
Durham E-Theses

Distributed access control and the prototype of the

Mojoy trust policy language

Huang, Chenxi

How to cite:

Huang, Chenxi (2004) Distributed access control and the prototype of the Mojoy trust policy language,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3070/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3070/
 http://etheses.dur.ac.uk/3070/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Distributed Access Control and the Prototype of

the Mojoy Trust Policy Language

Chenxi Huang

A copyright of this thesis rests
with the author. No quotation
from it should be published
without his prior written consent
and information derived from it
should be acknowledged.

Department of Computer Science

University of Durham

Durham DHl 3LE

England

08 Nov 2004

Thesis submitted for the degree of MSc

0
.. ..,.

'

:~.

2 1 JUN 2005

Abstract

In a highly distributed computing environment, people frequently move from one place to

another where the new system has no previous knowledge of them at all. Traditional access

control mechanisms such as access matrix and RBAC depend heavily on central management.

However, the identities and privileges of the users are stored and administered in different

locations in distributed systems. How to establish trust between these strange entities remains a

challenge. Many efforts have been made to solve this problem. In the previous work, the

decentralised administration of trust is achieved through delegation which is a very rigid

mechanism. The limitation of delegation is that the identities of the de legators and delegatees must

be known in advance and the privileges must be definite. In this thesis, we present a new model

for decentralised administration of trust: trust empowerment. In trust empowerment, trust is

defined as a set of properties. Properties can be owned and/or controlled. Owners of the properties

can perform the privileges denoted by the properties. Controllers of the properties can grant the

properties to other subjects but cannot gain the privileges of the properties. Each subject has its

own policy to define trust empowerment. We design the Mojoy trust policy language that supports

trust empowerment. We give the syntax, semantics and an XML implementation of the language.

The Mojoy trust policy language is based on XACML, which is an OASIS standard. We develop a

compliance checker for the language. The responsibility of the compliance checker is to examine

the certificates and policy, and return a Boolean value to indicate whether the user's request is

allowed. We apply our new model, the language and the compliance checker to a case study to

show that they are capable of coping with the trust issues met in the distributed systems.

I

Acknowledgements

Many thanks to my supervisors Jie Xu and Keith Bennett. Many thanks to my friends who

offered much help to me during my study in the University of Durham.

II

Table of Contents

Traditional Access Control ... 1

1.1 Authentication, authorisation and access control... ... I

I.2 MAC and DAC ... I

I.2.1 DAC .. 2

1.2.2 MAC ... 3

I.3 Role Based Access Control. .. 4

1.3.1 RBAC Extensions ... 8

1.3.2 Delegation ... 8

1.4 Summary ... 10

2 Distributed Access Control ... 1I

2.1 New challenges and research issues ... 1I

2.2 Decentralisation and delegation .. 12

2.3 Thesis contribution ... 12

2.4 Distributed RBACs ... 13

2.4.1 PERMIS .. 13

2.4.2 OASIS ... I5

2.4.3 Ponder ... 17

2.5 Policy based approaches ... 18

2.5.1 PolicyMaker and KeyNote .. 18

2.5.2 XACML .. 21

2.6 Summary ... 22

3 Trust and the Mojoy Trust Policy Language ... 24

3.1 Foundationoftrust. ... 24

3 .1.1 Initialization of trust ... 24

3 .1.2 Conveyance of trust .. 25

3.1.3 Decentralised administration of trust .. 27

3.1.4 Variation of trust ... 28

3.2 Trust policy language .. 28

III

3 .2.1 Why need a policy language ... 29

3.2.2 Subject .. 30

3.2.3 Attribute .. 32

3.2.4 Capability .. 33

3.2.5 Control .. 35

3.2.6 Constraint. ... 36

3.2.7 Condition .. 37

3.2.8 Privilege .. 38

3.2.9 Rule ... 39

3.2.1 0 Policy .. 40

3.3 Certificates .. 41

3.4 Summary ... 42

4 The Compliance Checker ... 44

4.1 Java and XML .. 44

4.2 Prototype Interfaces .. 45

4.3 Implementation ... 47

4.4 Shared libraries ... 52

4.4.1 Jar library .. 52

4.4.2 Web services ... 53

4.5 Demo .. 54

4.6 Performance and security issues ... 57

4.7 Implementation limitations ... 58.

4.8 Summary ... 58

5 Application Case Study .. 59

5.1 Resource Sharing Union ... 59

5.2 Incompetence of the previous access control models ... 61

5.3 Our solution .. 61

5.4 Assumptions ... 64

6 Scenarios and Experiments ... 65

6.1 Scenario 1 (certificate and RBAC) ... 65

IV

6.2 Scenario 2 (environmental factors) ... 72

6.3 Scenario 3 (delegation and empowerment) ... 76

6.4 Scenario 4 (trust empowerment) ... 84

6.5 Analysis .. 86

7 Conclusion and future work .. 89

7.1 Conclusion .. 89

7.2 Future work ... 91

References .. 93

v

List of Figures

Figure 1-1 RBACO - RBAC3 relations .. 5

Figure 1-2 an example of role hierarchies .. 6

Figure 1-3 an example of private roles ... 7

Figure 2-1 example of positive authorisation policy .. 17

Figure 2-2 obligation policy ... 18

Figure 2-3 KeyNote assertion structure .. 20

Figure 2-4 KeyNote assertion example .. 21

Figure 4-l the interfaces of the compliance checker .. 46

Figure 4-2 the Java implementation of the compliance checker. .. 47

Figure 4-3 the instance factory ... 48

Figure 4-4 the activity diagram of the compliance checking procedure ... 50

Figure 4-5 how the application invokes the compliance checker ... 51

Figure 4-6 the .jar file of the implementation ... 52

Figure 4-7 an example of the usage of the compliance checker .jar library 53

Figure 4-8 deployment of the compliance checker as web services ... 54

Figure 4-9 web service client side sample .. 54

Figure 4-10 the Java demo ofthe compliance checker. .. 55

Figure 4-11 editor dialog window ... 57

Figure 5-1 incompatible RBAC prohibits the unification ... 61

Figure 5-2 our solution for the Resource Sharing Union .. 62

Figure 6-1 Alice's attribute certificate issued by durham.org ... 66

Figure 6-2 RSC's local trust policy .. 68

Figure 6-3 newcastle.org's local trust policy .. 70

Figure 6-4 Alice's capability certificate that confines her to the specific service 72

Figure 6-5 newcastle.org's local trust policy with environmental constraints 74

Figure 6-6 Alice's certificate that contains environmental constraints ... 76

Figure 6-7 Bob's attribute certificate issued by leeds.org ... 78

Figure 6-8 leeds.org's delegation certificate issued by RSC .. 80

VI

Figure 6-9 newcastle.org's trust policy that allows empowerment.. ... 82

Figure 6-10 Bob's capability certificate issued by leeds.org .. 84

Figure 6-11 leeds.org's attribute certificate issued by the RSC .. 86

List of Tables

Table 1-1 access matrix .. 3

Table 2-1 sununary of related work on distributed access control ... 22

Table 5-1 durham.org's RBAC system ... 60

Table 5-2 newcastle.org's RBAC system .. 60

Table 6-1 the RBAC system of leeds.org .. 76

VII

Declaration

No material contained in this thesis has previously been submitted for a degree in this or any

other university.

Statement of copyright

The copyright of this thesis rests with the author. No quotation from it should be published

without their prior written consent and information derived from it should be acknowledged.

VIII

Chapter 1 Traditional Access Control

1 Traditional Access Control

The research of access control began from the early 1960s primarily centred in database

management and operating systems. The objective was to protect system resources from

unauthorised access.

1.1 Authentication, authorisation and access control

According to Apache definition [28], authentication is the procedure of verifying the users

are who they claim they are. This is usually done by verifying the usemame/password, public

key/private key, smart cards, or some other biological methods, such as voice recognition or

fingerprints, to prove the identity.

Authorisation is to inspect whether the identified user has the permission to perform the

specific action to the resource. This is done by checking the user's roles, privileges or attributes.

Authorisation is analogous to checking tickets at the entrance of the cinema. Authentication and

authorisation are closely related and in most implementations inextricable.

Access control is a much more general way of talking about controlling access to resources.

Access decisions are made based on arbitrary conditions, such as network IP address, the time of

day, the attributes of the user, or the version of the browser, etc. It is analogous to closing the door

at a specific time or only letting people in by their ages.

1.2 MAC and DAC

The efforts of research and development on the part of the United States Department of

Defense (DoD) over a period of twenty plus years formed a set of security criteria, criteria

interpretations, and guidelines. It was the best known US computer security standard: the Trusted

Computer System Evaluation Criteria (TCSEC). It contains security features and assurances,

exclusively derived, engineered and rationalized based on DoD security policy, created to meet

one major security objective -preventing the unauthorised observation of classified information.

The TCSEC has defmed two types of access control: Discretionary Access Control (DAC)

and Mandatory Access Control (MAC).

Chapter 1 Traditional Access Control

1.2.1 DAC

As defined in the TCSEC and commonly implemented, DAC [45] is "A means of restricting

access to objects based on the identity of subject and/or groups to which they belong. The controls

are discretionary in the sense that a subject with a certain access pem1ission is capable of passing

that permission (perhaps indirectly) on to any other subject (unless restrained by mandatory access

control)" [8]. Since its appearance in 1983, DAC have been perceived as being technically correct

for both commercial and civilian government security needs.

As the name implies, DAC permits the granting and revoking of access privileges to be left to

the discretion of the individual users. A DAC mechanism allows users to grant or revoke access to

any of the objects under their control without the intercession of the system administrator.

To illustrate the model of DAC, we need to first clarify several basic concepts. A subject is a

process/program in the system; it can create other subjects; it is launched by a user. A subject has

only one user as its owner, but a user can have multiple subjects. The relations between subjects,

objects and access rights can be represented by an access matrix [46]. Subjects are represented in

rows and objects are represented in columns. The cells contain the access rights assigned to the

subjects that can be perfonned on the corresponding objects. The access rights are defined as As.o•

where s is the subject and o is the object.

• If action E As,o. then s can perform action on o.

• If the copy flag is set, i.e., *action E A5,0 , then s can add action to any cell in the column

of o, i.e., assign access rights of o to any subject.

• If owner E As,o. then s is the owner of o, s can assign access rights of o to any subject, i.e.,

add action to any cell in the column of o.

• If ownerE A5,0 , then s can revoke any subject's access rights to o, i.e., remove any

"unprotected" action in the cells of the column of o.

For example, Table 1-1 embodies an access matrix for users and files (r stands for read, w for

write, a for append, d for delete, o for owner, and e for execute). As we can see from the table, rE

AAiice,Filei. then Alice can read File 1. o E AAiice,Filel, then Alice can modify the actions in the cells of

the column File 1.

Chapter 1 Traditional Access Control

Table 1-1 access matrix

File! File2 File3 File4

Alice rwo rwd

Bob r ro

Clare reo

Duncan rwad

An access matrix is usually sparse and can be implemented in several ways:

• Capabilities. A capability specifies what action a subject could perform on the designated

object.

• Profiles. A profile contains a list of objects associated with a subject.

• Access Control List (ACL). ACL is the most desirable implementation of access matrix.

An ACL contains a list of users/groups and their access rights to the designated objects.

• Protection Bits. It is the protection mechanism adopted by UNIX file system [44]. The

creator of the file is the owner. The owner set the protection bits to indicate whether the

owner, the group, or everyone could have the specific access right of the file.

• Passwords. The user gains a specific access right to the object by providing corresponding

password.

However, in many organizations, the end users do not "own" the information for which they

are allowed to access. For these organizations, the corporation or agency is the actual "owner" of

the system objects as well as the programs that process it. This brings in MAC.

1.2.2 MAC

Mandatory Access Control was defined in the TCSEC as "A means of restricting access to

objects based on the sensitivity (as represented by a label) of the information contained in the

objects and the formal authorization (i.e. clearance) of subjects to access information of such

sensitivity" [8].

MAC applies where protection decisions must not be decided by the object owner and must

be enforced by the system. It is aimed to solve the problems that were unable to be dealt with by

DAC.

Chapter 1 Traditional Access Control

The concept of MAC was first fonnalized as the Bell-LaPadula model by Bell and LaPadula

[47]. Sandhu chose the essential assets from it and drew a minimal model, which was called BLP

[49]. In BLP, MAC policies are expressed through the security labels attached to subjects and

objects, which are called security clearance and security classification respectively. Security

labels cannot be changed once they are assigned. Users do not have control over security labels. In

order to gain access, users must first be authorised by the DAC access matrix, then pass the BLP

MAC rules:

o Simple-Security Property: subjects can read object o only ifA(s) ~A(a).

(;) *-Property: subjects can write object o only ifA(s):::: A(a).

Note: A denotes the security label. Write denotes "append" or "write only", and must not be

interpreted as "read and write".

BLP MAC rules are defined as "only if' which means they are necessary but not sufficient

conditions for access. Additional actions, such as create and delete, can be constrained by

*-Property because they are similar to write.

Bell-LaPadula model was motivated by the purpose of confidentiality. It limits users to read

downward (files below user's security level) and write upward (files above user's security level).

are:

Another similar model, Biba model was motivated by the purpose of integrity [48]. The rules

• Simple-Integrity Property: subject s can read object o only if ro(s) :::: ro(o).

• Integrity *-Property: subjects can write object o only if ro(s) ~ ro(o).

Note: ro denotes the integrity label. Write denotes "append" or "write only".

The central notion is that low-integrity infonnation is not pennitted to flow to high-integrity

objects, while the opposite is pennitted. BLP model and Biba model can be combined together:

Gl Subjects can read object o only ifA(s) ~ A(o) and ro(s)::; ro(o).

• Subjects can write object o only ifA(s) :::: A(o) and ro(s) ~ ro(o).

It is called composite model. It is very popular and has been implemented in several operating

systems, databases and network products.

1.3 Role Based Access Contro~

The notion of Role Based Access Control (RBAC) emerged m the 1970s. It was first

Chapter 1 Traditional Access Control

formalized by D. Ferraiolo and R. Kuhn in 1992 [6]: Access permissions are assigned to roles and

roles are assigned to users. As a bridge between permissions and users, role greatly simplifies

corporate security management. Users are assigned different roles to reflect their positions and

responsibilities. Roles are assigned different permissions to reflect organizational security policy

changes. An investigation conducted by NIST (National Institute of Standards and Teclmology) on

the security requirements of twenty eight different organizations showed that organizations desired

access privileges be based on the position held by each person within the organization [19].

Organizations would like to maintain the access privileges in accordance with its security policies

rather than at personal discretion. RBAC has the flexibility to meet these criteria.

UNIX/Linux users often find that the concept of UNIX/Linux group is similar to that of

RBAC. The primary difference between groups and roles is that a group is only a collection of

users. You need to go through the whole system to collect all the permissions that have been

assigned to a group, for instance, in the UNIX file system, the administrator needs to traverse all

the files in the file system to gather the permissions of a user/group, which will take a very long

time. A role is both a collection of users on one side and a collection of permissions on the other

side. Roles effectively and dynamically connect the two.

Sandhu et al. further classified RBAC into four sub categories, RBACO, RBAC1, RBAC2

and RBAC3 [7]. RBACO is the basic model and the minimal requirement for any system that

supports RBAC. RBAC1 and RBAC2 both embrace RBACO but extend with different features.

RBAC3 combines RBAC1 and RBAC2 and, by transitivity, RBACO (Figure 1-1).

Figure 1-1 RBACO- RBAC3 relations

There are four elements in RBACO; they are users (U), roles (R), permissions (P) and

5

Chapter 1 Traditional Access Control

sessions (S). Permissions and roles are many-to-many relation; users and roles are also

many-to-many relation. A user could establish one or more sessions with the server. The user is the

owner of the session and has the full control over it. He/she could have one or more roles active in

one session at the same time and could dynamically change active roles. A session can only be

associated with one user (the owner). Therefore a user could have different roles (permissions)

active at the same time, or in one session at different times. This feature supports the principle of

least privilege, which requires that a user should be given no more privilege than necessary to

perfonn a job.

RBAC1 extends RBACO with the concept of hierarchies. Hierarchy is a very common

requirement of the management of large organizations. It mirrors the inner security structure of

large organizations. Figure 1-2 shows a typical diagram of role hierarchies. The role member is in

the lowest level. Database administrator and programmer are in the middle and inherit all the

privileges from member. Supervisor is the highest-level role and inherits all the privileges of

database administrator and programmer. Sometimes we need to limit the scope of inheritance.

For instance, database administrator and programmer want to keep some of the permissions

private and prevent supervisor from inheriting them. This can be solved by adding new roles into

the structure (Figure 1-3, database administrator' and programmer). Under this situation,

database administrator' and programmer' are often referred to as private roles.

Figure 1-2 an example of role hierarchies

Chapter 1 Traditional Access Control

Figure 1-3 an example of private roles

RBAC2 extends RBACO with the concept of constraints. The first and most frequently

mentioned constraint is mutually exclusive roles, i.e., the same user can be assigned at most one

role at one time from a set of mutually exclusive roles. This feature supports the notion of

separation of duties. For instance, examiner and examinee are two mutually exclusive roles and

they cannot be assigned to one person at the same time. An extension of this model is that the

mutually exclusive permissions cannot be assigned to the same role at the same time. The second

constraint is cardinality constraint, i.e., one role can have only a specific maximum number of

members and vice versa. For instance, there is only one person who has the role of manager in a

department at one time. Correspondingly, the number of roles a permission can be assigned to can

have cardinality constraint to control the distribution of powerful permissions. The third constraint

is prerequisite roles, i.e., a user can be assigned role B if the user already has role A. This

constraint is based on competency; a user should have a junior role in order to be assigned a senior

role. However, if the same person has been assigned two or more identities, or the same operation

could be accomplished by two different permissions, then separation and cardinality constraint

become ineffective.

RBAC3 combines RBAC 1 and RBAC2 together. This could introduce several new issues.

Constraints can be applied to role hierarchies. For instance, in Figure 1-3 database administrator'

and programmer' can be declared as mutually exclusive. They cannot be inherited by the same

role or assigned to the same user. Real programmers should be assigned the role programmer', not

programmer. Therefore, the role programmer should have a maximum cardinality constraint of

zero.

7

Chapter 1 Traditional Access Control

1.3.1 RBAC Extensions

Apart from the above basic RBAC models, there are several extensions ofRBAC.

Parameterised RBAC appends parameters to roles. The privileges of roles can be refined

during activation time by setting the parameter values. For example, instead of specifying every

fom1 of the privileges such as read haematology, read biochemistry and read microbiology, we

can specify the privileges in the form of read(name), where name can be replaced by haematology,

biochemist1y and microbiology. Parameterised RBAC also introduces problems for role

hierarchies and constraint. Parent role parameters should not be significantly different from child

roles and administrators need more information than the role name to place constraint.

Different from common RBAC models which allow subjects to do, obligation policy requires

subjects must or must not do to the targets. Ponder is a RBAC policy language that supports

obligation [14].

Positive pemussions specify what a subject is allowed to do. On the contrary, negative

permissions specify what a subject cannot do. Combining them together could be thorny because

some actions can be both allowed and prohibited at the same time. This involves a priority order

of the rules.

Centralised RBAC system is unable to meet the new requirements of distributed large scale

organisations. For instance, it is difficult to know the permissions of a role assigned to a user from

a different security domain; different portions of organisations need to maintain and modify

security policies locally. Many efforts have tried to extend RBAC to support decentralised

management [2][33].

1.3.2 Delegation

Delegation facilitates decentralised management of RBAC by allowing a user/role to

authorise other users/roles with part/all of the privileges the user/role has. Delegator is the subject

who gives out privileges and delegatee is the subject who receives privileges. For instance, Alice

grants Bob the role employee. Alice is the delegator, Bob is the delegatee and employee is the

delegated role. Delegation is closely related with revocation, i.e., the delegator can revoke a

specific privilege from the delegatee.

Delegations are finely divided into several sub-categories [31].

Chapter 1 Traditional Access Control

o Permanence. The delegator permanently delegates all his roles to the delegatee. Delegator

loses his roles and delegatee receives the full power of the delegator's roles. Delegator

cannot take his roles back, except through the help of the administrator. On the contrary,

temporary delegation allows the delegator to delegate his roles for a short period. After

that time, delegation expires and delegator regains all his prior roles.

o Monotonicity. A monotonic delegation means delegator maintains all of his/her roles and

pennissions after delegation. A non-monotonic delegation means delegator loses all of

his/her roles and pennissions after delegation. Delegator can regain his/her roles and

permissions by revoking the delegation.

Q Totality. Total delegation delegates all the permissions of a role to the delegatee. Partial

delegation only delegates a subset of the pennissions of a role to the delegatee.

e Administration. In the self-acted delegation, the responsibility of the administration of

delegation is on the delegator himself. In the agent-acted delegation, the administration is

on a nominated third party.

e Levels of delegation. Delegation level can be specified by a number. Single step

delegation prevents the delegated privileges to be further delegated. Multi-step delegation

allows the delegatee to further delegate the privileges to other subjects.

• Multiple delegations. This type of delegation allows the delegator to delegate a role to

multiple subjects at the same time.

• Agreements. Bilateral agreement is a contract, which contains the specification of the

delegation, accepted by both the delegator and the delegatee. On the other hand, unilateral

agreement is a one-way decision. The delegator decides to delegate the role and the

delegatee has to accept it.

e Revocation. Revocation is divided into cascading revocation and grant-dependency

revocation. Cascading revocation is the indirect revocation as a result of the revocation of

other roles. A supporting role is the role that the delegatee owns prior to delegation. If the

delegatee loses the supporting role, then he loses the delegated role. A sponsoring role is

the role that the delegator owns in order to delegate. If the delegator loses the sponsoring

role, then he loses the ability to delegate, the delegatee loses the delegated role and further

delegations are also revoked. Grant-dependent delegation only permits the delegator to

Chapter I Traditional Access Control

revoke the delegation. Grant-independent delegation permits anyone who has the

sponsoring role to revoke the delegation.

1.4 Summary

DAC allows the owner to manage his resource at his own will. MAC compels the resources

to be managed by the system regardless whoever the owner is. RBAC supplements the drawbacks

of both DAC and MAC. Users assigned roles and roles are assigned privileges. This change brings

more flexibility. The basic concept of RBAC is extended with hierarchies, constraint, parameters

and delegation. Traditional RBAC is centrally administered and satisfies the security requirements

of locally managed organizations. However, in a distributed computing environment, where

organizations need to frequently cooperate and coordinate with each other, a decentralised

mechanism is desperately needed.

Chapter 2 Distributed Access Control

2 Distributed Access Control

2.1 New challenges and research issues

Most traditional access control systems depend on access matrix [46] and RBAC. Access

matrix and RBAC are effective where identities and privileges are managed in one central point

and the trust relationships are straightforward. However, in a distributed environment, where the

users, the privileges and the objects are scattered and managed in different locations, access matrix

and RBAC become inept to meet the increasingly complex security requirements [1]. For instance,

organizations need to specify complicated situations such as time and location constraints,

advanced RBAC models and dynamic trust relationships, etc in the policy. These cannot be clearly

described by an access matrix. Some systems hard code the access control component into the

application, this approach is inflexible because the only method to update the policies is to rewrite,

recompile and redeploy the application, this is time consuming and costly. The major issues and

requirements are observed and discussed in [4][10][9][32]:

• Large scale. The interconnected systems are composed of applications, resources and

users from various locations that are geographically dispersed. Some of them are already

known and trusted, some are unknown and therefore not trusted.

• Autonomous. As there is no central control point, each security domain should be able to

independently specify, manage, and enforce its own security policies.

• Complex policies. Traditional access control mechanisms only consider simple conditions

such as username/password. Nowadays we need to express more complex conditions such

as time, location restriction, users' attributes, etc.

• Evolution. Because the nature of large scale, applications and systems change consistently.

Security policies need to evolve accordingly to adapt to the changes.

• Cross security boundaries. Because of the nature of large scale, distributed systems often

span several security domains. These domains maintain their own access control systems,

potentially different RBAC systems. A mechanism must be developed to connect and

coordinate these different RBACs.

Chapter 2 Distributed Access Control

o Decentralisation. The management of the access control system must be decentralised.

Currently, the most popular mechanism is delegation which is not perfect. New

mechanisms are required.

2.2 Decentralisation and delegation

Contrary to conventional centralised administration, the decentralised administration of trust

is to administer users and their privileges in different locations. Until now, most of the existing

solutions depend heavily on delegation (31]. The central notion of delegation is that a subject

(delegator) can grant a subset of his privileges to another subject (delegatee), and the delegatee

can further delegate the privileges to other subjects. Delegation facilitates decentralisation of

administration by spreading privileges.

However, delegation has been criticised [1 0], the major disadvantages of delegation are:

o The identities of the subjects (both delegators and delegatees) must be known in advance.

e The delegator must delegate no more than what he/she has, and the privileges must be

known in advance.

However, sometimes the identities of the delegators cannot be known. Also under certain

situations, delegators do not own the privileges. For instance, according to The Medical Records

Confidentiality Act (15], anonymised patients' data can be disclosed to researchers from a certified

Health Information Service for research purposes only. Researchers have certificates from the

Health Information Service to prove their identities. A Health Infommtion Service is further

certified by a national health authority. The identity of the Health Information Service cannot be

known in advance and it does not have the privileges to access patients' record. Therefore

delegation is unable to solve this kind of problems. A new approach is desperately demanded.

2.3 Thesis contribution

In this thesis, we present a new trust conveyance model, trust empowerment, to compensate

for the disadvantages of delegation. The core principle of trust empowerment is that the identities

of the delegators do not have to be known in advance but they are proved by their attributes. The

delegators do not have to possess all the privileges in order to grant them. This new mechanism is

embodied through our proposed trust policy language, which is partly based on the achievements

12

Chapter 2 Distributed Access Control

of XACML [13]. The credibility of the subjects is totally and finely controlled by the service

provider. A corresponding compliance checker is also developed for the policy language.

The thesis is organized as follows. Chapter 2 discusses related work on distributed access

control. Chapter 3 discusses the definition of the trust policy language. Chapter 4 discusses the

compliance checker. Chapter 5 presents an application case study. Chapter 6 discusses a series of

scenarios and solutions. Chapter 7 concludes the thesis and draws out future work.

2.4 Distributed RBACs

2.4.1 PERMIS

The PERMIS (Privilege and Role Management Infrastructure Standards) project [11][12] is a

role based access control infrastructure that is based on X.509 Attribute Certificates (AC).

Attribute Certificate was first introduced by ANSI and standardised in the fourth edition of

ISO/ITU-T X.509 Reco111111endation [60]. It is the certificate format of Privilege Management

Infrastructure (PMI). PMI is similar to PKI (Public Key Infrastructure); the major difference is

that PMI is to authorisation while PKI is to authentication. Public key certificate stores a user's

name and the public key; an attribute certificate (AC) stores a user's name and privilege attributes

assigned to him. In PMI, the issuer of the attribute certificate is called the Attribute Authority

(AA). The root of trust of PMI is called the Source of Authority (SOA). SO As may delegate their

powers of authorisation to subordinate AAs. The AA has an attribute certificate revocation list

(ACRL) that contains all the revoked attribute certificates. PMI and AC are to some extent similar

to discretionary access controls (DAC), because the owner of the resource can grant users access

right by issuing them attribute certificate.

PERMIS supports RBACO. On the one side, permissions are stored in ACs and granted to

roles. Permissions are the attributes contained in the AC, and the holder is the role. On the other

side, roles are stored in ACs and granted to users. Roles are the attributes contained in the AC, and

the holder is the user. PERMIS also supports RBACl. By storing junior roles in the AC and

assigning it to a senior role, roles are inherited in a hierarchical way. PERMIS supports delegation

by appending an integer in the AC; the integer indicates the depth of permitted delegation.

The PERMIS architecture is consisted of a Privilege Allocator (PA) and privilege verification

Chapter 2 Distributed Access Control

system. The SOA and AA use PA to issue attribute certificates to users and sign the PMI policies.

The SOA and AA store the roles as attributes in the certificate and put the AC into the publicly

accessible LDAP (Light weight Deirectory Access Protocol) directory.

PERMIS has developed a Java version of the simplified Access Control Enforcement

Function (AEF) and Access Control Decision Function (ADF). AEF and ADF are based on the

Open Group standard AZN API [29) and the ISO Access Control Framework [30). When a user

accesses the resources, the AEF authenticates him. Then the ADF retrieves his role ACs, according

to his LDAP DN (Distinguished Name), and the authorisation policy from the public LDAP

directory. The authorisation decision is based on the requested action, the target resource, the

permissions of the roles that the user holds and the policies. In PERMIS, Authentication is

application specific and authorisation is application independent.

PERMIS has specified a policy language to define the policies. There several types of

policies. The subject policy specifies the domains of the users; the domains are expressed as an

LDAP subtree. The SOA policy lists the identities of the SOAs, usually in the fonn of the LDAP

DNs. All the valid ACs must be signed by one of the SOAs, or one ofthe AAs that is delegated by

an SOA. The role hierarchy policy specifies the role hierarchies within PMI. The roles are defined

using type-value pairs as attributes; the types are identified by the globally unique object

identifiers. The role hierarchy graph is a directed graph rather than a tree, because a role can have

multiple superior roles and can also inherit from a set of subordinate roles, which cannot be

represented by a tree. The role assignment policy specifies which roles can be assigned to which

subjects by which SOAs. The depth of the delegation level of the role can be specified by an

integer (particularly, integer zero means no delegation). Time constraints can also be applied to

role assignment. The target policy specifies the target domains. The domains are distinguished by

LDAP subtrees and are similar to subject domains. The action policy specifies all the valid actions

that can be performed to the target resources. The action consists of a name and a number of

arguments. The arguments will be passed into the PERMIS API by the Access Enforcement

Function (AEF) at runtime. The target access policy consists of a series of target access clauses.

Each clause contains a specific set of roles to perform the specified actions on the specified targets,

only if the IF clause could be satisfied. The IF clause contains a series of conditions, a condition

includes a comparison operator, an operand, and one or more variables/constants. PERMIS

Chapter 2 Distributed Access Control

supports user-defined operators.

PERMIS realizes a rigid distributed RBAC system. Roles are assigned to users as attributes

in ACs by the issuing body. ACs are stored in public directory and can be retrieved by anyone. The

deficiencies of PERMIS are that it cannot finely control the privileges assigned to users, and the

issuing body must share the same definition of RBAC with the object domain which is sometimes

unrealistic.

2.4.2 OASIS

OASIS stands for Open Architecture for Secure, Interworking Services. It is a role-based

access control architecture that facilitates the interoperation between services in a distributed

environn1ent [2][3].

The administration of OASIS roles is intrinsically distributed. Each service maintains its own

RBAC system. Users are not assigned privileges directly, instead they are assigned roles and roles

are assigned privileges. Services intemperate via Service Level Agreements (SLA). An SLA is a

contract between services; it contains role definitions and/or policy information. Services use SLA

to interpret different RBACs. OASIS is integrated into an active, event-based middleware

infrastructure. Any change of the environment is notified by a message, therefore role

activation/deactivation are under supervision and can be reflected in real time [43].

Recognizing the limitations of delegation, OASIS builds privilege conveyance mechanism on

its newly designed mechanism appointment to replace delegation. The central notion of

appointment is that roles are able to grant roles, which are embedded in appointment certificates,

to subjects without possessing the target roles, hence enabling subjects to activate more roles.

The activation of roles is controlled under role activation rules. A role activation rule

specifies a series of conditions. The conditions include prerequisite roles, appointment credentials

and environmental constraints. The conditions must be met in order for the corresponding role to

be activated. A prerequisite role is the role that a subject must have acquired and has activated it

before activating more roles. An example is that in order to access internal resources, users must

prove that they are members of the role internal users. Some roles possess the ability to issue

appointment credentials. With the appointment credentials, and maybe some other credentials

required by the policy, subjects can activate more roles. The appointment credentials are

Chapter 2 Distributed Access Control

independent of the activation of the appointer role. The appointer does not have to explicitly

possess the privileges contained in the appointment credential that he has issued. This is

understandable because it is a quite common situation in real life. For example, the computer

administrator in a hospital does not have the privilege to treat the patients, but he could grant the

corresponding privileges to the patients' doctor. Environmental constraints include user

independent constraints and user dependent parameters. For instance, user independent constraints

can be the time of the day or IP address of the computer, user dependent parameters can be the

name or position of the user.

OASIS roles are parameterised. This provides fine grained access control. For instance,

patients can specify who may or may not see their medical records. A patient might express that

"Clare may not see my medical record". OASIS parameters allow these side conditions to be

identified and constraint checking permits such exceptions to be enforced.

Appointment has several advantages over delegation. First of all, privilege conveyance is

totally under control. In order to complete a task, only those roles that are required during the

process will be activated, therefore obey the principle of least privilege. Secondly, appointees will

be assigned a different role from the appointer, which makes cascading delegation irrelevant.

Thirdly, the appointer could grant privilege to appointee without possessing the privilege. This

kind of situation is commonly viewed in real life but cannot be accomplished by delegation.

Fourthly, delegation can be regarded as a special case of appointment, where the appointer can

only grant a subset of roles that he owns to the appointee.

The revocation of appointment can be completed by three methods: by the appointer only; by

anyone in the appointer role; by the rules of the system. Letting the appointer revoke the

appointment seems to be a natural and straightforward way. But sometimes the appointer is unable

to revoke, for instance, the appointer has retired or left. A solution is to allow anyone of the users

who can activate the appointer role to make the revocation. A third method is that if a certain

condition is met in the system then the appointment will be automatically revoked. These rules can

be time, tasks and/or sessions. For instance, the appointment could be associated with a period of

time; it will automatically be revoked after the expiry time. If the appointment is associated with

some kind of task and the end time of the task is difficult to know in advance, then the revocation

could be waken by the end of the task. It is especially helpful in a workflow environment. The

Chapter 2 Distributed Access Control

validation of the appointment can also be based on the appointer or appointee's session. If the

session of the appointer/appointee ends, then the appointment automatically ends.

The precondition of OASIS interaction is that all the services are mutually trusted between

each other. The authors also tried to establish a more common infrastructure to accommodate

those previously unknown and untrusted services to interact. This remains to be an active research

area.

2.4.3 1Po81lder

Ponder is a declarative, object-oriented policy language as a result of ten years of efforts [14].

It is aimed to specify security and management policy in distributed environment. It is a flexible,

expressive and extensible policy language.

There are several kinds of policies. The authorisation policy defines what a principal of a

subject domain could do on the targets of the object domain. Figure 2-1 is an example of

authorisation policy. It says that the members of the NetworkAdmin domain are authorised to load,

remove, enable or disable objects in the Nregionlswitches domain.

Inst auth+ switchPolicyOps {

Subject /NetworkAdmin;

Target <Policy1> /Nregion/switches;

Action load(), remove(), enable(), disable();

Figure 2-1 example of positive authorisation policy

The information filtering policy is used to modify the input/output parameters in an action. Its

purpose is to restrict the information flow. Filters can only be applied to positive actions.

Delegation policy defines the transfer level of access rights. It records the grantee that receives the

delegated privileges. It can be associated with an authorisation policy, which contains the relevant

subject, target and action. The refrain policy defines what actions the subjects cannot perform on

the objects. It is similar to negative authorisation policy. The difference is that refrain policy is

actively enforced by subjects because subjects might suspect the safety of the objects; negative

Chapter 2 Distributed Access Control

authorisation policy is passively enforced by the servtce controller. Obligation policy is

event-triggered and defines the actions that must be performed by the subjects on the targets.

Figure 2-2 is an obligation policy that specifies the user must be disabled after three consecutive

login failures.

Inst oblig loginFailure {

on

subject

target <userT>

do

Figure 2-2 obligation policy

J*loginfail(userid);

s=/NRegion/SecAdmin;

t=/NRegion/users " { userid} ;

!.disable()-> s.log(userid);

Constraint policy specifies the conditions under which the target policies are valid. A basic

constraint policy is for single target policy and a meta policy is for a group of policies. Composite

policy combines several related policies together to form a group policy, either by the same

subject, target or other criteria. It facilitates policy management in large, complex enterprises.

Role policy is a special case of group policy, in which all policies share the same subject. Roles

can form hierarchies. They can have complex relationships between each other. For instance, a

secretary role must mail a report to the manager role every Monday.

2.5 Policy based approaches

2.5.1 PolicyMaker and KeyNote

M. Blaze et a!. summarized their work on trust management in [1]. The concept of trust

management was first introduced in the PolicyMaker system [4] and was defined as "a unified

approach to specifying and interpreting security policies, credentials, and relationships; it allows

direct authorization of security-critical actions".

A trust management system has five basic components:

8 Action, which is the operation that the subject performs on the object.

e Principal, which is the subject who has been legally granted some permission to perform

Chapter 2 Distributed Access Control

an action on the object.

® Policy, which defines the regulations that must be conformed to for the subjects to

perform the actions.

8 Credential, which allows subjects to delegate privileges to other subjects.

e Compliance checker, which generates an authorisation decision based on the given

policy, a set of credentials, and a requested action.

There should be standard languages to describe the action, policy, and credential. The

languages are shared by all the trust-management applications. The security configurations of the

applications have exactly the same syntactic and semantic structure. Trust management unifies the

notions of security policy, credentials, access control and authorisation. Unlike traditional

certificates, which combine keys and names, trust management certificates combine keys and

authorisations. The issuer delegates the capability to the holder through the certificate. Trust

management systems are inherently extensible for distributed systems and versatile for many

applications.

Trust management sums up distributed access control as "does the set C of credentials prove

that the request r complies with the local security policy P?" [4]. The compliance checker takes in

(r, C, P) and returns a result of compliance checking. The most important contribution of trust

management is "a general purpose, application-independent algorithm for checking proofs of

compliance" [4].

PolicyMaker was the first demonstration of trust management. It was introduced in [4] and its

compliance-checking algorithm was later carried out in [20]. Credentials and policies of

PolicyMaker are fully programmable and they are consisted of assertions. Assertions are

two-value pairs in the form of if, s), where f is a programme that describes the privileges and to

whom they are being granted, s is the source of authority. In policies, s is always the preserved

keyword policy, and in credentials, s is the public key of the issuer. Assertions can be written in

any progranm1ing languages. The receiving end of the assertions must have an interpreter of the

language in order to safely interpret them because credentials could be issued by untrusted

authorities. A language named AWKWARD [4], which is a safe version of AWK [62], had been

developed.

PolicyMaker does not assent to sticking on one particular language to write the assertions.

9

Chapter 2 Distributed Access Control

The advantage is that all the effort that "has gone into designing, analysing and implementing the

PolicyMaker compliance-checking algorithm will not have to be redone every time an assertion

language is changed or a new language is introduced." The proof of compliance and the language

design are independent of each other and can be done separately.

The proof of compliance checking of PolicyMaker is consisted of a method of inter-assertion

communication and a method for determining a result of success/failure. The inter-assertion

communication is done via a write-only data structure. Firstly, a blackboard is created with only

the request r on it. Then all the assertions (f;, s;) are run for one or more times. Each time an

assertion runs it appends one or more records (i, s;, Ru) to the blackboard, where Ru is an action

that source s; approves; fi understands the meaning of Ru but PolicyMaker does not. Finally, the

blackboard will contain a record indicating the legitimateness of the request r. The authors had

provided a mathematical formulation and proof of problem undecidability.

A limitation of PolicyMaker is that it only supports monotonic (non-negative) assertions.

KeyNote [5] was designed according to the same criteria but has made several improvements

compared to its predecessor PolicyMaker. KeyNote system engine includes more functions than

PolicyMaker and mitigates the burden of applications. KeyNote also requires that credentials and

policy be written in a specific KeyNote language, which gains more efficiency and interoperability.

The KeyNote assertion language is a simple and loops-restricted language; it has a minimal-sized

interpreter.

Here is the basic structure of the assertion in KeyNote and an example:

<Assertion>:: <VersionField>? <AuthField> <LicenseesField>?

<LocaiConstantsField>? <ConditionsField>?

<CommentField>? <SignatureField>?

Note: the notation"?" means zero or one repetition

Figure 2-3 KeyNote assertion structure

KeyNote-Version: 2

Local-Constants: Alice="DSA:440 1 ff92"

Bob="RSA:d1234f'

Chapter 2 Distributed Access Control

Authorizer: "RSA:abc123"

Licensees: Alice II Bob

Conditions: (app_domain == "RFC822-EMAIL") &&

(address == "mab@keynote.research.att.com")

Signature: "RSA-SHA 1 :213354f9"

Figure 2-4 KeyNote assertion example

A KeyNote evaluator takes in a set of credentials, policies, requester public keys, an action

environment and returns an application-defined string (usually authorised/denied) to the calling

application. The action environment contains a set of attributes and is similar to the Unix shell

environment.

KeyNote adopts a depth-first search (DFS) algorithm that recursively tries to satisfy both the

Conditions field and the Licensees Key expression of at least one of the policy assertions.

KeyNote's evaluation model is a subset ofPolicyMaker's and is therefore guaranteed by the latter.

At last, an assertion graph, which is composed of policy assertions and the issuer of the credentials,

will be created to approve or deny the request.

KeyNote also has non-negative credential restriction as PolicyMaker.

Trust management models are based on rigorous delegation, where subjects cannot delegate

more than they have; de legators and de legatees must be known and identified by their public keys.

2.5.2 XACML

XACML (eXtensible Access Control Markup Lauguage) is an OASIS standard that describes

a general-purpose access control policy language and an access control decision request/response

language in XML format [13)[16].

The access control decision language lets the user ask whether a specific action is allowed or

not by sending a message and receiving the response. The response contains one of the following

four values:

(i) Permit. The action is allowed.

(i) Deny. The action is not allowed.

o Indetem1inate. An error occurred or more infommtion is required to make a decision.

Chapter 2 Distributed Access Control

o Not Applicable. The service is unable to answer the request.

A user makes a request to a Policy Enforcement Point (PEP). The PEP sends the user's

attributes, the resource's attributes, the requested action, together with some other relevant

information to a Policy Decision Point (PDP). The PDP checks the input against the relevant

policy and returns the answer to PEP. PEP will allow or deny the request based on the decision.

The policy is written in XACML policy language. Each policy document contains one

Policy/PolicySet root element. A Policy/PolicySet contains several Rules or other Policy/PolicySet.

To make an access control decision, the PDP first locates the Targets that apply to the request,

evaluates each Rule related to the Target. Then a PEP or PDP extracts attributes from the request,

the resources and the environment through AttributeDesignator or AttributeSelector. Multiple

attributes are stored in Bags. The PEP/PDP use system or user-defined functions to compare the

attributes according to the Rules and return a result. The final decision is made according to the

combined result of all the rules via Policy Combining Algorithms or Rule Combining Algorithms.

The drawbacks of XACML are that it does not integrate RBAC, users have to define and

include their own RBAC; also it does not support delegation, which constrains scalability of the

system.

2.6 Summary

Table 2-1 summary of related work on distributed access control

Support Decentralisation Fine-grained access Comment

RBAC mechanism control

PERMIS Yes Uniform RBAC is No Roles are stored in

administered in different the certificate as

locations attributes

OASIS Yes Through Appointment Partially Uses appointment

to replace

delegation

Chapter 2 Distributed Access Control

Policy Maker No Through rigid delegation Partially. Access drew the concept of

and KeyNote rights are directly trust management

assigned to subjects

XACML No No Yes. Via attributes of OASIS standard

both requester and

resource

Ponder Yes Through domain policy Partially

and delegation policy

As we can see from the above table, most mechanisms adopt delegation as the solution of

decentralised management of trust. Delegation is restricted because it requires that the identities of

the delegator and delegatee must be known in advance. OASIS introduces a new decentralised

mechanism called appointment. More research is needed in this area.

Chapter 3 Trust and the Mojoy Trust Policy Language

3 Trust and the Mojoy Trust Policy language

3.1 Foundation of trust

The concept of trust has been addressed within many disciplines, including philosophy,

psychology, sociology, transaction economics and organization theory. It has widely

acknowledged that trust is complex and multidimensional [10][27].

In this thesis, we discuss trust in a distributed computing environment. Trust can be generic

description of the specific subject. Trust can be particular privileges of a subject. Trust can be

transferred from one subject to another. Service providers trust subjects by allowing them to

access protected services and/or resources.

3.1.1 Initialization of trust

There are several ways for a subject to start its trust relation with the unknown world.

Whatsoever, the subject has to trust some other subjects unconditionally at the very beginning.

Recommendation

In real life, recommendation is the most common method to help making a decision.

Recommendation is usually obtained from someone familiar, or the media, newspaper, etc. The

credibility of recommendation highly depends on the source. It could be unreliable because it is

very subjective.

Reputation

Reputation is used to establish trust between unfamiliar parties. It does not require prior

contact experience with each other. It is a collective opinion of the public about an unknown party.

Therefore it is more reliable than recommendation. But it is vulnerable to collusion and can be

deliberately manipulated.

Chapter 3 Trust and the Mojoy Trust Policy Language

Experience

Trust is closely related to previous experiences because experiences can be good evaluation

criteria to predict the outcome of future interactions. Experiences may be consisted of vague

memory or concrete records of transaction history. Depending on the knowledge learned from past

experiences, the level of trust may increase or decrease. Experiences can also be gained and shared

by some other trusted parties. In this case, it is similar to recommendation.

Root of trust

An entity needs to first trust at least one subject in order to establish trust with more subjects.

That particular subject(s) is called root of trust. The root of trust is recognized by its identity. This

trust relationship is usually unconditional and uncaused. For instance, the administrator has full

power over the whole system, whoever he/she is. The subject trusts the root of trust only to a

limited scope.

3.1.2 Conveyance of trust

Trust can be transferred from one subject to another. It can be disclosed to third parties. This

facilitates a subject to establish trust with a previously unknown subject through some already

familiar subjects.

Subjects are distinguished by public/private key pairs. A public key is associated with only

one private key and vice versa. The probability that two subjects having the same public/private

key pair is so tiny that it is negligible. The public key can be publicised to everyone so that anyone

(even those who are totally untrusted strangers) can know the public key and the owner. The

private key is kept secret. A subject proves his/her ownership of the public key by successfully

decrypting/encrypting a particular message using the private key. A subject can have multiple

public/private key pairs. This means those systems that require users to be identified by their

identities cannot merely depend on public/private keys; there must be some extra methods to

associate the identity with the public/private key, for instance, requiring ID card before allocating

public/private key.

Trust can be defined as properties. A property can be a generic statement of a subject, such as

5

Chapter 3 Trust and the Mojoy Trust Policy Language

attributes. The meaning of the statement is understood by the receiving subject, the interpretation

accords to some commonly accepted rules. For instance, Alice is a doctor in a hospital. She is

approved by the hospital. When she goes to another hospital, the new hospital finds out that she is

a doctor in the previous hospital and grants her corresponding privileges according to her former

position. It is very likely that Alice does not have the same responsibilities in those two hospitals.

The common rule negotiated by the two parties to interpret the roles is known as Service Level

Agreement (SLA) [17]. SLA is a bilateral contract that specifies the role defmitions. With SLA,

roles can be created remotely according to the same definition and be revoked synchronously in

real time. A property can also be a particular capability. The capability precisely describes what

the subject can do on the specific targets. The meaning of the capability is clearly defined by the

original authority and cannot be misinterpreted. For instance, a capability could be "Alice can read

the public resource in hospital A". This capability must be interpreted uniformly at any location.

Alice cannot have more privilege than the capability.

Properties can be owned, obtained and/or controlled. The subject who owns the properties is

the owner. The owner can grant the properties to any trusted subjects, i.e. grantees. The grantees

therefore obtain the properties from the owner. The original owner decides whether the grantees

can further grant the properties to other subjects. The subject who controls the properties is the

controller. The controllers do not own the properties and thereby cannot perform the actions

indicated by the properties. But they can grant the properties to other subjects therefore those

subjects could own the properties and legally perform the indicated actions.

A subject grants properties to another subject in the fom1 of electronic credentials, a.k.a.

certificate. For instance, X.509 certificate is a widely recognized certificate format. The granting

subject is the certificate issuer and the receiving subject is the certificate holder. Properties are

stored in the certificate. The issuer digitally signs the certificate. The digital signature provides

authenticity, integrity and non-repudiation. The receiving party of the certificate can verify that the

certificate is from the authentic issuer, the content of the certificate has not been tampered, and the

subject is the true holder. Integrity can be verified by recalculating and matching the message

digest value of the certificate. The public key of the issuer must be known in advance to verify the

authenticity of the certificate. It is done by re-computing the digital signature using the issuer's

public key. With a digital signature, the issuer cannot deny the issuance of the certificate, because

Chapter 3 Trust and the Mojoy Trust Policy Language

no one could sign the same signature without owning the specific private key. The holder of the

certificate could be verified by successfully encrypting/decrypting a random message.

The issuer uses certificate to convey his/her trust to the certificate holder. The holder uses the

certificate to prove his/her credibility to third parties. The certificate could be disclosed to anyone.

They are tamperproof. The propagator of the certificate could be anyone other than the

issuer/holder. Certificate can be used to justify the validity of other credentials. For instance, Alice

is a doctor. She has a credential from the hospital to prove her identity and position. The hospital

is further certified by the National Health Service (NHS). In this case, Alice can present the

hospital's certificate, which is issued by NHS, to help confirm her identity and position. A trust

chain is created from NHS to Alice.

3.1.3 Decentralised administration of trust

In a highly distributed computing environment, the administration of trust should be

disseminated to many subjects who are not the original owner/controller of trust. The mostly

commonly adopted decentralisation mechanism is delegation. The owner of the properties grants a

subset of the properties to another subject, the owner is known as the grantor/delegator, the

receiver is known as grantee/delegatee. The grantee can further grant the properties to other

subjects. Delegation level (i.e. how far the properties can be transferred) is controlled by the

delegator.

However, sometimes the subject does not always own the properties before delegation. For

instance, the system administrator can create new users and assign relevant privileges to specific

users. The users can execute system operations, but the administrator does not have the privilege

to execute system operations.

We have designed a new decentralised administration mechanism, trust empowerment. The

service provider defines the trust regulation in its local policy. In the policy, the server specifies

what subjects own/control what properties, whether the properties can be further granted to other

subjects and how far they can be transferred. The subjects can be specified either by their

identities or properties. Different server keeps its private personal policy. The same subject trusted

at one server may not be trusted at another.

27

Chapter 3 Trust and the Mojoy Trust Policy Language

3.1.4 Variation o1 ~rust

Trust is dynamic. It changes as environment varies. It evolves as knowledge and experiences

accumulate. Previously trusted subjects may become untrusted. For instance, trust is limited by

time constraint. A certificate is only valid within its validity time period. After that period, the

certificate will become invalid. Furthermore, the certificate could be revoked before its expiry

time. A consequence of this annulment is that all derived trust depending on the trusted properties

of the certificate will become invalid. Previously untrusted subjects may become trusted. For

instance, the subject provides extra evidence to satisfy the security criteria. The credibility of the

subject could be affected by outside changes. For instance, the common rule, SLA (Service Level

Agreement), used to interpret the roles changes. As a consequence, the subject loses the privileges

to access the resource.

Service providers set rules in their local policies to filter requests. The rules describe the

conditions that the subjects must meet in order to be trusted and the privileges they can obtain

once become trusted. Conditions could consist of subjects' identities, attributes, capabilities and/or

environmental parameters. Privileges could consist of attributes, capabilities and controls.

Conditions and privileges are many-to-many relationship.

Trust could evolve. As the server's experience with the subject accrues, the trust level of the

subject could increase/decrease. The same subject with the same properties under the same policy

could gain/lose privileges according to the accrued experience.

3.2 Trust policy language

Sandhu engineered the structure of security into four layers. From top to bottom, they are

policy, model, architecture and mechanism [33]. Policy is the high-level organizational

requirements and mechanism is the implementation of the security design.

M. Blaze et a!. proposed a trust management infrastructure to solve the trust issues in the

distributed systems. It contains the following elements [4]:

fP Certificates, a.k.a. electronic credentials. They are used to transfer trust information

between entities.

0 Policy, which is stored and trusted locally. It expresses the local security regulation,

Chapter 3 Trust and the Mojoy Trust Policy Language

trusted authorities, trusted relationships, etc.

• Compliance checker, which is a computer programme that takes in user certificates and

local policy, examines them, and generates an access decision, which usually is grant or

deny.

Policies and certificates are written in a language that can be understood by all the entities

involved in the system. The infrastructure of Trust management has been widely accepted and is

considered to be a correct direction.

Recognizing the complex nature of trust, we develop a policy language to describe the basic

entities and their trust relationships. We present the syntax, semantics and an implementation of

the proposed policy language in this chapter. The syntax is expressed in BNF (Backus Naur Form)

[61]. The trust policy language could be implemented via various ways. XML is a good format to

express the policy language; it has been adopted by PERMIS [12], XACML [13] and Akenti [42].

The advantages of using XML are:

• XML is human readable, easy to maintain and platform independent.

• The syntax of XML document can be validated against a schema!DTD file, which could

help reduce format errors.

• There are a number of handy tools and libraries to operate XML document.

An XML schema file will be provided as the definition of the policy language.

3.2.1 Why need a policy language

There are a number of ways to specify, represent and administer policy [17]. Obviously,

natural languages are the best choice but they are inappropriate because of their ambiguous nature.

Efforts have been made to visualise security policies [37][38]. Some components such as

role-privilege mapping and hierarchies are straightforward and can be easily done. But some other

areas such as constraint and conflict are still difficult to visualise. Many RBAC models use formal,

logic-based languages because they are suited for formal reasoning, i.e. the semantics and syntax

can be formally checked and analysed by a programme.

According to our requirements, policy is used to express our new trust model of trust

empowerment, describe the trust relationships between different entities, support various RBAC

models, and implement fine-grained access control. Access matrix, ACL and database are not

Chapter 3 Trust and the Mojoy Trust Policy Language

expressive enough. The ideal choice is a logic-based language which IS simple, easy and

expressive.

A policy language is not a programming language. It does not have to have loop/sequence

clauses. It has subjects, objects and actions as the basic elements. It describes the conditions under

which the subjects are trusted. It associates the conditions with privileges that the subjects could

possess. In a nutshell, the policy language describes the trust relationships between subjects.

Advantages and disadvantages

The advantages of policy based access control over other approaches have been discussed in

[39][40], the conclusion is that policy based access control is the best choice for distributed

environment. Policy is separated from the application. It is independent of the application and can

be updated dynamically to reflect frequent security requirement changes. Policy is portable and

can be reused between different applications. The enforcement is automatically carried out via the

programme. Policies are powerful enough to express complex situations such as fine-grained

access control, environmental constraints, advanced RBAC models and intricate trust relationships.

Policies can be distributed and uniformly enforced. These advantages clearly reveal that policy

based mechanism is ideal for distributed access control.

Policy based access control has its disadvantages. All the systems involved must be able to

understand the language which is sometimes difficult to accomplish in a widely distributed

environment. Different organizations have different requirements, some require a simple language

and others require a complex one, an all-purpose language is hard to design. A compliance checker

is needed to process the certificates and policies. Of course the compliance checker should be able

to understand all the possible formats, which is very difficult, if possible, to achieve.

3.2.2 Subject

Syntax:

subjects::= subject {subject} I any_subject

subject::= public_ key

public_ key::= string

issuers ::=subjects

Chapter 3 Trust and the Mojoy Trust Policy Language

holders ::=subjects

Description:

A subject is an entity that performs actions in a system; it can be a user, a program or a server.

A subject is distinguished by its public key. The public key is computed by a certain algorithm and

specific parameters. The public key is encoded into a readable string through an algorithm such as

BASE64. Subjects is a set that consists of one or more subject or any subject. Any subject denotes

any legal and possible subject. Issuers and holders are special subjects. Issuers sign the certificate

and holders own the certificate. A subject proves its authenticity by providing evidence of owning

the corresponding private key. This could be done by several ways, such as encrypting/decrypting

a randomly generated message. Whether the same subject could hold multiple public/private key

pairs is not of our concern.

Implementation:

<xs:element name=" Subjects">

<xs:complexType>

<xs:choice>

<xs:element ref="Subject" maxOccurs="unbounded"/>

<xs:element ref="AnySubject"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name=" Subject">

<xs:complexType>

<xs :sequence>

<xs:element ref="PublicKey"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="PublicKey" type="xs:string"/>

<xs:element name="AnySubject"/>

<xs:element name="Issuers">

Chapter 3 Trust and the Mojoy Trust Policy Language

<xs:complexType>

<xs:sequence>

<xs:element ref="Subject" maxOccurs="unbounded"/>

</xs :sequence>

</xs:complexType>

</xs:element>

<xs:element name="Holders">

<xs:complexType>

<xs :sequence>

<xs:element ref="Subject" maxOccurs="unbounded"/>

</xs :sequence>

</xs:complexType>

</xs :element>

3.2.3 Attribute

Syntax:

attributes::= attribute {attribute } I any_attribute

attribute::= name value

name : := string

value ::=string

Description:

Attribute is generic description of a subject. An attribute is a name and value pair. The name

and value are of string types. For instance, "Alice is a student" could be represented as

"name=Alice, position=student". A role could also be stored as an attribute, for example,

"role=user". The meaning of the attribute is interpreted by the object application. Attributes is a

set that consists of one or more attribute or any attribute. Any attribute denotes any legal and

possible attribute.

Implementation:

<xs:element name="Attributes">

<xs:complexType>

Chapter 3 Trust and the Mojoy Trust Policy Language

<xs:choice>

<xs:element ref="Attribute" maxOccurs="unbounded"/>

<xs:element name=" Any Attribute"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name=" Attribute">

<xs:complexType>

<xs :sequence>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Value" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

3.2.4 Capability

Syntax:

capabilities ::=capability { capability }

capability : := targets actions

targets : := target { target } I any_ target

actions::= action {action} I any_action

target : := string

action ::=string

Description:

Capabilities is a set that consists of one or more capability. A capability is what a subject can

do on specific target. A capability consists of targets and actions. Targets consists of one or more

target or any target. In the current version, a target is a string. In the future, we are going to define

target in Uniform Resource Identifier (URI) format. URI is a string of characters for identifying an

abstract or physical resource [52]. URI can be finely classified into Uniform Resource Locator

(URL) and Unifonn Resource Name (URN) [51]. The former represents a resource by its current

3

Chapter 3 Trust and the Mojoy Trust Policy Language

location and access method. The latter represents a resource by its globally unique name and can

be persistent even if the resource becomes unavailable. Any target denotes any legal and possible

target. Actions consists of one or more action or any action. An action is application specific and

must be understood by the object application. It is usually encoded into a readable string. Any

action denotes any legal and possible action.

Implementation:

<xs:element name="Capabilities">

<xs:complexType>

<xs:sequence>

<xs:element ref="Capability" maxOccurs="unbounded"/>

</xs: sequence>

</xs:complexType>

</xs:element>

<xs:element name="Capability">

<xs:complexType>

<xs:sequence>

<xs:element ref="Targets">

<xs:element ref=" Actions">

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Targets">

<xs:complexType>

<xs:choice>

<xs:element ref="Target" maxOccurs="unbounded"/>

<xs:element ref="AnyTarget"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="Actions">

Chapter 3 Trust and the Mojoy Trust Policy Language

<xs:complexType>

<xs:choice>

<xs:element ref=" Action" maxOccurs="unbounded"/>

<xs:element ref="AnyAction"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="Target" type="xs:string"/>

<xs:element name=" AnyTarget"/>

<xs:element name=" Action" type="xs:string"/>

<xs:element name="AnyAction"/>

3.2.5 Control

Syntax:

controls : := control { control }

control ::=attributes I capabilities

Description :

Controls is a set that consists of one or more control. Control is a set that consists of

attributes and/or capabilities. Attributes and capabilities are also called properties. Sometimes a

subject does not own the properties; instead it has control over the properties. This means that the

controlling subject can grant the properties to other subjects thereby the grantees will own the

properties and can legally perform the specified actions, but the controlling subject cannot perform

the same actions. Attributes and capabilities are defined in previous sections.

Implementation :

<xs:element name="Controls">

<xs:complexType>

<xs :sequence>

<xs:element ref="Control" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

Chapter 3 Trust and the Mojoy Trust Policy Language

</xs :element>

<xs:element name="Control">

<xs:complexType>

<xs:all>

<xs:element ref=" Attributes"/>

<xs:element ref="Capabilities"/>

</xs:all>

</xs:complexType>

</xs:element>

3.2.6 Co1111straint

Syntax:

constraints : := constraint { constraint }

constraint : := time_ constraint I ip _constraint

time constraint : := start time end time - - -

start_ time : := string

end_time ::=string

ip_constraint ::=string

Description :

Constraints IS a set that consists of one or more constraint. A constraint contains

environmental parameters, which are in contrast to users' attributes and are independent of users.

A constraint consists of one time constraint or one IP constraint, or a combination of them. A time

constraint consists of one start time and one end time. Start time and end time are expressed in the

form of a string, for instance, "16/10/2004 20:06:00" or "09:00:00". An IP constraint is an

Internet IP address expressed in the form of a string, for instance, "129.234.198.1" or an IP

address segment "192.168.0.1/24".

Implementation :

<xs:element name="Constraints">

<xs:complexType>

<xs:sequence>

Chapter 3 Trust and the Mojoy Trust Policy Language

<xs:element ref="Constraint" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Constraint">

<xs:complexType>

<xs:sequence>

<xs:element ref="TimeConstraint" minOccurs="O"/>

<xs:element ref="IPConstraint" rninOccurs="O"/>

</xs:sequence>

</xs:complexType>

</xs :element>

<xs:element name="TimeConstraint">

<xs :complex Type>

<xs:sequence>

<xs:element name="StartTime" type="xs:string"/>

<xs:element name="EndTime" type="xs:string"/>

</xs :sequence>

</xs :complexType>

</xs :element>

<xs:element name="IPConstraint" type="xs:string"/>

3.2. 7 Condition

Syntax:

conditions ::=condition {condition}

condition ::= [subjects] [issuers] [holders] [attributes] [capabilities] [constraints]

Description:

Conditions is a set that consists of one or more condition. Condition consists of subjects,

attributes, capabilities, constraints, or any combination of them. Satisfying the conditions set

means satisfying all the condition. Subjects, issuers, holders, attributes, capabilities and

7

Chapter 3 Trust and the Mojoy Trust Policy Language

constraints are defined in previous sections.

A conditions set is associated with one or more privileges sets. A subject must satisfy at least

one conditions set in order to be trusted. Trusted subjects can be granted the privileges contained

in the corresponding privileges set. See following sections for more details.

Implementation:

<xs:element name="Conditions">

<xs:complexType>

<xs:sequence>

<xs:element ref="Condition" maxOccurs="unbounded"/>

</xs :sequence>

</xs:complexType>

</xs:element>

<xs:element name="Condition">

<xs:complexType>

<xs:all>

<xs:element ref=" Subjects" rninOccurs="O"/>

<xs:element ref="lssuers" minOccurs="O"/>

<xs:element ref="Holders" rninOccurs="O"/>

<xs:element ref=" Attributes" rninOccurs="O"/>

<xs:element ref="Capabilities" minOccurs="O"/>

<xs:element ref="Constraints" minOccurs="O"/>

</xs:all>

</xs:complexType>

</xs:element>

3.2.8 Privilege

Syntax:

privileges ::=privilege {privilege }

privilege ::=attributes I capabilities I controls

Description:

Chapter 3 Trust and the Mojoy Trust Policy Language

Privileges is a set that consists of one or more privilege. A privilege is what a subject can do

in a system. A privilege consists of attributes, capabilities, controls, or any combination of them.

One privileges set is associated with one or more conditions sets. If a subject satisfies the

associated conditions set, then it gains the privilege contained in the privileges set. Attributes,

capabilities and controls are defined in previous sections.

Implementation:

<xs:element name="Privileges">

<xs:complexType>

<xs:sequence>

<xs:element ref="Privilege" maxOccurs="unbounded"/>

</xs :sequence>

</xs:complexType>

</xs:element>

<xs:element name="Privilege">

<xs:complexType>

<xs:all>

<xs:element ref="Attributes"/>

<xs:element ref="Capabilities"/>

<xs:element ref="Controls"/>

</xs:all>

</xs:complexType>

</xs:element>

3.2.9 Rule

Syntax:

rules : := rule { rule }

rule : := conditions privileges

Description:

Rules is a set that consists of one or more rule. A rule specifies under what condition and to

what extent a subject can be trusted. A rule consists of conditions and privileges. If a subject

Chapter 3 Trust and the Mojoy Trust Policy Language

satisfies the conditions set, it acquires all the privilege in the privileges set in the same rule. A

subject could satisfy more than one rule at the same time and thereby gains as many privileges as

possible. Conditions and privileges are defined in previous sections.

Implementation:

<xs:element name="Rules">

<xs:complexType>

<xs:sequence>

<xs:element ref="Rule" maxOccurs="unbounded"/>

</xs :sequence>

</xs:complexType>

</xs:element>

<xs:element name="Rule">

<xs:complexType>

<xs :sequence>

<xs:element ref="Conditions"/>

<xs:element ref="Privileges"/>

</xs :sequence>

</xs:complexType>

</xs:element>

3.2.10 Policy

Syntax:

policy : := version rules [conditions] [privileges]

version::= XML name space

Description:

The server specifies its security regulation in the form of policy. Policy consists of version,

rules, conditions and privileges. Conditions and privileges are optional; they are used to define

common conditions and privileges in order to simplify the structure of the document. Different

versions of the policies are distinguished by version, which is XML name space. The current

version of our implementation is http://www.dur.ac.uklchetrXi.huanglmojoyO.J. Conditions and

Chapter 3 Trust and the Mojoy Trust Policy Language

privileges are defined in previous sections.

Implementation:

<xs:element name="Policy">

<xs :complexType>

<xs:all>

<xs:element ref="Rules"/>

<xs:element ref="Conditions" minOccurs="O"/>

<xs:element ref="Privileges" minOccurs="O"/>

</xs:all>

</xs:complexType>

</xs:element>

3.3 Certificates

Certificates are used to transfer trust from one subject to another. Trust is defined as a set of

properties and stored in the certificate. The subject that grants the trust is the certificate issuer and

the subject that receives the trust is the certificate holder. The issuer digitally signs the certificate.

The digital signature guarantees the certificate's integrity, authenticity and non-repudiation.

The certificate shares part of the syntax and semantics of the policy. But there are several

visible differences.

4i The certificate contains issuer(s) and holder(s); the policy does not.

e> The certificate is digitally signed by the issuer(s) and can be disclosed to anyone; the

policy does not bear a digital signature because it is locally trusted, private and cannot

be divulged.

e The certificate is restricted by some particular conditions contained in the certificate, for

instance, validity period; a policy is not limited by a constraint.

Syntax:

certificate .. version holders [attributes] [capabilities] [controls] conditions Issuers

signature

signature::= string

Description:

Chapter 3 Trust and the Mojoy Trust Policy Language

The certificate consists of version, holders, attributes, capabilities, controls, conditions,

issuers and signature. Attributes, capabilities and controls are optional. Trust is defined as sets of

attributes, capabilities and controls. Conditions restricts the validity of the certificate. Holders are

the subjects who own the trust. Issuers are the subjects who grant the trust to the holders and

digitally sign the certificate. The signature is a message digest value of the certificate encrypted by

the issuer's public key, which is usually encoded into a readable string. Version, holders, attributes,

capabilities, controls, conditions and issuers are defined in previous sections.

Implementation:

<xs:element name="Certificate">

<xs:complexType>

<xs:all>

<xs:element ref="Holders"/>

<xs:element ref=" Attributes" minOccurs="O"/>

<xs:element ref="Capabilities" minOccurs="O"/>

<xs:element ref="Controls" rninOccurs="O"/>

<xs:element ref="Conditions"/>

<xs:element ref="Issuers"/>

<xs:element ref="Signature"/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="Signature" type="xs:string"/>

3.4 Summary

In this chapter, we have discussed the foundation of trust. Trust is established via

recommendation, reputation and experience. The very first trusted subject is called the root of trust.

Trust can be defined as a set of properties, stored in a certificate and distributed to anyone. Trust

varies; it can increase/decrease. Most of the traditional mechanisms adopt delegation as the

decentralised administration mechanism of trust. We have proposed a new mechanism, trust

empowerment, to overcome the limitations of delegation. The new mechanism is implemented

Chapter 3 Trust and the Mojoy Trust Policy Language

through a policy language and a compliance checker. We have provided the syntax, semantics and

an XML implementation of the policy language. The XML schema of both the policy and

certificate is given.

Chapter 4 The Compliance Checker

4 The Compliance Checker

The function of the compliance checker is to check the validity of the certificates, look

through the local trust policy, find out whether the request meets the policy and could be supported

by the certificates. The inputs are user's request, user's certificates, local trust policy and

environmental parameters. The output is a Boolean value indicates whether the request is

permitted or not. Additional information is also generated, for instance, the conditions that are not

satisfied and/or extra supportive documents are required, etc.

4.1 Java and XML

The compliance checker is written in Java and the policy and certificate are written in XML.

We need to examine the available programming tools for Java and XML. There are two popular

APis (Application Programming Interface) available to process XML documents. They are SAX

(Simple API for XML) and DOM (Document Object Model). SAX provides an event-based

framework for parsing XML data, which is the process of reading through the document and

breaking down the data into usable parts. SAX defines all the possible events that could happen

during the parsing procedure. For example, SAX defines an org.xml.sax.ContentHandler interface

that defines startDocument(), startE/ement(. . .), error(. ..) and warning(...). Implementing this

interface allows complete control over these portions of the XML parsing process. A set of errors

and warnings is defined, allowing handling of unexpected situations that occur during parsing,

such as invalid or not well-formed document. DOM provides a representation of an XML

document as a tree. Traversal and manipulation of tree structures are easy to accomplish in

programming languages. DOM reads an entire XML document into memory, stores all the data in

nodes, so the entire document is very fast to access.

SAX and DOM are both programming language independent. The significant drawback of

DOM is that it consumes a lot of resources. Because DOM reads an entire document into memory,

application could be slowed down or even crashed. The larger and more complex the document,

the more pronounced this performance degradation becomes.

Chapter 4 The Compliance Checker

JAXP is Sun's Java API for XML Parsing. JAXP does not compete with or replace either of

SAX and DOM, it does add some convenience methods to try to make the XML APis easier to use

for Java developers. It conforms to the SAX and DOM specifications. It does not redefine SAX or

DOM behaviour, but ensures that all XML-conformant parsers can be accessed within Java

application through a standard pluggable layer.

These above APis should be distinguished from XML parser. Actually, they provide

framework for parsers to use. A parser must be supplied to SAX and DOM to perform any XML

parsing. There are many excellent parsers available in Java, such as Apache Xerces, Oracle's XML

Parser and IBM's XML4J.

JDOM is designed to the 80/20 rule of usability, i.e., for the 80% of the time we use 20% of

the functions. It attempts to solve the deficiencies widely recognized in SAX, DOM, and JAXP. It

seeks to provide a Java-centric, high-performance alternative in most cases. It is not based on

DOM or SAX, but rather allows a user to deal with an XML document in tree form without the

idiosyncrasies of DOM. At the same time, it provides the high performance of SAX, allowing very

quick parsing and output. Additionally, it is namespace-aware; it supports validation through

DTDs and XML Schema.

Considering the nature of our implementation, the compliance checker needs to traverse the

XML document to find a match entry, but does not need to create, modify, insert or append

anything into the existing document; the structure of the credential and policy is already known,

the decision should be made as quick as possible. DOM is not adequate for the job and SAX is too

complicated to deal with some of the common operations such as retrieving a specific element text

according to a given XPath. We do not have cross-language concerns and Java itself is platform

independent, JDOM is the ideal choice for the compliance checker. Actually, we have saved more

than 60% programming time after adopting JDOM.

4.2 Prototype Interfaces

Three major interfaces have been defined for the compliance checker and they all start with a

capital /. They are !ComplianceChecker, !Certificate and !Policy. These interfaces construct the

foundation of the compliance checker and delineate the basic methods. Different software vendors

could provide different implementation of the compliance checker. Application developers would

5

Chapter 4 The Compliance Checker

not have to worry about the compatibility issues as long as the implementations comply with the

same specification. Developers can replace the underlying implementation without affecting

super-stratum applications. Figure 4-1 is the UML graphs for the classes. From now on, interface,

class, method definitions and variable declarations are utterly described in UMLand our programs

are written in Java.

<< intertace >>

tcertifieate

+getlssuersQ:Collection

+getChallengeTel<t() Strill9

+challengeResponse(response: String,random: String): boo! ean

+getl np utStreamO I nputStream

Figure 4-1 the interfaces of the compliance checker

<< intertace >>

ICorqDanceChecker

+check (cert:ICerli1icme,!Wlicy.IPoticy): boolean

+check(certs:ICerli1ica1e[),!WlicyJPolicy)boolean

<< intert3ce >>

!Policy

+getlnpulstreamO lnputStream

The interface !Certificate defines the basic methods of a certificate. The method

getlssuersQ:Collection returns the issuer(s) of the certificate in a Collection. The method

getChallengeTextQ:String returns a randomly generated text to test the ownership of the alleged

certificate holder. The method challengeResponse(random:String, response:String):boo/ean tests

whether the challenge has been successfully digitally signed by the private key of the certificate.

The method getlnputStreamO:InputStream returns the source of the certificate.

The interface !Policy defmes the methods of the local trust policy. Unlike certificate, the local

trust policy is stored in a secure place and does not have to be signed. It has only one method

getlnputStreamQ:InputStream which returns the XML source of the policy.

The interface !ComplianceChecker defines the methods of the compliance checker. It has two

methods. The method check(cert:!Certificate, policy:!Policy):boo/ean takes in two parameters,

cert is a certificate, policy is the local trust policy. It checks whether the certificate complies with

the trust policy, if so, it returns true, otherwise returns false. It throws an exception

CheckerException upon error, for example, the format error of the certificate or policy. The

method check(certs:!Certificate[}, policy:!Policy):boolean takes in two parameters, certs is

collection of certificates, policy is the local trust policy. The method checks whether the set of

certificates comply with the local trust policy. If so, it returns true, otherwise false. Furthermore,

this method tries to find a trust train between the first certificate and the policy rules through the

Chapter 4 The Compliance Checker

rest of the certificates. It throws an exception Checker Exception upon error.

4.3 ~mpiementation

<< intertace ,.,.

~Certificate

+getlssuersQ:Collection

+getChallengeTe»O string
+challengeR esponse(response: string,rsndom :stri ng):boolean

+getl np utstreamO lnputStream

Celtificate

+C et1ifi cate{ cert: String):vo:d

+Cet1ificate(file:F~e):void

+Cettlficate(uri:URL):void

+C et1i1i cate(is:lnpuiStream):YOO:I

+getl ssue rsQ:Collection

+getChallengeTe»O void

+chall engeResponse(response: string,random: string): boolean

+getl np utstream(} lnputStream

-validate() boolean

<< inteffa ce ,.,.

ICo~ecker

+check(cett:ICertilicate~tcy:IPolicy):boolean

+check(cetts:ICertilicaleD~tcy:IPoftey}boolean

<< rea!i:re >> ~ .

+check(cert:ICertilicaleJl:()licy.IPoficy):boolean

+check (certs:IC ertilicaleD~icy:IPoficy) boo! ean

<< interface >>

!Policy

+getlnputStreamO lnputStream

~ <<realize,.,.

Poficy

+Polic"l'(file:F~e)void

+Polic\'(file:String) void

+Poli~urtURL):void

+Polic"l'(is:lnpulStream):void

+getl nputStreamO lnputStream

Figure 4-2 the Java implementation of the compliance checker

Figure 4-2 is the UML diagram of our implementation of the compliance checker. Class

Certificate is the implementation of !Certificate. Despite the four methods defined by the super

interface, it has defined three more methods. Certificate(cert:String) is a constructor method. It

takes in one parameter cert, which is the file name of the certificate. It throws CertException in

case of file format or open error. The method validateO: boolean tests the validity of the certificate,

including signature, time validity and revocation test. It returns true if the validation process

passes otherwise false. Class Policy is the implementation of !Policy. Class ComplianceChecker is

the implementation of IComplianceChecker.

7

Chapter 4 The Compliance Checker

Trustfactory

+getCom pfianceChedrei{):IComplianceChecker

+getP olicy(fileName:StrirtiD:IPoficy

+getCerti1icate(111eName:String)1Certi1icate

+getP oli cy(stream :lnpu!Stream) void

+getCer1i1icate(stream:lnputStream):void

Figure 4-3 the instance factory

Class TrustFactory is the instance factory. It automatically selects the best version of the

implementation, generates and returns the instances of the interfaces. It has the following methods:

getCertificate(cert:String):ICertificate and getCertificate(cert:InputStream):ICertificate

are the factories of the interface of !Certificate. They take in different parameters and return an

instance of !Certificate.

getPolicy(policy: String) :!Policy and getPolicy(policy:lnputStream): !Policy

are the factories of the interface !Policy. They take in different parameters and return an instance

of the interface !Policy.

The method getComplianceCheckerQ:IComplianceChecker returns an instance of the interface

IComplianceChecker.

The compliance checking procedure is shown in Figure 4-4.

1. First of all, it checks the validity of the local trust policy. If this step fails, possibly caused

by ill-formed XML format or unrecognised policy version, the checking procedure fails

and an Exception will be thrown.

2. An Exception will be thrown if there is no certificate.

3. Because there could be more than one certificate, the checker inspects them one by one in

a loop.

4. Get the next certificate in the queue and validate it. The validation process includes

certificate format version checking, algorithm checking, validity period checking,

signature validation, and revocation validation. If succeeds, proceed to the next step,

otherwise go to step 8.

5. Locate the certificate issuer in the trust policy by matching its public key. If the certificate

Chapter 4 The Compliance Checker

issuer can be found, then go to step 7, otherwise proceed to the next step.

6. Find a position in the trust forest and the trust policy.

7. If the certificate content complies with the trust policy, then add it to the trust forest,

otherwise proceed to the next step.

8. If there are more certificates in the queue to be processed, go to step 4, otherwise proceed

to the next step.

9. Now all the certificates have been processed and we have a constructed trust forest. If the

trust forest is empty, i.e., none of the certificates is trusted, then it fails, otherwise proceed

to the next step.

10. Find rooted leaves in the trust forest. If there are no rooted leaves, then it fails, otherwise

proceed to the next step.

11. If the request complies with the leaves, then it succeeds, otherwise it fails.

9

Chapter 4 The Compliance Checker

nel<! certllcste

1«:01~ a po.snlon'

(1111rilnnc 1

<X>mPDI~

llltribl.lle certi t cnle
Wthpolicy

] falls]

lai!Oe

• start

at li!ast one certl•c:are7

l ocst~ ras~r

inpolir;y by

match int;~ public l:ev

ce rtltcale type

more c:ertiflcme?

K'
ltu.- lorl>tllsempl'(? ono)

is there rootc<llci!Ve$?

o~$)

does lhe re<J,Jest
romply Wth
tocJ.i!dlea~?

i
1rue

(deleg81i on]

compn< c

<lclegnli0f1 oortitcme
v.ilh polir;y

()'CS]

Figure 4-4 the activity diagram of the compliance checking procedure

Chapter 4 The Compliance Checker

• start

ai least one certificate?

challenge holder

[fails)

more ceftifcate to inspect?

vrod cerlifacate ~9 empty?

fail

'[no]
ail compliance dledter

Figure 4-5 how the application invokes the compliance checker

Figure 4-5 shows how an application invokes the compliance checker

1. There must be at least one certificate otherwise an error occurs.

2. Validating the policy. This optional step could be done at the application level or

compliance checker level.

3. Get next certificate in the queue.

4. Validate the certificate. This step includes XML validation, schema compliance checking

5

Chapter 4 The Compliance Checker

and certificate validity verification.

5. If it needs to ensure the alleged holder of the certificate, then challenge the holder with a

randomly generated text. Otherwise go to step 7.

6. If the challenge succeeds, then add it the valid certificate list, otherwise the whole process

fails.

7. If there are more certificates in the queue, then go to step 3, otherwise proceed to the next

step.

8. If the valid certificate list is not empty, then call the compliance checker usmg the

certificate list and policy as parameters, Otherwise it fails.

4.4 Shared libraries

The implementation has been wrapped into a web service and a .jar file. It can be integrated

into any applications as an access control component.

4.4.1 Jar library

B ~'B mojoy .jar
. B· ~ mojoy .jar

i±J ~ MET A-INF
i±J {QJ org

8 ~ Uk
8~ ac
8~ dur
8~ cs
B~ mojoy

[tJ ~ commandline
i±J ~ wlndowgui
. ·9.> CertException .class

-•> Certificate.class
.. J~j. ComplianceChecker .class

· -~1- ComplianceCheckingException .class
-~> ErrHandler .class
~~- !Certificate .class

·· •;. IComplianceChecker .class

-•> lnfo.class
~;. !Policy .class
-~1- Policy .class
· ~;. PolicyException .class
•;. Resutt .class
~;. TrustFactory .class

··· --~1> Xm!Tool.class

Figure 4-6 the .jar file of the implementation

Application developers can easily import the classes into the application and use the

52

Chapter 4 The Compliance Checker

interfaces and implementations. Figure 4-7 shows a simple example. It constructs an !Certificate

object, an !Policy object and an IComplianceChecker object. It invokes the check method and gets

a boolean result.

import uk.ac.dur.cs.mojoy. *;

public class CommandLine {

}

public static void main(String[] args) {

try{

!Certificate cert=TrustFactory.getCertificate("certificate.xml");

!Policy policy=TrustFactory.getPolicy("policy.xml");

IComplianceChecker checker=TrustFactory.getComplianceCheckerO;

boolean result=checker(cert, policy);

} catch(Exception e){

System. out. println(e.printStackTraceO);

}

Figure 4-7 an example of the usage of the compliance checker .jar library

4..4.2 Web services

The library has also been wrapped into web services using Axis, which is the successor of

Apache SOAP. Our test environment of the web service is Microsoft Windows XP Professional

Edition, Sun Java JDK 1.4.1. The web service server is Tomcat 4.0.6.

Deploying the web service is quite simple. Copy mojoy.war under the directory

$tomcat!webapps, launch Tomcat, Tomcat will automatically uncompress and deploy. The URL of

the deployment is http://localhost:8080/mojoylservicesl, type the URL into the address bar of the

browser and hit return, the deployment infommtion will appear in the browser window (Figure

4-8). These messages mean that the web services had been successfully deployed and are ready to

be invoked.

Chapter 4 The Compliance Checker

flo ~ :.: .. fipl>it;" 11>0' tl•"
l.!) rr p s....n w F..-... " e l.' a .

~- t) httl>~l_l>""'-..t:808l\tltru"iSilMCOO _

And now .. . Some Services

• ~dllinS~r,·Hc " r<dl ·
o .\dminSer\' ice

• \"e-r~ ion l .-s.dl l
o •et\'er5ion

• Conpli~nceChecker (T.<d]J
o check

v -(oal ntnnot

Figure 4-8 deployment of the compliance checker as web services

ComplianceCheckerSoapBindingStub binding= (ComplianceCheckerSoapBindingStub) new

ComplianceCheckerServiceLocatorQ.getComplianceCheckerQ;

boolean value= binding.check(certi:ficate, policy);

Figure 4-9 web service client side sample

Figure 4-9 shows a basic sample of the invoking of the compliance checker deployed as a

web service. Compared with the .jar library, the advantages of web service are obvious:

• There is no factory class needed to manufacture the implementation.

• Server side can upgrade the web service implementation whenever they want without

notifying client side.

• The client side application could be developed in any language under any platform other

than Java.

4.5 Demo

The purpose of the demo is to demonstrate the work process of the compliance checker. The

demo itself is a calling application, the compliance checker acts as the access control component.

The application (demo) accepts outside user request and passes it, together with some supporting

documents, to the access control component (compliance checker). The access control component

examines the relevant documents and returns an access control decision. The application shows

Chapter 4 The Compliance Checker

the final decision to the user. The input includes user request, user certificate, local trust policy and

environmental parameters. The access control decisions are permit, deny or cannot determine.

File ConfiQ Checker Lang~ Help

~ 115 ~·

Policy' I C:\Documents ~nd Settings\Chenxi\My Doc J Choose Ed~

Certificate' [~D-o-.;u-.;:;e~!; and Settings\ChenKi\My Doc J Choose I [Ed~

Target' [ta;Qet-
-

---_-_]
Action' read c,eJ.:..-t

Authority Attributes' [~: \D~uments and Settings\Chenxi\My Doc•] Choose I I Edit

Option [C:\~oc~ents and Settin9s\C~Ki\My ~cj Choose I [Edit

Envionment I C:\Documents and Settings\Chenxi\i-'ly Doc•] Choose I [Edit

Log J C: \D~.;uments and Settings\Che,;;iWy Doc] Choose

Compliance Checker Run

Message

View Log

Status

Figure 4-10 the Java demo of the compliance checker

The demo of the compliance checker is written in Java Swing. The application has been

wrapped in one JAR fi le, mojoywindow.jar. The test environment is Microsoft Windows XP

Professional Edition, Sun Java SDK 1.4.1, Apache Xerces XML parser. The compliance checker's

version is 0. 1. Double click the file mojoywindowjar or type Java -jar mojoywindowjar at the

command line prompt will launch the application (Figure 4-10).

Please follow the instructions to invoke the checking process.

1. Choose the policy fi le. Policy is the locally trusted security policy. Users can type the full

path and file name into the box, or use the Choose button to open a file chooser dialog and

select a file. Currently, the compliance checker only supports single policy file, later

versions will support multiple policies. The default policy is policy.xml under the present

directory. The Edit button allows the users to view and edit the file content (Figure 4-11).

Chapter 4 The Compliance Checker

2. Choose the certificate file. Certificate is the user's evidence to support his request.

Currently, the compliance checker only supports one certificate. It is expected that later

versions will support multiple certificates. The default certificate is cert.xml.

3. Choose the request. The request consists of a target and an action. The target is the object

that the user wants to access. The action is what the user wants to perform on the object.

4. Choose authority attribute file. The authority attribute file contains the attributes of the

certificate issuers. They are retrieved from other relevant certificates and stored in the file.

The process of how they are retrieved is omitted here. The default file for is auattr.xml.

5. Choose option file. The option file specifies the settings of the compliance checker. It

specifies the logging level, whether to perform format validity check, the version of the

XML parser, etc. The compliance checker will use default settings without the option file

being specified. The default file is option.txt. This setting is optional.

6. Choose environmental setting file. The environmental setting file contains environmental

settings, such as time and IP address. These environmental parameters are collected by the

application and stored in the file. The default file is env.txt. This setting is optional.

7. Choose log file. The log file records the debug, warning and/or error messages generated

during the process of compliance checking. It helps the administrator to determine the

problems during compliance checking. If it is left empty, then no message will be logged.

The default file is log. txt. This setting is optional.

8. Start compliance checker. Click the Run button to start the compliance checker.

9. The message box will show the process and the result of the compliance checking: penn it,

deny or cannot determine. The log file contains the comprehensive information of the

error messages, for instance, which part of the certificate/policy does not comply with the

schema, or what target/action is not recognized. Users can view the log file by clicking the

View Log button.

5

Chapter 4 The Compliance Checker

l Open Reload Save Exl

<?xml versioo••1 _a• encoding•"UTF -8"?>
<!-- ed~ed wilh XMLSPY v5 rei. 4 U (hltp:ltwww .xmlspy .com) by Chenxi (DU) -->

<1-- Z-Trust Poley Language Example. version 0.1 -->

<Policies>

<1-- IBM Issues capablity certificate->

<Precondlion>

<Rule>

·~le>

<JPrecondilion>

<Privleges>

<Issuers>

<As suers>

<CapsblllyCertlflcate>

<Targets>

Figure 4-11 editor dialog window

<!-- administrator of IBM ->

<As suer>

<Publcl<ey>
•Keylnfo>

<.4<eylnfo>

<ll'ublicKey>

<T arget>IBMJResources<fT arget>

<KeyValue>llM's publtc key<DSAKeyValue/>

<A<eyValue>

The editor dialog window is opened by the demo. In the editor window, user can open, view,

edit and save file .

4.6 Performance and security issues

There have always been performance concerns about PKI. Our architecture is not an

exception since the certificate is protected by digital signature based on PKI. Theoretically, there

are two bottlenecks during the process of compliance checking. The first one is certificate

validation, including certificate digital signature verification and revocation check. Digital

signature verification includes a series of XML canonical computing, message digest computing,

and public key encryption. And these complex algorithms usually take up a lot of computing

resources, the execution time is proportional to the size of the certificate. Because the certificate is

usually very small compared to the size of policy, the execution time could be regarded as a static

and small value. Certificate revocation check includes referring back to the issuing authority and

checking whether it has been explicitly revoked before the validity date. The second bottleneck is

the compliance checking process. Because it involves a double loop, the execution time is linearly

proportional to the size of certificate and policy. As a solution to alleviate the burden of

Chapter 4 The Compliance Checker

revalidating and processing these certificates, a certificate repository could be established to store

the valid certificates for a short period, for example, six hours. Within this period, certificate

would not have to be revalidated and hence expedite the performance of the whole system.

XML parsing is not a problem at all. According to our test, validating a 3MB XML file only

takes up 2-3 seconds. Our test environment is Pentium 4 2.8GHz, 512MB memory, 40GB hard

drive, Windows XP Professional Edition, Sun Java JDK 1.4, and Apache Xerces XML Java parser.

4. 7 Implementation limitations

Our implementation has several limitations due to limited time. For instance, the function of

certificate validation is not included. The XML parser is able to check XML validity, the

certificate and policy tested in our experiments are assumed to be valid by itself. Actually there are

several off the peg software packages available to carry out the task. For instance, Apache XML

security library provides both Java and C++ implementations that comply with the W3C standards

[21][22]. Also, the function of challenging the holder is not implemented. Implementing the

function of challenge should be careful of replay attack, in which the attacker intercepts the

response sent back by the authentic holder and resends it to the server to impersonate the holder.

To prevent such attacks, server should append a nonce to the challenging message. Replies with an

obsolete nonce should be discarded. Implementing the construction of trust forest from loads of

certificates and finding out a trust train from the constructed trust forest is huge work. It involves

privilege delegation and empowerment, interpretation of various certificates and enforcement of

local trust policy. Our implemented is able to deal with one certificate and one policy. The

algorithm of dealing with two or more certificates is very complicated and is left to future work.

4.8 Summary

The task of the compliance checker is to take in the user request, user's certificate, the policy

and environmental parameters and produce an access control decision. We have developed a Java

implementation of the compliance checker in this chapter. A demo based on Java Swing is also

developed to demonstrate how the compliance checker works. The checker is designed to be

flexible to be incorporated into any applications.

5

Chapter 5 Application Case Study

5 Application Case Study

5.1 Resource Sharing Union

Durham.org and newcastle.org are two organizations. They provide resources for their

registered users. Both organizations have their own security regulations to protect their online

resources. Only registered users are allowed to access the resources. The resources are divided into

three categories: public, private and premium. Public resources are available to everybody

(including non-registered users). These resources include weather forecast, Internet search and

web storage, etc. Private resources are for registered users only. Premium resources are restricted

to premium users. Premium resources will charge a fee according to usage. These resources

include financial information real time report, advanced Internet search, tourist discount, etc.

The present situation is that every registered user has a unique account and a password to log

onto the system. To protect their resources, the two organizations have adopted different Role

Based Access Control (RBAC) mechanisms. In durham.org, four kinds of roles have been defined.

They are guests, members, premium members and administrators (Table 5-l). Guests are those

non-registered users whose actions are restricted to "read public information". Members are those

registered users who have access to the free resources. Premium members are upgraded from

members. They subscribe value-added services and pay an annual fee to enjoy them.

Administrators perform supervision tasks. They set up local security policies, issue certificates to

registered members, etc. In newcastle.org, five kinds of roles have been defined. They are guests,

users, power users, staffs and managers (Table 5-2). Guests are those non-registered users whose

actions are restricted to browse public information. Users are those registered users who have

access to the free resources. Power users are upgraded from users; they subscribe value-added

services and pay an ammal fee to enjoy them. StaffS have a special privilege to access "staff-only"

information. Managers perform system routine tasks. They set up local security policies, issue

certificates to registered members, etc.

Chapter 5 Application Case Study

Table 5-1 durham.org's RBAC system

ROLES PERMISSIONS

Guests Browse public information

Members Access to internal information

Premium members Access to pay services

Administrators System supervision

Table 5-2 newcastle.org's RBAC system

ROLES PERMISSIONS

Guests Browse public information

Users Access to internal information

Power users Access to advanced information

Staff Access to staff-only information

Managers System supervision

Both durham.org and newcastle.org have advantages and disadvantages of resources they

offer. For example, durham.org provides tourist discount information but newcastle.org does not,

while newcastle.org provides latest financial real time report but durham.org does not. Developing

these services independently is time consuming and financially unacceptable. The best solution

would be sharing resources with each other. The members of durham.org will be able to access the

online resources of the newcastle.org and vice versa.

The requirements of the new architecture are:

• The original security architecture of the organizations should be preserved so that those

previous registered users' privileges remain intact.

• The users of either side could access peer's resources without an additional registration.

• The new architecture should have the ability to incorporate more potential organizations

into the system without change to the existing architecture. The joining/leaving of the

individual organization does not affect the whole system.

• All the resources of the two organizations should be unifonnly presented to the users as if

they are in the san1e location.

• The organizations are independent of each other; each maintains its own policy.

Chapter 5 Application Case Study

5.2 Incompetence of the previous access control models

Figure 5-1 incompatible RBAC prohibits the unification

RBAC, the current access control model of both systems, does not satisfy the new

requirements of the upgrade. The drawback is that the account is only recognized locally and is

not effective outside of the scope of the organization. At the first glance, those two online

organizations resemble each other a bit, but a further careful study reveals their inner

incompatibilities. For example, Alice is a registered user of durham.org, her account is alice. She

is a premium member, i.e. the account alice has been assigned the role premium members, or

alice<-premium members. Everything is fine if she stays within durham.org, but when she goes to

newcastle.org, the account alice is not recognized, thus all her request will be rejected. Merging all

the accounts of the two organizations is not acceptable because it takes too much time and effort

and there could be account name conflict. Appending domain name to the tail could be a solution,

for instance alice@durham, but incompatible RBAC systems thwart it. The access control system

of newcastle.org will find that the role premium members assigned to alice@durham is not

recognized, therefore all her requests will be denied. Even if the names of the roles are identical,

for instance, both organizations have defined the role guests, the privileges assigned to the roles

could be radically different. Furthermore, unboundedly importing accounts and roles into the

current system from newly joined organizations could be an undue burden. Therefore we can draw

the conclusion that simply merging the two or more RBACs is completely impractical under the

distributed computing environment. We must find a new solution.

5.3 Our solution

Chapter 5 Application Case Study

durham.org
RBAC1

~~
certificate

Resource Sharing
Centre

Figure 5-2 our solution for the Resource Sharing Union

A Resource Sharing Centre (RSC) will be set up to help the communication between the

organizations (Figure 5-2). The organizations publish resources to the RSC. Users look for

published information on the RSC. Five basic actions can be performed on the RSC. They are list,

search, info, subscribe and get. List returns all the available resources. Search returns resources by

keywords. Info returns the description of the resource. Get redirects the user to the reallocation of

the resource.

RSC allows requests from registered users of the allied organizations. Users must produce an

attribute certificate to prove that he/she is a member of the allied organization. RSC validates the

certificate. Validation process divides into the following steps. First of all, the system checks the

certificate format is recognized and strictly follows one of the standards. The second step ensures

that the certificate is within its validity period by comparing the valid after time, valid before time

and current time of the system. The third step computes the canonicalized value of the certificate,

the message digest value, the signature with the public key contained in the certificate and

compares it with the original signature. The fourth step checks whether the certificate has been

revoked. If all of the four steps pass, then the certificate is regarded as valid. Then the server

challenges the certificate holder to verify that he is the owner of the corresponding private key,

usually by sending a message encrypted by the public key contained in the certificate, the message

is comprised of a random sequence plus nonce. If the alleged holder could successfully decrypt

and send back the original infonnation, then the server is convinced that the holder is authentic.

2

Chapter 5 Application Case Study

Next the RSC examines whether the certificate issuer is trusted. It scans its local trust policy

to find a root of trust (see chapter 2.1), usually by matching public key. If the certificate is within

legitimate scope, then the certificate is trusted. If a direct trust relationship cannot be established,

the server will try to find a chain of certificates that could be finally traced back to a root of trust.

The certificate is trusted either through a direct trust or a trust chain.

The user begins to find resources on the RSC after trust has been established. The RSC is

only a directory which lists all the resources and will redirect the user to the real location upon

request. RSC acts as a trusted third party between the users and the organizations. For instance, it

could certify the credibility of the users by double signing the user's certificate, or issues

certificate directly to the user, or issues certificate to the user's belonged organization. The former

two create a direct trust while the last one produces a trust chain.

Upon receiving request from the user, the service provider first validates the certificate. Then

maps the user to the local RBAC system according to SLA, or makes access decision directly from

the user's capability certificate. Finally, the user accesses the resources.

The advantages of our new architecture are:

e The allied organizations do not have to change the original access control model, they can

preserve the old security structure, thus to the most extent avoid the disorder caused by

the introduction of the new system.

o Members do not have to register with every organization. They get certificate from the

organization they belonged to. Their authenticity is guaranteed by the certificate issuer as

long as the issuer is trusted by the other organizations.

e The organizations are independent of each other. Each one has its own trust policy that

defines the credibility and trust level of the other organizations.

e Organizations do not have to know each other in advance. The precondition is that all

allied organizations must at least trust one RSC. RSC guarantees the credibility of all the

allied organizations by issuing certificate to them.

e Newly joined organizations could easily be incorporated into the circle. All they have to

do is getting a certificate from the RSC. RSC issues delegation certificate to the new

organization. All the allied members trust the RSC and thus accept the newly joined

organization.

Chapter 5 Application Case Study

5.4 Assumptions

It is necessary for us to make some assumptions of the designed architecture.

e The RSC is trusted by all the allied organizations in the architecture. All the certificates

issued by RSC are trusted by the organizations.

e The syntax and semantics of the certificates and the policy are understood by all the allied

organizations and RSC. There would be no misunderstandings and/or misinterpretations.

• The certificate and policy are written in well-formed XML. They are semantically healthy

and will not cause confusions.

e All the registered users of the organizations have the required certificates to identify

themselves.

• Organizations and RSC are willing to issue certificates to the users upon request. It is also

the individual organization's responsibility to protect their users' privacy.

• Users can store their private keys securely and prove the ownership upon challenge.

• The server protects its local trust policy from being tampered.

e The server will automatically collect missing certificates.

e The privacy protection of the certificate and policy will not be discussed. We assume that

all the certificates in the application case study are disclosed on a basis of willingness and

do not involve any privacy issues.

Chapter 6 Scenarios and Experiments

Alice is a registered member of durham.org. She has an account alice and has been assigned

the role member. She can search for information in durham.org. Now she wants to find

infom1ation about computer virus in newcastle.org. First of all, she needs to get a certificate from

durham.org that certifies her present situation in durham.org (Figure 6-1). The certificate says that

Alice is a registered member of durham.org. Her position is member. The validity period of the

certificate is from 01/0112004 to 01/01/2010. Alice's authenticity is proved by her public key.

<?xml version="1.0" encoding="UTF-8"?>

<!--Alice's attribute certificate issued by durham.org -->

<Certificate xmlns="http://www.dur.ac. uklchenxi.huang/mojoy0.1 ">

<Attributes>

<Attribute>

<Name>organization</N arne>

<Value>durham.org<Nalue>

</Attribute>

<Attribute>

<Name>position</Name>

<Value>member<Nalue>

</Attribute>

</Attributes>

<Conditions>

<Condition>

<Constraints>

<Constraint>

<TimeConstraint>

<StartTime>OO:OO:OO 01/0 1/2004</StartTime>

5

Chapter 6 Scenarios and Experiments

<EndTime>OO:OO:OO 01/01/201 0</EndTime>

</TimeConstraint>

</Constraint>

</Constraints>

</Condition>

</Conditions>

<Holders>

<Subject>

<PublicKey> Alice's public key</PublicKey>

</Subject>

</Holders>

<Issuers>

<Subject>

<PublicKey>durham.org's public key</PublicKey>

</Subject>

</Issuers>

<Signature>

signature of the certificate

</Signature>

</Certificate>

Figure 6-1 Alice's attribute certificate issued by durham.org

For the second step, she submits her certificate to the Resource Sharing Centre. RSC

validates the certificate; it verifies the certificate's well-formedness, signature, validity and the

authenticity of the holder. RSC recognizes durham.org because it is an allied organization of the

Resource Sharing Union. Then RSC looks up its local trust policy (Figure 6-2). The policy says

that durham.org is a trusted organization; the attribute certificate issued by durham.org is trusted.

RSC locates the entry of durham.org by matching the public key and finds out Alice's attribute

certificate is within the legitimate scope. Then RSC grants Alice the privileges according the local

attribute-permission mapping policy. In this case, Alice will be granted the ability to search for

Chapter 6 Scenarios and Experiments

information within the Union.

<?xml version="l.O" encoding="UTF-8"?>

<!-- RSC's local security policy-->

<Policy xmlns="http://www.dur.ac.uk/chenxi.huang/mojoyO.l ">

<Rules>

<Rule>

<!--durham.org & newcastle.org can issue attribute & capability certificate-->

<Conditions>

<Condition>

<Issuers>

<Subject>

<Public Key>

durham.org's public key

</PublicKey>

</Subject>

<Subject>

<Public Key>

newcastle.org's public key

</PublicKey>

</Subject>

</Issuers>

</Condition>

</Conditions>

<Privileges>

<Privilege>

<Capabilities>

<Capability>

<Targets>

<Target>rsc/searchservice</Target>

</Targets>

Chapter 6 Scenarios and Experiments

<Actions>

<Action>read</ Action>

<Action>execute</ Action>

</Actions>

</Capability>

</Capabilities>

<Attributes>

<Any Attribute/>

</Attributes>

</Privilege>

</Privileges>

</Rule>

</Rules>

</Policy>

Figure 6-2 RSC's local trust policy

For the third step, Alice enters the keyword computer virus into the search engine and gets a

list of results. She is interested in two results, one is an ordinary news report and the other is a pay

service, both of which are located on a remote server of newcastle.org. RSC redirects her to

newcastle.org. When Alice arrives at newcastle.org, she produces her attribute certificate (Figure

6-1) to the access control system of newcastle.org. The access control system validates the

certificate and then looks up its local trust policy (Figure 6-3). The policy says that durham.org is

a trusted organization; the attribute certificate issued by durham.org is trusted. The access control

system locates the entry of durham.org by matching the public key. It finds out that Alice's

attribute certificate issued by durham.org is trusted.

<?xml version="l.O" encoding="UTF-8"?>

<!-- newcastle.org's local security policy-->

<Policy xrnlns="http://www.dur.ac.uk/chenxi.huang/mojoyO.l ">

<Rules>

<Rule>

Chapter 6 Scenarios and Experiments

<!-- durham.org issues attribute certificate-->

<Conditions>

<Condition>

<Issuers>

<Subject>

<Public Key>

durham.org's public key

</Public Key>

</Subject>

</Issuers>

</Condition>

</Conditions>

<Privileges>

<Attributes>

<Attribute>

<Any Attribute/>

</Attribute>

<I Attributes>

<Capabilities>

<Capability>

<Targets>

<Target>newcastle.org/private/a</Target>

<Target>newcastle.org/private/b</Target>

</Targets>

<Actions>

<Action>read</ Action>

<Action>execute</ Action>

</Actions>

</Capability>

</Capabilities>

Chapter 6 Scenarios and Experiments

</Privileges>

</Rule>

</Rules>

</Policy>

Figure 6-3 newcastle.org's local trust policy

Then Alice's position will be mapped to the local RBAC system according to SLA (the

design of SLA is beyond the topic of this thesis). In this case, Alice will be assigned the role users

in the local system. Then access control will be handed over to local RBAC system to carry on.

The role of users has been assigned the permissions to access the computer virus infom1ation,

Alice will be granted access right to the information.

RBAC by itself does not provide fine-grained access control. The server needs extra

information of the requester in order to finely control the resources. For instance, the resources are

pay services. These services are restricted to the premium members of newcastle.org and they

must pay to enjoy the services. Alice is also required to pay before she could use the service. She

could pay either at durham.org or RSC, and in return she gets a certificate (Figure 6-4). The

certificate says that Alice is the holder. She is able to read the resources identified by the URI

newcastle.orglprivatela. Durham.org is the issuer. The validity period of the certificate is from

01/01/2004 to 01101/2005.

<?xml version="l.O" encoding="UTF-8"?>

<!--Alice's capability certificate-->

<Certificate xmlns="http:/ /www.dur.ac.uk/chenxi.huang/mojoyO.l ">

<Capabilities>

<Capability>

<Targets>

<Target>newcastle.org/private/a</Target>

</Targets>

<Actions>

<Action>read</ Action>

</Actions>

Chapter 6 Scenarios and Experiments

</Capability>

</Capabilities>

<Conditions>

<Condition>

<Constraints>

<Constraint>

<TimeConstraint>

<StartTime>OO:OO:OO 01/01/2004</StartTime>

<EndTime>OO:OO:OO 01/0 112005</EndTime>

</TimeConstraint>

</Constraint>

</Constraints>

</Condition>

</Conditions>

<Holders>

<Subject>

<Public Key>

Alice's public key

</Public Key>

</Subject>

</Holders>

<Issuers>

<Subject>

<Public Key>

durham.org's public key

</PublicKey>

</Subject>

</Issuers>

<Signature>

signature of the certificate

7

Chapter 6 Scenarios and Experiments

</Signature>

</Certificate>

Figure 6-4 Alice's capability certificate that confines her to the specific service

Alice submits it to newcatle.org. The access control system validates the certificate and looks

into its local trust policy (Figure 6-3). The policy says that durham.org is a trusted authority, it is

able to issue certificates to its users but the targets should be confined to newcastle.orglprivate/a

and newcastle.orglprivatelb, the actions should be confined to read and execute. The access

control system verifies that the public key of the certificate issuer is durham.org and the

capabilities contained in the certificate are within the confined scope. Alice's request is to read the

resource newcastle.org/privatela. The request is allowed by the certificate and the policy, therefore

the access will be allowed. She finally gains access to the computer virus information.

6.2 Scenario 2 (environmental factors)

Sometimes the service providers require placing environmental constraints. These constraints

are independent of the users and cannot be represented through RBAC. Environmental constraints

include time and location constraints. An example is that newcastle.org wants to restrict the access

from the users of durham.org within the period from Monday to Friday, 9 am to 2 pm, and the

request must be initiated from a recognized IP address. The policy is defined in Figure 6-5. The

policy says that durham.org is a trusted issuer and it is able to issue certificates. The valid

capabilities include read permission to newcastle.org/public and read, execute permissions to

newcastle.orglpremium. Any attributes are permitted. The certificates are restricted by the

constraints. The constraints include date, time and IP address. The permitted time period is from 9

am to 5 pm, specified by the local time of newcastle.org. The request must be initiated from the IP

address segment 129.234.155.0/24, which denotes the IP address segment is 129.234.155.0 and

the subnet mask is 255.255.255.0.

<?xml version="l.O" encoding="UTF-8"?>

<!-- Newcastle.org's local trust policy with environmental constraints-->

<Policy xmlns="http://www.dur.ac.uk/chenxi.huang/mojoyO.l ">

<Rules>

Chapter 6 Scenarios and Experiments

<Rule>

<Conditions>

<Issuers>

<Subject>

<Public Key>

durham.org's public key

</PublicKey>

</Subject>

</Issuers>

<Constraints>

<Constraint>

<IPConstraint>

129.234.155.0/24

</IPConstraint>

<TimeConstraint>

<StartTime>09:00:00</StartTime>

<EndTime> 17:00:00</EndTime>

</TimeConstraint>

</Constraint>

</Constraints>

</Conditions>

<Privileges>

<Capabilities>

<Capability>

<Targets>

<Target>newcastle.org/public</Target>

</Targets>

<Actions>

<Action>read</ Action>

</Actions>

7

Chapter 6 Scenarios and Experiments

</Capability>

<Capability>

<Targets>

<Target>newcastle.org/premium<ffarget>

<ffargets>

<Actions>

<Action>read</ Action>

<Action>execute</ Action>

</Actions>

</Capability>

</Capabilities>

<Attributes>

<Any Attribute/>

</Attributes>

</Privileges>

</Rule>

</Rules>

</Policy>

Figure 6-5 newcastle.org's local trust policy with environmental constraints

These constraints could also be expressed in the certificate by the issuer (Figure 6-6). The

certificate is issued by durham.org, it says that Alice is able to read the resource

newcastle.orglpublic, but her access is restricted within the period from 9 am to 5 pm, and the

access must be initiated from a computer with a recognized IP address within the segment

129.234.155.0/24.

<?xml version="l.O" encoding="UTF-8"?>

<!--Alice's certificate with constraints -->

<Certificate xmlns="http://www.dur.ac.uk/chenxi.huang/mojoyO.l ">

<Capabilities>

<Capability>

7

Chapter 6 Scenarios and Experiments

<Targets>

<Target>newcastle.org/public</Target>

</Targets>

<Actions>

<Action>read</ Action>

</Actions>

</Capability>

</Capabilities>

<Conditions>

<Condition>

<Constraints>

<Constraint>

<TimeConstraint>

<StartTime>09:00:00</StartTime>

<EndTime> 17:00:00</EndTime>

</TimeConstraint>

<IPConstraint>

129.234.155.0/24

</IPConstraint>

</Constraint>

</Constraints>

</Condition>

</Conditions>

<Holders>

<Subject>

<Public Key>

Alice's public key

</PublicKey>

</Subject>

</Holders>

7

Chapter 6 Scenarios and Experiments

<Issuers>

<Subject>

<PublicKey>

durham.org's public key

</PublicKey>

</Subject>

</Issuers>

<Signature>

signature of the certificate

</Signature>

</Certificate>

Figure 6-6 Alice's certificate that contains environmental constraints

Another organization leeds.org wants to join the Resource Sharing Union, so that all the three

organizations could share their resources together. Leeds.org has its own RBAC access control

system that is incompatible with the others'. Four types of roles have been defmed: visitors,

students, staff and root. Visitors are those outsiders who do not have registered accounts with

leeds.org; they can only browse public information. Students are those who have registered and

have been assigned an account and a password to log onto the system; they can access to both

public and internal information. Staff users have been assigned a special privilege to the staff only

section. Root users are the system security administrators; they perform system maintenance tasks,

such as making policies, manage user accounts, etc.

Table 6-1 the RBAC system ofleeds.org

ROJLJES PERSMRSSIONS

Students Access to public and private information

Visitors Browse public information

Staff Access to information that is only available to staff

7

Chapter 6 Scenarios and Experiments

I Root I Manages the security issues

Bob is a registered member of leeds.org. He has an attribute certificate from leeds.org (Figure

6-7). If he goes to newcastle.org and wants to access the resources, he will be rejected because the

issuer of the certificate, leeds.org, is a stranger to newcastle.org. The certificate issued by leeds.org

will not be trusted by newcastle.org.

<?xml version="1.0" encoding="UTF-8"?>

<!--Bob's attribute certificate issued by leeds.org -->

<Certificate xmlns="http:/ /www.dur.ac.uk/chenxi.huang/mojoy0.1 ">

<Attributes>

<Attribute>

<Name>organization</Name>

<Value>leeds.org<Nalue>

</Attribute>

<Attribute>

<Name>position</Name>

<Value>member<Nalue>

</Attribute>

</Attributes>

<Conditions>

<Condition>

<Constraints>

<Constraint>

<TimeConstraint>

<StartTime>O 1/01/2004 00:00:00</StartTime>

<EndTime>O 1/01/2010 00:00:00</EndTime>

</TimeConstraint>

</Constraint>

</Constraints>

</Condition>

77

Chapter 6 Scenarios and Experiments

</Conditions>

<Holders>

<Subject>

<PublicKey>

Bob's public key

</PublicKey>

</Subject>

</Holders>

<Issuers>

<Subject>

<Public Key>

leeds.org's public key

</PublicKey>

</Subject>

</Issuers>

<Signature>

signature of the certificate

</Signature>

</Certificate>

Figure 6-7 Bob's attribute certificate issued by leeds.org

The easiest way to incorporate leeds.org into the union is to get a delegation certificate

(Figure 6-8) from the RSC because RSC is trusted by all the allied organizations. The certificate

says that leeds.org is able to issue any attribute and capability to its members. The validity period

is from 01/01/2004 to 01/01/2010.

<?xrnl version="l.O" encoding="UTF-8"?>

<!--leeds' delegation certificate issued by RSC -->

<Certificate xmlns="http://www.dur.ac.uk/chenxi.huang/mojoyO.l ">

<Privileges>

<Privilege>

7

Chapter 6 Scenarios and Experiments

<Attributes>

<Any Attribute/>

</Attributes>

<Capabilities>

<AnyCapability/>

</Capabilities>

</Privilege>

</Privileges>

<Conditions>

<Condition>

<Constraints>

<Constraint>

<TimeConstraint>

<StartTime>OO:OO:OO 0110 112004</StartTime>

<EndTime>OO:OO:OO 01101120 10</EndTime>

</TimeConstraint>

</Constraint>

</Constraints>

</Condition>

</Conditions>

<Holders>

<Subject>

<PublicKey>

leeds' public key

</PublicKey>

</Subject>

</Holders>

<Issuers>

<Subject>

<PublicKey>

Chapter 6 Scenarios and Experiments

RSC's public key

</PublicKey>

</Subject>

</Issuers>

<Signature>

signature of the certificate

</Signature>

</Certificate>

Figure 6-8 leeds.org's delegation certificate issued by RSC

Newcastle.org's trust policy (Figure 6-9) says that RSC is a trusted entity, it is allowed to

issue certificate to the allied organizations. The privileges that can be delegated include any

attribute and some specific capabilities. Bob goes to newcastle.org and requests for the resources.

He produces his attribute certificate (Figure 6-7) and leeds.org's delegation certificate issued by

RSC (Figure 6-8). The access control system of newcastle.org looks up its local trust policy, finds

out that the RSC is a trusted entity and the delegation certificate issued by the RSC is trusted.

Leeds.org is allowed to issue attribute certificate. Therefore a trust chain could be found, which is

RSC -> leeds.org -> Bob. Newcastle.org establishes trust with leeds.org through RSC and as a

result Bob's certificate is accepted. Bob will be mapped to a local role according to a series of

mapping rules. In this case he will be granted the role users (trust is usually established at the

minimal degree). The rest of the access control procedure will be handed over to local RBAC

system. Finally Bob gets access to the resource.

<?xml version="l.O" encoding="UTF-8"?>

<!-- newcastle.org's trust policy that allows empowerment-->

<Policy xrnlns="http;/ /www.dur.ac. uklchenxi.huang/mojoyO.l ">

<Rules>

<Rule>

<Conditions>

<Condition>

<Issuers>

Chapter 6 Scenarios and Experiments

<Subject>

<Public Key>

RSC's public key

</Public Key>

</Subject>

</Issuers>

</Condition>

</Conditions>

<Privilege>

<Attributes>

<Attribute>

<Name> Resource Sharing Union</Name>

<Value>member<Nalue>

</Attribute>

</Attributes>

</Privilege>

</Rule>

<Rule>

<Conditions>

<Condition>

<Issuers>

<Subject>

<Attributes>

<Attribute>

<Name> Resource Sharing Union</Name>

<Value>member<Nalue>

</Attribute>

</Attributes>

</Subject>

</Issuers>

Chapter 6 Scenarios and Experiments

</Condition>

</Conditions>

<Privilege>

<Attributes>

<Any Attribute/>

</Attributes>

<Capabilities>

<Capability>

<Targets>

<Target>newcastle.org/public</Target>

</Targets>

<Actions>

<Action>read</ Action>

</Actions>

</Capability>

</Capabilities>

</Privilege>

</Rule>

</Rules>

</Policy>

Figure 6-9 newcastle.org's trust policy that allows empowerment

Unconstrained delegation of privilege is often dangerous because of the jeopardy of being

compromised. Hence it should be carefully dealt with. In our model of empowerment, individual

entity could finely control the scope of delegation by specifying the privileges assigned to the

delegatee in its local trust policy. For instance, newcastle.org's trust policy (Figure 6-9) says that

RSC is a trustworthy delegation authority, and it is permitted to delegate read permission to

newcastle.orglpublic to any subject.

Bob's capability certificate (Figure 6-10) issued by leeds.org grants him read pem1ission to

the private information (newcastle.org/private) and public information (newcastle.org/public) of

Chapter 6 Scenarios and Experiments

newcastle.org. A trust chain could be found to support him, which is RSC -> leeds.org -> Bob.

According to the trust policy, the former is out of the valid scope and is not permitted, but the

latter is allowed. Therefore, Bob's request to read newcastle.org/private will be denied but his

request to read newcatle.orglpub/ic will be allowed.

<?xml version="l.O" encoding="UTF-8"?>

<!--Bob's capability certificate issued by leeds.org -->

<Certificate xmlns="http://www.dur.ac.uk/chenxi.huang/mojoyO.l ">

<Capabilities>

<Capability>

<Targets>

<Target>newcastle.org/private</Target>

</Targets>

<Actions>

<Action>read</ Action>

</Actions>

</Capability>

<Capability>

<Targets>

<Target>newcastle.org/public</Target>

</Targets>

<Actions>

<Action>read</ Action>

</Actions>

</Capability>

</Capabilities>

<Conditions>

<Condition>

<Constraints>

<Constraint>

<TimeConstraint>

Chapter 6 Scenarios and Experiments

<StartTime>OO:OO:OO 01/0 1/2004</StartTime>

<EndTime>OO:OO:OO 01/01/201 0</EndTime>

</TimeConstraint>

</Constraint>

</Constraints>

</Condition>

</Conditions>

<Holders>

<Subject>

<PublicKey>

Bob's public key

</Public Key>

</Subject>

</Holders>

<Issuers>

<Subject>

<PublicKey>

leeds.org's public key

</Public Key>

</Subject>

</Issuers>

<Signature>

signature of the certificate

</Signature>

</Certificate>

Figure 6-10 Bob's capability certificate issued by leeds.org

Leeds.org could be incorporated into the union with the concept we termed as trust

Chapter 6 Scenarios and Experiments

empowerment. Leeds.org gets a membership attribute certificate from RSC (Figure 6-11), it says

that leeds.org is an allied organization of the Resource Sharing Union.

<?xml version="l.O" encoding="UTF-8"?>

<!--leeds.org's attribute certificate issued by RSC -->

<Certificate xmlns="http://www.dur.ac.uk/chenxi.huang/mojoyO.l ">

<Attributes>

<Attribute>

<Name> Resource Sharing Union</Name>

<Value>member<Nalue>

</Attribute>

</Attributes>

<Conditions>

<Condition>

<Constraints>

<Constraint>

<TimeConstraint>

<StartTime>OO:OO:OO 01/01/2004</StartTime>

<EndTime>OO:OO:OO 01/01/201 0</EndTime>

</TimeConstraint>

</Constraint>

</Constraints>

</Condition>

</Conditions>

<Holders>

<Subject>

<PublicKey>

leeds' public key

</Public Key>

</Subject>

</Holders>

Chapter 6 Scenarios and Experiments

<Issuers>

<Subject>

<Public Key>

RSC's public key

</PublicKey>

</Subject>

</Issuers>

<Signature>

signature of the certificate

</Signature>

</Certificate>

Figure 6-llleeds.org's attribute certificate issued by the RSC

Newcastle.org's local trust policy (Figure 6-9) says that RSC is trusted to entitle membership

to new organizations and the members of the Resource Sharing Union is able to issue certificate to

their subordinate members, thereby enabling them to visit neighbours' resources in the union. Bob

goes to newcastle.org and submits his attribute certificate (Figure 6-7). The access control system

checks his certificate, finds out he is from an unknown organization. Then it gets the membership

certificate of leeds.org (Figure 6-11). The issuer of the membership certificate is the trusted RSC.

Therefore, the trust chain is found, which is newcastle.org -> RSC -> leeds.org -> Bob. Bob will

become trusted.

6.5 Analysis

We have studied four scenarios in this chapter. The first scenario discusses the possibility of

preserving and utilising RBAC in a distributed system. RBAC is an effective access control model

for centrally managed organizations. It successfully converts abstract responsibilities to concrete

roles, making security management straightforward and easy. However, in a distributed

environment, different organizations adopt different RBACs, making it difficult for a user to

transfer from one security domain to another. Certificate based access control sets up a bridge to

supply the gap between those different RBACs. It supplements rather than replaces RBAC hence

Chapter 6 Scenarios and Experiments

RBAC could be preserved in the distributed system. The two organizations, durham.org and

newcastle.org, cannot incorporate each other directly because of incompatible RBAC systems.

Certificate based approach supplies the gap. Roles are stored in certificates as attributes. The role

definitions are interpreted according to SLA. This scenario proves that certificate based approach

is a very good complement of RBAC. Furthem1ore, capability certificate lets the certificate issuer

finely control the privileges assigned to each individual.

The second scenario discusses various constraints. These constraints include time constraints

and location constraints. Constraints are independent of subjects and are of use when limiting the

delegated access privileges. Our approach provides a method to fmely control the constraints

placed on the subjects and the delegated subjects.

The third scenario discusses the scalability problem. Incorporating a new entity into an

existing group has always been a challenge. In this scenario, leeds.org is a stranger to durham.org

and newcastle.org. The certificates issued by leeds.org are not trusted by durham.org and

newcastle.org. RSC acts as a trusted third party in the process. RSC issues delegation certificate to

leeds.org, this certificate indirectly proves the credibility of the certificate issued by leeds.org. On

the other hand, durham.org and leeds.org keep their own trust policies which administer the

credibility of the RSC and newly joined members.

The fourth scenario discusses trust empowerment model. Newcastle.org trusts all the

members of the Resource Sharing Union, but the identities of all the members cannot be known in

advance. Therefore it trusts based on the attributes of the entities. The membership attributes are

certified by the RSC. Newcastle.org further trusts the users who are certified by the members of

the Resource Sharing Union. We term the process as trust empowerment. The process of trust

empowerment can be totally and fmely managed by the server.

The access control system uses our compliance checker which is implemented in Java. The

compliance checker takes in the access request, the users' certificates and the server's policy. It

applies a double-loop to find out whether the access request is supported by the certificate and

allowed by the policy. A Boolean result will be returned to allow or deny the access request.

The achievements of our research could be applied to the healthcare domain. According to

the Medical Records Confidentiality Act of 1995 [15], the privacy of personally identifiable health

information should be protected from unauthorised access.

Chapter 6 Scenarios and Experiments

o Health information trustees (defined as health care providers, health care plans, etc) are

required to allow individual's access to any health information pertaining to the individual

and to give the opportunity to correct such information. The trustees are also required to

develop safeguards to protect the confidentiality of the personally identifiable health

information they maintain.

o Trustees are required to obtain an individual's authorisation to disclose personally

identifiable health information for purposes of payment or treatment. In addition, this title

allows personally identifiable health information to be disclosed to an individual's next of

kin, and the individual's name or general health status to be disclosed for directory

information, as long as the individual has not objected to such disclosure.

o Personally identifiable health information may be disclosed without the individual's

consent to the following authorities for legal reasons: emergency circumstances, oversight,

public health, health research, judicial and administrative purposes, non-law enforcement

subpoenas, law enforcement, and certified health information services.

The enforcement of the Act involves many geographically dispersed entities, including

health care providers, patients, next of kin of patients, emergency department, the court and health

information services, etc. They employ different RBACs as access control system. These entities

could be regarded as the organizations in our case study and the medical records could be regarded

as resources.

• Health information trustees check attributes of the patients. With the attributes contained

in the certificate, trustees could easily locate each patient's personal medical record and

grant the owner of the record corresponding permissions.

• Patient issues certificate to a third party, for either payment or treatment reason. With the

certificate, the third party can access the patient's medical records.

e Trustees need to know the credibility of the various issuing bodies, for example, the

emergency department of a hospital, a certified institutional review board (IRB) or a

district court. But the identities of the trustees are often difficult to know in advance. With

trust empowerment, the problem can be easily solved. The trustees are distinguished and

trusted by their attributes which are certified by the NHS.

Chapter 7 Conclusion and future work

7 Conclusion and future work

7.1 Conclusion

In this thesis, we first reviewed traditional access control models. The most commonly used

access control models were access matrix and RBAC. Access matrix uses a two dimensional

matrix to represent the relationships between subjects and objects. RBAC uses role in between

users and permissions to gain more flexibility. They were effective in traditional centrally

managed organizations where the identities and privileges of the subjects are known and managed

in one point. However, in distributed environment, different systems adopt different access control

models; people frequently move from one place to another; the identities and privileges of the

users are administered in dispersed locations. Traditional access control models are incompetent to

deal with the new circumstances.

PKI has been proved to be an effective and secure infrastructure in distributed environment.

A subject owns a public/private key pair. The public key can be disclosed to anyone and the

identity of the subject is represented by the public key. Certificate is used to transfer information

between subjects. It is protected by the digital signature and can be disclosed to anyone.

We then examined a number of mainstream distributed access control models that are based

on PKI. In their work, delegation is the most commonly adopted mechanism for decentralised

administration of trust. The concept of delegation is that a subject (delegator) is able to grant a

subset of his privileges to another subject (delegatee) therefore the delegatee could be able to

access to specific resources. The deficiency of delegation is that the identities of both the

delegators and delegatees and the details of the delegated privileges must be known in advance,

which is sometimes impossible. This deficiency severely hampers the decentralisation of trust.

The main contribution of this thesis is our new model of decentralised administration of trust:

trust empowerment. We tried to solve the limitations of delegation through this new model. In our

model, trust is defined as properties and conveyed in certificate. The certificate is employed to

help convey and establish trust between subjects. A certificate can also prove the credibility of

other certificates. A subject is called root of trust if it is trusted by other subjects through its

Chapter 7 Conclusion and future work

identity. A subject only knows a limited number of roots of trust because of time and space

restriction. Trust empowerment enables a subject to establish trust with many more subjects

through their properties instead of identities. The access to the resource is determined by the

certificates and policy. The features of trust empowennent are:

o Trust is subjective. Each entity sets its own trust policy which is independent of others.

The consequence is that one entity is trusted at one place and may be untrusted at another.

o Fine-grained control. The service provider could finely control how the trust is conveyed

from one subject to another and specify what each subject can do or cannot do.

• Trust is based on properties. Trust is defined as properties, which include attributes and

capabilities. Properties can be owned and/or controlled. The property owner can use the

privileges denoted by the property. The property controller can grant the property to other

subjects but cannot use the privilege. A subject grants trust to another subject according to

the attributes rather than the identities.

We have designed the Mojoy trust policy language that supports the concept of trust

empowerment. The Mojoy trust policy language is partly based on XACML which is an OASIS

standard. We have given the syntax, semantics and an XML implementation of the language. The

advantages of using a language to specify trust are:

• Policy can be separated from the application and can be reused for different applications.

One policy can even be distributed in many locations and updated uniformly.

• Certificate and policy share the same language syntax. Trust can therefore be

administered in dispersed locations.

• A language is powerful and expressive enough to describe the complex situations such as

advance RBAC, dynamic trust relationship, etc.

We have also developed a compliance checker for the language. The responsibility of the

compliance checker is to tell whether a user is able to access the specified resource. The

compliance checker takes in the requested action, user's certificates, local trust policy and the

environmental parameters as input. It validates the certificates, looks through the policy and

examines whether the request is supported by the certificates and allowed by the policy. The

output is a Boolean value: Permitted or Denied, which indicates whether the user could perform

the action on the resource or not. The compliance checker is developed in Java and is wrapped into

9

Chapter 7 Conclusion and future work

a JAR library and Web Service. It could be incorporated into any application developed in any

language under any platform.

We have tried to apply our new trust model to a case study. The case study simulates a

resource sharing circumstance between several organizations. These organizations offer resources

to their own registered users. Several trust issues need to be addressed when these organizations

want to share their resources with each other because the users are managed in different locations.

We try to apply our trust empowerment to the situation and the model successfully solved all the

trust issues. The achievements of our case study can be extended to practical healthcare domain.

'1.2 !Future work

Our work is only a very first step towards building a trustworthy computing network. Much

more research is needed.

We have only provided a prototype of the language and more work is needed to complete the

language. For instance, users might require using self-defined functions to complete complex tasks,

which we do not support yet. Properties are divided into two categories in our design: attributes

and capabilities. More sorts of properties are to be defined. For instance, property could be a

program written by a subject to complete a complicated task. Subjects allow trusted peers'

programs to be run under their working environment. The compliance checker currently only

supports one language. Because of the possibility that different applications could adopt different

languages, it should be able to accept the certificate and policy written in various languages. A

possible solution is that the compliance checker accepts plug-ins to interpret various languages.

Also, the present implementation of the compliance checker is only able to deal with one

certificate and one policy. It is expected that future implementations will be able to process

multiple certificates and policies.

Trust varies according to the context. Subjects establish minimal trust at the very beginning.

They embark upon some primitive and inexpensive business. The trust level between them

increases as the partners gradually accumulate experiences of each other. They will begin to do

more and expensive transactions. This is analogous to the credit system widely accepted in

modem economics. During the process, the trust policies remain unchanged. All completed

transactions are logged and analysed. Trust level will increase/decrease according to the outcome

Chapter 7 Conclusion and future work

of the analysis ofthe transactions.

9

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, "The Role of trust

management in distributed systems security", in Proceedings of Fourth International

Workshop on Mobile Object Systems: Secure Internet Mobile Computations (MOS '98,

Brussels, Belgium), no. 1603 in Lecture Notes in Computer Science, (Heidelberg,

Germany), pp. 185-210, Springer-Verlag, July 1999

[2] W. Yao, K. Moody, J. Bacon, "A Model of OASIS Role-Based Access Control and its

Support for Active Security", ACM Symposium on Access Control Models and

Technology, SACMAT, Virginia, USA, May, 2001

[3] J. Bacon, K. Moody, W. Yao, "Access Control and Trust in the use of Widely Distributed

Services", Proceedings of Middleware, 2001

[4] M. Blaze, J. Feigenbaum, and J. Lacy, "Decentralized trust management" in Proceedings

of the IEEE Symposium on Research in Security and Privacy, (Oakland, CA), pp.

164-173, IEEE Computer Society, Technical Committee on Security and Privacy, IEEE

Computer Society Press, May 1996.

[5] M. Blaze, J. Feigenbaum, J. Ioannidis, A. Keromytis, "The Keynote Trust-Management

System", RFC 2704, September 1999, version 2

[6] D. Ferraiolo, and R. Kuhn, "Role-Based Access Control", proceedings of 15th national

computer security conference, 1992

[7] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, "Role-Based Access Control

Models", IEEE Computer, Volume 29, Number 2, pp. 38-47, 1996

[8] Trusted Computer Security Evaluation Criteria, DoD 5200.28-STD. United States

Department of Defense, 1985

[9] A. D. Keromytis, J. M. Smith, "Requirements for Scalable Access Control and Security

Management Architectures", Columbia University Computer Science Department

Technical Report CUCS-013-02, 2002.

[10] Walt Yao, "Trust Management for Widely Distributed Systems", PhD thesis, University of

Cambridge, 2003

[11] D. W. Chadwick, 0. Otenko, "The PERMIS X.509 Role Based Privilege Management

Infrastructure", symposium on access control models and technologies, California, USA,

2002

[12] D. Chadwick, and A. Otenko, "RBAC policies in XML for X.509 based privilege

management", in Proceedings of the 17th International Conference on Information

Security, (Cairo, Egypt), 2002.

[13) "OASIS eXtensible Access Control Markup Language (XACML)", OASIS standard, Feb.

2003, version 1, http://www.oasis-open.org/committees/xacml/repository/

[14] N. Damianou, N. Dulay, E. Lupu, M. Sloman, "The Ponder policy specification language",

policies for distributed systems and networks, International Workshop, (POLICY'Ol),

Bristol, UK, pp. 18-38, 2001

[15] "The medical records confidentiality act of 1995", summary, http://www.cdt.org/privacy

/medical/950000mrca _ summary.shtm

[16) "A Brief Introduction to XACML", 14 March 2003, http://www.oasis-open.org

/committees/download.php/2713/Brief_Introduction_to_XACML.html

[17] Andras Belokosztolszki, "role-based access control policy administration", Technical

Report, Number 586, University of Cambridge, March, 2004

[18) J. Barkley, R. Bagwill, L. Carnahan, S. Chang, R. Kuhn, P. Markovitz, A. Nakassis, K.

Olsen, M. Ransom, J. Wack, "security in open systems", NIST special publication 800-7,

1994

[19) D. F. Ferraiolo, D. M. Gilbert, and N. Lynch. "An examination offederal and commercial

access control policy needs". In NIST-NCSC National Computer Security Conference, pp.

107-116, Baltimore, 1993

[20] M. Blaze, J. Feigenbaum, and M. Strauss, "Compliance Checking in the PolicyMaker

Trust-Management System", In Proc. of the financial cryptography '98, Lecture Notes in

Computer Science, vol. 1465, pages 254-274. Springer, Berlin, 1998

[21] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, E. Simon, "XML-Signature Syntax and

Processing", W3C, RFC3275, Feb 2002, http://www.w3.org/TR/xmldsig-core/

[22] T. Imamura, B. Dillaway, E. Simon, "XML Encryption Syntax and Processing", W3C,

Recommendation, December 2002, http://www.w3.org/TR/xmlenc-core/

[23] Apache XML security library, http://xml.apache.org/security/

[24] Entrust Authority Toolkit for Java, https://www.entrust.com/developer/Java/

[25] VeriSign Java XKMS and XML Signature SDK, http://www.xmltrustcenter.org/xkms

/developer/

[26] alpha Works XML Security Suite, http://www.alphaworks.ibm.com/techlxmlsecuritysuite/

[27] K. Chopra, W. A. Wallace, "Trust in Electronic Environments", Proceedings of the 36th

Hawaii International Conference on System Sciences (HICSS'03), 2003

[28] "Authentication, Authorization, and Access Control", Apache HTTP Server Version 1.3,

http:/ /httpd. apache. org/ docs/howto/auth. htrnl

[29] The Open Group, "Authorization (AZN) API", January 2000, ISBN 1-85912-266-3

[30] ITU-T Recommendation, X.812 (1995) I ISO/IEC 10181-3: 1996 "Security Frameworks

for open systems: Access control framework

[31] E. Barka and R. Sandhu, "Framework for role-based delegation models", in sixteenth

ammal computer security applications conference, New Orleans, Louisiana, Dec 2000

[32] Ezedin S. Barka, "Framework for Role-Based Delegation Models", PhD thesis, George

Mason University, 2002

[33] R. Sandhu, "Engineering authority and trust in cyberspace: The OM-AM and RBAC way",

in Proceedings 5th ACM Workshop on Role-Based Access Control (RBAC-00), (New

York), pp.111-119,ACM Press, July, 2000

[34] J. Bacon, K. Moody, W. Yao, "A model of OASIS role-based access control and its

support for active security", ACM Transactions on Information and System Security, vol.

5, Nov. 2002

[35] R. Hayton, "OASIS: An Open Architecture for Secure Interworking Services", PhD thesis,

University of Cambridge Computer Lab, June 1996, technical report No. 399

[36] R. Hayton, J. Bacon, and K. Moody, "OASIS: Access control in an open, distributed

environment", in Proceedings ofiEEE Symposium on Security and Privacy (Oakland, CA,

May), (Los Alamitos, CA), IEEE Computer Society Press, 1998

[37] E. C. Lupu, "A Role-Based Framework for Distributed Systems Management", PhD

thesis, Department of Computing, Imperial College of Science, Technology and Medicine,

University of London, 1998

5

[38] J. E. Tidswell, and J. M. Potter, "A graphical definition of authorization schema in the

DTAC model", in Sixth ACM Symposium on Access Control Models and Technologies

(SACMAT'01), pp. 109-120, 2001

[39) M. Sloman, "Policy driven management for distributed systems", Network and Systems

Management, 2(4):333-360, 1994

[40] E. Bertino, S. Jajodia, and P. Samarati, "Supporting multiple access control policies in

database systems", in IEEE Symposium on Security and Privacy (SSP'96), 1996

[41] W. Johnston, S. Mudumbai, and M. Thompson, "Authorization and attribute certificates

for widely distributed access control", in Proceedings of the 7th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE '98, Stanford, CA), (Los Alamitos, CA), IEEE Computer Society Press, June

1998.

[42] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson and A. Essiari.

"Certificate-Based Access Control for Widely Distributed Resources". Proceedings of the

8th USENIX Security Symposium, Washington, D.C., 1999

[43] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, 0. Seidel, and M. Spiteri.

"Generic support for distributed applications", IEEE Computer, pp. 68-76, March 2000

[44) UC Berkeley, "UNIX Programmer's Manual", 7 ed., 1981

[45] United States Department of Defense, "A Guide to Understanding Discretionary Access

Control in Trusted Systems", NCSC-TG-003, National Computer Security Center, Sep

1987, http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-003.htrnl

[46] B. W. Lampson, "Protection", in Proceedings of the 5th Annual Princeton Conference on

Information Sciences and Systems, (Princeton University), pp. 437-443, 1971.

[47] D. E. Bell and L. J. LaPadula, "Secure computer Systems: Mathematical Foundations and

Model", M74-244, Mitre Corporation, Bedford, Massachusetts (1976). (Also available

through National Technical Information Service, Springfield, VA, NTIS AD-771543.)

[48) K. J. Biba, "Integrity considerations for Secure Computer Systems", Mitre TR-3153,

Mitre Corporation, Bedford, Massachusetts (1977). (Also available through National

Teclmical Information Service, Springfield, VA, NTIS AD-A039324.)

[49] R. S. Sandhu, "Lattice-based access control models", IEEE Computer, 26(11):9-19, Nov

1993

[50] R. Yahalom, B. Klein, and T. Beth, "Trust relationships in secure systems- A distributed

authentication perspective", in Proceedings of the 1993 IEEE Computer Society

Symposium on Security and Privacy (SSP '93), (Washington -Brussels -Tokyo), pp.

150-164, IEEE, May 1993

[51] "URis, URLs, and URNs: Clarifications and Recommendations", version 1.0, W3C/IETF

URI Planning Interest Group, W3C Note 21 September 2001, http://www.w3.org/TR

/uri -clarification

[52] T. Bemers-Lee, R. Fielding, U.C. Irvine and L. Masinter, "Unifonn Resource Identifiers

(URI): Generic Syntax", Request for Comments (RFC) 2396, IETF (Intemet Engineering

Task Force), August, 1998.

[53] B. McLaughlin,"Java and XML", O'Reilly & Associates Inc., 2000

[54] L.A. Phillips, "Using XML", Special Edition, Que, Indianapolis, 2000

[55] World Wide Web Consortium recommendation, "Extensible Markup Language (XML)

1.0", Third Edition, http://www.w3.org/TRIREC-xrnl, Feb. 2004

[56) World Wide Web Consortium recommendation, "Exclusive XML Canonicalization

Version 1.0", http://www.w3.org/TR/xrnl-exc-cl4nl, July 2002

[57] "XML Schema Part 0: Primer", W3C Recommendation, May 2001, http://www.w3.org

/TRIREC-xrnl

[58] "XML Schema Part 1: Structures", W3C Recommendation, May 2001,

http://www.w3.org/TR/xrnlschema-ll

[59] "XML Schema Part 2: Datatypes", W3C Recommendation, May 2001, http://www.w3.org

/TR/xmlschema-2/

[60] ISO (Intemational Standardization Organization) /ITU-T (Telecommunication

Standardization Sector, Intemational Telecommunication Union) Recommendation

X.509(2001) The Directory: Authentication Framework

[61] P. NAUR (ed.), "Revised Report on the Algorithmic Language ALGOL 60.",

Communications of the ACM, Vol. 3 No.5, pp. 299-314, May 1960.

[62] A. V. Aho, B. W. Kernighan, and P. J. Weinberger, "The AWK Programming Language",

Addison-Wesley, Reading, 1988.

