915 research outputs found

    Bayesian nonparametric multivariate convex regression

    Full text link
    In many applications, such as economics, operations research and reinforcement learning, one often needs to estimate a multivariate regression function f subject to a convexity constraint. For example, in sequential decision processes the value of a state under optimal subsequent decisions may be known to be convex or concave. We propose a new Bayesian nonparametric multivariate approach based on characterizing the unknown regression function as the max of a random collection of unknown hyperplanes. This specification induces a prior with large support in a Kullback-Leibler sense on the space of convex functions, while also leading to strong posterior consistency. Although we assume that f is defined over R^p, we show that this model has a convergence rate of log(n)^{-1} n^{-1/(d+2)} under the empirical L2 norm when f actually maps a d dimensional linear subspace to R. We design an efficient reversible jump MCMC algorithm for posterior computation and demonstrate the methods through application to value function approximation

    An elastic primal active-set method for structured QPs

    Get PDF
    [no abstract

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Quantum and Classical Multilevel Algorithms for (Hyper)Graphs

    Get PDF
    Combinatorial optimization problems on (hyper)graphs are ubiquitous in science and industry. Because many of these problems are NP-hard, development of sophisticated heuristics is of utmost importance for practical problems. In recent years, the emergence of Noisy Intermediate-Scale Quantum (NISQ) computers has opened up the opportunity to dramaticaly speedup combinatorial optimization. However, the adoption of NISQ devices is impeded by their severe limitations, both in terms of the number of qubits, as well as in their quality. NISQ devices are widely expected to have no more than hundreds to thousands of qubits with very limited error-correction, imposing a strict limit on the size and the structure of the problems that can be tackled directly. A natural solution to this issue is hybrid quantum-classical algorithms that combine a NISQ device with a classical machine with the goal of capturing “the best of both worlds”. Being motivated by lack of high quality optimization solvers for hypergraph partitioning, in this thesis, we begin by discussing classical multilevel approaches for this problem. We present a novel relaxation-based vertex similarity measure termed algebraic distance for hypergraphs and the coarsening schemes based on it. Extending the multilevel method to include quantum optimization routines, we present Quantum Local Search (QLS) – a hybrid iterative improvement approach that is inspired by the classical local search approaches. Next, we introduce the Multilevel Quantum Local Search (ML-QLS) that incorporates the quantum-enhanced iterative improvement scheme introduced in QLS within the multilevel framework, as well as several techniques to further understand and improve the effectiveness of Quantum Approximate Optimization Algorithm used throughout our work

    Outlier Detection for Mixed Model with Application to RNA-Seq Data

    Full text link
    Extracting messenger RNA (mRNA) molecules using oligo-dT probes targeting on the Poly(A) tail is common in RNA-sequencing (RNA-seq) experiments. This approach, however, is limited when the specimen is profoundly degraded or formalin-fixed such that either the majority of mRNAs have lost their Poly(A) tails or the oligo-dT probes do not anneal with the formalin-altered adenines. For this problem, a new protocol called capture RNA sequencing was developed using probes for target sequences, which gives unbiased estimates of RNA abundance even when the specimens are degraded. However, despite the effectiveness of capture sequencing, mRNA purification by the traditional Poly(A) protocol still underlies most reference libraries. A bridging mechanism that makes the two types of measurements comparable is needed for data integration and efficient use of information. In the first project, we developed an optimization algorithm that was later applied to outlier detection in a linear mixed model for data integration. In particular, we minimized the sum of truncated convex functions, which is often encountered in models with L0 penalty. The solution is exact in one-dimensional and two-dimensional spaces. For higher-dimensional problems, we applied the algorithm in a coordinate descent fashion. Although the global optimality is compromised, this approach generates local solutions with much higher efficiency. In the second project, we investigated the differences between Poly(A) libraries and capture sequencing libraries. We showed that without conversion, directly merging the two types of measurements lead to biases in subsequent analyses. A practical solution was to use a linear mixed model to predict one type of measurements based on the other. The predicted values based on this approach have high correlations, low errors and high efficiency compared with those based on the fixed model. Moreover, the procedure eliminates false positive findings and biases introduced by the technology differences between the two measurements. In the third project, we noted outlying observations and outlying random effects when fitting the mixed model. As they lead to the discovery of dysfunctional probes and batch effects, we developed an algorithm that screened for the outliers and provided a robust estimation. Specifically, we modified the mean-shift model with variable selection using L0 penalties, which was first introduced by Gannaz (2007), McCann and Welsch (2007) and She and Owen (2012). By incorporating the optimization method proposed in the first project, the algorithm became scalable and yielded exact solutions for low-dimensional problems. In particular, under the assumption of normality, there existed analytic expressions for the penalty parameters. In simulation studies, we showed that the proposed algorithm attained reliable outlier detection, delivered robust estimation and achieved efficient computation.PHDBiostatisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147613/1/ltzuying_1.pd

    O(N) methods in electronic structure calculations

    Full text link
    Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, which rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys (small changes

    Quantum Algorithms for Scientific Computing and Approximate Optimization

    Get PDF
    Quantum computation appears to offer significant advantages over classical computation and this has generated a tremendous interest in the field. In this thesis we study the application of quantum computers to computational problems in science and engineering, and to combinatorial optimization problems. We outline the results below. Algorithms for scientific computing require modules, i.e., building blocks, implementing elementary numerical functions that have well-controlled numerical error, are uniformly scalable and reversible, and that can be implemented efficiently. We derive quantum algorithms and circuits for computing square roots, logarithms, and arbitrary fractional powers, and derive worst-case error and cost bounds. We describe a modular approach to quantum algorithm design as a first step towards numerical standards and mathematical libraries for quantum scientific computing. A fundamental but computationally hard problem in physics is to solve the time-independent Schrödinger equation. This is accomplished by computing the eigenvalues of the corresponding Hamiltonian operator. The eigenvalues describe the different energy levels of a system. The cost of classical deterministic algorithms computing these eigenvalues grows exponentially with the number of system degrees of freedom. The number of degrees of freedom is typically proportional to the number of particles in a physical system. We show an efficient quantum algorithm for approximating a constant number of low-order eigenvalues of a Hamiltonian using a perturbation approach. We apply this algorithm to a special case of the Schrödinger equation and show that our algorithm succeeds with high probability, and has cost that scales polynomially with the number of degrees of freedom and the reciprocal of the desired accuracy. This improves and extends earlier results on quantum algorithms for estimating the ground state energy. We consider the simulation of quantum mechanical systems on a quantum computer. We show a novel divide and conquer approach for Hamiltonian simulation. Using the Hamiltonian structure, we can obtain faster simulation algorithms. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under mild assumptions. We turn to combinatorial optimization problems. An important open question is whether quantum computers provide advantages for the approximation of classically hard combinatorial problems. A promising recently proposed approach of Farhi et al. is the Quantum Approximate Optimization Algorithm (QAOA). We study the application of QAOA to the Maximum Cut problem, and derive analytic performance bounds for the lowest circuit-depth realization, for both general and special classes of graphs. Along the way, we develop a general procedure for analyzing the performance of QAOA for other problems, and show an example demonstrating the difficulty of obtaining similar results for greater depth. We show a generalization of QAOA and its application to wider classes of combinatorial optimization problems, in particular, problems with feasibility constraints. We introduce the Quantum Alternating Operator Ansatz, which utilizes more general unitary operators than the original QAOA proposal. Our framework facilitates low-resource implementations for many applications which may be particularly suitable for early quantum computers. We specify design criteria, and develop a set of results and tools for mapping diverse problems to explicit quantum circuits. We derive constructions for several important prototypical problems including Maximum Independent Set, Graph Coloring, and the Traveling Salesman problem, and show appealing resource cost estimates for their implementations
    • …
    corecore