) Matrix of aggregate activities from the data; (b) Matrix of historical
visit pattern for a user.
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An example of a detailed result can be seen in Figure 6.9, which shows the matrix of
visit patterns of an user to a specific location and the probabilities obtained. In this
example, the selected location has the highest probability (91.66% Confidence level)
to be a home location. Similar, in Figure 6.10 shows the detected work location, for
the same user.

Figure 6.9: Example of home location

Figure 6.10: Example of work location

Interesting to note, in Fig. 6.10, work location has 83,49% confidence level, followed by
sport with 73,51%. When the respondent was interviewed, we received the confirmation
that around the work there is a gym location that is frequently visited by the same
user. Moreover, the restaurant activity seems to be also correctly identified (with
34,1%), and we received the confirmation that the workplace canteen is a popular place
for lunch. Thus, the profiling method captured through this methodology captures
multiple activities which are done in a specific range due to the profiler precision
parameter (presented in section 6.2.3 and shown in Figure 6.6). In this case, since a
larger area has been selected, multiple activities have been performed in the selected
area, which effectively contributes to the probability for each group of activities.

Another interesting feature that the proposed profiling method provides is the ability
to capture the activity location changing over time. In Figure 6.11 three different home
locations are represented, since the user changed the home location three times during
the data collection. Similar, in Figure 6.12 two work locations can be observed, as the
respondent confirmed the changing of the work location during the collection period.
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Figure 6.11: Home location change detection

The changing of activity location is a very important information that cannot be
captured by the classical travel surveys. The only possibility is that the surveys are
repeated with the same respondents at regular periods of time, something which is
very expensive and with a very low rate of success because of the burden that a travel
survey involves.

The same considerations do not hold for leisure activities. The reason is that the
reference data (Figure 6.5) are calculated as the average behaviour for a reference
population. For instance, no user goes to the restaurant or to the gym every day.
In this sense, the clustering technique still provides a reasonable result, but it will
always underestimate the probability of performing leisure activities. For this reason,
it is extremely important to consider both the proposed heuristic rule and the GIS
data. The heuristic improves the estimation for activities home and work, which also
means reducing the probability for these activities in all other cases. Similarly, the
GIS data introduces a prior probability that compensates the underestimation related
to the data aggregation phase. Both improvements are discussed and evaluated in the
following section.

6.3.2 Improving estimation by leveraging GIS data

In this section we aim to improve the estimation of the classification by implementing
the heuristic rule presented in section 6.2.5 and the Bayesian rule presented in section
6.2.6.
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Figure 6.12: Work location change detection

Table 6.1 shows the improvement related to the heuristic rule proposed in 6.2.5. Specif-
ically, we present the results for three users who accepted to collaborate during the
validation phase.

For each user, we calculated the probability of performing activity home (P home)
and work (P work) in four different cases. All users have at least two work locations
(WP1 and WP2). In one case this is related to the relocation of their office, showed in
Figure 6.12, while in the other two cases the reason is that users have multiple working
locations. In this case, we can observe that, when the proposed heuristic is adopted,
for all users the value of P work increases while P home decreases.

A Leisure location has also been analysed. In this case, as expected, both P home and
P work decreases when the proposed rule is implemented.

Finally, location Home has also been analysed. In this case, we would expect P work
to decrease and P home to increase. However, as shown in Table 6.1, the estimated
probability for location home is slightly lower when the heuristic rule is applied. How-
ever, we do not consider this to be an issue, as in all cases the estimated probability
is close to 90%, thus the model properly identifies the activity performed in that lo-
cation. If it is true that, in this case, we reduce the probability, while looking at all
analysed locations, we clearly see that results are more consistent when the heuristic
rule is implemented.
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Table 6.2: Experiment results

Results without GIS data:

PWork(U |L) PHome(U |L) P eat(U |L) P sport(U |L) P Shop(U |L)

50.12% 0% 23.20% 41.12% 0.13%

Results with GIS data:

Number of Shadow Locations nS = 0

PWork(U |L) PHome(U |L) P eat(U |L) P sport(U |L) P Shop(U |L)

θ = 0.3 18.44% 0% 45.19% 80.10% 0.40%
θ = 0.6 32.96% 0% 35.11% 62.23% 0.80%
θ = 1 39.79% 0% 30.36% 53.82% 1.03%

Number of Shadow Locations nS = 1

PWork(U |L) PHome(U |L) P eat(U |L) P sport(U |L) P Shop(U |L)

θ = 0.3 27.61% 0% 38.82% 68.81% 0.70%
θ = 0.6 38.63% 0% 31.17% 55.25% 1%
θ = 1 43.27% 0% 27.95% 49.54% 1.12%

Number of Shadow Locations nS = 10

PWork(U |L) PHome(U |L) P eat(U |L) P sport(U |L) P Shop(U |L)

θ = 0.3 44.42% 0% 27.15% 48.12% 1.10%
θ = 0.6 47.30% 0% 25.15% 44.58% 1.20%
θ = 1 48.43% 0% 24.36% 43.19% 1.25%

Finally, we boost the prediction for leisure activities. To verify the result, we studied
the activity “sport”. The profiling phase showed us that, during lunch time, one of the
respondents was often visiting a location close to the University Campus. Based on
OpenStreetMap, the area has both a sport center and a restaurant, thus both options
have to be considered. The respondent confirmed that performs sport activity in that
location three times a week during the lunch break. Table 6.2 shows the probability
we estimated through the Bayesian updating process, for different values of nS and θ.

The results from Table 6.2 shows that the probability obtained through the Bayesian
updating rule (equation 6.3) is more reliable than the one derived only from the location
history. For nS equal to 0 or 1, it always identifies the right solution (i.e., sport is the
most likely option in the given location), while for large values of nS and θ the model
collapses to the original estimation.
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It is also interesting to highlight that, for average parameter values (nS = 1 and
θ = 0.6), the Bayesian Approach returns similar values of PWork(U |L) and P eat(U |L),
which is realistic considering that (i) the user is recurrently visiting that location during
the lunch break and (ii) probability PWork(U |L) for that user to perform working
activities at location L is greater than 50%.

6.4 Conclusions and future work

The main purpose of this study was to explore the possibility to automatically de-
tect the activity performed in frequent visited locations, without any user report or
additional information.

Different from most of the state-of-the-art approaches (frameworks to collect travel in-
formation) the proposed framework leverages existing location history to infer activity
location, meaning that there is no need of collecting additional data (i.e., to ask users
which activity performed in each location).

Our integrated framework uses three interconnected components to learn user be-
haviour:

i) A clustering technique to identify the most likely activity performed in a location;

ii) A heuristic rule to explicitly account for user behaviour while estimating the
Home and Work location;

iii) GIS data to include external contextual data from land use and properly estimate
leisure activities.

Results reveal the tool’s capabilities to automatically compute the probability that
activity performed in each location is either at home, work, restaurant, daily shopping,
sport, using only the location data.

Moreover, this study brings the following scientific and practical contributions:

a) The proposed framework enables the process and analysis of travel data over a
long time period (several years);

b) Because of the efficient clustering and data extraction techniques, GIS informa-
tion can be downloaded in real time and new user data can be processed in a few
seconds;

c) Since the model estimates a probability for each activity and each location, there
is no need for users to validate their information. While this is still possible,
to decrease the error, by further reducing respondent’s efforts, larger samples of
users can be involved in the process;

133



Chapter 6. A hybrid model and data-driven approach to learn complex mobility
habits

d) The tool properly identifies dynamics such as activity relocation, which is an
essential information difficult to retrieve with traditional or digital travel surveys.

Future research will explore the possibility to include from external sources additional
information regarding the visited locations (such as opening hours) and to improve
the clustering approach to provide estimations that are more accurate. Moreover, the
duration of the visits can be also a good direction which should be explored. Finally,
the authors stress that working with existing data is not always feasible. With the in-
creasing concern about privacy, users are becoming more aware of their rights. On one
hand, this has a huge potential, as users can freely access their information and decide
to share with the community. On the other hand, many users systematically delete,
which is a clear limit for methodologies such as the one proposed in this study. Given
these assumptions, the authors aim at working with anonymize data and validating
this work with a test case on a larger number of users.
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7
Conclusion

This chapter concludes the dissertation and presents a summary and future research
directions.
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Chapter 7. Conclusion

This chapter is organised as follows. Section 7.1 summarises the contributions of this
dissertation. Section 7.2 discusses potential directions for future work and a short-term
outlook concludes the work in Section 7.3.

7.1 Summary

In today’s complex mobility domain, data is generated at large scale by different entities
that are part of the transportation network (i.e., people, vehicles, goods) and from
different sources, such as traffic sensors, nomadic and wearable devices [144]. One of the
biggest challenges is to extract insights and knowledge from raw data and consequently
to extract data driven models that can describe the multi-layered relationships between
all the involved entities. Moreover, all the entities must be matched and synchronised
in a seamless way without to compromise the transportation quality service. In order
to address these challenges, a data driven approach for mobility analysis was developed
and used in this thesis, which can solve some specific issues and challenges presented
in each of the contributions from Part II.

Interdisciplinary research that takes into account the different facets of ITSs [149] is in
high demand. Beyond this, a deep knowledge of the transportation domain is equally
essential in order to better understand all the problems and challenges begging for solu-
tions. A deep knowledge of the data science domain is also essential to apply advanced
methods and technologies. Lastly, industry is warning of a lack of data scientists in
the transportation domain who can implement the technologies and methodologies for
efficient big data management [115]. Bridging the gap between transportation and
data science is clearly not a trivial task!

Given these challenges, the studies presented in this dissertation combine the method-
ologies and technologies from data science with the knowledge domain of transportation
engineering. The main objective was to research how data science-driven methods can
be developed to dynamically analyse, profile and match people in order to efficiently
use collaborative mobility services and exploit shared mobility solutions.

The first part of this dissertation presented the context and motivation behind this
research, the objectives and the challenges we were facing when implementing data
science methods and techniques in the transportation domain. The objectives of this
thesis were translated into specific research questions in Section 1.2. The challenges
were discussed in Section 1.3.

In Chapter 2, we presented background information and discussed the state of the
art. The state of the art section introduced important terms, methods and techniques
from the domains of smart mobility and data science. We then presented the relevant
topics and the related literature review in order to correctly frame the contributions
presented in the second part of the thesis.

The second part of the thesis focused on practical contributions. Each challenge of this
dissertation is addressed by a contribution. Figure 7.1 presents a flowchart summary
with the research questions, related challenges and the corresponding chapters/contri-
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butions were addressed, which will be discussed in the remainder of this section.

Research Questions Challenges Addressed by contributions

RQ1.

A data-driven indicator for 

collaborative mobility solutions

How can sensing systems contribute 

to improving and automating  

collaborative mobility solutions?

Challenge #1 Chapter 3

Universal metric that gives an 

indication of compatibility for 

groups of shared mobility users. 

RQ2.

A modeling framework over 

temporal graphs for big 

mobility data analytics

How to manage big data and 

perform data analytics in complex 

mobility scenarios? 

Challenge #2 Chapter 4

A framework which can efficiently 

analyze multi-dimensional 

large-scale data in motion.

RQ3.

An user-centric approach for 

dynamic profiling of travel 

habits and visited locations

How profiling analysis can give new 

insights and offer new perspective in 

the study of people behaviour?

Challenge #3 Chapter 5

Develop a method for dynamically 

profiling users’ travel habits and 

classify visited locations.

RQ4.

Learn complex mobility 

patterns and habits 

using external contextual data

What is the impact of the proposed 

contributions in practical 

applications?

Challenge #4 Chapter 6

Automatically learn users’ travel 

habits and mobility patterns 

without users’ intervention.

Figure 7.1: Summary of research questions, challenges and contributions

Chapter 3. The main objective of this chapter was to study how the data collected by
the sensing systems can contribute to matching people and transportation resources in
CMSs. When addressing this objective based upon data collected by nomadic devices,
we faced the challenge (Challenge #1) of developing a generic methodology which
could compute a metric/index to assess the compatibility of people and transportation
resources for different shared mobility solutions. This challenge was addressed in Chap-
ter 3, which proposed an indicator to signal if a user group is compatible for potential
collaborative mobility solutions. The indicator can assess if (1) a user group is com-
patible for a shared mobility solution (i.e., carpooling, car sharing, parking sharing)
and (2) if it is economically beneficial. Economic benefit must be both at the system
level (by reducing the overall cost of travel and/or travel time and/or transportation
resources used) and also at the individual level (by assuring that each user will reduce
the total cost of travel when choosing a shared mobility solution). The indicator is
designed to take into consideration all variables and possible costs at both the system
and individual levels. The indicator also provides an implementation strategy which
facilitates use by future ML based recommendation systems.

The experiments and results presented in Section 3.3.1 showed the effectiveness of the
proposed method when applied to different sharing mobility services. First, Section
3.3.2 presented an example in which the proposed indicator can reveal whether is
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beneficial or not for users to employ a carpooling service and to share trip costs instead
of travelling individually. By testing scenarios in which some users will reschedule
activities in order to be part of a compatible group of users, experiments revealed
that the proposed indicator can identify compatible users who share a ride. Secondly,
the proposed method was used to check the compatibility of a group of users for
parking sharing services. Section 3.3.3 described a scenario where a group of users who
commute by car are compatible to share the same parking place without overlapping.
Moreover, the findings revealed that a combination of carpooling and parking sharing
services coupled with a parking fee policy could incentivise users to opt for the CMSs
instead of commuting in their own vehicle. Finally, we tested the proposed method in
a case study that combines carsharing, carpooling and parking sharing services. The
results showed that the proposed indicator can be applied to evaluate the CM between
individuals, taking into consideration the entire chain of activities and combinations
of sharing services. This study was conducted using a small dataset and a reduced
number of respondents. It was apparent that factoring in large datasets and high
numbers of users would have been far more challenging. Given that activity location
and duration were extracted manually for demonstration purposes, implementation in
real case scenarios with large scale datasets would have presented many new challenges
as well.

Chapter 4. The remaining challenges from Chapter 3 were solved in Chapter 4. The
chapter aimed to connect data science methodologies with compter science technolo-
gies which could be implemented to handle mobility data at scale. The literature
emphasized that ITSs can dramatically improve urban mobility [27]. These systems
are expected to perform data analysis in near real time and to react to rapid changes
and non-recurrent behaviours e.g., change of the residence. Because sensing systems
used for collecting and processing data (i.e., nomadic and wearable devices, traffic sen-
sors, vehicle counting units) usually have only limited computational capabilities; they
must handle big clusters and batch processing for their analytic tasks. We pointed out
the need for appropriate data-driven models, which are able to extract crucial knowl-
edge and to represent the appropriate context (personal preferences and surrounding
environment) able to be deployed at the level of nomadic devices.

Finding a technological solution able to analyse the data in motion (i.e., frequently
changing data) was the main challenge that we faced in Chapter 4. Data in motion is
continuously collected from all sensing systems involved in the CMSs paradigm (e.g.,
nomadic devices, traffic sensors, GIS data). Given that the main objective of a smart
mobility RS is to provide sustainable travel advice and solutions, hypothetical recom-
mended actions must be explored. In order to address the Challenge #2, we proposed
a complete solution that combines a modelling framework and a data analytics plat-
form. The proposed framework makes use of dynamic multi-dimensional data models,
temporal graphs and time series. This enables near real time analytics, parallel simula-
tions and deep search capabilities, meeting the requirements of smart mobility complex
scenarios. The practical usage and benefits are explained in a case study of collabora-
tive mobility with a large dataset, performing complex tasks and providing interactive
real-time data visualization. In Section 4.4 we presented different experiments which
demonstrated that the proposed framework is indeed able to manage big data. We also
tested deep search and query capabilities. Furthermore, a practical experiment that

140



7.1. Summary

made use of the framework’s MWGs feature was presented. The experiment consisted
of finding compatible groups of users for a carpooling activity drawn from a big dataset
of GPS data. The results demonstrated that the proposed framework was fast enough
to find clusters of compatible users for a ride sharing service on demand. Moreover,
the proposed method revealed its ability to merge discrete simulations and statistical
results into a single framework. However, this approach assumed that all users had the
same travel behavior. Therefore it could not give all the time satisfactory results when
providing personalised shared mobility solutions for each individual. This represents a
challenge that was addressed in the following chapter, where a user-centric approach
for dynamic profiling was proposed.

Chapter 5. In order to address Challenge #3, we dedicated Chapter 5 to the devel-
opment of a method capable of dynamically profiling users and all visited locations
in order to extract knowledge from raw data i.e., travel habits and mobility patterns.
Using special indexing techniques through temporal graphs and deep search capabil-
ities, the provided methodology made dynamic profiling in time and space possible.
The profiling was used to extract users’ travel behavior and visited locations. It also
provided an indication of the type of activities performed in each visited location (e.g.,
leisure, sport, work). This study also answered RQ3 by presenting case studies in which
profiling of people’s travel habits could give new insights and offer new perspectives in
the study of travel behaviour. More precisely, the profiling method was used to extract
insights, travel patterns and habits, and to perform automatic classification of visited
locations and activities by using only GPS data collected from nomadic and wearable
devices. The main contribution of this study was the demonstration of the possibility
of automatically extracting valuable knowledge regarding travel habits without any
user input or intervention. The usage examples presented in Section 5.5 demonstrated
that the proposed profiling methodology could be applied to various issues within the
smart mobility domain. First of all, by using the information provided by the pro-
filing, we demonstrated that it was possible to confirm the compatibility of a group
of users for sharing the same parking place. The highest level of compatibility was
when their profiles were completely dissimilar i.e., they use the same parking space
but at different times. Secondly, the profiling was used in the ride sharing applications
to determine if a group of users were synchronised with respect to departure/arrival
times. A similar visit profile of the same location indicated a possible ride sharing
opportunity. Thirdly, the profiling was used to automatically classify locations types.
This was done by extracting the location visit pattern and by computing the simi-
larity distance between the extracted profile and a range of training data relative to
different types of locations i.e., home, work, restaurant, shopping centre, gym facility.
Finally, we demonstrated that the provided profiling method could be also used for
non-recurrent trips profiling e.g., holidays and business trips. By using lower precision
we were able to cover wider areas. Overall, the proposed profiling method could be
used by an RS to automatically extract travel behaviour and mobility patterns, which
in turn could match people and shared mobility services autonomously, quickly and
dynamically.

Chapter 6. In this chapter we presented an enhancement of the estimation/learning
of complex mobility patterns from Chapter 5 by using a combination of user data,
GIS and specific rules derived from utility theory. This answered the RQ4 by offer-
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ing a concrete demonstration of the proposed contributions’ impact through practi-
cal applications. The main challenge was to seamlessly integrate data science and
behavioural methods to learn complex mobility patterns and travel habits while per-
forming advanced analytics without any respondent’s input. This requirement was
derived from mobile users’ unforgiving expectations of faultless performance by their
mobile apps.Specialised reports revealed these user demands: ”key to this is having the
necessary depth of application intelligence in real time so that any problems can be an-
ticipated or rapidly solved” [29]. This means that knowledge discovery and information
extraction methods employed should be able to use passive data collection techniques
while offering a high response time and performance. The sensing systems embedded in
the nomadic devices should passively collect meaningful information, while reducing
the energy consumption and the resources used. This was done by using the data-
driven modelling framework presented in Chapter 4 and the dynamic profiling method
from Chapter 5. The evaluation and results presented in Section 6.3.1 demonstrated
that it is possible to learn users’ travel habits and perform classification of visited loca-
tion types by using only data provided by the sensing systems. Moreover, we showed
that the proposed method can use external contextual data from GIS information.
When coupled with different behavioural modelling rules, the method can improve the
overall accuracy of the proposed model.

7.2 Future research directions

7.2.1 Future smart mobility recommendation systems

The proposed methods and technologies have major implications for future travel RSs,
the study of travel behaviour and activity-based modelling. Even if throughout this
dissertation we often discussed the next generation of RSs, it was not possible to
offer a completely implemented RS. This was due primarily to the time and resources
required for the development and rigorous experimental testing of a new fully functional
RS. However, the methods and technologies presented, evaluated and tested in this
dissertation represent a good foundation able to accelerate future research in this
direction.

The next generation of RSs must be able to automatically detect and semantically in-
terpret the activities performed by users in all the visited locations. The main task of
an RS is to provide travel advice for individuals or user groups to implement sustain-
able collaborative services i.e., carpooling, dynamic ride sharing, car sharing, parking
sharing. The methodologies and technologies presented in this dissertation have made
a contribution in this direction. The RS must not become dependent by waiting for
users to supply additional information. The development of an autonomous RS would
solve the cold start problem, in which new users who join the system and for whom
the RS has no information except historical GPS data. However, the experiments
performed (e.g., location classification) use general training datasets extracted from
previous surveys and well-known travel behaviour models. Further research should be
undertaken to investigate the usage of specific self-learning techniques (e.g., unsuper-
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vised learning, reinforcement learning).

The contributions presented illustrate that different what-if scenarios, simulations, op-
timisations and combinations of people and services may be done at any time. Thus,
future RSs could have the capability to autonomously perform complex analytics tasks
and to anticipate users’ behaviour. By using these methods it would be possible to
automatically perform complex analytic tasks without user intervention e.g., the pre-
diction of the next location to be visited or the classification of the activity performed
at each visited location. Consequently these systems could classify all activities per-
formed by each user as “daily systematic” (e.g., home, work, daily shopping), “weekly
systematic” (e.g., restaurant, sporting activities), or “non-systematic” (e.g., holiday,
visiting the doctor), simply by using the location data alone. The most common types
of data used in this thesis are the GPS data and GIS information. There is abundant
room for future research to explore the potential of adding contextual information
and semantics by tapping into external sources (e.g., different IoT devices). This can
improve the accuracy of classification and transportation services optimisations.

The evaluations performed and results obtained demonstrate that future RSs will be
able to perform detailed analytics of each of heterogeneous locations visited by an in-
dividual and uncover valuable information from this analysis. The proposed tool will
likely also capture changes in activity location (such as home and workplace reloca-
tion). In that case more investigation can be done by exploring other changes in travel
behaviour. Indeed, capturing changes in travel behaviour will become a key point
for future optimisations of public and private transportation services. With respect
to activity based modelling, the information extracted could be used to improve the
accuracy and reliability of the modelling methods. In future, it might be possible to
use completely different methods to enhance accuracy. This could mean that future
RSs could recommend not only how to travel more efficiently, but also how to organise
and individual’s schedule and sequence of activities. The objective would be to pro-
vide sustainable travel solutions (e.g., using shared mobility solutions) that not only
provide an economic benefit but also enhanced comfort (e.g., by avoiding time lost in
traffic jams).

7.2.2 Machine learning and artificial intelligence

A very promising future research direction is the evaluation and usage of other ML
techniques and algorithms in our approach. We are confident the proposed data-driven
modelling framework and analytics methodologies can work with any ML and data
science method. Of course, in this thesis we tested only basic methods of clustering
and learning from training data. Future directions can include the evaluation and
testing of more complex ML algorithms and methods in order to improve results and
to extract more in-depth knowledge from raw data.

For example, reinforcement learning algorithms are used in other domains to help soft-
ware agents to take autonomous action to maximise rewards. Inspired by behavioural
psychology, a similar approach may be used in shared mobility systems. The strategy
may incentivise users increasingly to use soft and shared mobility solutions and to
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adopt gamification principles. The technology we have discussed can enable mobility
systems to become autonomous intelligent systems which recommend appropriate ac-
tions because they have analysed previously learned behaviour and user response to
offered incentives. Further studies, which take these variables into account, will need
to be undertaken so that RSs can harness advanced methods from the artificial intelli-
gence domain. RSs can become self-learning agents which autonomously take actions,
offer recommendations, organise people and manage transportation resources in order
to globally optimise the transportation systems.

7.3 Outlook

The approach we have presented in this dissertation has pursued the concept of data-
driven transportation engineering fused with the data science analytics. In one way,
we might view this concept simply as the inevitable and necessary advance of ITSs
in step with the increasing requirements of technology, coupled with the need for
efficient smart mobility. The research summarized in this thesis aims to close the
gap between knowledge about the transportation engineering domain and data-driven
intelligent learning, which can drive autonomous analytic processes. That is why we
have combined various research areas and rubrics, including transportation engineering,
smart mobility, shared mobility, software engineering, machine learning, data-driven
model engineering, database management, and big data analytics.

The sequence of contributions from Part II has offered a complete methodological
workflow to support the next generation of smart mobility RS. We began by present-
ing the theoretical foundation of sharing mobility requirements for matching people
and mobility services. An RS can use our proposed method to automatically assess
the compatibility of a user group potentially interested in different sharing solutions.
Secondly, we proposed a specific data driven modelling framework which could handle
and process data at scale. The fact that this framework may be deployed even at the
level of low resources devices (e.g., nomadic devices) makes it suitable for use by a RS
in multiple smart mobility applications. Thirdly, the proposed profiling method can
enable a RS to perform advanced data driven mobility analysis by extracting individ-
ual complex travel behaviour from raw data, with nearly no user intervention. Finally,
the entire process flow can enable a RS to autonomously execute complex tasks such
as visited locations’ classification and activities’ identification. Moreover, because it is
possible to make use of external data, the entire process flow enables future RSs au-
tonomously to take decisions and to provide advice about concrete action to be taken
by the final user.

Finally, this thesis has focused on developing data-driven analytics for collaborative
mobility solutions and on providing a basic contribution for the next generation of
smart mobility RSs. At the same time, we believe the concepts, methods and tech-
nologies we have presented may be also applied in domains other than transportation
engineering. For example, autonomous driving requires the combination of raw data,
domain knowledge, and ML in a single model able to drive near real time analytic
processes. Analysing dynamic data in motion that changes frequently and at different
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paces is challenging. The data-driven approach, methods and technologies presented
in this thesis can constitute an efficient solution. Freight distribution and logistics also
require sustainable decisions which factor in the impact of certain actions. Given that
every alternative has its own impact, the high combinatorial complexity of alterna-
tives is very hard to analyse. The graph data model used throughout the experiments
performed in this thesis could enable an efficient representation and analysis of many
different alternatives even in near real time. Other domains such as traffic engineering
use different distributed systems, which typically need to collect and share their con-
text information before taking decisions aimed at reducing traffic problems. In order
to achieve this objective traffic monitoring systems could reason over distributed data
using a similar multi-dimensional graph data model able to handle frequent changes.
Last but not least, many transportation systems need to become increasingly intel-
ligent. To make smart decisions, these systems must continuously extract and use
behavioural models generated only by learning from live data. ML algorithms can
help to extract certain behaviour using the general profiling concepts and methods
developed in this thesis. The profiling can then be used in almost any domain requir-
ing a deep understanding of the individual behaviour of each entity involved. This
strategy opens up new pathways in research and opportunities to explore innovative
AI techniques, which could resolve - perhaps unexpectedly - many of the major as-yet
unsolved problems of hi-tech societies.
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List of Papers and Tools

Published papers included in the dissertation

• Usage of Smartphone Data to Derive an Indicator for Collaborative Mobility between
Individuals, B Toader, F Sprumont, S Faye, M Popescu, F Viti, ISPRS International
Journal of Geo-Information 6 (3), 62 [202]

• A new modelling framework over temporal graphs for collaborative mobility recom-
mendation systems, Bogdan Toader, Assaad Moawad, Francois Fouquet, Thomas Hart-
mann, Mioara Popescu, Francesco Viti, 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC) [200]

• Using Passive Data Collection Methods to Learn Complex Mobility Patterns: An Ex-
ploratory Analysis, B Toader, G Cantelmo, M Popescu, F Viti, 2018 21st International
Conference on Intelligent Transportation Systems (ITSC) [199]

Paper currently under Submission

• A Data-Driven Scalable Method for Profiling and Dynamic Analysis of Shared Mobility
Solutions, Bogdan Toader, Assaad Moawad, Thomas Hartmann, Francesco Viti, IEEE
Transactions on Intelligent Transportation Systems (submitted in 2018, under review)
[40]

• Inferring Urban Mobility and Habits from user location history, Guido Cantelmo, Bog-
dan Toader, Constantinos Antoniou, Francesco Viti, 22nd EURO Working Group on
Transportation Meeting, EWGT 2019, 18 - 20 September 2019, Barcelona, Spain (un-
published to date) [102]

Tools developed during the thesis

• Pofiler demo: https://mobilab.lu/profiler-demo

• Location probability demo: https://github.com/bogdan-xplode/playmobel
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[202] Bogdan Toader, François Sprumont, Sébastien Faye, Mioara Popescu, and Francesco
Viti. Usage of smartphone data to derive an indicator for collaborative mobility between
individuals. ISPRS International Journal of Geo-Information, 6(3):62, 2017.

[203] Emeric Tonnelier, Nicolas Baskiotis, Vincent Guigue, and Patrick Gallinari. Smart
card in public transportation: Designing a analysis system at the human scale. In
Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference
on, pages 1336–1341. IEEE, 2016.

[204] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Patel,
Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.
Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 147–156. ACM, 2014.

[205] Sheung Yuen Amy Tsui and Amer S Shalaby. Enhanced system for link and mode
identification for personal travel surveys based on global positioning systems. Trans-
portation Research Record, 1972(1):38–45, 2006.

[206] Peter van der Waerden, Harry Timmermans, and Marloes de Bruin-Verhoeven. Car
drivers’ characteristics and the maximum walking distance between parking facility
and final destination. Journal of Transport and Land Use, 10(1):1–11, 2017.

[207] David A Vautin and Joan L Walker. Transportation impacts of information provision
& data collection via smartphones. Technical report, 2011.

162



Bibliography

[208] Rohit Verma, Surjya Ghosh, Mahankali Saketh, Niloy Ganguly, Bivas Mitra, and
Sandip Chakraborty. Comfride: a smartphone based system for comfortable public
transport recommendation. In Proceedings of the 12th ACM Conference on Recom-
mender Systems, pages 181–189. ACM, 2018.

[209] V Vijayakumar, Subramaniyaswamy Vairavasundaram, R Logesh, and A Sivapathi.
Effective knowledge based recommender system for tailored multiple point of interest
recommendation. International Journal of Web Portals (IJWP), 11(1):1–18, 2019.

[210] F. Viti and F. Corman. Equilibrium and sensitivity analysis of dynamic ridesharing.
In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC
2013), pages 2409–2414, oct 2013.

[211] Francesco Viti and Francesco Corman. Equilibrium and sensitivity analysis of dynamic
ridesharing. In Intelligent Transportation Systems-(ITSC), 2013 16th International
IEEE Conference on, pages 2409–2414. IEEE, 2013.

[212] Francesco Viti, C Tampere, Rodric Frederix, Marie Castaigne, Eric Cornelis, and Fa-
bien Walle. Analyzing weekly activity–travel behavior from behavioral survey and
traffic data. In World Conference on Transport Research, 2010.

[213] Katerina Vrotsou, Kajsa Ellegard, and Matthew Cooper. Everyday life discoveries:
Mining and visualizing activity patterns in social science diary data. In Information
Visualization, 2007. IV’07. 11th International Conference, pages 130–138. IEEE, 2007.

[214] Guozhang Wang, Wenlei Xie, Alan J Demers, and Johannes Gehrke. Asynchronous
large-scale graph processing made easy. In CIDR, volume 13, pages 3–6, 2013.

[215] Lei Wang, Wanjing Ma, Yingling Fan, and Zhongyi Zuo. Trip chain extraction using
smartphone-collected trajectory data. Transportmetrica B: Transport Dynamics, pages
1–20, 2017.

[216] Ran Wang, Chi-Yin Chow, Yan Lyu, Victor CS Lee, Sam Kwong, Yanhua Li, and
Jia Zeng. Taxirec: recommending road clusters to taxi drivers using ranking-based
extreme learning machines. IEEE Transactions on Knowledge and Data Engineering,
30(3):585–598, 2018.

[217] Overpass API OpenStreetMap Wiki. Overpass api - openstreetmap wiki. https:

//wiki.openstreetmap.org/wiki/Overpass_API.

[218] Jizhe Xia, Kevin M. Curtin, Weihong Li, and Yonglong Zhao. A New Model for a
Carpool Matching Service. PloS one, 10(6):e0129257, 2015.

[219] Longgang Xiang, Meng Gao, and Tao Wu. 7. Extracting Stops from Noisy Trajec-
tories: A Sequence Oriented Clustering Approach. ISPRS International Journal of
Geo-Information, 5(3):29, mar 2016.

[220] Ali Yavari, Prem Prakash Jayaraman, and Dimitrios Georgakopoulos. Contextualised
service delivery in the internet of things: Parking recommender for smart cities. In
Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on, pages 454–459. IEEE,
2016.

[221] Ali Yavari, Prem Prakash Jayaraman, Dimitrios Georgakopoulos, and Surya Nepal.
Contaas: An approach to internet-scale contextualisation for developing efficient inter-
net of things applications. 2017.

163

https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_API


Bibliography

[222] J. W. Yoon, F. Pinelli, and F. Calabrese. Cityride: A predictive bike sharing journey
advisor. In 2012 IEEE 13th International Conference on Mobile Data Management,
pages 306–311, July 2012.

[223] Biying Yu, Ye Ma, Meimei Xue, Baojun Tang, Bin Wang, Jinyue Yan, and Yi-Ming
Wei. Environmental benefits from ridesharing: A case of beijing. Applied energy,
191:141–152, 2017.

[224] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation,
pages 2–2. USENIX Association, 2012.

[225] Desheng Zhang, Tian He, Yunhuai Liu, Shan Lin, and John A Stankovic. A carpooling
recommendation system for taxicab services. IEEE Transactions on Emerging Topics
in Computing, 2(3):254–266, 2014.

[226] Desheng Zhang, Tian He, Yunhuai Liu, and John A Stankovic. Callcab: A unified
recommendation system for carpooling and regular taxicab services. In Big Data, 2013
IEEE International Conference on, pages 439–447. IEEE, 2013.

[227] Desheng Zhang, Ye Li, Fan Zhang, Mingming Lu, Yunhuai Liu, and Tian He. coride:
carpool service with a win-win fare model for large-scale taxicab networks. In Pro-
ceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, page 9.
ACM, 2013.

[228] J. Zhang, F. Y. Wang, K. Wang, W. H. Lin, X. Xu, and C. Chen. Data-Driven In-
telligent Transportation Systems: A Survey. IEEE Transactions on Intelligent Trans-
portation Systems, 12(4):1624–1639, dec 2011.

[229] Junping Zhang, Fei-Yue Wang, Kunfeng Wang, Wei-Hua Lin, Xin Xu, Cheng Chen,
et al. Data-driven intelligent transportation systems: A survey. IEEE Transactions on
Intelligent Transportation Systems, 12(4):1624–1639, 2011.
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