22 research outputs found

    Integrating Trust into the CyberCraft Initiative via the Trust Vectors Model

    Get PDF
    This research supports the hypothesis that the Trust Vector model can be modified to fit the CyberCraft Initiative, and that there are limits to the utility of historical data. This research proposed some modifications and expansions to the Trust Model Vector, and identified areas for future research

    Covered trust values in distributed systems

    Get PDF

    A Formal Classification of Internet Banking Attacks and Vulnerabilities

    Full text link

    A Proposed Architecture for Big Data Driven Supply Chain Analytics

    Full text link
    Advancement in information and communication technology (ICT) has given rise to explosion of data in every field of operations. Working with the enormous volume of data (or Big Data, as it is popularly known as) for extraction of useful information to support decision making is one of the sources of competitive advantage for organizations today. Enterprises are leveraging the power of analytics in formulating business strategy in every facet of their operations to mitigate business risk. Volatile global market scenario has compelled the organizations to redefine their supply chain management (SCM). In this paper, we have delineated the relevance of Big Data and its importance in managing end to end supply chains for achieving business excellence. A Big Data-centric architecture for SCM has been proposed that exploits the current state of the art technology of data management, analytics and visualization. The security and privacy requirements of a Big Data system have also been highlighted and several mechanisms have been discussed to implement these features in a real world Big Data system deployment in the context of SCM. Some future scope of work has also been pointed out. Keyword: Big Data, Analytics, Cloud, Architecture, Protocols, Supply Chain Management, Security, Privacy.Comment: 24 pages, 4 figures, 3 table

    Formal methods in the design of cryptographic protocols (state of the art)

    Get PDF
    This paper is a state of the art review of the use of formal methods in the design of cryptographic protocols

    Use of Thrust Vectors in Support of the CyberCraft Initiative

    Get PDF
    The CyberCraft Initiative is designing a framework for command and control of future Air Force Cyber-weapon systems, that autonomously operate and defend the Air Force networks and information systems to provide Cyberspace Superiority in support of the defense of the United States. The fundamental research question of the CyberCraft Initiative is What is required for a commander to trust a CyberCraft to autonomously defend military information systems? The Trust Vector model is one method of integrating trust into the CyberCraft fleet. Trust Vectors define trust and distrust between agents based on three components; current and historical data, intrinsic knowledge of the remote agent\u27s abilities, and recommendations from other agents. This research finds that the Trust Vector model can be modified to integrate trust into the CyberCraft Initiative. Several expansions to the model are proposed, including applying the Trust Vector model to an asynchronous paradigm for data transactions. This research also determines the limits of the utility of historical data for the Trust Vector model

    Distributed access control and the prototype of the Mojoy trust policy language

    Get PDF
    In a highly distributed computing environment, people frequently move from one place to another where the new system has no previous knowledge of them at all. Traditional access control mechanisms such as access matrix and RBAC depend heavily on central management. However, the identities and privileges of the users are stored and administered in different locations in distributed systems. How to establish trust between these strange entities remains a challenge. Many efforts have been made to solve this problem. In the previous work, the decentralised administration of trust is achieved through delegation which is a very rigid mechanism. The limitation of delegation is that the identities of the delegators and delegatees must be known in advance and the privileges must be definite. In this thesis, we present a new model for decentralised administration of trust: trust empowerment. In trust empowerment, trust is defined as a set of properties. Properties can be owned and/or controlled. Owners of the properties can perform the privileges denoted by the properties. Controllers of the properties can grant the properties to other subjects but cannot gain the privileges of the properties. Each subject has its own policy to define trust empowerment. We design the Mojoy tmst policy language that supports trust empowerment. We give the syntax, semantics and an XML implementation of the language. The Mojoy trust policy language is based on XACML, which is an OASIS standard. We develop a compliance checker for the language. The responsibility of the compliance checker is to examine the certificates and policy, and return a Boolean value to indicate whether the user's request is allowed. We apply our new model, the language and the compliance checker to a case study to show that they are capable of coping with the trust issues met in the distributed systems

    Trust Management and Security in Satellite Telecommand Processing

    Get PDF
    New standards and initiatives in satellite system architecture are moving the space industry to more open and efficient mission operations. Primarily, these standards allow multiple missions to share standard ground and space based resources to reduce mission development and sustainment costs. With the benefits of these new concepts comes added risk associated with threats to the security of our critical space assets in a contested space and cyberspace domain. As one method to mitigate threats to space missions, this research develops, implements, and tests the Consolidated Trust Management System (CTMS) for satellite flight software. The CTMS architecture was developed using design requirements and features of Trust Management Systems (TMS) presented in the field of distributed information systems. This research advances the state of the art with the CTMS by refining and consolidating existing TMS theory and applying it to satellite systems. The feasibility and performance of this new CTMS architecture is demonstrated with a realistic implementation in satellite flight software and testing in an emulated satellite system environment. The system is tested with known threat modeling techniques and a specific forgery attack abuse case of satellite telecommanding functions. The CTMS test results show the promise of this technique to enhance security in satellite flight software telecommand processing. With this work, a new class of satellite protection mechanisms is established, which addresses the complex security issues facing satellite operations today. This work also fills a critical shortfall in validated security mechanisms for implementation in both public and private sector satellite systems
    corecore