12 research outputs found

    MIQoS-RP: Multi-Constraint Intra-BAN, QoS-aware routing protocol for wireless body sensor networks

    Get PDF
    Wireless Body Sensor Networks (WBSNs) are becoming increasing popular in a number of healthcare applications. A particular requirement of WBSNs in a healthcare system is the transmission of time-sensitive and critical data, captured by heterogeneous biosensors, to a base station while considering the constraints of reliability, throughput, delay and link quality. However, the simultaneous communication among various biosensors also raises the possibility of congestion on nodes or transmission links. Consequently, the likelihood of a number of untoward situations increases, such as disruption (high delays), packet losses, retransmissions, bandwidth exhaustion, and insufficient buffer space. The significant level of interference in the network leads to a higher number of collisions and retransmissions. The selection of an optimized route to cope with these issues and satisfy the QoS requirements of a WBSN has not been well-studied in the relevant literature. In this regard, we propose a multi-constraint, Intra-BAN, QoS-Aware Routing Protocol (referred to as MIQoS-RP) which introduces an improved, multi-facet routing metric to optimize the route selection while satisfying the aforementioned constraints. The performance of the proposed protocol is evaluated in terms of average end-to-end delay, throughput and packet drop ratio. The comparison of MIQoS-RP with the existing routing protocols demonstrates its efficacy in terms of the selected criteria. The results show that the MIQoS-RP achieves improved throughput by 22%, average end-to-end delay by 29% and packet drop ratio performance by 41% as compares to existing schemes

    Multi-constrained mechanism for intra-body area network quality-of-service aware routing in wireless body sensor networks

    Get PDF
    Wireless Body Sensor Networks (WBSNs) have witnessed tremendous research interests in a wide range of medical and non-medical fields. In the delaysensitive application scenarios, the critical data packets are highly delay-sensitive which require some Quality-of-Service (QoS) to reach the intended destinations. The categorization of data packets and selection of poor links may have detrimental impacts on overall performance of the network. In WBSN, various biosensors transmit the sensed data towards a destination for further analysis. However, for an efficient data transmission, it is very important to transmit the sensed data towards the base station by satisfying the QoS multi-constrained requirements of the healthcare applications in terms of least end-to-end delay and high reliability, throughput, Packet Delivery Ratio (PDR), and route stability performance. Most of the existing WBSN routing schemes consider traffic prioritization to solve the slot allocation problem. Consequently, the data transmission may face high delays, packet losses, retransmissions, lack of bandwidth, and insufficient buffer space. On the other hand, an end-to-end route is discovered either using a single or composite metric for the data transmission. Thus, it affects the delivery of the critical data through a less privileged manner. Furthermore, a conventional route repair method is considered for the reporting of broken links which does not include surrounding interference. As such, this thesis presents the Multi-constrained mechanism for Intra- Body Area Network QoS aware routing (MIQoS) with Low Latency Traffic Prioritization (LLTP), Optimized Route Discovery (ORD), and Interference Adaptive Route Repair (IARR) schemes for the healthcare application of WBSN with an objective of improving performance in terms of end-to-end delay, route stability, and throughput. The proposed LLTP scheme considers various priority queues with an optimized scheduling mechanism that dynamically identifies and prioritizes the critical data traffic in an emergency situation to enhance the critical data transmission. Consequently, this will avoid unnecessary queuing delay. The ORD scheme incorporates an improved and multi-facet routing metric, Link Quality Metric (LQM) optimizes the route selection by considering link delay, link delivery ratio, and link interference ratio. The IARR scheme identifies the links experiencing transmission issues due to channel interference and makes a coherent decision about route breakage based on the long term link performance to avoid unnecessary route discovery notifications. The simulation results verified the improved performance in terms of reducing the end-to-end delay by 29%, increasing the throughput by 22% and route stability by 26% as compared to the existing routing schemes such as TTRP, PA-AODV and standard AODV. In conclusion, MIQoS proves to be a suitable routing mechanism for a wide range of interesting applications of WBSN that require fast, reliable and multi-hop communication in heavily loaded network traffic scenarios

    An enhanced mobility and temperature aware routing protocol through multi-criteria decision making method in wireless body area networks

    Get PDF
    © 2018 by the authors. In wireless body area networks, temperature-aware routing plays an important role in preventing damage of surrounding body tissues caused by the temperature rise of the nodes. However, existing temperature-aware routing protocols tend to choose the next hop according to the temperature metric without considering transmission delay and data loss caused by human posture. To address this problem, multiple research efforts exploit different metrics such as temperature, hop count and link quality. Because their approaches are fundamentally based on simple computation through weighted factor for each metric, it is rarely feasible to obtain reasonable weight value through experiments. To solve this problem, we propose an enhanced mobility and temperature-aware routing protocol based on the multi-criteria decision making method. The proposed protocol adopts the analytical hierarchy process and simple additive weighting method to assign suitable weight factors and choose the next hop while considering multiple routing criteria. Simulation results are presented to demonstrate that the proposed protocol can efficiently improve transmission delay and data loss better than existing protocols by preventing the temperature rise on the node

    TAEO-A thermal aware & energy optimized routing protocol for wireless body area networks

    Get PDF
    Wireless Body Area Networks (WBANs) are in the spotlight of researchers and engineering industries due to many applications. Remote health monitoring for general as well as military purposes where tiny sensors are attached or implanted inside the skin of the body to sense the required attribute is particularly prominent. To seamlessly accomplish this procedure, there are various challenges, out of which temperature control to reduce thermal effects and optimum power consumption to reduce energy wastage are placed at the highest priority. Regular and consistent operation of a sensor node for a long-time result in a rising of the temperature of respective tissues, where it is attached or implanted. This temperature rise has harmful effects on human tissues, which may lead to the tissue damage. In this paper, a Temperate Aware and Energy Optimized (TAEO) routing protocol is proposed that not only deals with the thermal aspects and hot spot problem, but also extends the stability and lifetime of a network. Analytical simulations are conducted, and the results depict better performance in terms of the network lifetime, throughput, energy preservation, and temperature control with respect to state of the art WBAN protocols

    TAEO-A thermal aware & energy optimized routing protocol for wireless body area networks

    Get PDF
    Wireless Body Area Networks (WBANs) are in the spotlight of researchers and engineering industries due to many applications. Remote health monitoring for general as well as military purposes where tiny sensors are attached or implanted inside the skin of the body to sense the required attribute is particularly prominent. To seamlessly accomplish this procedure, there are various challenges, out of which temperature control to reduce thermal effects and optimum power consumption to reduce energy wastage are placed at the highest priority. Regular and consistent operation of a sensor node for a long-time result in a rising of the temperature of respective tissues, where it is attached or implanted. This temperature rise has harmful effects on human tissues, which may lead to the tissue damage. In this paper, a Temperate Aware and Energy Optimized (TAEO) routing protocol is proposed that not only deals with the thermal aspects and hot spot problem, but also extends the stability and lifetime of a network. Analytical simulations are conducted, and the results depict better performance in terms of the network lifetime, throughput, energy preservation, and temperature control with respect to state of the art WBAN protocols

    Real-time Link Quality Estimation and Holistic Transmission Power Control for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are becoming widely adopted across multiple industries to implement sensor and non-critical control applications. These networks of smart sensors and actuators require energy efficient and reliable operation to meet application requirements. Regulatory body restrictions, hardware resource constraints and an increasingly crowded network space makes realising these requirements a significant challenge. Transmission power control (TPC) protocols are poised for wide spread adoption in WSNs to address energy constraints and prolong the lifetime of the networked devices. The complex and dynamic nature of the transmission medium; the processing and memory hardware resource constraints and the low channel throughput makes identifying the optimum transmission power a significant challenge. TPC protocols for WSNs are not well developed and previously published works suffer from a number of common deficiencies such as; having poor tuning agility, not being practical to implement on the resource constrained hardware and not accounting for the energy consumed by packet retransmissions. This has resulted in several WSN standards featuring support for TPC but no formal definition being given for its implementation. Addressing the deficiencies associated with current works is required to increase the adoption of TPC protocols in WSNs. In this thesis a novel holistic TPC protocol with the primary objective of increasing the energy efficiency of communication activities in WSNs is proposed, implemented and evaluated. Firstly, the opportunities for TPC protocols in WSN applications were evaluated through developing a mathematical model that compares transmission power against communication reliability and energy consumption. Applying this model to state-of-the-art (SoA) radio hardware and parameter values from current WSN standards, the maximum energy savings were quantified at up to 80% for links that belong to the connected region and up to 66% for links that belong to the transitional and disconnected regions. Applying the results from this study, previous assumptions that protocols and mechanisms, such as TPC, not being able to achieve significant energy savings at short communications distances are contested. This study showed that the greatest energy savings are achieved at short communication distances and under ideal channel conditions. An empirical characterisation of wireless link quality in typical WSN environments was conducted to identify and quantify the spatial and temporal factors which affect radio and link dynamics. The study found that wireless link quality exhibits complex, unique and dynamic tendencies which cannot be captured by simplistic theoretical models. Link quality must therefore be estimated online, in real-time, using resources internal to the network. An empirical characterisation of raw link quality metrics for evaluating channel quality, packet delivery and channel stability properties of a communication link was conducted. Using the recommendations from this study, a novel holistic TPC protocol (HTPC) which operates on a per-packet basis and features a dynamic algorithm is proposed. The optimal TP is estimated through combining channel quality and packet delivery properties to provide a real-time estimation of the minimum channel gain, and using the channel stability properties to implement an adaptive fade margin. Practical evaluations show that HTPC is adaptive to link quality changes and outperforms current TPC protocols by achieving higher energy efficiency without detrimentally affecting the communication reliability. When subjected to several common temporal variations, links implemented with HTPC consumed 38% less than the current practise of using a fixed maximum TP and between 18-39% less than current SoA TPC protocols. Through offline computations, HTPC was found to closely match the performance of the optimal link performance, with links implemented with HTPC only consuming 7.8% more energy than when the optimal TP is considered. On top of this, real-world implementations of HTPC show that it is practical to implement on the resource constrained hardware as a result of implementing simplistic metric evaluation techniques and requiring minimal numbers of samples. Comparing the performance and characteristics of HTPC against previous works, HTPC addresses the common deficiencies associated with current solutions and therefore presents an incremental improvement on SoA TPC protocols

    Alternative techniques for the improvement of energy efficiency in cognitive radio networks.

    Get PDF
    Doctor of Philosophy in Electronic Energy. University of KwaZulu-Natal, Durban 2016.Abstract available in PDF file

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore