82 research outputs found

    Deployment and Implementation Aspects of Radio Frequency Fingerprinting in Cybersecurity of Smart Grids

    Get PDF
    Smart grids incorporate diverse power equipment used for energy optimization in intelligent cities. This equipment may use Internet of Things (IoT) devices and services in the future. To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited to academic research or military interest. RFF is a physical layer security feature that leverages hardware impairments in radios of IoT devices for classification and rogue device detection. The article discusses the potential of RFF in wireless communication of IoT devices to augment the cybersecurity of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented. Subsequently, a deployment framework of RFF for smart grids is presented with implementation and regulatory aspects. The article culminates with a discussion of existing challenges and potential research directions for maturation of RFF.publishedVersio

    Behavior modelling and individual recognition of sonar transmitter for secure communication in UASNs

    Get PDF
    It is necessary to improve the safety of the underwater acoustic sensor networks (UASNs) since it is mostly used in the military industry. Specific emitter identification is the process of identifying different transmitters based on the radio frequency fingerprint extracted from the received signal. The sonar transmitter is a typical low-frequency radiation source and is an important part of the UASNs. Class D Power Amplifier, a typical non-linear amplifier, is usually used in sonar transmitters. The inherent nonlinearity of power amplifiers provides fingerprint features that can be distinguished without transmitters for specific emitter recognition. Firstly, the non-linearity of the sonar transmitter is studied in depth, and the nonlinearity of the power amplifier is modeled and its non-linearity characteristics are analyzed. After obtaining the nonlinear model of an amplifier, a similar amplifier in practical application is obtained by changing its model parameters as the research object. The output signals are collected by giving the same input of different models, and then the output signals are extracted and classified. In this paper, the memory polynomial model is used to model the amplifier. The power spectrum features of the output signals are extracted as fingerprint features. Then the dimensionality of the high-dimensional features is reduced. Finally, the classifier is used to recognize the amplifier. The experimental results show that the individual sonar transmitter can be well identified by using the non-linear characteristics of the signal. By this way, this method can enhance the communication safety of UASNs

    Multimedia Context Awareness for Smart Mobile Environments

    Get PDF
    openNowadays the development of the IoT framework and the resulting huge number of smart connected devices opens the door to exploit the presence of multiple smart nodes to accomplish a variety of tasks. Multimedia context awareness, together with the concept of ambient intelligence, is tightly related to the IoT framework, and it can be applied to a large number of smart scenarios. In this thesis, the aim is to study and analyze the role of context awareness in different applications related to smart mobile environments, such as future smart spaces and connected cities. Indeed, this research work focuses on different aspects of ambient intelligence, such as audio-awareness and wireless-awareness. In particular, this thesis tackles two main research topics: the first one, related to the framework of audio-awareness, concerns a multiple observations approach for smart speaker recognition in mobile environments; the second one, tied to the concept of wireless-awareness, regards Unmanned Aerial Vehicle (UAV) detection based on WiFi statistical fingerprint analysis.openXXXI CICLO - SC. E TECN. ING. ELETTR. E DELLE TEL. - Ambienti cognitivi interattiviGaribotto, Chiar

    The Internet of Things Security and Privacy: Current Schemes, Challenges and Future Prospects

    Get PDF
    The Internet of Things devices and users exchange massive amount of data. Some of these exchanged messages are highly sensitive as they involve organizational, military or patient personally identifiable information. Therefore, many schemes and protocols have been put forward to protect the transmitted messages. The techniques deployed in these schemes may include blockchain, public key infrastructure, elliptic curve cryptography, physically unclonable function and radio frequency identification. In this paper, a review is provided of these schemes including their strengths and weaknesses. Based on the obtained results, it is clear that majority of these protocols have numerous security, performance and privacy issues

    Social, Private, and Trusted Wearable Technology under Cloud-Aided Intermittent Wireless Connectivity

    Get PDF
    There has been an unprecedented increase in the use of smart devices globally, together with novel forms of communication, computing, and control technologies that have paved the way for a new category of devices, known as high-end wearables. While massive deployments of these objects may improve the lives of people, unauthorized access to the said private equipment and its connectivity is potentially dangerous. Hence, communication enablers together with highly-secure human authentication mechanisms have to be designed.In addition, it is important to understand how human beings, as the primary users, interact with wearable devices on a day-to-day basis; usage should be comfortable, seamless, user-friendly, and mindful of urban dynamics. Usually the connectivity between wearables and the cloud is executed through the userā€™s more power independent gateway: this will usually be a smartphone, which may have potentially unreliable infrastructure connectivity. In response to these unique challenges, this thesis advocates for the adoption of direct, secure, proximity-based communication enablers enhanced with multi-factor authentication (hereafter refereed to MFA) that can integrate/interact with wearable technology. Their intelligent combination together with the connection establishment automation relying on the device/user social relations would allow to reliably grant or deny access in cases of both stable and intermittent connectivity to the trusted authority running in the cloud.The introduction will list the main communication paradigms, applications, conventional network architectures, and any relevant wearable-speciļ¬c challenges. Next, the work examines the improved architecture and security enablers for clusterization between wearable gateways with a proximity-based communication as a baseline. Relying on this architecture, the author then elaborates on the social ties potentially overlaying the direct connectivity management in cases of both reliable and unreliable connection to the trusted cloud. The author discusses that social-aware cooperation and trust relations between users and/or the devices themselves are beneļ¬cial for the architecture under proposal. Next, the author introduces a protocol suite that enables temporary delegation of personal device use dependent on diļ¬€erent connectivity conditions to the cloud.After these discussions, the wearable technology is analyzed as a biometric and behavior data provider for enabling MFA. The conventional approaches of the authentication factor combination strategies are compared with the ā€˜intelligentā€™ method proposed further. The assessment ļ¬nds signiļ¬cant advantages to the developed solution over existing ones.On the practical side, the performance evaluation of existing cryptographic primitives, as part of the experimental work, shows the possibility of developing the experimental methods further on modern wearable devices.In summary, the set of enablers developed here for wearable technology connectivity is aimed at enriching peopleā€™s everyday lives in a secure and usable way, in cases when communication to the cloud is not consistently available

    Novel Models and Algorithms Paving the Road towards RF Convergence

    Get PDF
    After decades of rapid evolution in electronics and signal processing, the technologies in communications, positioning, and sensing have achieved considerable progress. Our daily lives are fundamentally changed and substantially defined by the advancement in these technologies. However, the trend is challenged by a well-established fact that the spectrum resources, like other natural resources, are gradually becoming scarce. This thesis carries out research in the field of RF convergence, which is regarded as a mean to intelligently exploit spectrum resources, e.g., by finding novel methods of optimising and sharing tasks between communication, positioning, and sensing. The work has been done to closely explore opportunities for supporting the RF convergence. As a supplement for the electromagnetic waves propagation near the ground, ground-to-air channel models are first proposed and analysed, by incorporating the atmospheric effects when the altitude of aerial users is higher than 300 m. The status quos of techniques in communications, positioning, and sensing are separately reviewed, and our newly developments in each field are briefly introduced. For instance, we study the MIMO techniques for interference mitigation on aerial users; we construct the reflected echoes, i.e., the radar receiving, for the joint sensing and communications system. The availability of GNSS signals is of vital importance to the GNSS-enabled services, particularly the life-critical applications. To enhance the resilience of GNSS receivers, the RF fingerprinting based anti-spoofing techniques are also proposed and discussed. Such a guarantee on GNSS and ubiquitous GNSS services drive the utilisation of location information, also needed for communications, hence the proposal of a location-based beamforming algorithm. The superposition coding scheme, as an attempt of the waveform design, is also brought up for the joint sensing and communications. The RF convergence will come with many facets: the joint sensing and communications promotes an efficient use of frequency spectrum; the positioning-aided communications encourage the cooperation between systems; the availability of robust global positioning systems benefits the applications relying on the GNSS service
    • ā€¦
    corecore