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Abstract

Sequential quadratic programming (SQP) methods have proved to be very successful in

solving large structured nonlinear optimization problems that may arise from several sources,

e.g. nonlinear optimal control problems or branch-and-bound schemes for mixed integer

nonlinear programs. In real-life applications nonlinear programs (NLP) may comprise

several thousand variables and the solution by standard techniques may be impractical.

Thus, the sparse structure from the NLP should be preserved in the QP subproblems

and the linear systems therein. They are then exploitable by specialized solvers without

affecting the basic structure of the algorithm.

This dissertation develops a generic SQP framework incorporating a primal active-set

method for QP that employs an arbitrary, possibly “matrix-free” KKT solver. ℓ1 and ℓ2

slack relaxations of the quadratic subproblems are in use to allow efficient warm starts from

infeasible starting points to avoid a phase 1. The approach involves Schur complement and

projection techniques that preserve the NLP sparse structure in the KKT system.

Relevant aspects of the software design are discussed. Numerical tests including a

comparison of relaxation schemes and algorithmic parametrizations for QPs from the

CUTEst library document the robustness of the algorithm. The applicability of the SQP

method is proved by solving highly complicated problems emerging in real-life applications,

e.g. the computation of recombination parameters in the field of mathematical biology and

the solution of a multistage optimization problem for dynamic processes.

Keywords: active-set methods, sequential quadratic programming, nonlinear opti-

mization, quadratic programming, penalty formulation, slack relaxation, infeasible warm

start
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Zusammenfassung

Sequentielle quadratische Programmierungsverfahren (SQP) haben sich als besonders

wirkungsvoll bei der Lösung von großen, strukturierten nichtlinearen Optimierungsproble-

men erwiesen. Diese können sich aus mehreren Quellen ergeben, z.B. aus nichtlinearen Op-

timalsteuerungsproblemen oder verzweigungsbasierten Schemata für gemischt-ganzzahlige

nichtlineare Programme. In realen Anwendungen können nichtlineare Programme (NLP)

mehrere tausend Variablen umfassen, sodass die Lösung durch Standardtechniken nicht

praktikabel sein kann. Aus diesem Grund sollte die Struktur aus dem NLP in den QP-

Teilproblemen und den darin auftretenden linearen Systemen bewahrt werden. Sie können

dann durch spezialisierte Löser ausgenutzt werden, ohne die Grundstruktur des Algorithmus

zu beeinträchtigen.

In dieser Dissertation wird ein generisches SQP-Programmiergerüst mit einer primalen

aktive Mengen Methode für quadratische Programme (QP) entwickelt, welches einen

beliebigen, möglicherweise “Matrix-freien” KKT-Löser verwendet. Dabei kommen ℓ1 and

ℓ2 Relaxationen mittels Schlupfvariablen der quadratischen Teilprobleme zum Einsatz, um

effiziente Warmstarts von unzulässigen Startpunkten zu ermöglichen und eine Phase 1 zu

vermeiden. Der Ansatz beinhaltet Schur-Komplement- und Projektionstechniken, welche

die NLP-Struktur im KKT-System bewahren.

Des Weiteren werden die relevanten Aspekte des Softwaredesigns diskutiert und die

Robustheit des Algorithmus durch numerische Tests dokumentiert, in denen Relaxation-

sschemata und algorithmische Parametrisierungen für QPs aus der CUTEst Bibliothek

miteinander verglichen weden. Darüber hinaus wird die Anwendbarkeit des SQP-Verfahrens

durch die Lösung komplexer, realer Anwendungsprobleme validiert. Dies beinhaltet die

Berechnung von Rekombinationsparametern im Bereich der mathematischen Biologie sowie

die Lösung eines mehrstufigen Optimierungsproblems für dynamische Prozesse.

Schlagworte: Aktive Mengen Methode, sequentielle quadratische Programmierung,

nichtlineare Optimierung, quadratische Programme, Straffunktionen, Relaxierung, Warm-

start
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Chapter 1

Introduction

1.1 Active-Set Methods for Nonlinear Programming

In 1963 Wilson [100] proposed the first sequential quadratic programming (SQP) method for

solving constrained nonlinear optimization problems by modelling a sequence of quadratic

subproblems. Ever since his basic idea never changed (see Figure 1.1) and SQP methods

evolved into a powerful and effective class of optimization tools for a wide range of problems.

Recent developments in methods for mixed integer nonlinear programming (MINLP) and

minimization of functions subject to differential equation constraints prove that SQP

methods are still a subject of active research. Especially, this is because of their capability

of exploiting problem-specific structures and being “warm started” from approximate

solutions [47].

Structured optimization problems arise from many sources like mechanics, control

engineering or economics and finance. Using techniques of mathematical modelling for

stating an objective function and involved constraints and dynamics leads to structured,

possibly large-scale, nonlinear problems. Examples are optimal control problems or branch-

and-bound schemes for MINLPs.

On the top level of the plain mathematical model a possibly infinite-dimensional opti-

mization problem is stated in a certain standard form. Problem-specific data structures

may be delegated from this level to the lower levels of nonlinear programs (NLP) and

quadratic programs (QP).

A discretization of the dynamics in the system, e.g. by direct Multiple Shooting [20],

leads to large structured NLPs. At this stage the sparsity of the problem data is set:

Hessians and constraint matrices are obtained by the evaluation of the nonlinear model,

defining the quadratic subproblems which inherit the sparsity. Now, if direct data access,

like row- or column access in the matrices, is avoided by the QP solution algorithm the

possibility of delegating the sparsity downwards is enabled. The result is, that the linear

systems solved within the QP solution also reflect the top level structure1 and spezialized

sparse solvers can be employed.

1The top level states the fundamental structure of the problem by modelling the constraints and dynamics
of the system. Also, the sparsity highly depends on the discretization in the NLP formulation.
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2 1.2. Contributions and Organization

Approximate solution

Evaluate NLP at x(k)

Solve QP subproblem to obtain p QP solver

Globalization strategy: determine SQP step p
(k)
x

Update iterate: x(k+1) = x(k) + p
(k)
x

Figure 1.1: The basic idea of sequential quadratic programming.

The performance and reliability of the QP solution algorithm is the linchpin in SQP

methods in terms of efficiency and robustness. Warm starting SQP methods by supplying a

good starting point and information about active constraints at the solution motivates the

use of active-set methods for QP. Then, also the subsolver can be efficiently warm started

by using the optimal active-set of the preceding subproblem. But, due to linearization

errors in the formulation of the subproblems, the subalgorithm needs to be able to do so

even from infeasible starting points. This is achieved by using a slack relaxation which

avoids the splitting into a feasibility and an optimality phase as in standard methods.

1.2 Contributions and Organization

Structure exploitation, independence of data structures in algorithmic scopes and warm

start techniques form the basis of the algorithms developed for this thesis. A carefully

designed framework is developed that enables its user to easily modify and exchange certain

parts, called building blocks, of the SQP and active-set method. This allows the user to

extend the methods for solving challenging problems, easily instantiate different variants of

the algorithms and make it accessible to user-defined data structures or even “matrix-free”

optimization.

This dissertation is organized as follows. In Chapter 2 the required basic concepts of
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mathematical optimization are introduced. Based on this a SQP method for nonlinear

programs implementing a filter line-search method is presented in Chapter 3. As a major

task the independence between operations on the NLP and the QP level is guaranteed. This

allows the implementation of a highly flexible optimization framework but also imposes

higher standards on the sub-solver for QP. In particular, warm start from infeasible points

is a topic which forms the focus of this thesis and is covered in Chapter 4. An elastic primal

active-set method is presented that incorporates a convexification strategy for tackling

nonconvex problems and relaxation schemes with structure-preserving projection techniques.

The computational costs are mainly located in the solution of similar KKT systems with

changing size. Thus, Chapter 5 concentrates on their efficient solution involving a generic

Schur complement factorization update. Algorithmic design and the techniques of software

engineering that are used to implement the optimization framework are stated in Chapter 6.

Chapter 7 presents computational results for QPs from the CUTEst library to demonstrate

the robustness and flexibility of the code. The applicability of the SQP method is proved

by solving highly complicated problems emerging in real-life applications. This includes

the computation of recombination parameters in the field of mathematical biology and the

solution of a multistage optimization problem for dynamic processes. Finally, Chapter 8

concludes the thesis and gives some ideas for algorithmic extensions and applications.





Chapter 2

Basic concepts

In this chapter the basic concepts of nonlinear optimization and quadratic programming

according to the topic of this thesis are presented. The chapter is organized as follows.

Section 2.1 introduces the class of nonlinear optimization problems (NLP). Fundamental

definitions and necessary and sufficient conditions for characterizing the solution of these

problems are given. Section 2.2 deals with quadratic programs (QP) which play an

important role as itself and as arising subproblems in several methods for general constrained

optimization. The presented content is based on the textbooks [77, 26].

2.1 Theory of Nonlinear Optimization

In the following vectors v ∈ R
n are stated as column vectors. Vector components are

symbolized by sub-indices, e.g. vi is the i-th component of vector v. ∇f ∈ R
n denotes

the gradient of a sufficiently smooth function f : Rn → R. For c : Rn → R
m the Jacobian

∇c ∈ R
m×n consist of the transposes of the component gradients ∇ci ∈ R

n.

2.1.1 Statement of the Problem

Consider the general constrained (nonlinear) optimization problem

min
x∈Rn

f(x) (2.1a)

s.t. ci(x) = 0, i ∈ E , (2.1b)

ci(x) ≥ 0, i ∈ I (2.1c)

where f : Rn → R and ci : Rn → R are sufficiently smooth. f is called the objective function.

According to the finite and disjoint index sets E and I for equality and inequality constraints

the vectors of equalities and inequalities are denoted as

cE : Rn → R
m with cE(x) = 0 and cI : Rn → R

k with cI(x) ≥ 0, (2.2)

respectively. If not stated otherwise |E| = m and |I| = k.

5



6 2.1. Theory of Nonlinear Optimization

Every point x that satisfies (2.2) is called feasible for (2.1). The feasible set of a NLP

consists of all these points and is stated as

F = {x ∈ R
n : cE(x) = 0 and cI(x) ≥ 0}. (2.3)

Definition 1 (Active Set). The active set A(x) at any feasible point x consinsts of all

constraint indices i ∈ E and the indices of the inequality constraints i ∈ I for which

ci(x) = 0 holds. For (2.1) it is

A(x) = E ∪ {i ∈ I : ci(x) = 0}. (2.4)

An inequality constraint ci(x) for any i ∈ I is said to be active if ci(x) = 0 and inactive

if ci(x) > 0 holds.

2.1.2 Local and Global Solutions

The goal of this section is to state proper optimality conditions for local solutions of NLPs

of type (2.1). For these definitions of a constraint qualification and the lagrangian function

are needed.

Definition 2 (Local Solution). A vector x∗ is called a local solution of the problem (2.1)

if x∗ ∈ F and a neighborhood N of x∗ exists such that f(x) ≥ f(x∗) for x ∈ N ∩ F . A

local solution is called strict, if f(x) > f(x∗) for all x ∈ N ∩ F with x 6= x∗.

Based on (strict) local solutions a point x∗ is called an isolated local solution if there

is a neighborhood N of x∗ such that x∗ is the only local solution in N ∩ F . If both the

objective function f and the feasible set are convex, (2.1) is said to be a convex problem.

The fastest algorithms are designed to find local minima of a NLP, but global solutions

as the best of such points are desirable in some applications. It is usually more complicated

to find global minima except for a few special cases, e.g. in convex programming in which

all local solutions are global. The reader may get a proper overview on global optimization

and software, e.g., in [31]. For convex programming see also [8].

Algorithms for the solution of (2.1) are usually designed subject to the definition of

constraint qualifications. These conditions ensure that the linearized feasible set captures

the essential features of F at x∗. Most often the qualification stated next is used.

Definition 3 (Linear Independence Constraint Qualification). Let x ∈ R
n be a feasible

point of (2.1) and A(x) the associated active set. The linear independence constraint

qualification (LICQ) holds if the set of active constraint gradients {∇ci(x), i ∈ A(x)} is

linear independent.

Other constraint qualifications like the Mangasarian-Fromovitz constraint qualification

(MFCQ) with associated optimality conditions are not discussed here. The interested
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reader is referred to Nocedal and Wright [77] and the references therein. Finally one way

to characterize optimality conditions for the optimization problem under consideration is

given by means of the Lagrangian function.

Definition 4 (Lagrangian Function). Let λE = (λi)i∈E ∈ R
m and λI = (λi)i∈I ∈ R

k be

the vectors of so-called Lagrange multipliers (or dual variables or dual multipliers) for

equality and inequality constraints. The function L : Rn × R
m × R

k → R given by

L(x, λE , λI) = f(x)−
∑

i∈E

λici(x)−
∑

i∈I

λici(x) (2.5)

is then called the Lagrangian function of (2.1).

2.1.3 First-Order and Second-Order Optimality Conditions

The theorems presented in the following express necessary first-order and second-order

optimality conditions for a solution of (2.1) by means of the Lagrangian function and

Lagrange multipliers.

Theorem 1 (First-Order Necessary Conditions). Let x∗ ∈ R
n be a local solution of (2.1)

and let f and ci for all i ∈ E ∪I be continuously differentiable. In addition assume, that the

LICQ holds at x∗. Then there exist vectors λ∗
E ∈ R

m and λ∗
I ∈ R

k such that the following

conditions are satisfied:

∇f(x∗)−
∑

i∈E

λ∗
i∇ci(x∗)−

∑

i∈I∩A(x∗)

λ∗
i∇ci(x∗) = 0 (2.6a)

cE(x∗) = 0, (2.6b)

cI(x∗) ≥ 0, (2.6c)

λ∗
I ≥ 0, (2.6d)

λ∗
i ci(x∗) = 0, i ∈ E ∪ I. (2.6e)

x∗ is then called a stationary point of problem (2.1).

The conditions (2.6) are known as the Karush-Kuhn-Tucker conditions, or short KKT

conditions. A stationary point x∗ is called a KKT point. Condition (2.6a) forms the dual

feasibility where equations (2.6b) and (2.6c) ensure the primal feasibility. Further more,

(2.6d) adresses the nonnegativity of dual variables to inequality constraints. (2.6e) is the

complementarity condition to dual multipliers and corresponding constraints.

For a given solution x∗ of (2.1) and dual vectors λ∗
E and λ∗

I satisfying (2.6) one speaks

of strict complementarity, if exactly one of λ∗
i and ci(x∗) is zero for each i ∈ I, giving

λ∗
i > 0, i ∈ I ∩ A(x∗). (2.7)
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Even when the conditions of Theorem 1 are satisfied one can not determine from first

derivative information only whether the objective function will increase or decrease along

the directions w with wT∇f(x∗) = 0. The next theorem ensures, that the curvature of the

Hessian of the Lagrangian function must be nonnegative along those directions at a given

KKT point (x∗, λ∗
E , λ∗

I).

Theorem 2 (Second-Order Necessary Conditions). Let x∗ ∈ R
n be a local solution of

(2.1) and suppose that the LICQ is satisfied. Further more let λ∗
E ∈ R

m and λ∗
I ∈ R

k be

the Lagrangian multiplier for which the conditions (2.6) hold. Then

wT∇2
xxL(x∗, λ∗

E , λ∗
I)w ≥ 0 (2.8)

holds for all directions that satisfy one of the following conditions:

∇ci(x∗)T w = 0, i ∈ E , (2.9a)

∇ci(x∗)T w = 0, i ∈ I ∩ A(x∗) with λ∗
i > 0, (2.9b)

∇ci(x∗)T w ≥ 0, i ∈ I ∩ A(x∗) with λ∗
i = 0. (2.9c)

The set of directions described by (2.9) is called the critical cone. If strictly satisfied

condition (2.8) is sufficient for second-order optimality, even if the LICQ is neglected. This

is stated in the next theorem.

Theorem 3 (Second-Order Sufficient Conditions). Let x∗ be a stationary point and λ∗
E , λ∗

I

the associated multipliers by the means of Theorem 1. Suppose that for all directions w

defined by (2.9)

wT∇2
xxL(x∗, λ∗

E , λ∗
I)w > 0 (2.10)

holds, then x∗ is a strict local solution of (2.1).

A detailed discussion of optimality conditions for NLP as well as proofs to the stated

theorems can be found in [77].

2.1.4 Standard Solution Techniques for NLPs

Optimization algorithms for (2.1) seek for a KKT point satisfying (2.6). If no inequality

constraints are incorporated, i.e. |I| = 0, I = ∅, the KKT conditions reduce to a system of

nonlinear equations which can be solved using Newton’s method.

Most established solution techniques for NLP include interior-point methods (IPM) and

sequential quadratic programming (SQP). For IPM see the textbook of Nocedal and Wright

[77]. The basic structure of the latter one involves inner and outer iterations. Associated

with an approximate solution x(k) in the k-th outer iteration (with dual multipliers λ(k)),

new primal-dual estimates are found by the solution of a QP subproblem. Using a method
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for quadratic programming, the iterations in the QP solution constitute the inner SQP

iterations.

SQP / active set algorithms tend to respond better to warm starts than IPM, especially

when the active set does not change significally. But while IPMs do not warm-start as

easily, they have a polynomial complexity bound (see e.g. [65]) since SQP methods can hit

a combinatorial loop which has exponential complexity.

Since the focus of this thesis is on an active-set SQP framework, Section 2.2 gives a more

detailed look into the topic of quadratic programming.

2.2 Quadratic Programming

Quadratic programming, the problem of optimizing a quadratic function subject to linear

constraints, has been widely used since its development in the 1950s. It is a simple type of

nonlinear programming that can accurately model many real world systems. Problems

which are formulated this can be optimized in a straightforward way when the objective

function is convex [75, 35].

The genearal quadratic program (QP) can be stated as

min
x∈Rn

q(x) = 1
2xT Hx + fT x (2.11a)

s.t. aT
i x = bi, i ∈ E , (2.11b)

aT
i x ≥ bi, i ∈ I, (2.11c)

where H ∈ R
n×n is symmetric and f and ai for i ∈ E ∪ I are vectors in R

n. If the Hessian

matrix H is positive semidefinit (2.11) is called a convex QP and a strictly convex QP if H

is positive definit. Otherwise H is indefinit and the problem is called a nonconvex QP.

2.2.1 Applications and Methods for Quadratic Programming

Optimization problems of type (2.11) appear in a large variety of fields and applications,

including

• mathematical finance, portfolio analysis [74],

• chemical engineering, optimal control [69] and model predictive control [99],

• signal and image processing

and also arise in several approaches for general nonlinear constrained optimization, e.g. in

SQP methods, to solve more complex NLPs. The online collection of Gould and Toint [54]

contains references to several applications of quadratic programming. In many applications

an approximate solution may be known in advance, like for model predictive control.

Moreover, QPs are known to be NP-hard [95], this is why they are part of the most

interesting and challenging classes of optimization problems. The computational effort for
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the solution of (2.11) highly depends on the objective function and the number of inequality

constraints (2.11c) involed, but they can always be solved or shown to be infeasible. For a

closer look, see [77, 32].

Methods for QP can be divided into interior-point and active-set methods. In both the

major part of work relies on the solution of sparse systems of linear equations in the step

computation. These systems correspond to the KKT conditions (2.6) and take the form

[

H(k) (A(k))T

A(k)

](

−p

λ∗

)

=

(

g(k)

h(k)

)

, (2.12)

where H(k) is a symmetric submatrix of the Hessian and A(k) is a submatrix of the

constraints Jacobian. Solution techniques and update schemes for factorizations of the

KKT system in a more flexible form are discussed in Chapter 5.

The computational cost in an IPM iteration is usually larger than in active-set algorithms.

This is because in KKT systems all of the decision variables and inequality constraints

are involved, not only those belonging to the active-set. The sparsity structure of these

systems is fixed all over the solution process in primal-dual interior-point mehods, while

numerical values vary. This results in the requirement of a new factorization of the KKT

system in every step. In spite of that, because they generally perform few iterations, IPMs

are powerful for the solution of even large–scale quadratic programs. In contrast active-set

methods solve a KKT system defined by the set of active constraints in each iteration

and typically perform many iterations. The sparsity structure of the linear system varies

from one iteration to the next due to changes in the prediction of the active-set, but a

factorization of the KKT matrix can be updated.

2.2.2 Optimality Conditions for Constrained Quadratic Problems

The Lagrangian function of problem (2.11) reads

L(x, λ) = 1
2xT Hx + fT x−

∑

i∈I∪E

λi

(

aT
i x− bi

)

. (2.13)

Moreover, the active set A(x∗) as in Definition 1 can be written as

A(x∗) =
{

i ∈ E ∪ I : aT
i x∗ = bi

}

. (2.14)

Using both, the first-order optimality conditions (2.6) are adjustable to the quadratic

optimization problem stated above. For any solution x∗ of (2.11) there exist some Lagrange

multipliers λ∗
i , i ∈ A(x∗), such that the following conditions are satisfied.

Hx∗ + f −
∑

i∈A(x∗)

λ∗
i ai = 0 (2.15a)
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and

aT
i x∗ = bi, i ∈ A(x∗), (2.15b)

aT
i x∗ ≥ bi, i ∈ I \ A(x∗), (2.15c)

λ∗
I ≥ 0, i ∈ I ∩ A(x∗), (2.15d)

λ∗
i (aT

i x− bi) = 0, i ∈ E ∪ I. (2.15e)

In contrast to Theorem 1 the LICQ is replaced by the qualification that all constraints are

linear which is obviously satisfied in quadratic programming. Furthermore, if H is positive

semidefinite, i.e. when the QP is convex, the conditions (2.15) are also sufficient for x∗

and yield a unique global solution. This is stated in the following theorem.

Theorem 4. Let x∗ be a feasible point for (2.15) with suitable λ∗
i , i ∈ A(x∗). If H is

positive semidefinite, then x∗ is a global solution of (2.11).

In addition second-order sufficient conditions for x∗ hold, if H is positive definite on the

kernel of the active constraints Jacobian A = {aT
i }i∈A(x∗), i.e.

ZT HZ > 0 (2.16)

for a null-space basis matrix Z of A holds. This is subsummed in the next theorem.

Theorem 5. Assume that A = {aT
i }i∈A(x∗) has full row rank. Let Z denote a null-space

basis matrix of A and let the reduced Hessian ZT HZ be positive definite, then x∗ satisfying

(2.15) is the strict local solution of problem (2.11).

Complications in algorithms may accour in the nonconvex case. The problem may then

have more than one strict local solution or is unbounded, cf. [77].





Chapter 3

Sequential Quadratic Programming

The evolution of sequential quadratic programming (SQP) methods started in June 1963,

when R.B. Wilson introduced them as a generalized simplicial method in his thesis [100].

Ever since the basic idea remained unchanged: this was tackling the nonlinear optimization

problem (2.1) by modelling a quadratic subproblem of type (2.11) in each iteration and

defining the search direction in the nonlinear scope to be the solution of this subproblem.

Until today, SQP methods have evolved into a powerful and effective class of methods for

a wide range of optimization problems, cf. [47]. In general, they prove their strength when

constraints inherit significant nonlinearities and the number of free variables is relatively

small.

Providing the capability of beeing warm started from good approximate solutions, SQP

methods are in focus of recent developments in methods for mixed integer nonlinear

programming (MINLP) and minimization of functions subject to differential equation

constraints. A detailed review of the most prominent developments as well as active

research in this field of optimization is given by Gill and Wong [47].

SQP methods come along in combinations of trust-region and line-search methods and

can use active-set and interior-point methods within the QP solution. Line-search SQP

methods solve one QP in each iteration. Hereby trials are adjusted by reducing the step

length depending on a selected globalization strategy. Trus-region frameworks set up

quadratic subproblems and add a trust-region radius to it, which is adjusted depending on

the acceptance or rejection of the step. For a detailed look on trus-region methods, the

reader is referred to Conn et al. [17].

Focusing on active-set type methods for nonlinear programming, approaches can be

categorized in two types: the EQP approach and the IQP approach. The EQP approach

decouples the active set determination as a primary stage in each iteration and solves a,

generally easier, equality-constrained QP to find the step. See a variant called sequential

linear-quadratic programming (SLQP) presented in [27]. IQP approaches state a general

inequality-constrained quadratic program and determine a step as well as an estimation of

the optimal active-set by its solution. It is unknown at present whether the EQP or IQP

approach will prove to be more effective.

A valuable property of SQP is that their fundamental framework is independent to the

13
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problem sparsity and data structure. The only requirement relies in the evaluation of the

objective function and the constraints, which are naturally given, as well as the statement

of local approximations of first- and second-order derivatives. Sparsity can be transmitted

directly to the QP-solver and is possibly forwarded down to the KKT level therein. This

motivates the development of a generic, structure delegating framework which can employ

any suitable subsolver and specialized linear algebra.

The organization of this chapter is as follows. Introductory Section 3.1 gives an overwiev

on relevant software for SQP in nonlinear programming. Section 3.2 describes a standard

framework for nonlinear programming including the formulation of subproblems, globaliza-

tion strategies, second-order corrections etc. This framework implements a filter line-search

method which is motivated by the techniques presented by Fletcher and Leyffer [30]. As a

major task the independence between operations done on the NLP and the QP level is

guaranteed. This allows the implementation of a highly flexible and generic framework but

may result in infeasible or nonconvex subproblems. Infeasibility has to be handled by the

subsolver itself, nonconvexity can be tackled by the use of positiv definite quasi-Newton

methods. Useful algorithmic aspects of other SQP methods like SNOPT by Gill et al. [45]

are integrated into the framework developed for this thesis.

Notation: From now on the following notation is used. Vectors v ∈ R
n are denoted by

small letters and vector components by sub-indices, e.g. vi is the i-th component of vector

v. Augmented vectors are stated as a sorted list of sub-vectors. For example v = (x, y)

stands for v = (xT , yT )T . Iteration numbers are indexed by braced super-indices, e.g. y(k)

denotes the vector y in iteration k.

3.1 Relevant Software for SQP

SQP methods have been implemented in many packages. They are specialized to problem

sizes and the occurrence of nonlinearities in the objective and/or constraints.

Two established SQP frameworks for large-scale optimization are SNOPT [45] by Gill,

Murray and Saunders and FilterSQP [28, 29] by Fletcher and Leyffer. The former code uses

an augmented Lagrangian merit function reduced along search directions by a line-search

approach and limited memory quasi-Newton approximations of the Hessian, cf. [43, 44].

Subproblems are solved by SQOPT [39] a reduced Hessian active-set method for convex

QP. FilterSQP implements a trust-region filter SQP algorithm where QPs arising are solved

by the provided bqpd-code. The code includes an automatic variable and constraint scaling

as well as a feasibility restoration phase to promote convergence. Both codes are written

in Fortran 77.

Small- to medium-scale problems (due to an explicit storage of the Hessian) with

expensive function evaluations can be solved by KNITRO/ACTIVE [12]. The complete

C/C++ code of KNITRO [13] combines interior-point and active-set strategies. All of the
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three packages ensure feasible subproblems and guard the constraints Jacobians against

rank-deficiency.

The software package CONOPT [22] by Drud implements a generalized reduced gradient

algorithm wherein a line-search SQP approach using exact second derivatives is used for

the determination of better search directions, cf. [23]. The rSQP++ package [4] by Barlett

and Biegler implements an Object-Oriented reduced space SQP framework written in C++

which maintains a quasi-Newton approximation of the reduced Hessian.

3.2 SQP for Nonlinear Optimization

Throughout this section a sequential quadratic programming framework for the solution of

the continous nonlinear optimization problem

min
x∈Rn

f(x) (3.1a)

s.t. cE(x) = 0, (3.1b)

cR(x) ∈ [rl, ru], (3.1c)

x ∈ [bl, bu], (3.1d)

is presented. If not stated otherwise, the objective function f : Rn → R, equality constraints

cE(x) = (c1(x), . . . , cm(x))T : Rn → R
m (3.2)

and range constraints

cR(x) = (cm+1(x), . . . , cm+k(x))T : Rn → R
k (3.3)

are smooth functions. In distinction to (2.1) inequality constraints are split up into lower

and upper range constraints (3.1c) and lower and upper variable bounds (3.1d). The lower

and upper limits are given by rl, ru ∈ R
k ∪ {±∞} and bl, bu ∈ R

n ∪ {±∞}. Values ±∞
indicate absence limits. The Lagrangian function of (3.1) is denoted as

L(x, z, vl, vu, ul, uu) = f(x)− zT cE(x)

− vT
l (cR(x)− rl)− vT

u (−cR(x) + ru) (3.4)

− uT
l (x− bl)− uT

u (−x + bu).

z ∈ R
m is the vector of dual multipliers of the equality constraints, vl, vu ∈ R

k are the

vectors of dual multipliers of the lower and upper range constraints and ul, uu ∈ R
n are

the vectors of dual multipliers of the lower and upper variable bounds. For better reading,

λ = (z, vl, vu, ul, uu) ∈ R
nd , nd = m + 2k + 2n denotes the vector of dual multipliers.

SQP methods use the Lagrangian formalism aiming directly for a first-order critical
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point satisfying the KKT conditions. The conditions (2.6) applied to (3.1) consist of the

dual feasibility

∇xL(x, λ) : ∇f(x)−∇cE(x)T z −∇cR(x)T (vl − vu)− (ul − uu) = 0 (3.5a)

and primal feasibility

∇zL(x, λ) : cE(x) = 0, (3.5b)

∇vl
L(x, λ) : cR(x) ≥ rl, (3.5c)

∇vuL(x, λ) : −cR(x) ≥ −ru, (3.5d)

∇ul
L(x, λ) : x ≥ bl, (3.5e)

∇uuL(x, λ) : −x ≥ −bu (3.5f)

as well as the nonnegativity and complementarity conditions (for all i ∈ E ∪ R ∪ B)

vl,−vu, ul,−uu ≥ 0, (3.5g)

λici(x) = 0. (3.5h)

In (3.5a) ∇cE(x) ∈ R
m×n and ∇cR(x) ∈ R

k×n denote the constraint Jacobians of cE(x)

and cR(x), with

∇cE(x) =











∂c1(x)
∂x1

· · · ∂c1(x)
∂xn

...
. . .

...
∂cm(x)

∂x1
· · · ∂cm(x)

∂xn











, ∇cR(x) =











∂cm+1(x)
∂x1

· · · ∂cm+1(x)
∂xn

...
. . .

...
∂cm+k(x)

∂x1
· · · ∂cm+k(x)

∂xn











. (3.6)

3.2.1 Determination of the Search Direction

The basic structure of SQP methods involves outer and inner iterations, associated with

the current solution estimate (x(k), λ(k)), the k-th outer iterate, for (3.1). As already

mentioned aboved, new estimates are found by the minimization of a quadratic model of

the objective function subject to a linearization of the constraints1 about x(k); defining the

inner iterates.

At first, consider the simpliest derivation in constrained nonlinear optimization, i.e.

when only equality constraints are involved (R = B = ∅). The NLP to solve then reads

min
x∈Rn

f(x) s.t. cE(x) = 0 (3.7)

1Constraints are replaced by a linear first order Taylor series approximation, the objective by a second
order Taylor series approximation augmented by second order information from the constraints.
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and a local SQP method obtains search directions p
(k)
x as the solution of

min
p∈Rn

q(k)(p) = 1
2pT H(k) p + (g(k))T p (3.8a)

s.t. A
(k)
E p + c

(k)
E = 0, (3.8b)

where g(k) = ∇xf(x(k)), A
(k)
E = ∇cE(x(k)), c

(k)
E = cE(x(k)) and H(k) is (an approximation

of) the Hessian of the Lagrangian, i.e. H(k) ≈ ∇2
xxL(x(k), λ(k)).

Another access to SQP is to explain it by the application of Newton’s method to the KKT

optimality conditions for problem (3.7). A step (x(k+1), λ(k+1)) = (x(k), λ(k)) + (p(k)
x , p

(k)
λ )

is then obtained by solving the Newton-KKT system





H(k) (A(k)
E )T

A
(k)
E









p
(k)
x

−p
(k)
λ



 =





−g(k) + (A(k)
E )T λ(k)

−c
(k)
E



 (3.9)

supposing that (x(k), λ(k)) is an estimate of the KKT point (x∗, λ∗). The conformity

becomes clear, by the view on the equivalence of the solution of (3.9) and a stationary

point of (3.8) with associated dual multipliers λ
(k)
QP = λ(k) + p

(k)
λ . For a more detailed look

see Nocedal and Wright [77] or Conn et al. [17].

Recalling the optimality conditions for quadratic programming (Section 2.2.2) applied

to (3.8) or looking at the Newton iteration above, the iteration procedure is well defined,

when the KKT matrix is nonsingular. That is if at (x, λ) = (x(k), λ(k)) for ∇c(x) = ∇cE(x)

the LICQ is satisfied and the second-order sufficient condition, see Theorem 3, holds close

to (x∗, λ∗). This leads to common regularity assumptions in SQP, which are subsummed

in the following.

Assumption 1. (A1) The constraints Jacobian A(k) = ∇c(x) has full row rank;

(A2) The Hessian of the Lagrangian H(k) = ∇2
xxL(x, λ) is positive definit on the tangent

space of c(x), that is, dT∇2
xxL(x, λ)d > 0 for all d 6= 0 satisfying ∇c(x)d = 0.

At this point, a local SQP method can be stated (see Algorithm 1). Given user-specified

primal and dual tolerances ǫpri > 0, ǫdual > 0 it generates a sequence {x(k)} until a local

minimizer (or at least stationary point) of (3.7) is found, i.e. if it (nearly) satisfies the KKT

conditions (3.5a) and (3.5b) for some λ(k) ∈ R
m. This goal is monitored by the overall

NLP termination criterion

‖cE(x(k))‖ < ǫpri and ‖∇xL(x(k), λ(k))‖ < ǫdual. (3.10)

The framework presented so far can be extended easily to the general case of problem

(3.1) by linearizing both the equality and inequality constraints (i.e. A
(k)
R = ∇cR(x(k)) and

c
(k)
R = cR(x(k))). In IQP approches, this leads to quadratic subproblems of the following
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Algorithm 1: Local SQP Algorithm for (3.7)

Input : User provided initial pair (x(0), λ(0)).

1 Set k = 0.
2 while the NLP termination criterion (3.12) is not satisfied do

3 Evaluate H(k), g(k) and A
(k)
E , c

(k)
E .

4 Solve (3.8) to obtain p
(k)
x and λ

(k)
QP.

5 Update iterates by x(k+1) ← x(k) + p
(k)
x and λ(k+1) ← λ

(k)
QP.

6 Set k ← k + 1.

type:

min
p∈Rn

q(k)(p) = 1
2pT H(k) p + (g(k))T p (3.11a)

s.t. A
(k)
E p + c

(k)
E = 0, (3.11b)

A
(k)
R p + c

(k)
R ∈ [rl, ru], (3.11c)

p + x(k) ∈ [bl, bu]. (3.11d)

In those the termination criterion is extended to the KKT conditions (3.5) for some

λ(k) ∈ R
nd . The nonnegativity of dual multipliers and the complementarity condition need

not to be monitored by the SQP framework itself - they are provided by the QP subsolver

by returning p
(k)
x = 0 and suitable λ(k) = λ

(k)
QP, whenever x(k) is a stationary point for (3.1).

The general NLP termination criterion is given by

max
(

‖ξ(k)‖, ‖ρ(k)
l ‖, ‖ρ(k)

u ‖, ‖β(k)
l ‖, ‖β(k)

u ‖,
)

< ǫpri and ‖∇xL(x(k), λ(k))‖ < ǫdual (3.12)

where ξ(k) = cE(x(k)) and (using [y]+ = max(y, 0))

ρ
(k)
l = [cR(x(k))− rl]+, ρ(k)

u = [−cR(x(k)) + ru]+, β
(k)
l = [x(k) − bl]+, β(k)

u = [−x(k) + bu]+.

It is easy to see, that if the iterate x(k) is primal feasible and the constraints (3.11b)

and (3.11c) are linear a feasible starting point for (3.11) is given by p = 0. Near the

solution, when steps get small enough, A(x(k)) ≈ A(x(k−1)) holds. This motivates the use

of active-set QP-solvers which can be warm started by reusing the optimal active-set of the

previous iteration. The other way round difficulties may arise if constraints are nonlinear,

the guess of the active-set contains inactive constraints or the quadratic models may not

be convex, i.e. H(k) 6≥ 0.

3.2.2 Globalization with a Filter Line-Search Algorithm

In order to ensure global convergence from remote starting points to stationary points, the

optimization progress needs to be monitored and steps might be truncated to enforce the
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globalization strategy. Once a search direction (p(k)
x , p

(k)
λ ) is determined by the solution of

(3.11), a step length α has to be chosen to compute the next iterate given by

x(k+1) = x(k) + αkp(k)
x and λ(k+1) = λ(k) + αkp

(k)
λ . (3.13)

There are three broad classes of strategies for testing the acceptability of trial steps (cf.

[68]): augmented Lagrangian methods, penalty and merrit-function methods and filter

methods.

The first class successively minimizes a shifted augmented Lagrangian

L̄(x, λ; ρ) = f(x)− λT pk(x) + ρ
2‖pk(x)‖22 (3.14)

with higher-order nonlinear terms pk(x) at x(k), subject to a linearization of the constraints:

min
x
L̄(x, λ; ρ) s.t. c(x(k)) +∇c(x(k))T (x− x(k)). (3.15)

Penalty and merrit-function techniques combine the aim of minimizing the objective

function and reaching feasibility in a merrit function. A standard merrit function for

problem (3.7) is the ℓ1 penalty function

φ1(x) = f(x) + ρ‖cE(x)‖1 (3.16)

for a penalty parameter ρ > 0.

Filter Methods

Filter methods are first proposed by Fletcher and Leyffer [30]. The idea of filter methods is

to treat the goals of minimizing the objective function and constraint violation separately.

Therefore they keep record of the objective function values f (l) = f(x(l)) and constraint

violations θ(l) = θ(x(l)) with

θ(x(l)) = max
(

‖ξ(l)‖, ‖ρ(l)
l ‖, ‖ρ(l)

u ‖, ‖β(l)
l ‖, ‖β(l)

u ‖,
)

(3.17)

for some previous iterates x(l) with (θ(l), f (l)) ∈ F . This allows to accept step lengths that

make progress only in the objective function or the reduction of infeasibility instead of

requiring progress in a combination of both. As an outcome, filter methods can often take

larger steps and tend to be more robust.

The definitions and concepts in the upcoming paragraphs are based on the textbooks of

Nocedal and Wright [77] and Biegler [5]. The presented approach follows the guidelines

of Wächter and Biegler [97, 102]. See also Chin [14, 15] and Chin and Fletcher [16] for a

similar approach.
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Definition 5 (Domination). One says that a pair (θ(i), f (i)) is dominated by another pair

(θ(j), f (j)) if f (j) ≤ f (i) and h(j) ≤ θ(i) holds.

Definition 6 (Filter). A filter F is a list of pairs (θ(i), f (i)) in which no pair dominates

any other pair.

The basic idea of a backtracking filter line-search is the generation of a sequence of

primal step lengths

αk,l+1 = κbαk,l, κb ∈ (0, 1), l = 0, 1, . . . , (3.18)

which are used to compute a sequence of trial points

x(+) = x(k) + αk,lp
(k)
x , l = 0, 1, . . . , (3.19)

until a trial point is found such that

(θ(+), f (+)) = (f(x(+)), θ(x(+))) (3.20)

is acceptable for the filter. The idea of acceptability is formulated in the following definition.

Definition 7 (Acceptability). A pair (θ(+), f (+)) is said to be acceptable for inclusion in

the filter if it is not dominated by any pair in the filter, i.e. if

f (+) ≤ f (j) or θ(+) ≤ θ(j) (3.21)

holds for all (θ(j), f (j)) ∈ F .

This acceptance criterion can be strengthened to improve the practical performance of

the algorithm by replacing (3.21) by

f (+) ≤ f (j) − κm1θ(j) or θ(+) ≤ (1− κm2)θ(j) (3.22)

for given filter margins κm1 , κm2 ∈ (0, 1) that ensure, that iterates cannot accumulate at

infeasible limit points. A typical filter in the (θ, f)-plane is shown in Figure 3.1. The

straight lines correspond to the region (filled area) that is dominated by the filter, the

dotted line coresponds to the envelope defined by the filter margins κm1 , κm2 .

Sufficient Reduction Condition

To ensure convergence to a local minimum, filter methods ensure that the trial point

provides sufficient reduction with respect to the current iterate provided by

f (+) ≤ f (k) − κm1θ(k) or θ(+) ≤ (1− κm2)θ(k). (3.23)
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θ(x)

f(x)

(θ(1), f (1))

(θ(2), f (2))

(θ(3), f (3))

(θ(4), f (4))

Figure 3.1: Example of a filter with five entries including (−∞, θmax).

These criteria provide sufficient decrease in the infeasibility but an additional condition

indicating sufficient decrease in the objective function, in particular for near feasible trial

points, i.e. θ(k) ≤ θmin, is needed. The above criterion is replaced by the Armijo condition

for unconstrained optimization

f (+) ≤ f (k) + κaαk,l(g(k))T p(k)
x , κa ∈ (0, 1

2), (3.24)

whenever the so called switching condition

(g(k))T p(k)
x < 0 and αk,l

[

−(g(k))T p(k)
x

]κs1
> κδ

[

θ(k)
]κs2 (3.25)

holds for fixed constants κδ > 0, κs2 > 1, κs1 > 2κs2 . If the switching condition holds the

step is called an f -type step. Otherwise, when (3.25) fails, an accepted step is said to be a

θ-type step, mainly reducing the constraint violation.

Maximum Constraints Violation

In most cases, one wants to ensure that a trial point with a constraint violation larger than

a given threshold θmax is never accepted by the filter. This can be achieved by initializing

the filter as

F0 = {(θmax,−∞)} (3.26)
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Mostly, θmax is computed in dependence of the constraint violation at the starting point,

e.g.

θmax = κi1 max(1, κi2θ(0)), κi1 , κi2 > 0. (3.27)

Augmentation of the Filter

The basic motivation of filter techniques is to be less conservative than penalty methods.

To achieve this goal, the filter is not augmented by (θ(k), f (k)) in every iteration. It is

updated only, when the switching condition (3.25) or the Armijo condition (3.24) does

not hold and the constraint violation at the trial point is larger than a given threshold

θmin > 0, defined by

θmin = κi3θ(x(0)), κi3 > 0. (3.28)

Second-Order Correction

The filter technique presented so far may suffer from the Maratos effect, see [77]. To

overcome this problem, and to improve the overall robustness of the algorithm, second-

order correction (SOC) is employed if a desired step is rejected (or truncated) by the filter.

The method developed for this thesis follows the analysis of Wächter and Biegler [102],

where an SOC step is computed if the first trial point is not acceptable to the filter.

There is a wide range of options for the computation of a second-order correction leading

to slightly different SOC problems to solve, cf. [102]. One efficient approach in (active-set)

SQP frameworks is to determine a composite step p̃
(k)
x = p

(k)
x + p

(k)
x,soc (and associated dual

variables λ
(k)
soc) obtained by the solution of

min
p∈Rn

q(k)
soc(p) = 1

2pT H(k)
soc p + (g(k)

soc)
T p (3.29a)

s.t. A
(k)
E,socp + c

(k)
E,soc = 0, (3.29b)

A
(k)
R,socp + c

(k)
R,soc ∈ [rl, ru], (3.29c)

p + x(k) ∈ [bl, bu], (3.29d)

where H
(k)
soc = H(k), A

(k)
E,soc = A

(k)
E , A

(k)
R,soc = A

(k)
R , g

(k)
soc = g(k) as in subproblem (3.11) and

c
(k)
E,soc = c

(k)
E + cE(x(k) + p(k)

x ), c
(k)
R,soc = c

(k)
R + cR(x(k) + p(k)

x ).

This approach is inexpensive to compute and capable of reusing existing factorizations

from the minimization of q(k)(p) in the solution of (3.29).

Another correction corresponds to the step determined in the next iteration, supposing

that x(k) + p
(k)
x has been accepted. It is similar to the so called nonmonotone (watchdog)

strategies, seeking for improved feasibility and optimality under the assumption that the
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reasons for the rejection by the globalization strategy will be temporary and subsequent

steps will more than compensate for it, see [77]. The step correction p
(k)
x,soc is obtained by

the solution of (3.29) using the quantities

H(k)
soc ≈ ∇2

xxL(x(k) + p(k)
x , λ

(k)
QP) g(k)

soc = ∇xL(x(k) + p(k)
x , λ

(k)
QP),

A
(k)
E,soc = ∇xcE(x(k) + p(k)

x ), c
(k)
E,soc = cE(x(k) + p(k)

x ),

A
(k)
R,soc = ∇xcR(x(k) + p(k)

x ), c
(k)
R,soc = cR(x(k) + p(k)

x ).

and replace (3.29d) by p + x(k) + p
(k)
x ∈ [bl, bu]. This alternative is more expansive to

compute but may lead to better results on some instances with significant nonlinearities in

the constraints.

The corrected trial and Lagrangian multipliers for the next iterate are then defined by

x(+) = x(k) + p(k)
x + p(k)

x,soc and λ(+) = λ(k)
soc. (3.30)

However, if the corrected trial fails to be accepted by the filter, the step size is reduced via

a backtracking strategy and the SOC step is rejected. Then, the backtracking procedure is

repeated until x(k) + αk,lp
(k)
x satisfies the filter conditions.

For a detailed discussion of second-order correction the interested reader is referred to

Conn et.al. [17], Nocedal and Wright [77] or Fletcher [25].

Algortihmic Details

Following the analysis of Wächter and Biegler [102] trial points with θ(+) > θmin are

included into the filter only for θ-type iterations. Finally, it is not guaranteed that a

step size αk,l larger than a given threshold αmin can be found, that is accepted by the

filter. Using linear models of the involved functions, this situation may be indicated if αk,l

becomes smaller than

αk,min = κα ·











min
{

κm2 ,
κm1 θ(k)

−(g(k))T p
(k)
x

, δ[θ(k)]κs2

[−(g(k))T p
(k)
x ]κs1

,

}

, if (g(k))T p
(k)
x < 0

κm2 , otherwise,
(3.31)

with a constant safty guard κα ∈ (0, 1]. If this occurs the algorithm exits and the main

SQP framework needs to restore feasibility, i.e. find a new iterate x(k+1) that is accaptable

in the sense of (3.22).

For given algorithmic constants Algorithm 2 states the complete filter line-search method.

3.2.3 Feasibility Restoration Phase

In general it can neighter be guaranteed that (3.11) is sufficiently consistent and has a

feasible solution nor that a step size αk,l > αk,min exists that is acceptable for the filter and
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Algorithm 2: Filter Line-Search Algorithm

Input : Primal iterate x(k) and desired search direction p
(k)
x , vector of algorithmic

constants κls.

1 Initialize backtracking line-search counter l = 0, set αk,l = 1.
2 if αk,l < αk,min (see 3.31) then

3 Go to feasibility restoration phase (see Section 3.2.3).

4 Compute trial x(+) = x(k) + αk,lp
(k)
x .

5 if x(+) is acceptable to F (cf. (3.22)) then

6 if (3.25) holds then

// f-type step.

7 if (3.24) holds then

8 Accept x(+), return step length αk,l and search direction p
(k)
x .

9 else if l = 0 then

10 Go to SOC step computation, line 20.

11 else

// θ-type step.

12 if (3.23) holds then

13 Accept x(+), if θ(+) > θmin, add (θ(k), f (k)) to F and remove all entries
that are dominated by (θ(k), f (k)).

14 return step length αk,l and search direction p
(k)
x .

15 else if l = 0 then

16 Go to SOC step computation, line 20.

17 else if l = 0 then

18 Go to SOC step computation, line 20.

// Backtracking procedure

19 Set αk,l+1 = κbαk,l, l← l + 1 and go to line 2.

// Second order correction

20 Determine a second-order correction p
(k)
soc as the solution of (3.29). If the SOC

subproblem is infeasible, go to line 29.

21 Compute trial x(+) = x(k) + p
(k)
x + p

(k)
soc.

22 if x(+) is acceptable to F (cf. (3.22)) then

23 if (3.25) holds for αk,0 = 1, dk and θ(k) then

// f-type step.

24 if (3.24) holds with αk,0 = 1 then

25 Accept x(+), return step length αk,l = 1 and search direction p
(k)
x + p

(k)
soc.

26 else if (3.23) holds then

// θ-type step.

27 Accept x(+), if θ(+) > θmin, add (θ(k), f (k)) to F and remove all entries that
are dominated by (θ(k), f (k)).

28 return step length αk,l and corrected search direction p
(k)
x + p

(k)
soc.

29 Discard p
(k)
soc, set αk,l+1 = κbαk,l, l← l + 1 and go to line 2.
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provides sufficient reduction in one of the filter’s objectives. In these situations the SQP

algorithm needs to switch to a feasibility restoration phase, whose purpose is to find a new

iterate x(k+1) that is accaptable to the filter and satisfies (3.23) merely by the reduction of

the constraint violation. The reduction of θ could be achieved by any iterative algorithm,

for example by ignoring the objective function. Even different methods could be used at

different stages of the optimization procedure, see [97].

It is reasonable to avoid that the solution of the feasibility restoration phase is too far

away from the current iterate x(k) at which the procedure was invoked. To achieve this goal,

one could, for example, compute the shortest vector satisfying the linearized constraints in

(3.11). This can be achieved by solving the relaxed quadratic program

min
(p,s,t)∈RN

1
2pT p +

ρ

2
‖s‖22 +

ρ

2
‖t‖22 (3.32a)

s.t. A
(k)
E p + s + c

(k)
E = 0, (3.32b)

A
(k)
R p + t + c

(k)
R ∈ [rl, ru], (3.32c)

p + x(k) ∈ [bl, bu] (3.32d)

including slack variables s ∈ R
m, t ∈ R

k absorbing the infeasibility and a fixed penalty

parameter ρ > 0. It is obvious, that (3.32) is allways feasible and a solution point where

s, t vanish is feasible to (3.1) w.r.t. the current linearization of the constraints.

Since feasible iterates are never included into the filter, the algorithm for the feasibility

restoration phase should usually be able to find a new accaptable iterate unless it converges

to a stationary point of θ - this would identify the problem to be (at least locally) infeasible.

If it terminates successfully the filter is augmented by (θ(k), f (k)) to avoid cycling back to

the problematic point x(k). More details on procedures for feasibility restoration in filter

line-search methods can be found in [97, 30]. Algorithm 3 subsummes the procedure of the

feasibility restoration.

Algorithm 3: Feasibility Restoration Phase

Input : Filter F and problematic pair (θ(k), f (k)).

1 Solve restoration problem (3.32) to obtain a (near) feasible point x
(+)
frp (and

multipliers λ
(+)
frp ) that is acceptable to F , see Section 3.2.3.

2 Augment the Filter F by (θ(k), f (k)).

3 return (near) feasible point x
(+)
frp and multipliers λ

(+)
frp .

3.2.4 Algorithmic Details

The performance of SQP methods highly depends on the quality of the starting point and

chosen algorithmic constants κ. These aspects are discussed in the following paragraphs.
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Startingpoint Strategy

Three different situations can be distinguished depending on whether the user does not

provide an initial estimate, provides an initial estimation for the primal variables x̄(0) or

provides primal and dual estimates (x̄(0), λ̄(0)). If the user does not support any starting

point x̄(0) = 0 is set.

Mainly, the aspects for the determination of the quality of the supplied starting point

are its primal and dual feasibility. Obviously, it is helpful to start the algorithm with an

almost feasible point which should also be not too far away from dual feasibility.

Algorithm 4 states the default initialization strategy of the implementation developed for

this thesis. First the primal variables are shifted to ensure bound feasibility. Afterwards, if

not given by the user, at least the dual multipliers z(0) corresponding to equality constraints

are approximated by the solution of the linear least-squares problem

z(0) = arg min
z

1
2

∥

∥

∥(∇cE(x(0)))T z −∇f(x(0))
∥

∥

∥

2

2
. (3.33)

Algorithm 4: Initialization Strategy

Input : Primal initial estimate x̄(0) and optional multipliers λ̄(0).

1 if x̄(0) is not supplied then

2 Set x̄(0) = 0.

// Feasibility to bound constraints

3 for i = 1, . . . , n do

4 if x̄
(0)
i ∈ [bl,i, bu,i] then

5 Set x
(0)
i = x̄

(0)
i .

6 else

7 Set x
(0)
i = bl,i if x̄

(0)
i < bl,i and x̄

(0)
i = bu,i otherwise.

// Initialization of dual multipliers

8 if λ̄(0) is supplied then

9 Set λ(0) = λ̄(0); initialize W0 in active-set QP solver.
10 else

11 Set vl, vu, ul, uu = 1.

12 Evaluate ∇f(x(0)), A
(0)
E , cE(x(0)).

13 Solve the linear least-squares problem (3.33) to initialize z(0).

14 return initial pair (x(0), λ(0)).

Algorithmic Constants

Inspired by the interior-point filter line-search code Ipopt by Waechter and Biegler [98]

and the generic iterior-point framework Clean::IPM by Martin Schmidt [82] Table 3.1
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explanation symbol range default

Small step margin κs ≥ 0 10−8

Filter margin f κm1 (0, 1) 10−5

Filter margin θ κm2 (0, 1) 10−5

Filter initialization factor κi1 > 0 104

Filter initialization factor κi2 > 0 101

Filter initialization factor κi3 > 0 10−4

Switching condition factor κs1 > κs2 2.3
Switching condition factor κs2 > 1 1.1
Switching condition factor κδ > 0 1
Safty guard for αmin κα (0, 1] 1
Backtracking factor κb (0, 1) 0.5

Table 3.1: Algorithmic constants used in the proposed Filter line-search method.

summarizes the ranges of inherited algorithmic constants and the chosen defaults for the

implementation for this thesis.

3.2.5 Quasi-Newton Methods

Many methods for (un-)constrained optimization use an approximation of the Hessian of

the Lagrangian when exact second-order derivatives are either unavailable or too expensive

to compute. The computational study of Gill et al. [46] additionally shows, that in some

situations, so called quasi-Newton methods are more efficient than competing methods

based on using the exact Hessian of the Lagrangian.

Quasi-Newton methods refer to iterative approaches which only include first-order

derivative information. The curvature of the objective function is estimated along the

direction from x(k) to x(k+1) and is kept up to date in each iteration. Given an initial point

x(0) and an initial approximation B(0), the subsequent approximations are obtained by

using, for example, the symmetric Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula

B(k+1) = B(k) − B(k)s(k)(s(k))TB(k)

(s(k))TB(k)s(k)
+

g(k)(g(k))T

(s(k))T g(k)
(3.34)

where

s(k) = x(k+1) − x(k) and g(k) = ∇xL(x(k+1), λ(k+1))−∇xL(x(k), λ(k+1)).

Formula (3.34) is a rank-two update that - under certain conditions - guarantees the

sequence B(k) to be positive definite. If ∇2
xxL > 0 in the region where the optimization

takes place, BFGS quasi-Newton approximations B(k) tend to converge robustly and rapidly,

but otherwise the BFGS approach may be problematic. Depending on the objective’s
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curvature updates should then be skipped if the curvature condition

(s(k))T g(k) ≥ θ(s(k))TB(k)s(k), θ > 0 (3.35)

does not hold. In this context Powell [78] proposed a damping strategy for the constrained

case (see also [77]) by replacing the definition of g(k) by

r(k) = θkg
(k) + (1− θk)B(k)s(k) (3.36)

where the scalar value θk is defined as

θk =











1 , if (3.35) holds for θ = 0.2,

0.8(s(k))T B(k)s(k)

(s(k))T B(k)s(k)−(s(k))T r(k) , if (3.35) does not hold for θ = 0.2
(3.37)

and B(k) is updated as follows:

B(k+1) = B(k) +
B(k)s(k)(s(k))TB(k)

(s(k))TB(k)s(k)
+

r(k)(r(k))T

(s(k))T r(k)
(3.38)

If one is using quasi-Newton approximations in SQP, the desire to obtain a descent direction

by solving (3.11) motivates to use rank-two update formula like BFGS to obtain convex

subproblems. Damped BFGS updating often works well in combination with line-search

methods but it fails to address the underlying problem if the Hessian of the Lagrangian is

not positive definite. In the nonconvex case one could use different approaches like the

symmetric rank-one (SR1) method which will not guarantee the approximations to be

positive definite and include appropriate safeguards in the globalization strategy.

Updating procedures like BFGS or SR1 result in dense matrices and therefore undermine

sparsity in general. By this reason such methods are only useful when a more detailed

sparsity with dense matrix blocks is used. Otherwise it may be profitable to use inexact

update strategies.

An overview of quasi-Newton approximation for (un-)constrained optimization including

convergence analysis can be found in [77] or in the often cited literature [19, 10].

3.2.6 The Complete Filter Line-Search SQP Framework

At this point, the complete filter line-search SQP framework can be stated (see Algo-

rithm 5).

3.2.7 Convergence Analysis

The described SQP framework combines several aspects of a filter line-search method

stated by Wächter and Biegler in [97, 102, 96]. The implementation follows the approaches
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Algorithm 5: Filter Line-Search SQP Algorithm

Input : User provided starting point x̄(0) and optional multiplier estimates λ̄(0) for
problem (3.1), vector of algorithmic constants κ (see Table 3.1).

1 Set outer iteration counter k = 0.
2 Call Algorithm 4 with x̄(0) (and λ̄(0), if available) to obtain initial pair (x(0), λ(0)).

3 Evaluate problem data H(0), A
(0)
E , A

(0)
R and g(0), cE(x(0)), cR(x(0)) at (x(0), λ(0)).

4 while the NLP termination criterion (3.12) does not hold do

// Step determination

5 Solve (3.11) to obtain p
(k)
x and λ

(k)
QP;

6 if (3.11) is insufficient consistent then

7 Go to feasibility restoration phase, i.e. call Algorithm 3 to obtain

(x(+)
frp , λ

(+)
frp ) and set x(k+1) ← x

(+)
frp , λ(k+1) ← λ

(+)
frp .

8 else if ‖p(k)
x ‖ < κs then

9 Accept small step; Update iterates by x(k+1) ← x(k) + p
(k)
x , λ(k+1) ← λ

(k)
QP.

10 else

// Determine stepsize by filter line-learch

11 Call Algorithm 2 with primal iterate x(k), search direction p
(k)
x and maximal

step size αmax = 1 to obtain αk;
12 if Algorithm 2 succeeds then

13 Compute new primal and dual iterates by x(k+1) ← x(k) + αkp
(k)
x and

λ(k+1) ← (1− αk)λ(k) + αkλ
(k)
QP.

14 else

15 Go to feasibility restoration phase, i.e. call Algorithm 3 to obtain

(x(+)
frp , λ

(+)
frp ) and set x(k+1) ← x

(+)
frp , λ(k+1) ← λ

(+)
frp .

// Update iteration data

16 Compute/Update H(k+1), A
(k+1)
E , A

(k+1)
R .

17 Compute g(k+1), cE(x(k+1)), cR(x(k+1)).
18 Evaluate the KKT error at (x(k+1), λ(k+1)) (see (3.12)).
19 Increase iteration counter k ← k + 1.

20 return optimal solution (x(k), λ(k)).
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stated therin and combines the techniques which ensure local and global convergence. For

this reason, only the main assumptions and results are recapitulated.

The following notation is used: R denotes the set of iteration indices k in which the

feasibility restoration phase is invoked. Moreover, the set Rinc ⊆ R denotes the set of

iteration indices in which (3.11) is not (sufficiently) consistent.

Assumption 2 (Global convergence). Let {x(k)} be the sequence of iterates generated by

Algorithm 5. Moreover, assume that the feasibility restoration phase allways terminates

successfully and Algorithm 5 does not stop with a KKT point in line 4

(G1) There exists an open set O ⊂ R
n with [x(k), x(k) + p

(k)
x ] ⊂ O for all iterations

k 6∈ Rinc and f, cE , cR are differentiable and bounded on O and their first derivatives

are bounded and Lipschitz-continous over O.

(G2) The Hessians of the Lagrangian H(k) or, if an approximation is used, its approxima-

tions of problem (3.1) are uniformly bounded for all k 6∈ Rinc.

(G3) There exists a constant θinc > 0 such that Algorithm 5 does not enter the feasibility

restoration phase if θ(k) < θinc.

(G4) There exist a constants Cp, Cλ, Cq > 0, so that for all iterations k 6∈ Rinc

‖p(k)
x ‖ ≤ Cp, ‖λ(k)

QP‖ ≤ Cλ, ‖q(k)
x ‖ ≤ Cqθ(k)

holds, where q
(k)
x denotes the shortest vector satisfying the constraints in (3.11).

Therefore the step is decomposed as

p(k)
x = q(k)

x + d(k)
x . (3.39)

(G5) There exists a constant CH > 0, so that (p(k)
x )T H(k) p

(k)
x > CH(p(k)

x )T p
(k)
x holds for

all iterations k 6∈ Rinc.

Combining assumption (G3) and (G4) means, that the QP (3.11) is sufficiently consistent

near to feasible points. Moreover, (G5) ensures descent in the objective function at

sufficiently feasible points. Together these conditions coincide with (A1) and (A2).

In [97], the following global convergence theorems are proved using the criticality measure

χ(x(k)) = ‖d(k)
x ‖2 for iterations k 6∈ Rinc.

Theorem 6 (Feasibility). Suppose Assumption 2 holds. Then limk→∞ θ(k) = 0.

Theorem 7 (Optimality). Suppose Assumption 2 holds. Then all limit points are feasible,

and if {x(k)} is bounded, than there exists a limit point x∗ of {x(k)} which is a first-order

optimal point for the NLP (3.1), i.e.

lim
k→∞

θ(k) = 0 and lim inf
k→∞

χ(x(k)) = 0. (3.40)
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The usage of second-order correction preserves Algorithm 5 from suffering from the

Maratos effect. Under stronger assumptions superlinear convergence in the neighborhood

of a local solution x∗ of the NLP could be achieved. The following assumption and theorem

are taken from [102].

Assumption 3 (Local convergence). Let {x(k)} be the sequence of iterates generated by

Algorithm 5 that converges to a local solution x∗ of the NLP (3.1), and the following

assumptions hold.

(L1) The functions f , cE , cR are twice continously differentiable in a neighborhood of x∗.

(L2) x∗ satisfies the KKT conditions (3.5) for some λ∗ ∈ R
nd. The active constraints

Jacobian A
(k)
A(x∗) has full row rank (see (A1)) and the Hessian of the Lagrangian

∇2
xxL(x∗, λ∗) is positive definite on the null-space of A

(k)
A(x∗) (see (A2)).

(L3) The matrices H(k) in QP (3.11) are bounded and uniformly positive definite on the

null-space of the active constraints Jacobian A
(k)
A(x∗).

(L4) The matrices H
(k)
soc in QP (3.29) are bounded and uniformly positive definite on the

null-space of the active constraints Jacobian A
(k)
A(x∗),soc

, and

g(k)
soc = o(‖p(k)

x ‖), A
(k)
E −A

(k)
E,soc = O(‖p(k)

x ‖), A
(k)
R −A

(k)
R,soc = O(‖p(k)

x ‖).

(L5) The (approximations of the) Hessian of the Lagrangian H(k) in QP (3.11) satisfy

(∇2
xxL(x(k), λ∗)−H(k))p(k)

x = o(‖p(k)
x ‖). (3.41)

(L6) Assumption (G3) holds.

Theorem 8 (Local convergence). Suppose Assumption 3 holds. Then for k sufficiently

large, full steps of the form x(k) + p
(k)
x or x(k) + p

(k)
x + p

(k)
x,soc are taken, and x(k) converges

to x∗ superlinearly.





Chapter 4

Active-Set Methods for Quadratic

Programming

Active-set methods (ASM) for QP have been widely used since the 1970s and are based

on extending the simplex algorithm for linear programming. They find their strenght

in the solution of small- and medium-sized problems and more recently as subsolvers in

frameworks for nonlinear optimization. Because they are able to capitalize on a good

estimate of the solution ASM are also effective when a series of related QPs must be solved.

The solution of one problem may then be used to warm start the next. This feature makes

this type of algorithms particulary strong in SQP methods. For instance, see Gill and

Wong [47] for a recent survey.

There are three variants of active-set algorithms to be distinguished: primal, dual and

primal-dual. Primal methods require a feasible starting point and maintain feasibility

to equality and inequality constraints and drive dual infeasibility to zero. Vice-versa,

dual approaches maintain feasibility of the dual inequalities requiering a dual feasible

starting point, while moving to satisfy the primal inequalities. Finally, primal-dual methods

combine the former ones: a QP is solved as a coupled pair of primal and dual quadratic

programs. The interested reader is referred to Wong [101] and Boland [6] for primal and

dual methods. A comparison of the mentioned approaches is, for example, given by Forgsen

et al. [33]. For active-set methods for more general (nonconvex) QPs, see [50, 55, 53] and

the references therein.

Existing implementations of active-set methods for quadratic programming include

QPOPT [38], SQOPT [39] and QPBLUR [71]. QPBLUR implements an active-set convex QP

solver based on regularized KKT systems. QPOPT and SQOPT use a two-phase active-set

method employing a reduced Hessian strategy. The so called phase 1 generates a feasible

starting point for the optimality phase.

Motivated by SQP methods and specialized sparse solvers available for the KKT systems

arising in quadratic programming, the main goal of this thesis is to find an elastic active-set

QP solver for structured QP. Ensuring genericity, the algorithm employs any custom KKT

solver in a slack relaxation of the quadratic program to avoid a phase 1. This involves

partial projection techniques that preserve the superordinate problem’s sparse structure in

the KKT system.

33
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The outline of this chapter is as follows. Section 4.1 describes a formal (primal) active-set

method for solving convex quadratic programs of the form (2.11). Step and step length

computation, changes in the workingset, etc. are discussed. In Section 4.2 an elastic primal

active-set method as described above is devoloped. Two different relaxation schemes with

its structural and algorithmic details are presented.

Notation: As already used for the donation of vector components, row vectors aT
i for

i ∈ M of a matrix AM are denoted by small letters with sub-indices, e.g. aT
i ∈ R

n is

a row of AM = {ai}i∈M ∈ R
|M|×n. e is the vector as follows in appropriate dimension:

e = (1, . . . , 1)T .

4.1 Active-Set Methods for Convex QP

Active-set methods for convex quadratic programming are iterative algorithms. Starting

at a feasible initial estimate a sequence of approximate solutions of (2.11) is generated

and a prediction of the optimal set of active constraints is maintained and updated. This

procedure is done with respect to the so called workingset.

Definition 8 (Workingset). The workingset Wk to the k-th iterate x(k) consists of all

constraint indices from E and a selection of indices i from I whose constraints are active

at x(k) and the gradients ai of the constraints are linearly independent.

Since the complete set of active constraints at a solution x∗ of (2.11) determined by an

active-set method may inherit linear dependent gradients, the workingset is not necessarily

equivalent to the optimal active set. It holds

Wk ⊆ A(x(k)). (4.1)

4.1.1 Step Computation

Given an iterate x(k) primal active-set methods for convex QP determine a step p(k) by

solving an equality-constrained quadratic subproblem. All constraints corresponding to

the k-th workingset are regarded as equalities, the remaining constraints are temporary

neglected. By the definition of

p = x− x(k), gk = Hx(k) + f, ρk = 1
2(x(k))T Hx(k) + fT x(k) (4.2)

the subproblem based on (2.11) can be written as

min
p∈Rn

qk(p) = 1
2pT Hp + (g(k))T p + ρk (4.3a)

s.t. aT
i p = 0, i ∈ Wk. (4.3b)



Chapter 4. Active-Set Methods for Quadratic Programming 35

By the first-order necessary conditions (2.15) applied to (4.3) the existence of an appropriate

vector of Lagrange multipliers λ∗ to a solution p∗ is guaranteed. According to Theorem 5,

a KKT point can be computed by the solution of the linear system





H
(

A
(k)
Wk

)T

A
(k)
Wk

0





(

−p

λ∗

)

=

(

g(k)

0

)

. (4.4)

If p(k) = p denotes the solution of (4.3) (or equivalent of the system (4.4)) one finds, that

for all i ∈ Wk and any step length αk ≥ 0

aT
i (x(k) + αkp(k)) = aT

i x(k) = bi (4.5)

holds. Supposing that p(k) is nonzero, αk is chosen to be the largest value in the range [0, 1].

If x(k) +p(k) is feasible w.r.t. Wk, a full step is applied (i.e. αk = 1) and x(k+1) = x(k) +p(k).

Otherwise it is

x(k+1) = x(k) + αkp(k). (4.6)

4.1.2 Determination of the Step Length

Once a search direction p(k) has been determined αk is chosen in the sense of maximal

decrease of the objective function (2.11a) subject to retaining feasibility. There are three

cases to be observed:

1. For i ∈ Wk every choice of αk yields a next feasible iterate.

2. For i 6∈ Wk with aT
i p(k) ≥ 0 constraint i is satisfied for all nonnegative choices of αk,

since

aT
i (x(k) + αkp(k)) ≥ aT

i x(k) ≥ bi. (4.7)

3. For i 6∈ Wk with aT
i p(k) < 0 constraint i remains satisfied only if the step length is

restricted to

αk ≤
bi − aT

i x(k)

aT
i p(k)

. (4.8)

Combining these aspects this yields an explicit definition of the maximal step length by

αk = min(1, s) with s = min
i6∈Wk,aT

i
p(k)<0

bi − aT
i x(k)

aT
i p(k)

. (4.9)

If it exists, the constraint i for which (4.9) is achieved with αk < 1 is called the blocking

constraint. It is mentioned, that if the desired step is not restricted, i.e. αk = 1, no such a

constraint exists.
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4.1.3 Updating the Workingset

As long as the search directions computed by solving (4.3) are nonzero, blocking constraint

indices j 6∈ Wk are successively added to the workingset:

Wk+1 =Wk ∪ {j}. (4.10)

If p(k) = 0 is observed, x(k) minimizes (2.11a) over its current workingset Wk. The

first-order optimality condition (2.15a) for problem (4.3) then gives

∑

i∈Wk

aiλ
(k)
i = Hx(k) + f. (4.11)

for some Lagrange multipliers λ
(k)
i , i ∈ Wk. By the definition of λ

(k)
i = 0 for i 6∈ Wk, the

pair (x(k), λ(k)) satisfies the KKT conditions (2.15a), (2.15b) and (2.15c). If (2.15d) also

holds, x(k) is a KKT point for the original problem (2.11).

If there are multipliers for which the nonnegativity condition is not satisfied, i.e. λ
(k)
j < 0

for j ∈ Wk∩I, the objective function may be decreased by dropping one of these constraints.

This implies

Wk+1 =Wk \ {j}. (4.12)

The index j corresponding to the most negative multiplier is often dropped in practice,

since the rate of decrease in the objective function is proportional to the magnitude of p
(k)
j ,

even when this approach is susceptible to the scaling of the constraint (cf. [77]).

4.1.4 Basic Active-Set Algorithm for Convex QP

Algorithm 6 states the fundamentals of primal active-set frameworks in convex quadratic

programming and forms the basis of all reifications presented in the following. It is stated

under the assumption that (2.11a) is bounded by the means of (2.11b) and (2.11c). Aspects

discussed are:

1. The choice of the feasible initial point and wokingset.

2. The solution of the step EQP in line 2.

3. The determination of Lagrange multipliers in line 4.

The choices for these algorithmic details are topic of Section 4.2. Previously, the determi-

nation of feasible starting points and possibilities of warm starts as well as issues arising

with degeneracy are discussed.
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Algorithm 6: Basic Active-Set Method for Convex QP

Input : User provided feasible initial estimate x(0) for (2.11) and a suitable workingset
W0 ⊆ A(x(0)). If no workingset is submitted, W0 = ∅ is chosen.

1 for k = 0, 1, 2, . . . do

2 Determine p(k) by solving subproblem (4.3).
3 if p(k) = 0 then

4 Compute Lagrange multipliers λ
(k)
i satisfying (4.11).

5 if λi ≥ 0 for all i ∈ Wk ∩ I then

6 return solution x∗ = x(k).
7 else

8 Identify j = arg minj∈Wk∩I λ
(k)
j .

9 Set x(k+1) ← x(k) and Wk+1 ←Wk \ {j}.
10 else

11 Compute step length αk from (4.9).
12 Set x(k+1) ← x(k) + αkp(k).
13 if blocking constraints exist then

14 Choose one blocking constraint j by means of (4.9).
15 Set Wk+1 ←Wk ∪ {j}.
16 else

17 Set Wk+1 ←Wk.

4.1.5 Degeneracy, Stalling and Cycling

Difficulties in active-set algorithms occour in the case of degeneracy. It refers to situations

in which, e.g. the strict complementary condition (2.7) does not hold or linear dependence

of active constraint gradients takes place. The latter fact may lead to rank deficient

matrices, which are needed to be factored in the step computations.

An algorithm based on the presented concepts is said to be at a degenerate point, when

iterates move on and off weakly active constraints in a sequence of successive iterations

without any decrease in the objective function. In other words, the algorithm returns

to the same active-set after some m > 0 iterations, i.e. Wk = Wk+m. This behavior is

called cycling. Procedures trying to avoid cycling in active-set methods, e.g. EXPAND

[41], have been developed. However, cycling can occur in primal active-set methods. Most

dual active-set methods for strictly convex quadratic programming cannot cycle. For more

details on nondegeneracy see, for example, Gill and Wong [48, 47].

4.1.6 Two-Phase Active-Set Methods and Warm Start

The work of primal active-set methods is divided into two phases. In the so called phase 1,

the feasibility phase, a feasible starting point is computed. Feasibility can be achieved by

the solution of a linear program (LP) that sums up the constraint violation at a supplied

initial guess x̄(0). With e = (1, . . . , 1)T , γi = − sign(aT
i x̄(0) − bi) for i ∈ E and γi = 1 for
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i ∈ I the problem to solve reads

min
x,z

eT z (4.13a)

s.t. aT
i x + γizi = bi, i ∈ E , (4.13b)

aT
i x + γizi ≥ bi, i ∈ I, (4.13c)

z ≥ 0. (4.13d)

Supposing the original problem has feasible points, the optimal objective value of problem

(4.13) is zero. Any of such minimizers yield a feasible point for (2.11).

In the second phase, the optimality phase, primal feasibility is maintained and an optimal

solution as well as an approximation to the optimal active-set is computed. The resulting

procedure is subsummed in Algorithm 7.

Algorithm 7: Two-Phase Active-Set Method

Input : User provided initial estimate x̄(0) for (2.11)

1 Solve (4.13) to identify a feasible initial value x(0) for (2.11).
2 Determine W0 by selecting a linearly independet subset of active constraints at x(0).
3 Call Algorithm 6 with x(0),W0 for the solution of (2.11).

When active-set methods are warm started in the case of good knowledge of A(x∗) they

also need a suiting feasible starting point. If such a point is not available a phase 1 would

deliver one but the information about the active-set gets lost. For example, this occours

in SQP where the subproblems are related and the active-set does not change much near

the NLP solution. But due to errors in the linearization of the constraints it may not be

possible to provide a feasible initial estimate for the QP solver.

These issues motivate approaches which combine the two phases and avoid a phase 1 by

relaxation. Variants for this technique are penalty (or big-M) methods which are topic of

next section.

4.2 An Elastic Primal Active-Set Method for QP

This section describes an elastic active-set method which combines the feasibility and

optimality phase (see Algorithm 7) by relaxation. Possible infeasibility in the constraints

at x(0) or inconsistencies in the user supplied initial workingset is soaked up by slack

variables which are penalized in the objective function. Since the feasibility to simple

variable bounds is easy to verify, it is assumed in the following that the starting point

satisfies theses constraints. The approach handles quadratic optimization problems of the
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form

min
x∈Rn

q(x) = 1
2xT Hx + fT x (4.14a)

s.t. aT
i x = bi, i ∈ E , (4.14b)

aT
i x ∈ [rl,i, ru,i], i ∈ R, (4.14c)

xi ∈ [bl,i, bu,i], i ∈ B. (4.14d)

In anology to (3.1), inequality constraints are splitted up into lower and upper range

constraints (4.14c) as well as variable bounds (4.14d). Ranges and bounds are given by

rl, ru ∈ R
k ∪ {±∞} and bl, bu ∈ R

n ∪ {±∞}. Values ±∞ again indicate absent limits. The

index sets B, E and R correspond to the indices of variable bounds, equality and range

constraints:

B = {1, . . . , n} , E = {n + 1, . . . , n + m} , R = {n + m + 1, . . . , n + m + k} . (4.15)

In the following, a more detailed look onto these index sets is required. The set of indices

corresponding to equality constraints is splitted up into disjunct sets comprising the indices

to feasible and infeasible constraints at a given point x̄ ∈ R
n, by

Ef (x̄) = {i ∈ E : aT
i x̄ = bi} and Er(x̄) = {i ∈ E : aT

i x̄ 6= bi}. (4.16)

Clearly, E = Ef (x̄) ∪ Er(x̄) and Ef (x̄) ∩ Er(x̄) = ∅ holds. The same partitioning is applied

to the set of indices to range constraints, which yields

Rf (x̄) = {i ∈ R : aT
i x̄ ∈ [rl,i, ru,i]} and Rr(x̄) = {i ∈ R : aT

i x̄ 6∈ [rl,i, ru,i]}. (4.17)

with R = Rf (x̄) ∪ Rr(x̄) and Rf (x̄) ∩ Rr(x̄) = ∅. For simplicity, it is assumed that

feasibility can be obtained by the addition of a nonnegative slack variable,1 yielding

i ∈ Er(x̄) : aT
i x̄ < bi  aT

i x̄ + si = bi, si ≥ 0 (4.18)

i ∈ Rr(x̄) : aT
i x̄ < rl,i  aT

i x̄ + ti ∈ [rl,i, ru,i], ti ≥ 0. (4.19)

Finally, for the statement of the relaxed QP index sets to the nonnegativity constraints for

slack variables and a unique mapping between these sets and the corresponding equality

and range constraints are needed.

For a fixed x̄ ∈ R
n and N = n + m + k the required mapping can be stated as

σx̄ : Er(x̄) ∪Rr(x̄)→ {N + 1, . . . , N + |Er(x̄)|+ |Rr(x̄)|}, (4.20)

1 In the other case, i.e. a
T
i x̄ > bi for any i ∈ E

r(x̄) or a
T
i x̄ > ru,i for any i ∈ R

r(x̄), the signum of the
constraint is changed.
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where σx̄(M1) ⊆ {N + 1, . . . , N + |Er(x̄)|} for any M1 ⊆ Er(x̄) and σx̄(M2) ⊆ {N +

|Er(x̄)| + 1, . . . , N + |Er(x̄)| + |Rr(x̄)|} for any M2 ⊆ Rr(x̄) holds. The index sets to

nonnegativity constraints for slack variables are

S(x̄) = σx̄(Er(x̄)) and T (x̄) = σx̄(Rr(x̄)). (4.21)

The active-set and workingset are adjusted to the introduced sets. The partitioning into

feasible and relaxed constraints is applied using x̄ ∈ R
n, which yields

A(x̄) ⊆ Ef (x̄) ∪ Er(x̄) ∪Rf (x̄) ∪Rr(x̄) ∪ B ∪ S(x̄) ∪ T (x̄). (4.22)

Subject to x̄ and vectors of slack variables s = (si)i∈Er(x̄) ∈ R
|Er(x̄)|, t = (ti)i∈Rr(x̄) ∈

R
|Rr(x̄)| and a penalty function φ : R|Er(x̄)| × R

|Rr(x̄)| → R≥0 the relaxed problem reads

min
x,s,t

q(x) = 1
2xT Hx + fT x + ρφ(s, t) (4.23a)

s.t. aT
i x = bi, i ∈ Ef (x̄), (4.23b)

aT
i x + si = bi, i ∈ Er(x̄), (4.23c)

aT
i x ∈ [rl,i, ru,i], i ∈ Rf (x̄), (4.23d)

aT
i x + ti ∈ [rl,i, ru,i], i ∈ Rr(x̄), (4.23e)

xi ∈ [bl,i, bu,i], i ∈ B, (4.23f)

si ≥ 0, σx(i) ∈ S(x̄), (4.23g)

ti ≥ 0, τx(i) ∈ T (x̄), (4.23h)

where the penalty parameter ρ > 0 is fixed and sufficiently large.

Consider the vectors of dual multipliers zf ∈ R
|Ef |, zr ∈ R

|Er| for equality constraints,

vf = vf
l − vf

u ∈ R
|Rf |, vr = vr

l − vr
u ∈ R

|Rr| for range constraints and u = ul − uu ∈ R
n,

us ∈ R
|S|, ut ∈ R

|T | for variable bounds and nonnegativity conditions. The Lagrangian

function for (4.23) then reads

L(x, s, t, zf , zr, vr, u, us, ut) =
1
2

xT Hx + fT x + ρφ(s, t)

−
∑

i∈Ef (x̄)

zf
i (aT

i x− bi)−
∑

i∈Er(x̄)

zr
i (aT

i x + si − bi)

−
∑

i∈Rf (x̄)

vf
l,i(a

T
i x− rl,i) +

∑

i∈Rf (x̄)

vf
u,i(a

T
i x− ru,i) (4.24)

−
∑

i∈Rr(x̄)

vr
l,i(a

T
i x + ti − rl,i) +

∑

i∈Rr(x̄)

vr
u,i(a

T
i x + ti − ru,i)

−
∑

i∈B

ul,i(xi − bl,i) +
∑

i∈B

uu,i(xi − bu,i)

−
∑

σx̄(i)∈S(x̄)

us,isi −
∑

σx̄(i)∈T (x̄)

ut,iti.
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type level name description

QP 1 general QP problem before relaxation, see (4.14)
2 relaxed QP relaxed problem, see (4.23)

EQP 3 relaxed EQP including all constraints w.r.t. Wk

4 reduced EQP projected onto null-space of active bounds for s
5 reduced EQP projected onto null-space of active bounds for t
6 step EQP projected onto null-space of active variabel bounds

LSE 7 KKT system linear system of equations to EQP on level 6

Table 4.1: Subproblems on different levels in the elastic ASM.

Relaxation Schemes

The penalization in the objective function of (4.23) is chosen such that it remains quadratic

and the elastic approach can follow the basic idea of primal active-set methods for QP;

independent of the choice of φ(s, t). This motivates the usage of ℓ1 and ℓ2 penalty functions

φ : R|Er(x̄)| × R
|Rr(x̄)| → R≥0, i.e.

φ1(s, t) = (‖s‖1 + ‖t‖1) = (eT s + eT t), (4.25a)

φ2(s, t) = 1
2(‖s‖22 + ‖t‖22) = 1

2(sT s + tT t). (4.25b)

By a proper initialization of s, t (4.23) is always feasible and it is well known, that, if (4.14)

is consistent with a solution x∗, it has a solution x∗(ρ) which converges to x∗ for ρ→∞
(see, for example, [77]).

The elastic approach includes several subproblems on different levels in each iteration;

arising problems in decreasing order are described in Table 4.1.

Step Computation: Statement of the Relaxed EQP

To improve the readability, the arguments of the introduced index sets and active constraints

Jacobians are dropped in the following, i.e. Rf is used instead of Rf (x(k)) and ARr instead

of A
(k)
Rr . It is applied since the partitioning changes during the overall solution process

when relaxed constraints are identified to be feasible.

The upcoming discussion frequently uses selections of rows out of the constraint Jacobians

w.r.t. the k-th workingset which motivates the following definition of orthogonal gather

and scatter transformations.

Definition 9 (Row-selection matrix). For an index set M and workingset Wk the row-

selection matrix P
(k)
M ∈ R

|M∩Wk|×l, l ∈ N, consists of row vectors (0, . . . , 0, pj , 0, . . . , 0) ∈ R
l

with a single nonzero component pj = 1 for j ∈M∩Wk.

By construction P
(k)
M (P (k)

M )T = I ∈ R
|M∩Wk|×|M∩Wk| and P

(k)
M (P (k)

M′)T = 0 ∈ R
|M|×|M′|

holds for any suitable disjunct index set M′, i.e. M∩M′ = ∅.
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Corresponding to the current workingset and according to Definition 9 the constraint

gradients to feasible and relaxed active range constraints are selected by

P
(k)

Rf ∈ R
|Rf ∩Wk|×|Rf | and P

(k)
Rr ∈ R

|Rr∩Wk|×|Rr|. (4.26)

In the same way, selections for active variable bounds and nonnegativity conditions for

slack variables are achieved by left multiplication with

P
(k)
B ∈ R

|B∩Wk|×n, P
(k)
S ∈ R

|S∩Wk|×|Er|, P
(k)
T ∈ R

|T ∩Wk|×|Rr|. (4.27)

For active bound or nonnegativity constraints the elements in (4.27) form null-space basis

matrices to these constraints. This property will be used in the elimination of slack variables

as well as in a projection of the KKT data onto the null-space of active variable bounds.

The relaxed EQP (Table 4.1, level 3) which has to be solved in the k-th iteration to

obtain a primal step (p(k)
x , p

(k)
s , p

(k)
t ) (and dual multipliers to active constraints) can now

be stated as

min
px,ps,pt

1
2 pT

x Hpx + (g(k))T px + ρφ
(

s(k) + ps, t(k) + pt

)

(4.28a)

s.t. AEf px = 0, (4.28b)

AEr px + ps = 0, (4.28c)

(P (k)

Rf ARf )px = 0, (4.28d)

(P (k)
Rr ARr )px + P

(k)
Rr pt = 0, (4.28e)

P
(k)
B px = 0, P

(k)
S ps = 0, P

(k)
T pt = 0. (4.28f)

Dual multipliers to inactive constraints are set to zero (see Section 4.1.3). Reusing the

same notation for multipliers corresponding to active constraints, the Lagrangian function

to (4.28) reads

L(px, ps, pt, zf , zr, vf , vr, u, us, ut) =1
2 pT

x Hpx + (g(k))T px + ρφ
(

s(k) + ps, t(k) + pt

)

− (zf )T AEf px

− (zr)T (AEr px + ps) (4.29)

− (vf )T (P (k)

Rf ARf px)

− (vr)T (P (k)
Rr ARr px + P

(k)
Rr pt)

− uT P
(k)
B px − uT

s P
(k)
S ps − uT

t P
(k)
T pt.

The KKT optimality conditions are given by

∇pxL : Hpx + (AEf )T (−zf ) + (AEr )T (−zr)

+(P (k)
Rr ARf )T (−vf ) + (P (k)

Rr ARr )T (−vr) + (P (k)
B )T (−ux) = −g(k), (4.30a)
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∇psL : ρ∇psφ
(

s(k) + ps, t(k) + pt

)

− zr − (P (k)
S )T us = 0, (4.30b)

∇ptL : ρ∇ptφ
(

s(k) + ps, t(k) + pt

)

− (P (k)
Rr )T vr − (P (k)

T )T ut = 0, (4.30c)

and

∇zfL : AEf px = 0, (4.30d)

∇zrL : AEr px + ps = 0, (4.30e)

∇vfL : (P (k)

Rf ARf )px = 0, (4.30f)

∇vrL : (P (k)
Rr ARr )px + P

(k)
Rr pt = 0, (4.30g)

∇uL : P
(k)
B px = 0, (4.30h)

∇usL : P
(k)
S ps = 0, (4.30i)

∇utL : P
(k)
T pt = 0. (4.30j)

4.2.1 The Quadratic Relaxation Scheme

This subsection describes the arising subproblems on different elimination stages when the

quadratic penalty function (4.25b) is used. The gradients of φ2(s, t) in (4.30b) and (4.30c)

are given by

∇psφ2

(

s(k) + ps, t(k) + pt

)

= s(k) + ps, ∇ptφ2

(

s(k) + ps, t(k) + pt

)

= t(k) + pt. (4.31)

In the following paragraphs the KKT conditions (4.30) are projected onto the null-space of

fixed slack variables according to Wk at (x(k), s(k), t(k)).

Elimination of Slacks for Equality Constraints

The null-space basis P
(k)
S to fixed slack variables s(k) is expanded by a row-selection matrix

Q
(k)
S ∈ R

|S\Wk|×|Er| to

Z
(k)
S =





P
(k)
S

Q
(k)
S



 ∈ R
|Er|×|Er|. (4.32)

This yields a decomposition of the primal step ps and duals zr given by

Z
(k)
S ps =





P
(k)
S ps

Q
(k)
S ps



 =

(

p1
s

p2
s

)

, Z
(k)
S zr =

(

zr,1

zr,2

)

. (4.33)

The reduced vector of duals to active nonnegativity constraints us ∈ R
|S∩Wk| is lifted up

to the full space of this constraint type (including multipliers corresponding to inactive

constraints) by transformation with (P (k)
S )T ∈ R

|S|×|S∩Wk|. This implies the decomposition
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of us in the global scope by

Z
(k)
S (P (k)

S )T us =

(

u1
s

u2
s

)

=

(

u1
s

0

)

. (4.34)

The dual vector u2
s ∈ R

|S\Wk| corresponds to inactive nonnegativity constraints; this implies

u2
s = 0. Equation (4.30i) determines P

(k)
S ps = p1

s = 0. If the slack variable is fixed, its

value is supposed to be zero, i.e. P
(k)
S s(k) = 0. Transformation of (4.30b) using Z

(k)
S gives

−zr,1 − u1
s = 0 (4.35a)

p2
s − 1

ρ
zr,2 = −Q

(k)
S s(k). (4.35b)

The upper equation determines u1
s depending on zr,1, the lower one is used for the

elimination of p2
s. Depending on zr,2 it is

(

p1
s

p2
s

)

=





0

−Q
(k)
S s(k) + 1

ρ
zr,2



 and

(

u1
s

u2
s

)

=

(

−zr,1

0

)

. (4.36)

Because the data involved in (4.30i) and (4.35) is not modified in the following the equations

are dropped to improve readability. Decomposition of (4.30e) using Z
(k)
S and elimination

of p2
s using (4.35b) gives

P
(k)
S AEr px = 0, (4.37a)

Q
(k)
S AEr px + 1

ρ
zr,2 = Q

(k)
S s(k). (4.37b)

The remaining KKT conditions read

∇pxL : Hpx − (AEf )T zf − (P (k)
S AEr )T zr,1 − (Q(k)

S AEr )T zr,2

−(P (k)

Rf ARf )T vf − (P (k)
Rr ARr )T vr − (P (k)

B )T ux = −g(k), (4.38a)

∇ptL : ρpt − (P (k)
Rr )T vr − (P (k)

T )T ut = −ρt(k), (4.38b)

∇zfL : AEf px = 0, (4.38c)

∇zr,1L : P
(k)
S AEr px = 0, (4.38d)

∇zr,2L : Q
(k)
S AEr px + 1

ρ
zr,2 = Q

(k)
S s(k), (4.38e)

∇vfL : (P (k)

Rf ARf )px = 0, (4.38f)

∇vrL : (P (k)
Rr ARr )px + P

(k)
Rr pt = 0, (4.38g)

∇uL : P
(k)
B px = 0, (4.38h)

∇utL : P
(k)
T pt = 0. (4.38i)
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Elimination of Slacks for Range Constraints

With similar modifications like those applied above, the slack variables corresponding

to range constraints as well as dual variables to active nonnegativity constraints (4.38i)

are eliminated. The following cases have to be distinguished for the projection onto the

null-space of active nonnegativity constraints for range constraint slack variables:

1. Range constraint i and nonnegativity condition σ(i) are part of Wk.

2. σ(i) is part of Wk, but the corresponding range constraint i is not active w.r.t. Wk.

3. Range constraint i is part of Wk, but σ(i) is not.

4. Both, range constraint i and nonnegativity condition σ(i) are inactive w.r.t. Wk.

Expressing the four cases in terms of the indices σ(i) ∈ T gives the disjoint subsets

T1 = (T ∩Wk) ∩ σ(Rr ∩Wk), (4.39a)

T2 = (T ∩Wk) \ σ(Rr ∩Wk), (4.39b)

T3 = σ(Rr ∩Wk) \ (T ∩Wk), (4.39c)

T4 = T \ [(T ∩Wk) ∪ σ(Rr ∩Wk)] (4.39d)

of T . The null-space basis P
(k)
T =

[

P
(k)
T1

P
(k)
T2

]T
to fixed slack variables t(k) is splitted up

by the means of (4.39a) and (4.39b), and is expanded by row-selection matrices according

to the index sets in (4.39c) and (4.39d), yielding

Z
(k)
T =















P
(k)
T1

P
(k)
T2

Q
(k)
T3

Q
(k)
T4















∈ R
|Rr|×|Rr|, Z

(k)
T pt =















P
(k)
T1

pt

P
(k)
T2

pt

Q
(k)
T3

pt

Q
(k)
T4

pt















=















p1
t

p2
t

p3
t

p4
t















. (4.40)

In the same way as in the decomposition of (P (k)
S )T us above (see (4.34)), (P (k)

T )T ∈
R

|T |×|T ∩Wk| lifts ut ∈ R
|T ∩Wk| up to the full space R

|T |. In anology, (P (k)
Rr )T ∈

R
|Rr|×|Rr∩Wk| lifts vr ∈ R

|Rr∩Wk| up to the full space R
|Rr|. The decomposition of

the lifted vectors of dual multipliers can be stated as

Z
(k)
T (P (k)

T )T ut =















u1
t

u2
t

u3
t

u4
t















=















u1
t

u2
t

0

0















, Z
(k)
T (P (k)

Rr )T vr =















vr,1

vr,2

vr,3

vr,4















=















vr,1

0

vr,3

0















. (4.41)

The dual vectors u3
t , u4

t correspond to inactive nonnegativity constraints which yields

u3
t = 0, u4

t = 0. vr,2, vr,4 correspond to inactive range constraints implying vr,2 = 0 and

vr,4 = 0.
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Equation (4.38i) implies p1
t = 0 and p2

t = 0. This also indicates that the slack variables

P
(k)
T1

t(k) and P
(k)
T2

t(k) vanish. Transformation of (4.38b) using the decompositions stated in

(4.40) and (4.41) gives

−vr,1 − u1
t = 0, (4.42a)

−u2
t = 0, (4.42b)

p3
t − 1

ρ
vr,3 = −Q

(k)
T3

t(k), (4.42c)

p4
t = −Q

(k)
T4

t(k). (4.42d)

Equation (4.42d) determines p4
t and (4.42c) determines p3

t depending on vr,3. It is used for

the elimination of p3
t . In summary, the step vector for range slacks and duals ut read















p1
t

p2
t

p3
t

p4
t















=















0

0

−Q
(k)
T3

t(k) + 1
ρ
vr,3

−Q
(k)
T4

t(k)















,















u1
t

u2
t

u3
t

u4
t















=















−vr,1

0

0

0















, (4.43)

The other equations in (4.42) determine the remaining parts of ut. Again, the involved

data is not modified in later projections and can be dropped to improve the readability.

Before the reduced KKT conditions can be stated, (4.38g) is splitted up according to

vr,1, vr,3 using P
(k)
Rr =

[

P
(k)
T1

Q
(k)
T3

]T
. After the elimination of p3

t the equations read

(P (k)
T1

ARr )px = 0, (4.44)

(Q(k)
T3

ARr )px + 1
ρ
vr,3 = Q

(k)
T3

t(k). (4.45)

Now the reduced KKT conditions can be stated.

∇pxL : Hpx − (AEf )T zf − (P (k)
S AEr )T zr,1 − (Q(k)

S AEr )T zr,2

−(P (k)

Rf ARf )T vf − (P (k)
T1

ARr )T vr,1 − (Q(k)
T3

ARr )T vr,3 (4.46a)

−(P (k)
B )T ux = −g(k),

∇zfL : AEf px = 0, (4.46b)

∇zr,1L : P
(k)
S AEr px = 0, (4.46c)

∇zr,2L : Q
(k)
S AEr px + 1

ρ
zr,2 = Q

(k)
S s(k), (4.46d)

∇vfL : P
(k)

Rf ARf px = 0, (4.46e)

∇vr,1L : P
(k)
T1

ARr px = 0, (4.46f)

∇vr,3L : Q
(k)
T3

ARr px + 1
ρ
vr,3 = Q

(k)
T3

t(k), (4.46g)

∇uL : P
(k)
B px = 0, (4.46h)
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Augmentation of the projected KKT Data

The primal feasibility conditions (4.46b) to (4.46h) consist of three types of equations wich

can be augmented for easier reading. Equations only comprising px, with the special case

of (4.46h) for active variable bounds and those depending on px and some dual variables

zr,2, vr,3.

Consider the index sets which encapsulate the indices of feasible and relaxed active

constraints, stated as

Mf
k = Ef ∪ σ−1(S ∩Wk) ∪ (Rf ∩Wk) ∪ T1, (4.47a)

Mr
k = σ−1(S \Wk) ∪ T3. (4.47b)

Dual variables corresponding to these sets are denoted by the augmented vectors

λf =















zf

zr,1

vf

vr,1















∈ R
|Mf

k
| and λr =

(

zr,2

vr,3

)

∈ R
|Mr

k
|. (4.48)

Now, by augmentation of the KKT data by

A
Mf

k

=















AEf

P
(k)
S AEr

P
(k)

Rf ARf

P
(k)
T1

ARr















, AMr
k

=





Q
(k)
S AEr

Q
(k)
T3

ARr



 , c
(k)
Mr

k
=





Q
(k)
S s(k)

Q
(k)
T3

t(k)



 (4.49)

the projected KKT conditions can be rewritten as

∇pxL : Hpx −AT

Mf

k

λf −AT

Mf

k

λr − (P (k)
B )T ux = −g(k), (4.50a)

∇λfL : A
Mf

k

px = 0, (4.50b)

∇λrL : AMr
k
px + 1

ρ
λr = c

(k)
Mr

k
, (4.50c)

∇uL : P
(k)
B px = 0. (4.50d)

4.2.2 The Linear Relaxation Scheme

This subsection summarizes the elimination of slack variables in the step computation

when the linear penalty function (4.25a) is used. The gradients of φ1(s, t) in (4.30b) and

(4.30c) are given by

∇psφ1

(

s(k) + ps, t(k) + pt

)

= e ∈ R
|Er|, ∇ptφ1

(

s(k) + ps, t(k) + pt

)

= e ∈ R
|Rr|. (4.51)
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As seen above, the KKT conditions (4.30) are projected onto the null-space of fixed slack

variables. The porposed projections and decompositions stated in Section 4.2.1 do not

change and are not repeated in the following.

The KKT conditions change in (4.30b) and (4.30c). Using (4.51) the equations read

∇psL : −zr − (P (k)
S )T us = −ρe, (4.52a)

∇ptL : −(P (k)
Rr )T vr − (P (k)

T )T ut = −ρe. (4.52b)

The upcoming paragraphs state the differences to the quadratic penalty approach.

Projection onto the Null-Space of Slack Bounds for Equality Constraints

The dual vector u2
s ∈ R

|S\Wk| vanishes, since it corresponds to inactive nonnegativity

constraints. Decomposition of (4.52a) using Z
(k)
S gives

−zr,1 − u1
s = −ρP

(k)
S e, (4.53a)

−zr,2 = −ρQ
(k)
S e (4.53b)

which determines u1
s depending on zr,1 as well as zr,2. (4.53b) is used to eliminate the

dual multipliers zr,2 in (4.30a). The constant term ρ(Q(k)
S AEr )T Q

(k)
S e is absorbed into the

KKT right-hand side. Since p1
s = 0 is fixed by (4.30i), splitting up the relaxed equality

constraints yields

P
(k)
S AEr px = 0, (4.54a)

Q
(k)
S AEr px + p2

s = 0. (4.54b)

The latter equation determines p2
s and is dropped to improve the readability, while equation

(4.54b) remains unchanged in the following. In summary, the step vector for slacks to

equality and dual multipliers us (depending on zr,1) are

(

p1
s

p2
s

)

=

(

0

−Q
(k)
S AEr px

)

,

(

u1
s

u2
s

)

=

(

ρP
(k)
S e− zr,1

0

)

. (4.55)

Projection onto the Null-Space of Slack Bounds for Range Constraints

Transformation of the dual feasibility constraint (4.30c) using the representations

P
(k)
T =





P
(k)
T1

P
(k)
T2



 , P
(k)
Rr =





P
(k)
T1

Q
(k)
T3



 (4.56)
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gives the following decomposition of ∇ptL(pt, λ(k)):

−vr,1 − u1
t = −ρP

(k)
T1

e, (4.57a)

−u2
t = −ρP

(k)
T2

e, (4.57b)

−vr,3 = −ρQ
(k)
T3

e, (4.57c)

0 = −ρQ
(k)
T4

e. (4.57d)

Equation (4.57a) determines u1
t depending on vr,1. The dual multipliers to the pairs of

relaxed range constraint where whether i or σ(i) is part of the current workingset are fixed

to the size of the penalty parameter ρ by (4.57b) and (4.57c). The latter equation is also

used to eliminate vr,3 in (4.30a); the constant term ρ(Q(k)
T3

AEr )T Q
(k)
T3

e is absorbed into the

KKT right-hand side.

More attention has to be paid to equation (4.57d). It enforces that the fourth case never

appears, i.e. T4 = ∅. Otherwise the KKT conditions suffer from the loss of regularity and

can not be solved. The effect can be avoided by convexification of the KKT system; adding

a small fraction νi to (p4
t )i for i ∈ T4 leading to search directions (p4

t )i = ρ
νi

. It has shown

to be effective in numerical computations to choose νi = −(Q(k)
T4

ARr px)i such that a full

step, i.e. αk = 1, provides feasibility in the corresponding constraint. This procedure is

comparable with a combination of the linear and quadratic penalty approach.

Transformation of (4.30g) using p1
t = 0 from (4.38i), which also states p2

t = 0, results in

P
(k)
T1

ARr px = 0, (4.58a)

Q
(k)
T3

ARr px + p3
t = 0. (4.58b)

The latter equation is used for the determination of p3
t depending on px. If T4 = ∅ is

ensured, the step data and dual multipliers read















p1
t

p2
t

p3
t

p4
t















=















0

0

−Q
(k)
T3

ARr px

0















,















u1
t

u2
t

u3
t

u4
t















=















ρP
(k)
T1

e− vr,1

ρP
(k)
T2

e

0

0















. (4.59)

By stating the KKT right-hand side vector including the absorbed data by

g̃(k) = g(k) − ρ(Q(k)
S AEr )T Q

(k)
S e− ρ(Q(k)

T3
AEr )T Q

(k)
T3

e (4.60)

the projected KKT conditions read

∇pxL : Hpx − (AEf )T zf − (P (k)
S AEr )T zr,1

−(P (k)
Rr ARf )T vf − (P (k)

T1
ARr )T vr,1 − (P (k)

B )T ux = −g̃(k) (4.61a)



50 4.2. An Elastic Primal Active-Set Method for QP

and

∇zfL : AEf px = 0, (4.61b)

∇zr,1L : P
(k)
S AEr px = 0, (4.61c)

∇vfL : P
(k)

Rf ARf px = 0, (4.61d)

∇vr,1L : P
(k)
T1

ARr px = 0, (4.61e)

∇uL : P
(k)
B px = 0. (4.61f)

Augmentation of the projected KKT Data

Using the same notation for augmented KKT data as in (4.47) to (4.49) the KKT optimality

conditions stated above can be rewritten as

∇pxL : Hpx −AT

Mf

k

λf − (P (k)
B )T ux = −g̃(k), (4.62a)

∇λfL : A
Mf

k

px = 0, (4.62b)

∇uL : P
(k)
B px = 0. (4.62c)

The same projections used in the linear realaxation scheme are not used for the quadratic

relaxation scheme, because the superstructure of the resulting linear system is more common

to exploitation of structure. Direct elimination of range duals tr,3 results in a dense Hessian

due to the modification

H̃ = H + ρ(Q(k)
S AEr )T (Q(k)

S AEr ) + ρ(Q(k)
T3

ARr )T (Q(k)
T3

ARr ), (4.63a)

g̃(k) = g(k) + ρ(Q(k)
S AEr )T Q

(k)
S s(k) + ρ(Q(k)

T3
ARr )T Q

(k)
T3

t(k). (4.63b)

If the penalization parameter is large the resulting KKT system may also get ill conditioned

and hard to solve. This directly effects the quality of the obtained search direction and

may result in failure in the determination of the optimal active-set. But, for small choices

of ρ the linear relaxation scheme enables the employability of specialized KKT algorithms

wich are designed to solve linear systems of type (2.12).

4.2.3 Projection onto the Null-Space of Variable Bounds

In comparison, the projected KKT conditions (4.62) in the linear relaxation scheme results

in a linear system equivalent to the one in the step computation in a standard primal

active-set method, see (4.4). The quadratic scheme yields a more detailed set of linear

equations, see (4.50). Because of that, the projection onto the null-space of active variable

bounds is presented for the more general latter case.

The null-space basis P
(k)
B ∈ R

|B∩Wk|×n to fixed variables x(k) is expanded by a row-
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selection matrix Q
(k)
B ∈ R

|B\Wk|×n to the basis matrix

Z
(k)
S =





P
(k)
B

Q
(k)
B



 ∈ R
n×n. (4.64)

This yields a decomposition of the primal step px and duals ux given by

Z
(k)
B px =





P
(k)
B px

Q
(k)
B px



 =

(

p1
x

p2
x

)

, A
Mf

k

px = 0, (P (k)
B )T ux =

(

u1
x

u2
x

)

. (4.65)

The reduced vector of duals to active variable bounds ux ∈ R
|B∩Wk| is therby lifted up to

the full space of this constraint type (including multipliers corresponding to active (u1
x)

and inactive (u2
x = 0) bounds) by transformation with (P (k)

B )T ∈ R
n×|B∩Wk|.

Consider the KKT conditions (4.50). Equation (4.50d) determines p1
x = 0. Transforma-

tion of (4.50b) using the decomposition stated above gives

A
Mf

k

(Z(k)
B )T Z

(k)
B px = A

Mf

k

(Q(k)
B )T p2

x = 0. (4.66)

In analogy, equation (4.50c) is rewritten as

AMr
k
(Q(k)

B )T p2
x + 1

ρ
λr = c

(k)
Mr

k
. (4.67)

Modifications in ∇pxL incorporate an additional multiplication with Z
(k)
B , decomposing

(4.50a) into

P
(k)
B H(Q(k)

B )T p2
x − P

(k)
B AT

Mf

k

λf − P
(k)
B AT

Mf

k

λr − u1
x = −P

(k)
B g(k), (4.68a)

Q
(k)
B H(Q(k)

B )T p2
x −Q

(k)
B AT

Mf

k

λf −Q
(k)
B AT

Mf

k

λr = −Q
(k)
B g(k). (4.68b)

Equation (4.68a) determines u1
x bepending on p2

x and multipliers λf , λr. The data is not

modified in the following and is dropped to improve the readability. By redefinition of the

modified data with

H̄ = Q
(k)
B H(Q(k)

B )T , Ā
Mf

k

= A
Mf

k

(Q(k)
B )T , ĀMr

k
= AMr

k
(Q(k)

B )T , ḡ(k) = Q
(k)
B g(k)

the KKT conditions of the step EQP (Table 4.1, level 6) read

∇pxL : H̄p2
x − ĀT

Mf

k

λf − ĀT

Mf

k

λr = −ḡ(k), (4.69a)

∇λfL : Ā
Mf

k

p2
x = 0, (4.69b)

∇λrL : ĀMr
k
p2

x + 1
ρ
λr = c

(k)
Mr

k
. (4.69c)
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4.2.4 Projected KKT System and ASM Expansion

The optimality conditions (4.69) can be written as the projected KKT system K(k)y(k) = r(k)











H̄ (Ā
Mf

k

)T (ĀMr
k
)T

Ā
Mf

k

ĀMr
k

−1
ρ
I



















p2
x

−λf

−λr









=









−ḡ(k)

0

c
(k)
Mr

k









(4.70)

with K(k) ∈ R
Nk×Nk , Nk = |B \ Wk|+ |E|+ |R ∩Wk|. Upon solving (4.70) the solution

is expanded with respect to the applied projections. Expansion 1 lifts the primal part

p2
x ∈ R

|B\Wk| up onto the full space R
n by

p(k)
x = (Q(k)

B )T p2
x ∈ R

n. (4.71)

Expansion 2 determines the stepdata for slack variables using the projections presented

above and reorders the components of λf , λr into the correct components of the vectors

vl, vu and ul, uu.

In summary, the original set of KKT conditions is first projected due to the elimination

of slack variables and afterwards projected onto the null-space of active variable bounds.

The result is system (4.70). The smaller system is solved and its solution is then expanded

to a solution of the complete set of KKT conditions.

4.2.5 Determination of the Step Lenght and Updating the Workingset

Once a search direction p2
x ∈ R

|B\Wk| has been determined by the solution of (4.70) it is

projected onto the full space, giving (Q(k)
B )T p2

x = p
(k)
x ∈ R

n. Stepvectors for slack variables

p
(k)
s , p

(k)
t are determined as stated in the preceding paragraphs. The step lenght αk is

mostly chosen in analogy to the formalism of the basic active-set algorithm presented in

Section 4.1.2 extended to lower and upper limits. It is chosen in the sense of maximal

decrease of the penalized objective function in the view of some special aspects according

to the relaxation which is discussed next.

Consider an inactive relaxed range constraint i ∈ Rr \Wk with a lower and upper limit

where the lower one is injured. Without modification of the step determination a desired

step would be truncated whenever i becomes feasible, because it implies that i itself and

the nonegativity constraint σ(i) of the corresponding slack variable are active. Since the

nonegativity condition is linearly independent to all constraints i ∈ E ∪R an unnecessary

slow down of the algorithm can be avoided by multiple changes in the workingset when it

comes to active bounds for slack variables. σ(i) can be added to the workingset whenever

αk ≥ αlow
k . The step is only blocked by the upper limit yielding αk ≤ αup

k . This is

illustrated in Figure 4.1. By propper scaling of p
(k)
t,i the next iterate will comprise t

(k+1)
i = 0.

Furthermore, if additional information about the constraints is supplied, e.g. full row
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x(k)

x(k) + p
(k)
x

αk ∈ [αlow
k

, αup
k

]

αk = αlow
k

s(k) > 0

s(k) = 0

s(k) < 0

Figure 4.1: Determination of the step length αk for relaxed range constraints.

rank of AE and absence of range constraints and variable bounds, multiple changes in the

working set can be allowed to speed up the determination of the optimal active-set.

If constraint i is relaxed and active, i.e. i ∈ Mr
k, the step is truncated by choosing

αk = αlow
k . In this case σ(i) is added to the workingset and i has to be dropped from Wk

to ensure the LICQ.

The elastic active-set method may also be run in an aggressive-mode wherein multiple

changes in the workingset are enforced. By this relaxed constraints which are active in

iteration k remain active even when they become feasible at the next iterate. The user has

to provide, that the LICQ holds during the complete optimization process.

The cases to be observed in the determination of the step lenght are:

1. For all i ∈Mf
k every choice of αk yields a next iterate which remains feasible w.r.t.

constraint i. See Section 4.1.2.

2. For i ∈ Rf ∪ B and i 6∈ Wk with a lower limit and aT
i p

(k)
x ≥ 0 constraint i is satisfied

for all nonnegative choices of αk, because p
(k)
t,i = t

(k)
i = 0 and

aT
i (x(k) + αkp(k)

x ) + t
(k)
i + αkp

(k)
t,i ≥ aT

i x(k) ≥ bi, bi ∈ {bl,i, rl,i}.

In analogy upper variable bounds or range constraints i ∈ (Rf ∪ B) \ Wk where

aT
i p

(k)
x ≤ 0 holds are satisfied for every αk ≥ 0, since

aT
i (x(k) + αkp(k)

x ) + t
(k)
i + αkp

(k)
t,i ≤ aT

i x(k) ≤ bi, bi ∈ {bu,i, ru,i}.

3. For i ∈ Rf ∪ B and i 6∈ Wk the step lenght is chosen such that every variable bound

or range constraint i remains satisfied w.r.t. its lower and upper limits. If aT
i p

(k)
x < 0

holds for lower limits and aT
i p

(k)
x > 0 for upper ones, this yields

αk ≤
bi − aT

i x(k)

aT
i p

(k)
x

, bi ∈ {rl,i, ru,i, bl,i, bu,i}. (4.72)
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4. For all i ∈ Er ∪Rr (active or inactive) every choice of αk yields a next iterate which

does not increase the infeasibility, i.e. s
(k+1)
i ≤ s

(k)
i and t

(k+1)
i ≤ t

(k)
i . This enforces

that for any αk > 0 it holds

p
(k)
s,i , p

(k)
t,i ≤ 0, if the lower limit of i is violated,

p
(k)
s,i , p

(k)
t,i ≥ 0, if the upper limit of i is violated.

5. For i ∈ Rr and i 6∈ Wk constraint i remains satisfied. If i has a violated lower limit,

i.e. t
(k)
i ≥ 0, and aT

i p
(k)
x + p

(k)
t,i ≥ 0 holds, it is

aT
i (x(k) + αkp(k)

x ) + t
(k)
i + αkp

(k)
t,i ≥ aT

i x(k) + t
(k)
i ≥ rl,i

for every nonnegative choice of αk. If i has a violated upper limit, i.e. t
(k)
i ≤ 0, and

aT
i p

(k)
x + p

(k)
t,i ≤ 0 holds, it is

aT
i (x(k) + αkp(k)

x ) + t
(k)
i + αkp

(k)
t,i ≤ aT

i x(k) + t
(k)
i ≤ ru,i.

6. For i ∈ Rr \Wk the relaxed constraint i remains satisfied. The step length is chosen

in analogy to 3. but distincting two cases:

a) Whenever the lower limit of constraint i is violated its upper limit is obviously

not and vice versa. If aT
i x(k) < rl,i, i.e. t

(k)
i > 0, and aT

i p
(k)
x > 0 and p

(k)
t,i < 0

holds the step is only truncated by reaching the upper limit. Therefor the step

length is determined by (4.72). The same formula is used if aT
i x(k) > ru,i, i.e.

t
(k)
i < 0, and aT

i p
(k)
x < 0 and p

(k)
t,i > 0. In these cases i is a blocking constraint

and i and σ(i) are included into Wk+1.

b) If the lower limit of constraint i is violated and aT
i p

(k)
x + p

(k)
t,i < 0 holds, but

aT
i p

(k)
x ≤ 0 or p

(k)
t,i ≥ 0 the step is truncated by choosing

αk ≤
bi − (aT

i x(k) + t(k))

aT
i p

(k)
x + p

(k)
t,i

= 0, bi ∈ {rl,i, ru,i}. (4.73)

The same is applied if the upper limit of i is violated and it is aT
i p

(k)
x + p

(k)
t,i > 0,

but aT
i p

(k)
x ≥ 0 or p

(k)
t,i ≤ 0. In these cases i is added to the workingset.

Combining these aspects this leads to an explicit definition of the maximal step length

αk ∈ [0, 1]. The determination is achieved by calling Algorithm 8.

Updates in the workingset Wk are nearly identical to the presented procedure in Sec-

tion 4.1.3 extended to the index sets used in the elastic approach. The differences rely on

that active variable bounds for slack variables are never dropped from the workingset (see

item 4.) and several indices of those constraints can be added in a single iteration (see

Algorithm 8, lines 5 to 9).
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Algorithm 8: Determination of the Step Lenght in the Elastic Approach

// Determine blocking constraint; if no blocking constraint exists,

the index remains empty and the step length is set to 1.

1 Choose if ∈ (Rf ∪ B) \Wk with minimal αf ≤ 1 using (4.72), cf. item 3.
2 Choose is ∈ (S ∪ T ) \Wk with σ(is) ∈ Wk implying minimal step lenght

αs = min(−s
(k)
is

/p
(k)
sis

,−t
(k)
is

/p
(k)
tis

) ≤ 1, cf. item 4.
3 Check if a blocking constraint ir ∈ Rr \Wk exists using (4.73). If it exists set

αr = 0, cf. item 6b.
4 Choose an index i ∈ {if , is, ir} corresponding to the smalles allowed step lenght

αk = min(αf , αs, αr).

// Fix independent variable bounds for slacks.

5 Add all indices it ∈ T with σ(it) 6∈ Wk and aT
σ(it)(x

(k) + αkp
(k)
x ) ∈ [rl,σ(it), ru,σ(it)]

to Wk, cf. item 6a.
6 if aggressive-mode then

7 Add all indices ie ∈ S with aT
σ(ie)(x

(k) + αkp
(k)
x )− bσ(ie) = 0 as well as every

it ∈ T with σ(it) ∈ Wk and aT
σ(it)(x

(k) + αkp
(k)
x ) ∈ [rl,σ(it), ru,σ(it)] to Wk, cf.

item 6a.
8 else if B ∩Wk = ∅ and R∩Wk = ∅ then

9 Add all indices ie ∈ S with aT
σ(ie)(x

(k) + αkp
(k)
x )− bσ(ie) = 0 to Wk, cf. item 6a.

10 return step lenght αk and blocking index i.

Case 6b especially takes place, whenever p
(k)
x vanishes but p

(k)
t,i = t

(k)
i 6= 0 for any

i ∈ Rr \Wk. In this case i is a blocking constraint and is added to the workingset. Further

more, to avoid numerical difficulties, t
(k+1)
i = 0 is explicitly set and the step information

p
(k)
t,i is dropped whenever σ(i) is added to the workingset.

The next paragraph explains how slack variables can be used not only for constraints

which are infeasible at a supplied initial value x̄ but for the satisfaction of a supplied initial

workingset W0 also.

4.2.6 Starting Point Techniques and Warm Start

The presented elastic approach is capable of handling infeasiblility in equality and range

constraints by relaxation while feasibility to variable bounds is allways supposed to hold.

If no starting point x(0) is given the algorithm starts in the origin of Rn. At a first stage

the bound feasibility is ensured, in order that

x(0) ∋ FB = {x ∈ R
n : bl,i ≤ xi ≤ bu,i, i ∈ B}.

Based on a bound feasible iterate x(0), slack variables for injured equality and range

constraints are set such that (x(0), s(0), t(0)) is feasible for the relaxed QP (4.23).
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x(0) feasible

t
(0)
i = 0

F

x(0)

x(0) infeasible

F

x(0)

t
(0)
i > 0

x(0) infeas. w.r.t. W0

Fx(0)t
(0)
i < 0

Figure 4.2: Initialization of slack variables.

If an initial estimation of the optimal active-set is given (warm start), slack variables

are not only used to obtain a feasible starting point but also to make it feasible w.r.t. the

workingset W0. For i ∈ W0 ∩R the relaxation chooses ti 6= 0, such that

aT
i x(0) + ti − bi = 0. (4.74)

Subsummed the initialization strategy follows two key points:

1. Ensure bound feasibility in the supplied starting point x(0).

2. Determine s(0), t(0) such that (x(0), s(0), t(0)) is a feasible starting point to the relaxed

QP and (4.74) holds for all i ∈ W0 ∩R.

Figure 4.2 shows the three possible cases: a feasible starting point where no relaxation is

needed, i.e. ti = 0 (left), an infeasible point x(0) 6∈ F yielding ti > 0 (middle) and an initial

estimate x(0) ∈ F which is infeasible w.r.t. W0 yielding ti < 0 (right).2 Slack variables

corresponding to the latter case have to be dropped whenever the constraint is removed

from the workingset. This is achieved by setting ti = 0 and Wk ∪ {i}.
Depending on the starting point it may lead to better results in some instances, if all

relaxed constraints are added to the workingset during the initialization of the algorithm.

This is the feasible-mode in the implementation to this thesis. The computed steps then

inherit more information about the feasible set and the iterates tend to become feasible

faster. However, the optimization progress may be slowed down in other instances or

starting points. Finally, all relaxed constraints have to be part of the initial working set

whenever the linear penalty approach is used, see Section 4.2.2. The initialization strategy

is stated in Algorithm 9.

4.2.7 Heuristics and Algorithmic details

This section describes a couple of enhancements of the presented active-set method. These

enhancements are designed to improve the algorithm for difficult instances, indicate

degeneracy and optimize the memory consumption.

2The stated signums of ti hold for injured lower limits, they change in the case of injured upper limits.
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Algorithm 9: Initialization Strategy in the Elastic Approach

Input : Initial estimate x(0) (default: 0 ∈ R
n) and workingset W0 (default: E).

1 Initialize s(0) such that aT
i x(0) + s

(0)
i − bi = 0 holds for all i ∈ E .

2 if feasible-mode then

3 Add all constraints i ∈ Rr to W0.

4 Initialize t(0) such that aT
i x(0) + t

(0)
i ∈ [rl,i, ru,i] holds for all i ∈ R and (4.74) holds

for all i ∈ W0 ∩R.

Convexification Strategy

When insufficient information about the active-set is given the presented algorithm can not

guarantee that the projected Hessian is positive definite. The result is that the projected

KKT system (4.70) can not be solved. A remedy for nonconvex Hessians is to add a

positive multiple of the idetity matrix yielding H̄ + νcI, such that the linear system can

be solved. In this case a slightly different but strictly convex QP is solved but it makes

it possible to find a descent direction as long as the workingset does not differ too much

from the optimal active-set. Steps p2
x ∈ R

|B\Wk| are then determined by the solution of the

equality constrained subproblems

min
px,ps̃

1
2

pT
x (H̄ + νcI)px + (ḡ(k) + νcx

(k))T px + ρφ(s̃(k) + ps̃) (4.75a)

s.t. aT
i px = 0, i ∈Mf

k , (4.75b)

aT
i px + ps̃ = 0, i ∈Mr

k (4.75c)

with augmented slack variables s̃ corresponding to active constraints. The projected KKT

system to problem (4.75) (after ps̃ is eliminated) differs from (4.70). The first block row

reads

(H̄ + νcI)px −
∑

i∈Mf

k

aiλ
f
i −

∑

i∈Mr
k

aiλ
r
i = −ḡ(k) − νcx

(k). (4.76)

It is obvious that an optimal solution of the convexified problem yielding px = 0 does not

coinside with a solution of the original one. This is due to the disturbance of the dual

multipliers in the magnitude of νcx
(k).

The presented algorithm switches to the solution of a convexified QP and drives it to

optimality whenever it is needed. When the convexified solution is found, it returns to the

solution of the orginal problem and reduces the maximal allowed convexification by a fixed

reduction parameter κc > 0. A suitable convexification parameter can be suggested either

by the user before solving the problem or by the subsolver used for the KKT solution

within the solution process.

An access to avoid indefinite projected Hessians is used in inertia-controlling QP methods
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(ICQP) which can be applied to the relaxed QP. Such methods as presented by Gill et

al. [42] use the workingset to control the inertia of the projected Hessian, which is never

allowed to have more than one nonpositive eigenvalue. For example, see a null-space

method for ASM using inertia-control and updates of the search direction by Gómez [49].

Incrementation of the Penalty Parameter

The presented approach determines a feasible solution, i.e. ‖(s(k), t(k))‖ < κtol, whenever

it exists and the penalization is chosen large enough. But a too large penalty parameter

may infect the quality of the step vectors obtained by the solution of the KKT system

(4.70). To avoid numerical difficulties the penalty parameter is chosen to be small in the

beginning and increased later on. In the implementation to this thesis the initial penalty

parameter is chosen to be

ρ = max
(

κρ1 ,
√

‖(s(0), t(0))‖, ‖∇xq(x(0))‖, q(x(0))
)

(4.77)

with a minimal penalization κρ1 ≥ 0. The penalty parameter is enlarged whenever the

algorithm discovers a stationary point w.r.t. the current relaxed objective function. It is

enlarged by a constant factor κρ2 > 1, yielding

ρ← κρ2 · ρ. (4.78)

QP Termination Criterion

The elastic approach terminates whenever the first-order optimality for the unrelaxed QP

holds and the primal infeasibility is smaller than a given threshold, i.e.

max(∇xL(k), ‖s(k)‖, ‖t(k)‖) < κtol, κtol > 0. (4.79)

This speeds up the algorithm since not all indices i ∈ S ∪ T need to be added to the

workingset. Even if the determination of the optimal active-set Ar(x∗) for the relaxed QP

is incomplete, it is not for the one of the original problem. It holds

A(x∗) = Ar(x∗) \ (S ∪ T ). (4.80)

The algorithm is also terminated when neighter the objective function nor the primal

infeasibility is reduced over a fixed number κnp ≥ 1 of iterations. In this case it is either

affected by stalling or cycling. Whenever ∇xL(k) < κtol but (4.79) does not hold, i.e.

s(k), t(k) > κtol, and the penalization parameter reached its upper limit κmax, the algorithm

terminates and returns an infeasible solution. Additionally, the number of iterations and

the overall solution time may be limited.
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Size Initialization Reduction KKT Solution Expansion 1

n x(k) −→ x(k) ∗ −→ ∗ ∗ −→ ∗ ∗ −→ ∗
m s(k) −→ s(k) ∗ −→ ∗ ∗ −→ ∗ ∗ −→ ∗
k t(k) −→ t(k) ∗ −→ ∗ ∗ −→ ∗ ∗ −→ ∗
n ∗ −→ g(k) ∗ −→ ∗ ∗ −→ ∗ ∗ −→ ∗
n g(k) −→ g(k) g(k) −→ X1 X1 −→ Y1 Y1 −→ p

(k)
x

m ∗ −→ s(k) s(k) −→ X2 X2 −→ Y2 ∗ −→ ∗
k ∗ −→ t(k) t(k) −→ X3 X3 −→ Y3 ∗ −→ ∗
k ∗ −→ ∗ ∗ −→ ∗ ∗ −→ ∗ ∗ −→ ∗

Table 4.2: Vector management: initialization, reduction and expansion of the primal search
direction (part 1). Memory blocks marked with Xi, Yi, i = 1, 2, 3, are coherent
and are used for the projected KKT right-hand side.

Size Expansion 2.a Step computation

n ∗ −→ ∗ x(k) −→ x(k) + αkp
(k)
x

m ∗ −→ ∗ s(k) −→ s(k) + αkp
(k)
s

k ∗ −→ ∗ t(k) −→ t(k) + αkp
(k)
t

n ∗ −→ ∗ ∗ −→ ∗
n p

(k)
x −→ p

(k)
x ∗ −→ ∗

m ∗ −→ p
(k)
s ∗ −→ ∗

k ∗ −→ p
(k)
t ∗ −→ ∗

k ∗ −→ ∗ ∗ −→ A
(k)
R x(k) + t(k)

Table 4.3: Vector management: expansion of the primal search direction for slack variables
(part 2.a) for nonzero steps and memory usage in step computation.

Vector Management

The complete iteration data, including iterates, search directions, KKT right-hand side

vectors, etc., is stored in a vector y ∈ R
3n+2m+3k. Since the elastic approach relies on the

basic active-set method presented in Section 4.1, dual multipliers are only computed if the

solution of (4.70) gives p2
x = 0. If p2

x 6= 0 is encountered, the dual part of the KKT system

needs not be solved. Instead, the stepdata for slack variables is determined without using

dual multipliers by

p
(k)
s,i =







−aT
i p

(k)
x , i ∈ Er,

0, i ∈ Ef
and p

(k)
t,i =























−aT
i p

(k)
x , i ∈ Rr ∩Wk,

−t
(k)
i , i ∈ Rr \Wk,

0, i ∈ Rf .

(4.81)

Memory delegated to range duals is then used as workspace in the step computation. The

memory management in each iteration including the initialization, reduction and solution

of the primal part of the KKT system is visualized in Table 4.2. Tables 4.3 and 4.4 show
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Size Expansion 2.b Expansion 3

n ∗ −→ ∗ x(k) −→ x(k)

m ∗ −→ ∗ s(k) −→ s(k)

k ∗ −→ ∗ t(k) −→ t(k)

n g(k) −→ ul − uu ul − uu −→ ul

n p
(k)
x −→ p

(k)
x ∗ −→ uu

m ∗ −→ z z −→ z
k ∗ −→ vl − vu vl − vu −→ vl

k ∗ −→ ∗ ∗ −→ vu

Table 4.4: Vector management: expansion of primal step data (part 2.b) for zero steps and
determination of dual multipliers by expansion (part 3).

the memory usage depending on the determined step vector px. Memory blocks which

are starred out are either not changed (∗ −→ ∗) or the stored input data is unused and

overwritten (e.g. ∗ −→ g(k)).

4.2.8 Example: Behavior of the Elastic Approach

This section demonstrates the behavior of the presented approach. Consider the problem

min
x∈R2

1
2 xT x (4.82a)

s.t. x1 + x2 ≥ 3
2 , (4.82b)

x1 ∈ [1, 3], (4.82c)

x2 ≥ 0. (4.82d)

The classification of the constraints is as follows. By construction it is B = {1, 2}. Only

(4.82d) is interpreted as a variable bound, i.e. bl,1 = −∞ and bu,1 = bu,2 = +∞. The

problem does not contain equality constraints. This gives E = ∅. Equations (4.82b) and

(4.82c) are interpreted as range constraints, yielding R = {3, 4} and σ(R) = T ⊆ {5, 6}
whenever constraints are relaxed.

The optimal solution of (4.82) is given by x∗ = (1, 1
2)T with dual multipliers vl = (1

2 , 1
2)T

and vu = 0 ∈ R
2, ul = uu = 0 ∈ R

2. The optimal active-set is given by A(x∗) = {3, 4} with

active lower limits. It is obvious that the origin of R2 is the minimizer of the unconstrained

optimization problem.

The QP above is solved starting at four different starting points but with the same

information about the active-set, namely W0 = ∅. The initial estimates are chosen by the

following means:

1. Demonstrating the equivalence of the elastic approach to the basic active-set method

when the starting point is feasible, i.e. no relaxation is needed.
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run 1 (red) run 2 (orange) run 3 (green) run 4 (blue)
k x(k) Wk x(k) Wk x(k) Wk x(k) Wk

0 (3
2 , 3

2) { } (4, 2) { } (1
2 , 3

2) { } (−1, 1
2) { }

1 (1, 1) {3} (1, 1
2) {3, 5} (1

2 , 3
2) {3} (0, 0) { }

2 (1, 1
2) {3, 4} (1, 1

2) {3, 4, 5} (3
4 , 3

4) {3, 4} (0, 0) {4}
3 (1, 1

2) {3, 4} (3
4 , 3

4) {4}
4 (3

4 , 3
4) {3, 4}

5 (1, 1
2) {3, 4}

Table 4.5: Iteration data of the solution progress to the solution of (4.82) using W0 = ∅.

2. Multiple changes in the workingset when an inactive relaxed constraint with a violated

upper limit becomes active at the lower limit and vice versa. This corresponds to

item 6a in Section 4.2.5. See also the introducing issue discussed at the beginning of

the same section.

3. The starting point is located outside the feasible set and at least once the computed

step needs to be rejected to ensure the reduction of the primal infeasibility. Violated

constraints then need to be introduced into the workingset to push the iterates into

the feasible set. This corresponds to item 6b in Section 4.2.5.

4. The initial estimate is located near the unconstrained minimizer outside the feasible

set. Changes in the workingset enforce the algorithm to leave the stationary point to

obtain feasible iterates. This again corresponds to item 6b in Section 4.2.5.

The algorithm is run using the quadratic relaxation scheme (ρ0 = 108) in the default-

mode, i.e. neither the feasible-mode is used in the initialization nor the aggressive-mode

is used during the optimization. It is terminated as soon as the termination criterion (cf.

Section 4.2.7) holds for κtol ≈ 1.5 · 10−8. The iterative progress to the solution of (4.82)

for the stated choices of the starting point x(0) using W0 = ∅ is summed up in Table 4.5.

Figure 4.3 visualizes the movement of the iterates during the solution progress. The path

of the iterates to case 1 is plotted with a red, case 2 in an orange, case 3 in a green and

case 4 in a blue dashed line. The curvature of the objective function is outlined in red

dotted circles. Constraint gradients and the feasible set are sketched in light grey.

The computed step in the first iteration only depends on the objective gradient. Since

the algorithm is cold started it seeks for the unconstrained minimizer. Depending on the

choice of the starting point, it is

Hp(0)
x = −g(0) ⇐⇒ p(0)

x = −x(0). (4.83)

Starting at x(0) = (3
2 , 3

2)T the step is blocked by 3 ∈ Rf yielding α0 = 1
3 and x(1) = (1, 1)T .

p
(1)
x = (0,−1)T is afterwards blocked by 4 ∈ Rf , with α1 = 1

2 , resulting in the optimal

solution x(2) = (1, 1
2)T with W2 = {3, 4}.
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F

x0

x1

x∗

0 1 2 3 4

1

2
x(0) = (4, 2)

x
(0) = (3

2 ,
3
2)x

(0) = (1
2 ,

3
2)

x
(0) = (−1,

1
2)

Figure 4.3: Movement of the iterates using W0 = ∅.

Observing case 2 above with x(0) = (4, 2)T constraint 3 ∈ R is relaxed, i.e. 3 ∈ Rr and

t3 = −1. Since the upper limit is violated at the starting point every step lenght α0 ∈ [1
4 , 3

4 ]

yields a feasible iterate. p
(0)
x = (−4,−2)T is blocked by the lower limit of 3 ∈ Rr, which

gives α0 = 3
4 . The next iterate is then feasible and the slack variable t3 is set to zero and

σ(3) = 5 ∈ T is simultaneously added to the workingset. Iteration 2 is then blocked by

4 ∈ Rf and the algorithm identifies the optimal solution and active-set.

When the algorithm is run starting at x(0) = (1
2 , 3

2)T the lower limit of 3 ∈ Rr is violated

and it is t3 = 1
2 . In the first iteration every nonzero step towards the origin of R2 would

increase the infeasibility of 3 ∈ Rr. This is easy to see, since p
(0)
t,3 = 1

2 > 0. It is α0 = 0 and

the blocking index is included in W1 = {3}. The upcoming step in iteration 2 is blocked by

4 ∈ Rf at x(2) = (1, 1
2)T with t3 = 0. The termination criterion (4.79) is already satisfied at

this point, such that 5 ∈ T is not included in W2. But the optimal active-set is determined

by the means of (4.80).

Starting at x(0) = (−1, 1
2)T implies t3 = 2 and t4 = 1 as well as 3, 4 ∈ Rr. Applying the

Newton step p
(0)
x = −x(0) reduces the infeasibility in both relaxed constraints and minimizes

the unconstrained objective function leading to x(1) = (0, 0)T . The determination of p
(1)
x

follows (4.83) with −g(1) = 0 ∈ R
2 giving p

(1)
x = 0 ∈ R

2. Criterion (4.79) is not satisfied at

(x(1), t(1)) = ((0, 0)T , (1, 1.5)T ) and therefore constraint 4 ∈ Rr (due to the most absolut

violation) is added to W1 = { }. In the following iteration x(3) = (3
4 , 3

4)T is obtained

which is the constrained minimizer w.r.t. W3 = {4}, i.e. p
(4)
x vanishes. Since 3 6∈ W3 and

t3 > 0 the constraint is included in W4 = {3, 4} to enforce feasibility which is achieved in

x(5) = (1, 1
2)T .

Warm Start

When it comes to warm starts, the presented relaxation is also used to preserve prior

knowledge of the optimal active-set. As stated in Section 4.2.6 the initialization of slack
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run 1 (red) run 2 (orange) run 3 (green) run 4 (blue)
k x(k) Wk x(k) Wk x(k) Wk x(k) Wk

0 (3
2 , 3

2) {3, 4} (4, 2) {3, 4} (1
2 , 3

2) {3, 4} (−1, 1
2) {3, 4}

1 (1, 1
2) {3, 4, 5, 6} (1, 1

2) {3, 4, 5, 6} (1, 1
2) {3, 4, 6} (1, 1

2) {3, 4}

Table 4.6: Iteration data of the solution progress to the solution of (4.82) usingW0 = A(x∗).

F

x0

x1

x∗

0 1 2 3 4

1

2
x(0) = (4, 2)

x
(0) = (3

2 ,
3
2)x

(0) = (1
2 ,

3
2)

x
(0) = (−1,

1
2)

Figure 4.4: Movement of the iterates using W0 = {3, 4}.

variables is dedicated to the initial workingset: slack variables do not only ensure the

feasibility of equality and range constraints, they also compensate infeasibility w.r.t. W0.

The solution of problem (4.82) starting at any initial estimate but with W0 = A(x∗)

should be achieved in a single iteration. This is demonstrated for the starting points stated

in the preceeding paragraph as a proof of concept.

Considering case 1 above no relaxation would be needed in the first place since x(0) ∈ F
but the supplied initial estimate would violate the supplied workingset information since

constraints (4.82b) and (4.82c) are supposed to be active. In case 2, t
(0)
3 does not only soak

up the infeasibility corresponding to the upper limit of (4.82c) which would be achieved by

defining t
(0)
3 = −1. Instead t

(0)
3 = −3 is chosen to ensure aT

3 x(0) + t
(0)
3 − rl,3 = 0.

The iteration data of the solution processes for the stated initial starting points is

summed up in Table 4.6. The movement of the iterates is visualized in Figure 4.4.

Interpretation of the Final Workingset

It is easy to observe that the optimal active-set Ar(x∗) = {3, 4, 5, 6} = R ∪ T for the

relaxed QP is not completely determined in most of the cases above. But the correlation

(4.80) always holds yielding the correct optimal active-set A(x∗) for QP (4.14).
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4.2.9 The Complete Elastic Active-Set Method

By now, the complete elastic active-set method can be stated (see Algorithm 10).

If supported by the KKT solution algorithm the solution of the reduced system may be

splitted up into the computation of the primal step p2
x in line 10 and the determination

of the dual multipliers only if p2
x 6= 0 in line 18. The returned solution in line 25 may be

infeasible, i.e. ‖(s(k), t(k))‖ > κtol, whenever the penalty parameter ρ reached its maximum

by the incrementation in line 21. Using exact arithmetic, an infeasible solution identifies

either that the QP does not have a feasible solution or the inconsistency it. But numerically,

it can also be an indicator for badly scaled problem data. If the KKT system can not be

solved without convexification of the Hessian, a convexified solution is returned in line 25

whenever the suggested convexification parameter is not too large. The upper limit of the

allowed convexification is successively reduced in line 23. A convexified solution delivers a

good estimation of the optimal active-set, but the final iterate and objective value differ

from the original ones.

The bottleneck in time and memory consumption of Algorithm 10 is the construction and

solution of the linear system K(k)y(k) = r(k). On the one hand, it is reasonable to employ

efficient projection techniques and avoid uneccessary (re-)evaluations of the problem data.

On the other hand, the solution should include partial solution techniques and updating

strategies for existing factorizations whenever direct solvers are used.



Chapter 4. Active-Set Methods for Quadratic Programming 65

Algorithm 10: Complete Elastic Primal Active-Set Method for QP

Input : User provided initial estimate x(0) and a suitable workingset W0 (optional),
vector of algorithmic constants κ.

// Initialization

1 if x(0) 6∈ FB then

2 return unchanged x(0) and W0 and report failure.

3 Evaluate constraints at x(0).

4 Call Algorithm 9 to initialize slack vectors s(0), t(0) and adjustW0, cf. Section 4.2.6.

5 Initialize the penalty parameter ρ, cf. (4.77), and convexification parameter νc.

// Iteration loop

6 Set iteration counter k = 0.
7 while the QP termination criterion does not hold do

8 Evaluate the objective gradient g(k) = Hx(k) + f .

9 Set up the KKT system (4.70) w.r.t. νc.
10 Call KKT solution algorithm; request primal solution to obtain p2

x.
11 if convexification required then

12 Adjust νc and update the KKT right-hand side vector.
13 Call KKT solution algorithm; request primal solution to obtain p2

x.

14 Lift p2
x up onto the full space, cf. Expansion 1 in (4.71).

15 Compute p
(k)
s , p

(k)
t using (4.81), cf. Expansion 2.a in Section 4.2.3.

16 if ‖(p(k)
x , p

(k)
s , p

(k)
t )‖ < κstep then /* zero step */

17 Call KKT solution algorithm; request dual solution to obtain λf , λr.
18 Determine dual multipliers vl, vu, ul, uu, cf. Expansion 2.b in Section 4.2.3.
19 if vl,i − vu,i ≥ 0 and ul,i − uu,i ≥ 0 for all i ∈ Wk then

20 if ‖(s(k), t(k))‖ 6< κtol and ρ < ρmax then /* inf. solution */

21 Increase penalty parameter ρ← κρ2 · ρ.
22 if νc > 0 then /* conv. solution */

23 Reduce max convexification κc2 ← κc1 · κc2 and set νc = 0.
24 else /* solution found */

25 return solution x(k) and Wk.

26 else

27 Identify j = arg minj (minj∈Wk∩B(ul,j − uu,j), minj∈Wk∩R(vl,j − vu,j)).
28 Set (x(k+1), s(k+1), t(k+1))← (x(k), s(k), t(k)) and Wk+1 ←Wk \ {j}.
29 else /* nonzero step */

30 Call Algorithm 8 to obtain step lenght αk and blocking constraint i.

31 Set (x(k+1), s(k+1), t(k+1))← (x(k), s(k), t(k)) + αk(p(k)
x , p

(k)
s , p

(k)
t ).

32 if blocking constraints exist then

33 Set Wk+1 =Wk ∪ {i}.

34 Increase iteration counter k ← k + 1.





Chapter 5

KKT Solution Algorithms

This chapter concentrates on the solution of KKT systems arising as subproblems in

optimization algorithms. They share a widespread superstructure and can be stated as

follows:

Ky = r ⇐⇒









H (Af )T (Ar)T

Af

Ar −M−1

















p

−λf

−λr









=









−g

cf

cr









(5.1)

with K ∈ R
N×N for N = n + m + k. Futhermore, H ∈ R

n×n is symmetric and Af ∈ R
m×n,

Ar ∈ R
k×n. The lower right block is diagonal of size k×k, i.e. −M−1 ∈ R

k×k. The vectors

y, r ∈ R
N are partitioned according to the block structure of the KKT matrix.

Linear systems of this type are solved, e.g. in the step determination of active-set and

interior-point methods. In the latter approach the system is of a fixed size, where in the

former approach the size changes depending on the workingset, see Section 4.2.4. Efficient

solution algorithms should not only exploit the superstructure of the system, but should

also do so for substructures in the nonzero matrix blocks.

The chapter is organized as follows. Section 5.1 describes a strategy to tackle nonconvex

Hessians, which for example arise in the early iterations of cold started ASM. A structure

exploiting direct solution algorithm for block dense matrices adapting this strategy is the

topic of Section 5.2. The focus of Section 5.3 is on the exploitation of substructure which is

understood as an extension of the procedure presented for the dense case. Finally, an ASM

specific update scheme for factorizations of the KKT system is presented in Section 5.4.

5.1 Convexification Strategy

One difficulty in solving (5.1) is that the upper left block may not be positive definite on

the null-space of A = [(Af )T , (Ar)T ]T . Since it has usually to be ensured that p exists - and

is a descent direction in line search methods, a convexification strategy can be incorporated.

Modifying (5.1) by adding a nonnegative multiple of the identity matrix νcI ∈ R
n×n to the

67
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upper left block yields the convexified KKT system Kνcy = r,









H + νcI (Af )T (Ar)T

Af

Ar −M−1
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cf
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. (5.2)

It can be shown that if the convexification parameter νc ≥ 0 is chosen large enough the

convexified block H + νcI projected onto the null-space of A is positive definite.

5.2 The Dense Case: Null-Space Method

This section presents a structure exploiting direct solution algorithm using an adaptive

convexification strategy for the linear system (5.2). The so called null-space method is

tailored for dense blocks of the (convexified) KKT matrix.

The solution starts with the determination of a LQ factorization

Af = LQ =
[

L1 0
]

[

Y T

ZT

]

= L1Y T . (5.3)

Here, L ∈ R
m×n, Q ∈ R

n×n, L1 ∈ R
m×m, Y ∈ R

n×m, Z ∈ R
n×(n−m) holds and the zero

block in L is of size m× (n−m). Thereby, Z denotes an orthonormal basis of the null-space

ker(Af ) of Af and Y is chosen such that [Y Z] is an orthonormal basis or R
n.

Equation (5.3) yields a decomposition of the primal vector p, given by

p = Y pY + ZpZ , pY ∈ R
m, pY ∈ R

n−m. (5.4)

Substitution of p in the second block row of (5.2) and usage of the previously determined

LQ factorization (5.3) yields

Af p = Af (Y pY + ZpZ) = Af Y pY = L1pY = cf . (5.5)

Upon this, −λr is eliminated using the third block row of (5.2), equation (5.4) and pY = 0;

−λr = M(cr −Ar(Y pY + ZpZ)) (5.6a)

= M(cr −ArY pY )−MArZpZ . (5.6b)

Substitution of this in the first block row of (5.2) and left-multiplication using the transposed

null-space basis matrix ZT results in the symmetric system

ZT (H + νcI + (Ar)T MAr)ZpZ = −ZT (g + (Ar)T M(cr −ArY pY )) (5.7)
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since ZAf = 0. Re-writing this using the (convexified) reduced Hessian

Ĥνc = ZT (H + νcI + (Ar)T MAr)Z ∈ R
(n−m)×(n−m) (5.8)

and the modified right-hand side

ĝ = ZT (g + (Ar)T M(cr −ArY pY )) ∈ R
(n−m) (5.9)

yields the reduced symmetric linear system

ĤνcpZ = −ĝ. (5.10)

(5.10) is solved by using a Cholesky factorization. If Ĥνc is not positive definite for νc = 0

the convexification parameter is successively enlarged and the involved components Ĥνc

and ĝ are re-computed until the factorization succeeds. After pZ is obtained by the solution

of (5.10), the primal part of the KKT solution is computed using (5.4).

If the dual part of the solution is required −λr is determined by (5.6). Left-multiplication

of the first block row of (5.2) with Y T gives

Y T (Af )T (−λf ) = −Y T
(

g + (H + νcI)p + (Ar)T (−λr)
)

. (5.11)

The latter equation can be solved using the initially calculated LQ factorization, by

LT
1 (−λf ) = −ḡ, ḡ = Y T

(

g + (H + νcI)p + (Ar)T (−λr)
)

. (5.12)

The presented solution algorithm for block dense KKT matrices is stated in Algorithm 11.

5.3 The Sparse Case

The null-space method presented in the preceeding section only exploits the superstructure

of (5.2) but does not take any sub-structure of the matrix blocks into account. This may be

problematic, for instance in real-world applications where the problem size often enforces

the exploitation of structure on a very detailed level because standard solution techniques

are impractical. So, whenever the user has a good knowlege of the problem data and the

sparsity it is recommended to design a specialized solver.

For a good example the interested reader is referred to Steinbach [83] who developed

a structure exploiting recursive solution algorithm for multistage KKT systems with an

underliying chain structure arising in nonlinear optimal control problems. See also the

thesis of Huebner [63] who has implemented distributed algorithms for the solution of KKT

systems arising in interior-point methods for tree-structured nonlinear programs.
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Algorithm 11: Null-Space Method for Block Dense KKT Systems
Input : KKT matrix K, right-hand side r and solution request.

1 if K is factorized then

2 Go to primal solution in line 14.

// Factorization

3 Compute LQ factorization Af = LQ, see (5.3).
4 if L1 has zero columns then

5 LICQ does not hold; return r and report error.

6 Initialize convexification parameter νc = 0 and counter kc = 0.
7 repeat

8 Compute the (convexified) reduced Hessian Ĥνc , see (5.8).
9 Try to compute the Cholesky factorization L

Ĥνc
LT

Ĥνc

.

10 On failure update νc and set kc ← kc + 1.
11 until Cholesky factorization was successful.
12 if kc > 0 then

13 return Convexification counter kc and parameter νc.

// Solution of the primal part

14 if primal solution requested then

15 Solve L1pY = cf

16 Compute modified right-hand side ĝ = ZT (g + (Ar)T M(cr −ArY pY )).
17 Solve ĤνcpZ = −ĝ and compute p = Y pY + ZpZ .

// Solution of the dual part

18 if dual solution requested then

19 Compute −λr = M(cr −ArY pY )−MArZpZ .

20 Compute ḡ = Y T
(

g + (H + νcI)p + (Ar)T (−λr)
)

and solve LT
1 (−λf ) = −ḡ.

21 return solution y = (p,−λf ,−λr).
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5.4 Generic Factorization Updates in Active-Set Methods

Consider the linear system (5.2) appearing as the KKT system to solve within the l-th

iteration of the elastic active-set method presented in Chapter 4. Assume that a valid

factorization of it is known and the workingset changes in the transition from Wl to Wl+1.

Then, the KKT sizes change, i.e.

n(l) + m(l) + k(l) = N (l) 6= N (l+1) = n(l+1) + m(l+1) + k(l+1) (5.13)

holds, where the sizes are given by n(j) = n− |B ∩Wj | and m(j) = |Ef |+ |Rf ∩Wj | and

k(j) = |Er|+ |Rr ∩Wj | for j ∈ {l, l + 1}. In other words, the subblocks change, whenever

• constraints are added to the workingset,

• constraints are removed from the workingset or

• relaxed active constraints become feasible and remain in the workingset.

In detail, adding i ∈ B to Wl decreases the size of the Hessian, the upper left block in (5.2).

Including i ∈ R in Wl enlarges either m(l) or k(l), dropping it reduces the size. And when

a relaxed active constraint is identified to be feasible and remains in the workingset k(l) is

reduced while m(l) is enlarged.

It is well-known that Cholesky factorizations for dense matrices can be recovered after

modifications as rank one updates K = K + γyyT , γ ∈ R in O(N2). Furthermore, they

can be maintained after appending a row and column or removing the last ones. The latter

is also true for QR factorizations. Appending rows and columns also works for P T LU

factorizations. See Gill et al. [36] and the references therein for an overwiev of relevant

algorithms. Established software which should be mentioned is LUMOD [81], a Fortran code

for updating dense LU factors when rows and columns are added, deleted or replaced and

the LUSOL [40] software package which implements a sparse LU decomposition for square

and rectangular matrices. The latter one is the basis factorization package of SQOPT and

SNOPT.

The fill-in produced by common update techniques is dense in general thus any sparsity

in the factors gets lost. In the following paragraphs a generic update technique for

factorizations using the Schur complement method is discussed. The main focus relies in the

preservation of sparsity. It is achieved by re-using existing factors without modifications

by an additional back-solve and the solution of a smaller dense symmetric linear system.

Appending Rows and Columns to Valid Factorzations

Assume, that a sparse factorization of a structured KKT matrix K ∈ R
N×N for the solution

of Ky = r exists and let a ∈ R
N be appended to it as a row and column. The linear system
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then reads

K+y+ = r+ ⇐⇒
[

K a

aT 0

](

y+
1

−λ+
1

)

=

(

r+
1

0

)

(5.14)

where K+ ∈ R
(N+1)×(N+1) y+, r+ ∈ R

(N+1) and y+
1 , r+

1 ∈ R
N , −λ+

1 ∈ R. (5.14) is solved

using the Schur complement S+ = −aT K−1a ∈ R. The inverse of K+ is determined by

(K+)−1 =

[

1 −K−1a

1

] [

K−1

(S+)−1

] [

1

−(K−1a)T 1

]

. (5.15)

Applied to the KKT right-hand side (r+
1 , 0) ∈ R

N+1 this gives

y+
1 = K−1

(

r+
1 − a(−λ+

1 )
)

with − λ+
1 =

aT K−1r+
1

aT K−1a
. (5.16)

The solution of the enlarged system (5.14) is obtained by solving the linear systems

Kγ+
r = r+

1 and Kγ+
a = a (5.17)

of size N ×N using the existing factorization of K. Upon this, the corresponding terms in

(5.16) are substituted, yielding

−λ+
1 =

aT γ+
r

aT γ+
a

and y+
1 = γ+

r − γ+
a (−λ+

1 ). (5.18)

In summary, the solution requires one additional back-solve with the existing factorization

instead of computing a new factorization of K+ ∈ R
(N+1)×(N+1).

The proposed method is easily extended to a set of linearly independent vectors aj ,

j = 1, . . . , s. Re-using the notation above and appending

A+ := [a1 . . . as] ∈ R
N×s,

to the factorized matrix K results in the solution of an enlarged linear system of size

(N + s)× (N + s), reading

K+y+ = r+ ⇐⇒
[

K A+

(A+)T 0

](

y+
s

−λ+
s

)

=

(

r+
s

0

)

(5.19)

with y+
s ∈ R

N and λ+
s ∈ R

s. In analogy, the Schur complement is defined by S+ =

−(A+)T K−1A+ ∈ R
s×s giving

(K+)−1 =

[

IN −K−1A+

Is

] [

K−1

(S+)−1

] [

IN

−(K−1A+)T Is

]

. (5.20)
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The resulting equations to solve for y+
s and λ+

s then read

y+
s = K−1

(

r+
s −A+(−λ+

s )
)

and
(

(A+)T K−1A+
)

(−λ+
s ) = (A+)T K−1r+

s . (5.21)

The computation of the latter vector is prepared by the solution of the linear systems

Kγ+
r = r+

s and Kγ+
a,j = aj , j = 1, . . . , s, γ+

a,j ∈ R
N (5.22)

and is completed by solving the dense symmetric system

Γs(−λ+
s ) = (A+)T γ+

r with Γs = (A+)T
[

γ+
a,1 . . . γ+

a,s

]

∈ R
s×s. (5.23)

As mentioned in the introduction direct factorizations that can be updated find their

application at this point, when the columns of A+ are appended one after the other while

r+
s changes after every appendage. Vector y+

s ∈ R
N is finally determined by

y+
s = γ+

r −
s
∑

j=1

(−λ+
s,j)γ+

a,j . (5.24)

In total, the solution of (5.19) requires s + 1 back-solves using the existing factorization

of K, one for the upper part with right-hand side r+
s and one per appended vector aj ,

j = 1, . . . , s, and the solution of the dense symmetric system (5.23) of size s× s.

The lower right block of K+ and the lower part of r+ in (5.19) do not necessarily need

be zero. For −M+ ∈ R
s×s and c+

s ∈ R
s the system changes to

[

K A+

(A+)T −M+

](

y+
s

−λ+
s

)

=

(

r+
s

c+
s

)

. (5.25)

The only modification of the solution algorithm relies in the changed Schur complement

S+ = −(A+)T K−1A+ −M+ ∈ R
s×s leading to the modified version of (5.23), reading

(

Γs + M+
)

(−λ+
s ) = (A+)T γ+

r − c+
s . (5.26)

Removing Rows and Columns from Valid Factorzations

If a set of vectors {aj} is successively appended and intermediate solutions γ+
a,j are stored

after each appendage, once appended vectors can easily be removed. The removal is achieved

by skipping the corresponding elements in the construction of Γs and the computation of

the extended solution, see (5.24). Against that, removing a row and column of K itself

enforces a refactorization. But a positiv side effect is that the rows and columns of A+

which will not be dropped again can be comprised in K+ such that the solution of (5.23)

becomes cheaper in later solutions.
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Special Handling of Workingset Changes for Variable Bounds

The presented update scheme is independent of the detailed sparsity of the KKT matrix

and speeds up the solution algorithm as long as system (5.23) is small. But, appending

single rows and columns requires direct data access to the corresponding vectors which can

not be guaranteed – imagine data free or sparse problem implementations which underliy

a special data structure.

Since only changes in the status of simple variable bounds are completely structure

independent, the implementation to this thesis only incorporates factorization updates in

this case. The appended or removed vectors are then given by ej = (0, . . . , 0, 1, 0, . . . , 0) ∈
R

N where only the j-th component is nonzero with 1 ≤ j ≤ n.

The Generic Factorization Update Algorithm

Algorithm 12 states the presented generic Schur complement update. It can be included in

Algorithm 10 at line 10, before the sub-algorithm for the KKT solution is called.

Algorithm 12: Generic KKT Factorization Update for Active-Set Methods

Input : Index j and optional vector a 6= 0 ∈ R
N .

1 Initialize empty set SC ← { }.
// Update factorization

2 if a 6= 0 then /* append vector */

3 Solve Kγ+
a,j = a; store γ+

a,j and set SC ← SC ∪ {j}.
4 else /* drop vector */

5 if j ∈ SC then

6 Drop index j by setting SC ← SC \ {j}.
7 else

8 Re-compute K and factorize K without row/column j and set SC ← { }.

// Solve

9 Obtain γ+
r by solving Kγ+

r = r+
SC . Update ΓSC and solve ΓSC(−λ+

SC) = (A+)T γ+
r .

10 Determine y+
SC = γ+

r −
∑

i∈SC(−λ+
SC,i)γ

+
a,i and return (y+

SC ,−λ+
SC).



Chapter 6

Software Design

In mathematical optimization many different algorithmic approaches are considered for

tackling an enormous amount of different problem classes. But not every algorithm works

well on every class of problem. Especially when it comes to real-world applications, efficient

numerical solution schemes require specialized software fitted to the application and data

structure at hand. Therefore, algorithms have been reimplemented over and over again by

just changing few algorithmic strategies or the supported data structure they operate on.

For example, consider the step computation in a Filter Line-Search SQP, where a QP

subproblem has to be solved, a feasibility restoration phase in the case of failure or even the

complete line-search technique has to be chosen - all with respect to the overall robustness

and efficiency. The main algorithm, i.e. the SQP framework, only requires the propper

solution of the self-contained subproblems, which is independent of the chosen sub-solvers

in detail. Even more, the usage of special data structures requires the independence of the

data structure in use for all incorporated (sub-)algorithms.

The idea that comes along is to stop the need of reimplementations by giving flexible

skeletons of the basic algorithms for numerical optimization and delegate the solution of

self-contained subproblems to sub-solvers encapsulated in exchangable building blocks. In

the view of a main algorithm those building blocks only have to suit a fixed interface to

make it independent from the precise implementations. If these aspects hold, the way for

the realization of a highly flexible and maintainable software framework is paved.

According to the authors colleague Martin Schmidt1,the goal of the software framework

developed for this thesis is to make a reimplementation of the presented algorithmic frame-

works unnecessary. This is achieved by using the generic implementation properties of C++.

Its current version C++14 offers a wide range of techniques allowing the implementation

of efficient and generic optimization frameworks satisfying the conceptional ideas stated

above. It comprises the presented Filter Line-Search SQP method in Chapter 3 referred to

as Clean::SQP in the following and the elastic primal active-set method for QP in Chapter 4

referred to as Clean::ASM. Both are part of the generic software library Clean, which is an

acronym for A C++ Library for Efficient Algorithms in Numerics, which is developed in the

1JProf. Dr. Martin Schmidt, mar.schmidt@fau.de, Department Mathematik, Friedrich-Alexander-
Universität Erlangen-Nürnberg
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working group Algorithmic Optimization of Marc C. Steinbach2at the Leibniz Universität

Hannover. Clean is not yet sufficiently mature but it is intended to become public domain

as soon as it is considered to be [82, 63]. The application of most of the discussed software

concepts in the context of numerics goes back to Marc C. Steinbach and Clean.

The Chapter is organized as follows. Section 6.1 summarizes general design concepts

from the field of software engineering and reviews some modern C++ design aspects, which

are extensively used in the implementation to this thesis. Based on this, the software

architecture of Clean is presented in Section 6.2 with special attention to the architcetures

of Clean::SQP in Sect. 6.2.1 and Clean::ASM in Sect. 6.2.2.

6.1 General Design Concepts

In order to fulfill the introductory stated characteristics, a well designed software framework

has to satisfy some of the most important concepts from the field of software engeneering:

orthogonality, cohesion and coupling.

Orthogonality names the independence of modules of a software. According to [64], an

orthogonal software design satisfies the property that their modules are as independent

as possible. This is achieved, when the functionality or implementation details of a

module can change without harming the functionality of others.

Cohesion in software engeneering is the "degree to which the elements of a module belong

together", cf. [103]. High cohesion proves the maintainability of modules and enhances

the readability of the code. The user does not need to know how implemented modules

work in detail. This makes it easier to exchange a certain one.

Coupling describes the degree of independence between software modules. It is a measure

of how closely two modules are connected, cf. [103]. Low coupling correlates with

high cohesion and viece versa. In the scope of orthogonality, modules need to be

loosely coupled to be independent.

In summary, a well structured software framework of good design shows low coupling,

and when it is combined with high cohesion it supports the general goals of high readability

and maintainability. Subsequent generic programming techniques in C++ are described

which are extensively used in Clean.

Generic Programming Techniques

The realization of the concepts of software design stated above in Clean::ASM and Clean::SQP

is achieved by using techniques of generic programming with C++ templates. Most classes

2Prof. Dr. Marc C. Steinbach, steinbach@ifam.uni-hannover.de, Institute of Applied Mathematics,
Leibniz Universität Hannover



Chapter 6. Software Design 77

are implemented following a policy-based class design introduced by Alexandrescu [1], which

can be seen as a compile-time variant of the strategy pattern (see [34]).

The fundamental idea of policy-based class design is to design classes that take several

template parameters as input which are instantiated in dependence on types given by the

user that specify the behavior of the class. They use type traits - a programming technique

allowing compile-time decisions based on types instead of runtime decisions based on values

- to define all the types required in its scope. Type traits are used extensively in some

generic libraries, e.g. the C++ Standard Template Library (STL) [90] and Boost [91]. An

example of the policy-traits design is shown in Listing 6.1.

Listing 6.1: Example for the policy-traits design.

1 template<class Example_Policy>
2 struct Example_Traits
3 {
4 using Dummy = Pol i cy : :T_Dummy;
5 } ;
6
7 template<class Example_Policy>
8 class Example
9 {

10 using Tra i t s = Example_Traits<Example_Policy >;
11 using Dummy = typename Tra i t s : :Dummy;
12 } ;

Another frequently used technique to be mentioned is the one of tag dispatching. This is

a way of using function overloading to dispatch based on properties of a type [7] which is

often used hand in hand with traits classes. For example see Listing 6.2.

Listing 6.2: Example for tag dispatching.

1 struct Foo {} ;
2 struct Bar {} ;
3 struct Use_Foo { using Tag = Foo ; } ;
4 struct Use_Bar { using Tag = Bar ; } ;
5
6 template<class T>
7 void ac t i on (T& t ) { ac t i on ( t , typename T : : Tag ( ) ) ; }
8
9 template<class T>

10 void ac t i on (T& t , Foo tag ) { foo_act ion ( ) ; }
11
12 template<class T>
13 void ac t i on (T& t , Bar tag ) { bar_action ( ) ; }

To avoid code duplication, basic functionalities shared by various classes are encapsulated

in base classes such that inheriting from a base class provides the derived class with its
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functionalities. Base classes may not be parameterized by a policy but by the traits of the

inheriting class.

Some of the base classes employ the Curiously Recurring Template Pattern (CRTP) [18].

The design combines templates and inheritance in such a way that the template hierarchy

is directed opposite to the inheritance hierarchy. Thus, a class inherits a CRTP base class

and passes itself in complete instantiation as a template parameter. Methods within the

base class can therefore use the supplied template parameter to access members of derived

classes, but unlike standard inheritance CRTP base classes are not allowed to hold any

data members. An abstract example of the CRTP design is shown in Listing 6.3.

Listing 6.3: Example for the CRTP design.

1 template<class T>
2 class CRTP_Base
3 {
4 // . . .
5 } ;
6
7 template<class Pol icy>
8 class Derived
9 : public CRTP_Base<Derived<Pol icy>>

10 {
11 // . . .
12 } ;

6.2 The Software Architecture of Clean

Clean is a generic C++ library whose conceptional idea relies in the provision of numerical

algorithms that are not dependent on specific data types. The user may be able to

employ any problem-tailored data type (e.g. sparse matrices) and implement suitable

(sub-)algorithms which work on the data structure in use. Plugging in new implementations

is required to not affect the numerical logic of an algorithm, thus the provided ones need

not to be reimplemented.

C++ and External Libraries

As the long form of its name already tells, the software library Clean is written in C++.

At the time of publication, it mostly satisfies the C++11 standard but also employs some

features of the current C++14 standard [92]. It requires the C++ standard library and

the Boost C++ libraries (version 1.59.0 or higher) [91]. Linear algebra operations on dense

data (matrices and vectors) are based on BLAS [67] and LAPACK [2]. Those for sparse

matrices in triplet sparse (TS) format are either self-implemented (e.g. matrix-vector

products) or use routines from the HSL Mathematical Software Library [61, 62]. The code

documentation is done using Doxygen [94].
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Clean Algorithms

The strict independence between main algorithms, their sub-algorithms and data structures

requires a strict separation of responsibilities. Algorithms implement the basic numerical

logic of itselves. They employ data objects of the given data structure on which mathematical

operations are executed using fixed interfaces. These objects represent mathematical objects

like a vector or matrix and provide certain mathematical operations, e.g. matrix-vector

pruducts. Required operations are delegated to the algorithms data objects using servers,

which provide the interface to the data objects and ensure that they harmonize with each

other.

In detail, the main components of a numerical algorithm in Clean are distinguished into

the following groups.

Main Algorithms encapsulate the basic algorithmic logic of itselves. As, for example, see

the basic frameworks for SQP (Algorithm 1) and ASM (Algorithm 6).

Sub-Algorithms are the exchangeable building-blocks of a main algorithm which are

responsible for the solution of self-contained subproblems. Thus, every self-contained

task of a superordinate algorithm, like the determination of a stepsize or the solution

of a KKT system, is done by a sub-algorithm. Since there are a lot of possibilities

in which way a subproblem can be solved the user can either use an existing sub-

algorithm or implement a specialized one. In the latter case the new implementation

only has to suit the interface between the sub-algorithm and the superordinate

algorithm and their server.

Servers are the heart of every algorithm. A server collects all relevant data structures and

delegates the operations on these data structures which are requested by the main

algorithm. It is also possible that a superordinate algorithm and its sub-algorithms

share the same server if they operate on the same data, e.g. vector data like iterates

and search directions.

Data Structures mainly comprise vectors for the iterates (x, λ) and model evaluation data,

like the objective gradient and constraint values and problem matrices H, AE , AR.

Except the iterates and stepdata, the data structures in SQP are encapsulated in the

definition of the QP subproblem. In ASM it is the KKT right-hand side vector, the

projected problem matrices as well as diagonal blocks for the convexification of the

projected Hessian (νcI) and the relaxtion block (−M). The user can employ existing

data structures3 or implement new ones. For example, Huebner [63] employed a

highly efficient parallel tree-sparse KKT solver and distributed data structures to

the code Clean::IPM by Schmidt [82] in his thesis.

3 At the time of publication Clean offers implementations using dense matrices and matrices in TS format.
KKT matrix implementations fulfill the 3 × 3-block superstructure. KKT vectors are available fitted to
the block structure of KKT matrices, i.e. comprising variable-, equality- and range-vector blocks.
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Figure 6.1: A schematic overview of the software architecture of algorithms of Clean.

According to [82], the aspect of strong but desired coupling has to be mentioned. The

data structures are not determined by the problem itself. But, they are appointed

by the sub-algorithm that solves the subproblem in the step determination, i.e. the

QP solver in SQP and the KKT solver in active-set methods. For this reason, this

sub-algorithm determines the data structures on which it operates.

The described components and their correlation are illustrated in Figure 6.1. Recapitu-

lating the concept of coupling, most of the nodes are not directly connected representing

loose coupling of the components. This also visualizes the design aspect of orthogonality in

the code. Special aspects introducing stronger coupling to the design, like the dependencies

between sub-solvers and the data structures they operate on, are represented by the grey

connections.

6.2.1 The Architecture of Clean::SQP

The code Clean::SQP comes along with independent building blocks implementing the filter

line-search SQP framework presented in Chapter 3. It preserves the NLP sparse structure

in a native way since the algorithm only requires the evaluation of the problem data (e.g.

objective function, constraitns, etc.) at certain points.

If the user implements a new problem-tailored data structure he has to provide the

correct filling of the local QP in the step determination. The QP data is held by the QP

server which has to suit the data structure of the employed QP solver which defines the

data structure.

Figure 6.2 illustrates the described components and their relationships.
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Figure 6.2: A schematic overview of the software architecture of Clean::SQP.



82 6.2. The Software Architecture of Clean

Main Algorithm

Clean::ASM

Sub-
algorithms

QP

KKT
Solver

Servers Data
Structures

Vectors

QP data

Working-
set

Factori–
zation

Update

Basic
Server

Elastic
Server

Quadratic
penal-
ization

Linear
penal-
ization

Figure 6.3: A schematic overview of the software architecture of Clean::ASM

6.2.2 The Architecture of Clean::ASM

The code Clean::ASM implements the elastic primal active-set approach presented in

Section 4.2. It comes along with a set of three generic servers: a basic one for feasible

problems and one for each presented relaxation scheme. The generic update scheme for

factorizations is also provided.

Troughout the complete implementation no direct element or row access to the QP

matrix data is needed. Data driven operations only require linear mappings using the block

structure of the KKT matrix. For the solution of the KKT system any sufficiently accurate

KKT solver can be employed which defines the data structure. Solvers for the dense case,

implementing the direct solution method presented in Section 5.2, and the sparse case

using matrices in triplet-sparse format are available. For the latter one an interface to the

sparse solvers MA27/57 [61, 62] of the HSL library is provided. For any self implemented

data structure the user must provide a projector for the KKT system. This building block

is used to set up the reduced KKT system out of the structured QP w.r.t. the current

workingset.

Figure 6.3 illustrates the correlation of the components of the presented algorithm in

Chapter 4.



Chapter 7

Computational Results

This chapter presents computational results obtained with Clean::ASM and Clean::SQP on

a variety of test problems. Its main goal is to document the generality of the software

framework. First, Section 7.1 examines the load capacity of Clean::ASM by solving a set

of established convex quadratic programming examples. The relaxation schemes of the

elastic QP solver are compared and the effort gained by using the generic procedure for

updating KKT factors is presented. The applicability of Clean::SQP and Clean::ASM is

evaluated by the solution of a real-life application from the field of mathematical biology in

Section 7.2. Finally, Section 7.3 presents results on a multistage optimization problem for

dynamic processes. Specialized data structures and software for the solution of the KKT

systems are in use which proves the orthogonality of the code and the capability of the

framework to adapt non-standard techniques.

Computational results were obtained using a Fujitsu Primergy RX4770 M2 with an Intel

Xeon e7-8867 v3 CPU @ 2.50 GHz (4 socket x 16 cores x 2 smt) and 2 TB RAM. The

operating system is CentOS 7.3 (x86_64). The software was compiled with g++ (GCC)

and GNU Fortran (GCC) in version 6.3.0. If not stated otherwise, matrices are stored in TS

format and KKT systems are solved using MA57 Version 3.7.0 from the HSL Mathematical

Software Library. All CPU times are in seconds and do not include the time required to

load the problem data.

7.1 Results for Convex Quadratic Programming

This section evaluates the ability of Clean::ASM to solve convex QPs of the form

min
x∈Rn

q(x) = 1
2xT Hx + fT x (7.1a)

s.t. aT
i x = bi, i ∈ E , (7.1b)

aT
i x ∈ [rl,i, ru,i], i ∈ R, (7.1c)

xi ∈ [bl,i, bu,i], i ∈ B. (7.1d)

The problems arise from the Maros and Mészáros convex QP test set [73, 72]. It is a

collection of 138 convex quadratic programming examples from a variety of sources: Subset

83
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Figure 7.1: Distribution of the number of variables and constraints in the Maros and
Mészáros convex QP test set.

QPDATA1 bundles 76 problems coming from the CUTE library (the predecessor to CUTEr/st

[51, 52]). 46 problems, in QPDATA2, are provided by the Brunel optimization group and

the remaining 16 of subset QPDATA3 come from miscellaneous sources. The complete test

set includes both separable and nonseparable problems, and a reference optimal objective

value computed by the interior-point QP solver BPMPD [9, 76]. The problems are available

in QPS format, which is a subset of the SIF format used by CUTEr/st.

The distribution of problems within the Maros and Mészáros convex QP test set according

to the number of variables and constraints is visualized in Figure 7.1. Less than 20 of the

138 problems in this test set have more than 1000 degrees of freedom, and less than 10 have

more than 3000 degrees of freedom. For a more detailed look onto the set of problems or

the data format the reader is referred to the technical report of Maros and Mészáros [73].

7.1.1 General Mean Scaling of QP Data

Due to the sensitivity of active-set methods to problem scaling it is often useful to scale the

QP data to prevent the algorithm from numerical difficulties. Based on the General-Mean

Scaling code gmscale.m by Saunders [80] the implementation to this thesis comprises a

scaling method for matrices in TS format. Model scaling is not part of the presented

framework but can be applied in a preprocessing step.

The scaling method is an iterative procedure based on geometric means. Several passes
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are made through the columns and rows of a supplied matrix A ∈ R
m×n. To dampen the

effect of small matrix entries, on each pass through A, a new column scale cj ∈ R or row

scale ri ∈ R will not be smaller than
√

κd times the largest (scaled) entry in that column

or row. The main steps of the procedure are stated in Algorithm 13.

Algorithm 13: Geometric-Mean Scaling
Input : (Un-)scaled sparse matrix A ∈ R

m×n, algorithmic constants κd, κscl,.

1 Compute arat = maxj (maxi aij/ mini aij).
2 repeat

3 for j = 1, . . . , n do

// column scaling

4 Determine cmin = mini aij and cmax = maxi aij .
5 Divide column j by cj =

√

max(cmin, κd · cmax) · cmax.

6 for i = 1, . . . , m do

// row scaling

7 Determine rmin = minj aij and rmax = maxj aij .
8 Divide row i by ri =

√

max(rmin, κd · rmax) · rmax.

9 Compute srat = maxj (maxi aij/ mini aij).
10 until srat ≥ κscl · arat.

The computed column- and row-scales determined by scaling A = [AT
E , AT

R]T ∈ R
(m+k)×n

are applied to the data of the quadratic program by a transformation using the di-

agonal matrices C = diag (cj)j∈B ∈ R
n×n, and RE = diag (ri)i∈E ∈ R

m×m and

RR = diag (ri)i∈R ∈ R
k×k. With scaled variables x̄ = Cx the scaled data is defined

by

H̄ = C−1HC−1, f̄ = C−1f, ĀE = R−1AEC−1, ĀR = R−1AEC−1,

b̄ = R−1
E b, r̄l = R−1

R rl, r̄u = R−1
R ru, b̄l = Cbl, b̄u = Cbu.

7.1.2 Performance Profiles

The visualization of the numerical results in the following is done using performance profiles

in the form proposed by Dolan and Moré in [21]. For a set of problems P and a set of

solvers (or solver options) S, the performance measure

tp,s = time required to solve problem p ∈ P by solver s ∈ S (7.2)

is used. P is a significant subset of a set of test problems and S is the set of different

solvers according to chosen parametrizations of the algorithm. The performance ratio is

defined by

rp,s =
tp,s

min{tp,s : s ∈ S} . (7.3)



86 7.1. Results for Convex Quadratic Programming

multiple KKT factor scaled QP relaxed cons. κρ1 – min.
instant. mode changes W update data incl. in W0 penalty

L*base default X – – – 102

L*gfup default X X – – 102

L*scal default X – X – 102

L*feas feasible – – – X 106

Table 7.1: Parametrization of Clean::ASM. Instances use either the ℓ1 (*=1) or ℓ2 (*=2)
relaxation scheme.

Then, the fraction of problems that are solved by solver s within a factor τ ≥ 1 of the

performance of the best solver for problem p can be expressed using

ρs(τ) =
1
|P | |{p ∈ P : rp,s ≤ τ}|. (7.4)

The profile ρs(τ) : R→ [0, 1] is non-decreasing and piecewise constant. Its basic interpreta-

tion is as follows: The value of ρs(1) is the probability that s is the best of all solvers with

respect to the performance measure tp,s. Furthermore, by choosing rM ≥ rp,s for all p and

all s and rp,s = rM if and only if solver s does not solve problem p, it is rp,s ∈ [1, rM ] and

ρ∗
s = lim

τրrM

ρs(τ) (7.5)

can be interpreted as the probability that s solves p. In other words, ρs(1) is a measure of

efficiency whereas ρ∗
s is a measure of robustness.

From now on, different parametrizations of Clean::ASM are interpreted as different solvers

when results are visualized using performance profiles.

7.1.3 Results on The Maros and Mészáros Convex QP Test Set

In the following results of running Clean::ASM on the Maros and Mészáros convex QP

test set are presented. To varify the flexibility and robustness of the code both relaxation

schemes each in four different parametrizations are tested. An overview of the algorithmic

differences is given in Table 7.1. Fixed constants are the overall tolerance κtol, the variable

bound satisfaction tolerance κbnd and the step tolerance κstep indicating zero steps as well

as the lower limit of the penalization parameter κρ1 . The values are:

κtol = 10−6, κstep = 10−6, κbnd = 10−16, κρ1 = 100. (7.6)

Motivated by the usage of Clean::ASM within SQP the algorithm is started in the origin

0 ∈ R
n for most of the problems in the test set. Starting points are available for problems

provided by the CUTE library by calling csetup of the interface to CUTEr/st. Nevertheless,

the supplied points may not necessarily be bound feasible. In this case the starting point
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is shifted into the feasible set FB setting xi ∈ {bl,i, bu,i} for all i = 1 depending on which

limit is not satisfied. Since no information about the active-set is provided, the algorithm

is cold started, i.e. W0 = E , except for instances L1feas and L2feas, where all relaxed

range constraints are included in the initial workingset, i.e. W0 = E ∪ Rr.

Due to rank deficiency in the equality constraints Jacobians nine problems, namely

QBORE3D, QBRANDY, QSCORPIO, QSHIP04L, QSHIP04S, QSHIP08L, QSHIP08S, QSHIP12L,

QSHIP12S, are excluded. Here the LICQ is not satisfied for W0 = E .1 The factorization

of the KKT matrices for problems BOYD1, BOYD2 and CVXQP3_L is prohibitively expensive

with the result that the QP solution exceeds the time limit of 10 hours. The problems are

not solved at the time of publication and are excluded, too.

Tables 7.2, 7.3 and 7.4 present the results of the fastest instantiation on each of the

126 problems in the test set. The columns are as follows: n is the number of variables,

|E| is the number of equality constraints, |Rl,u| and |Bl,u| are the total number of lower

and upper limits of range constraints and variable bounds. |S ∪ T | is the number of

slack variables needed depending on the supplied starting point, ρ0 is the initial penalty

parameter determined by equation (4.77). q(x∗) is the computed objective value at the

final iterate. inst is the most efficient parametrization of Clean::ASM (cf. Table 7.1), iter

is the number of iterations, res is the infinity norm of the primal infeasibility, sec is the

solution time in seconds, and rc is the Clean::ASM return code. An optimal solution is

found if rc = 0. rc = 1 indicates an optimal solution of the convexified QP. If rc = 2 the

required feasibility tolerance is not achieved, i.e. the deliverd solution is not feasible.

In total, 121 out of 126 problems are solved (96%). Clean::ASM failed in five problems,

where all parametrizations produce singular KKT systems or end up in stalling or cycling.

This is caused by wrong decisions made in the workingset evoked by rounding errors in the

constraint evaluation. The problems are namely QGFRDXPN, QPILOTNO, QSHELL, CONT-201

and STADAT1. Figures 7.2 and 7.3 show the performance of Clean::ASM using performance

profiles. L1best and L2best denote the best choice of parameters per problem, visualizing

the robustness of the relaxation scheme.

For the linear relaxation scheme, L1gfup is the fastest instantiation on most of the

problems. It is not as robust as L1base and L1scal due to rounding errors provoked by

the generic factorization update. L2feas outperforms all other parametrizations using the

quadratic relaxation scheme in terms of efficiency and robustness. It benefits from the inclu-

sion of relaxed range constraints in the initial workingset againts all other parametrizations

for the problems in the test set. Feasibility is obtained earlier and additional iterations

where indices switch from Rr ∩Wk to Rf ∩Wk are avoided (see Figure 7.4). Figure 7.5

presents the performance of the code if relaxed range constraints are included for all

parametrizations, i.e. W0 = E ∪Rr. This also enables a direct comparison of the ℓ1 and ℓ2

relaxation scheme given in Figure 7.6. Therein L*best denotes the overall best choice of

the relaxation scheme and parametrization.

1Compare also Assumption 1 (regualrity) in Section 3.2.
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Figure 7.2: Performance profile for CPU time for Clean::ASM using φ1.
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Figure 7.3: Performance profile for CPU time for Clean::ASM using φ2.
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Figure 7.4: Performance profile for the number of iterations for Clean::ASM using φ2.
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Figure 7.5: Performance profile for CPU time for Clean::ASM using φ2 where relaxed
constraints are included in W0.
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Figure 7.6: Performance profile for CPU time for Clean::ASM using the most efficient
parametrization.

Problem Specific Parametrizaton and Warm Start

The QP solution algorithm is not designed for the solution of various test problems which

comprise artificial difficulties using a single set of parameters. As a part of Clean, it is

focused on the solution of difficult problems where the user has a good knowledge of

the problem and is able to warm start. Example given, when Clean::ASM is used as the

subsolver in Clean::SQP where it is warm started in a natural way. In the following, a more

detailed view on the solution of a selection of difficult problems in the test set is given.

Some problems are solved (or feasibility is obtained) only when the starting point is

shifted away from the boundary of the feasible set. In the tables below these problems

are marked by *. The components of the starting point are centered between the limits if

boxed and shifted into the interior of FB by xi = bl,i + 1 or xi = bu,i − 1 for all i. Some

more are solved using adjusted algorithmic constants and tolerances: LISWET12 needs a

more loose step tolerance of κstep = 3.5 ·10−6. QPCBOEI1 requires scaled QP data. QSCFXM2

has to be penalized with a penalty parameter of at least 1012. And QSCFXM3 is only solved

by using κρ1 ≥ 108, κstep = 1.5 · 10−5 and an initial convexification of νc = 1.

An essential speed up is achieved, when the algorithmic choices and starting point suit

the optimization problem or the code is warm started. E.g. cold starting on EXDATA at

least takes 1502 iterations and 341.00 seconds (L1gfup) to determine the optimal solution.

In contrast it is identified after 3 iterations and 11.41 seconds when all variables that do

not appear in the equality constraint are fixed to their lower limit, i.e. x
(0)
i = 0 for all

i = 1, . . . , n with ai = 0. 1500 variables can be eliminated which reduces the KKT size

significantly without infacting the LICQ.
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Name n |E| |Rl,u| |Bl,u| |S ∪ T | ρ0 q(x∗) inst iter res sec rc

AUG2D 20200 10000 0 0 10000 1.00e+06 1.6874e+06 L2feas 9 7.22e-08 1.61 1

AUG2DC 20200 10000 0 0 10000 1.00e+06 1.8183e+06 L2feas 6 7.50e-08 0.56 0

AUG2DCQP 20200 10000 0 20200 9999 1.00e+06 6.4981e+06 L2feas 10210 2.78e-07 1283.86 0

AUG2DQP 20200 10000 0 20200 9998 9.80e+03 6.2370e+06 L2base 9729 2.78e-07 1211.71 1

AUG3D 3873 1000 0 0 1000 1.00e+06 5.5406e+02 L2feas 7 4.35e-08 0.79 1

AUG3DC 3873 1000 0 0 1000 1.00e+06 7.7126e+02 L2feas 30 4.64e-08 0.82 0

AUG3DCQP 3873 1000 0 3873 952 1.69e+03 9.9336e+02 L2gfup 866 4.21e-07 9.94 0

AUG3DQP 3873 1000 0 3873 952 1.09e+03 6.7523e+02 L2gfup 847 5.73e-07 6.39 1

CVXQP1_L 10000 5000 0 20000 5000 5.62e+07 1.0870e+08 L2gfup 7402 1.24e-06 3341.99 2

CVXQP1_M 1000 500 0 2000 500 5.63e+05 1.0875e+06 L2gfup 715 8.89e-07 11.25 0

CVXQP1_S 100 50 0 200 50 5.68e+03 1.1590e+04 L2base 63 2.04e-07 0.05 0

CVXQP2_L 10000 2500 0 20000 2500 5.62e+07 8.1842e+07 L2gfup 5750 1.25e-07 665.09 0

CVXQP2_M 1000 250 0 2000 250 5.63e+05 8.2015e+05 L2gfup 579 5.83e-07 1.83 0

CVXQP2_S 100 25 0 200 25 5.68e+03 8.1209e+03 L1gfup 88 2.03e-14 0.03 0

CVXQP3_M 1000 750 0 2000 750 1.00e+06 1.3628e+06 L2feas 1786 7.15e-07 90.05 0

CVXQP3_S 100 75 0 200 75 5.68e+03 1.1943e+04 L2gfup 71 1.48e-07 0.05 0

DTOC3 14999 9998 0 4 9960 1.00e+06 2.3524e+02 L2feas 2147 2.76e-07 172.31 0

DUAL1 85 1 0 170 1 1.00e+02 3.5012e-02 L1gfup 28 0.00e+00 0.03 0

DUAL2 96 1 0 192 1 1.00e+02 3.3733e-02 L1gfup 7 0.00e+00 0.01 0

DUAL3 111 1 0 222 1 1.00e+02 1.3575e-01 L1gfup 17 0.00e+00 0.03 0

DUAL4 75 1 0 150 1 1.00e+02 7.4609e-01 L1gfup 16 0.00e+00 0.01 0

DUALC1 9 1 214 18 1 3.36e+06 6.1552e+03 L1gfup 12 0.00e+00 0.01 0

DUALC2 7 1 228 14 1 1.00e+06 3.5513e+03 L2feas 11 4.72e-07 0.00 0

DUALC5 8 1 277 16 1 1.00e+06 4.2723e+02 L2feas 9 4.60e-08 0.00 0

DUALC8 8 1 502 16 1 1.00e+06 1.8309e+04 L2feas 14 3.32e-08 0.01 1

GENHS28 10 8 0 0 7 1.00e+06 9.2717e-01 L2feas 2 1.34e-07 0.00 0

GOULDQP2 699 349 0 1398 349 1.00e+06 1.8427e-04 L2feas 1007 1.01e-10 2.49 0

GOULDQP3 699 349 0 1398 349 1.00e+06 2.0627e+00 L2feas 185 2.97e-07 0.75 0

HS118 15 0 29 30 0 9.42e+02 6.6482e+02 L2gfup 18 0.00e+00 0.00 0

HS21 2 0 1 4 0 1.00e+02 -9.9960e+01 L2gfup 3 0.00e+00 0.00 0

HS268 5 0 5 0 0 3.09e+04 7.2759e-12 L2gfup 2 0.00e+00 0.00 0

HS35 3 0 1 3 0 1.00e+02 1.1111e-01 L2gfup 3 0.00e+00 0.00 0

HS35MOD 3 0 1 4 0 1.00e+02 2.5000e-01 L2gfup 3 0.00e+00 0.00 0

HS51 5 3 0 0 0 1.00e+02 0.0000e+00 L2gfup 2 0.00e+00 0.00 0

HS52 5 3 0 0 1 1.00e+06 5.3266e+00 L2feas 4 3.27e-08 0.00 0

HS53 5 3 0 10 1 1.00e+06 4.0930e+00 L2feas 4 2.04e-08 0.00 0

HS76 4 0 3 4 0 1.00e+06 -4.6818e+00 L1feas 7 0.00e+00 0.00 0

HUES-MOD 10000 2 0 10000 2 1.00e+02 3.4824e+07 L1gfup 561 0.00e+00 9.49 0

HUESTIS 10000 2 0 10000 2 5.08e+03 3.4824e+11 L1gfup 563 3.46e-18 8.65 0

KSIP 20 0 1001 0 0 1.00e+02 5.7579e-01 L2base 363 0.00e+00 1.77 0

LISWET1 10002 0 10000 0 0 1.00e+06 3.6122e+01 L2feas 10002 0.00e+00 532.19 0

LISWET10 10002 0 10000 0 0 1.00e+06 4.9487e+01 L2feas 10173 0.00e+00 540.61 0

LISWET11 10002 0 10000 0 0 1.00e+06 4.9524e+01 L2feas 10257 0.00e+00 540.37 0

LISWET12 10002 0 10000 0 0 1.00e+06 1.7369e+03 L2feas 10043 0.00e+00 501.23 0

LISWET2 10002 0 10000 0 0 1.00e+06 2.4998e+01 L2feas 10003 0.00e+00 534.64 0

LISWET3 10002 0 10000 0 0 1.00e+06 2.5001e+01 L2feas 10699 0.00e+00 563.81 0

LISWET4 10002 0 10000 0 0 1.00e+06 2.5000e+01 L2feas 10758 0.00e+00 558.69 0

LISWET5 10002 0 10000 0 0 1.60e+04 2.5034e+01 L2scal 10654 0.00e+00 570.11 0

LISWET6 10002 0 10000 0 1 1.00e+06 2.4995e+01 L2feas 10562 0.00e+00 560.23 0

LISWET7 10002 0 10000 0 1 1.93e+03 4.9845e+02 L2scal 10089 1.45e-07 535.08 0

LISWET8 10002 0 10000 0 2 1.00e+06 7.1455e+02 L2feas 11577 1.59e-08 615.59 0

LISWET9 10002 0 10000 0 2 3.15e+03 1.9632e+03 L1base 10793 0.00e+00 584.09 0

LOTSCHD 12 7 0 12 7 1.00e+02 2.3984e+03 L2gfup 21 2.95e-07 0.00 0

MOSARQP1 2500 0 700 2500 0 5.36e+02 -9.5287e+02 L2gfup 1523 0.00e+00 7.11 0

MOSARQP2 900 0 600 900 0 1.00e+02 -1.5974e+03 L2gfup 334 0.00e+00 0.98 0

POWELL20 10000 0 10000 0 5000 1.00e+06 5.2089e+10 L2feas 5009 6.28e-08 277.86 0

PRIMAL1 325 0 85 1 0 1.00e+02 -3.5012e-02 L2gfup 76 0.00e+00 0.88 0

PRIMAL2 649 0 96 1 0 1.00e+02 -3.3733e-02 L2scal 102 0.00e+00 2.37 0

PRIMAL3 745 0 111 1 0 1.00e+02 -1.3575e-01 L2scal 107 0.00e+00 12.47 0

PRIMAL4 1489 0 75 1 0 1.00e+02 -7.4609e-01 L2scal 66 0.00e+00 3.58 0

PRIMALC1 230 0 9 215 0 1.00e+02 -6.1552e+03 L2gfup 220 0.00e+00 0.12 0

PRIMALC2 231 0 7 229 0 1.00e+02 -3.5513e+03 L2gfup 236 0.00e+00 0.11 0

PRIMALC5 287 0 8 278 0 1.00e+02 -4.2723e+02 L2gfup 286 0.00e+00 0.16 0

PRIMALC8 520 0 8 503 0 1.00e+02 -1.8309e+04 L2gfup 515 0.00e+00 0.52 0

QPCBLEND 83 43 31 83 0 1.00e+02 -7.8425e-03 L2gfup 241 0.00e+00 0.12 0

QPCBOEI1 384 9 431 540 113 1.00e+06 1.1503e+07 L2feas 1755 4.44e-08 4.10 0

QPCBOEI2 143 4 181 197 36 1.00e+02 8.1719e+06 L2scal 702 1.62e-07 0.76 0

QPCSTAIR 467 209 147 549 127 2.04e+05 6.2043e+06 L2gfup 1766 4.71e-07 9.80 0

S268 5 0 5 0 0 3.09e+04 7.2759e-12 L2gfup 2 0.00e+00 0.00 0

STCQP1 4097 2052 0 8194 2052 5.64e+04 1.5514e+05 L2gfup 519 3.91e-07 21.98 0

STCQP2 4097 2052 0 8194 2052 1.00e+06 2.2327e+04 L2feas 377 2.32e-08 63.05 0

TAME 2 1 0 2 1 1.00e+02 2.0707e-30 L2gfup 2 0.00e+00 0.00 0

UBH1 18009 12000 0 12030 6 1.00e+02 1.1160e+00 L2base 3979 9.19e-12 267.7 0

YAO 2002 0 2000 5 0 1.00e+06 1.9770e+02 L2feas 2005 0.00e+00 19.62 0

ZECEVIC2 2 0 2 4 0 1.00e+02 -4.1250e+00 L2scal 5 0.00e+00 0.00 0

Table 7.2: Results of Clean::ASM on 76 problems of the the Maros and Mészáros QP Test
Problem Set provided by the CUTE library (QPDATA1).
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Name n |E| |Rl,u| |Bl,u| |S ∪ T | ρ0 q(x∗) inst iter res sec rc

Q25FV47* 1571 515 305 1571 586 6.67e+04 1.3745e+07 L2scal 10137 5.96e-07 327.36 1

QADLITTL 97 15 41 97 8 3.31e+03 4.8031e+05 L1base 199 1.13e-13 0.09 1

QAFIRO* 32 8 19 32 12 1.00e+02 -1.5907e+00 L1scal 40 0.00e+00 0.01 0

QBANDM* 472 305 0 472 301 1.00e+02 1.6730e+04 L2scal 1087 2.12e-07 4.62 1

QBEACONF 262 140 33 262 34 1.70e+02 -5.4662e+05 L2scal 142 1.45e-07 0.76 1

QCAPRI 353 142 129 486 123 1.00e+02 6.6792e+07 L1gfup 1157 8.05e-12 2.65 1

QE226 282 33 190 282 35 1.00e+02 -5.9239e+00 L2gfup 1524 3.28e-07 3.23 1

QETAMACR 688 272 128 905 94 9.99e+02 7.0297e+04 L2base 2062 6.15e-08 12.45 1

QFFFFF80 854 350 174 854 153 2.56e+02 8.9153e+05 L1scal 1819 2.27e-13 11.97 1

QFORPLAN* 421 90 72 445 112 6.71e+07 7.4566e+09 L2feas 1150 6.70e-07 6.01 1

QGFRDXPN 1092 548 68 1350 2 6.71e+07 5.1843e+10 L1scal 848 0.00e+00 2.89 7

QGROW15 645 300 0 1245 0 1.00e+02 -1.1066e+01 L2scal 1168 0.00e+00 7.28 1

QGROW22 946 440 0 1826 0 1.00e+02 -1.6000e+01 L2scal 1335 0.00e+00 12.21 1

QGROW7 301 140 0 581 0 1.00e+02 -4.7538e+00 L2scal 869 0.00e+00 2.47 1

QISRAEL 142 0 174 142 8 3.00e+03 2.5359e+07 L2gfup 252 9.69e-08 0.25 1

QPILOTNO* 2172 701 274 2716 775 2.89e+06 2.9025e+06 L1feas 2488 0.00e+00 23.53 7

QRECIPE 180 67 24 275 15 1.00e+02 6.0172e+01 L1gfup 71 0.00e+00 0.04 1

QSC205 203 91 114 203 0 1.00e+02 -5.4752e-03 L2gfup 84 0.00e+00 0.08 1

QSCAGR25 500 300 171 500 57 5.10e+02 2.0176e+08 L2scal 1200 2.11e-12 4.04 1

QSCAGR7 140 84 45 140 21 5.10e+02 2.6867e+07 L2scal 235 2.84e-14 0.23 1

QSCFXM1* 457 187 143 457 232 1.00e+06 1.6883e+07 L2feas 1306 5.21e-08 4.53 1

QSCFXM2 914 374 286 914 464 1.00e+12 2.7785e+07 L2feas 3023 3.92e-09 18.41 1

QSCFXM3* 1371 561 429 1371 696 1.00e+08 3.0835e+07 L2feas 3827 3.42e-08 34.64 1

QSCRS8 1169 384 106 1169 38 5.30e+03 1.1397e+03 L2base 1938 1.14e-07 7.92 1

QSCSD1 760 77 0 760 1 1.00e+02 8.6666e+00 L1gfup 829 0.00e+00 1.37 1

QSCSD6 1350 147 0 1350 9 1.00e+02 5.0808e+01 L1gfup 1904 2.77e-17 5.98 1

QSCSD8* 2750 397 0 2750 15 1.04e+04 9.4076e+02 L1gfup 2652 2.11e-12 18.91 1

QSCTAP1 480 120 180 480 154 1.00e+02 1.4158e+03 L1base 1002 6.66e-16 2.11 1

QSCTAP2 1880 470 620 1880 521 1.00e+02 1.7350e+03 L2scal 2215 2.56e-07 14.02 1

QSCTAP3 2480 620 860 2480 682 1.00e+02 1.4387e+03 L2scal 2988 4.84e-07 25.51 1

QSEBA 1028 507 15 1535 224 4.40e+02 8.1470e+07 L2gfup 1132 7.53e-07 5.00 1

QSHARE1B 225 89 28 225 75 1.00e+02 8.2252e+05 L2gfup 792 1.19e-08 0.90 1

QSHARE2B 79 13 83 79 5 1.00e+06 1.1703e+04 L2feas 280 2.63e-07 0.17 1

QSHELL 1775 534 2 2142 257 6.71e+07 1.0446e+12 L1feas 1894 0.00e+00 33.23 7

QSIERRA 2036 528 699 4072 148 6.31e+04 2.3751e+07 L2base 2665 1.37e-07 18.96 1

QSTAIR* 467 209 147 549 292 2.42e+05 7.9854e+06 L2gfup 1640 2.88e-08 10.66 1

QSTANDAT 1075 160 199 1195 12 1.00e+06 -8.5760e+01 L2feas 1198 2.25e-08 6.01 1

Table 7.3: Results of Clean::ASM on 46 problems of the the Maros and Mészáros QP
Test Problem Set provided by the Mathematical Programming Group, Brunel
University, London (QPDATA2).

Name n |E| |Rl,u| |Bl,u| |S ∪ T | ρ0 q(x∗) inst iter res sec rc

CONT-050 2597 2401 0 5194 2401 1.00e+06 -4.5638e+00 L2feas 3 1.75e-07 0.43 0

CONT-100 10197 9801 0 20394 9801 1.00e+06 -4.6444e+00 L2feas 4 2.13e-07 4.68 0

CONT-101* 10197 10098 0 20394 689 1.00e+02 1.9551e-01 L2scal 438 6.52e-07 442.17 0

CONT-200 40397 39601 0 80794 39601 1.00e+06 -4.6848e+00 L2feas 4 2.47e-07 34.50 0

CONT-201 40397 40198 0 80794 398 1.00e+02 0.0000e+00 L1gfup 12 2.50e-02 29.53 3

CONT-300* 90597 90298 0 181194 598 1.00e+06 1.9150e-01 L2feas 5 4.33e-07 158.43 0

DPKLO1 133 77 0 0 49 1.00e+06 3.7009e-01 L2feas 3 3.50e-07 0.01 0

EXDATA 3000 1 3000 4500 0 1.00e+02 0.0000e+00 L1gfup 1502 0.00e+00 341.00 0

LASER 1002 0 2000 0 1000 1.00e+06 2.4096e+06 L2feas 1575 2.87e-07 16.47 0

QPTEST 2 0 2 3 1 1.00e+06 4.3718e+00 L2feas 4 4.27e-08 0.00 0

STADAT1 2001 0 5999 0 0 1.00e+06 -2.1408e+07 L2feas 2004 0.00e+00 27.33 3

STADAT2 2001 0 5999 0 0 1.00e+06 -3.2626e+01 L2feas 2074 0.00e+00 29.06 0

STADAT3 4001 0 11999 0 0 1.00e+06 -3.5779e+01 L2feas 4041 0.00e+00 109.77 0

VALUES 202 1 0 404 0 1.00e+06 0.0000e+00 L2feas 4 0.00e+00 0.01 1

Table 7.4: Results of Clean::ASM on 16 problems of the the Maros and Mészáros QP
Test Problem Set provided by Groeneboom, Mittelmann, Chalimourda, Boyd,
McNames and Wolkowitz (QPDATA3).
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7.2 Computation of Recombination Parameters in

Mathematical Biology

In the context of his diploma thesis [79] and PhD thesis Probst investigates the usability

of numerical optimization techniques as an alternative to stochastic simulation in the field

of mathematical biology. He observes a population of a fixed size and tries to predict the

evolution in time by the characterization of allelic states at a number loci at the same

chromosome. For the determination of recombination probabilities he uses a Moran model

with single crossovers – which yields a Markov chain in continous time – allowing changes

only in between two arbitrary loci at time t. The multilocus Moran model is illustrated in

Figure 7.7.

1 2 3 4 5

t

T

Figure 7.7: Snapshot of a Moran Model realization with N = 5 individuals and n = 4 loci.
For example, in the first eventpoint, individual 3 dies and is replaced by a copy
of individuals 2 and 3. The last line shows the composition of the population
at t = T , see [24].

In the following, N denotes the size of the population and n is the number of loci. The

probability of recombination after a certain locus i is stated as ri for i = 1, . . . , n and, by

convention, r1 soaks up the event of no recombination.

The dynamics of the recombination process come from a duality relation between the

Moran model and the ancestral partitioning process proved by Esser et al. [24]. The usage

of a Markov process model leads to an initial value problem for the dynamics. It results in

a separated multistage boundary value problem of infinit dimension, reading

min
(h,r)∈H×Rn

1
2

m
∑

j=0

‖h(tj , r)− ĥj‖2 (7.7a)

s.t. d
dt

h(t)−Θ(N, r)h(t) = 0, t ∈ [0, T ] (7.7b)

1−
n
∑

i=1

ri = 0, (7.7c)

ri ≥ 0, i = 1, . . . , n, (7.7d)

where tj ≤ T defines the time points of observasion for j = 0, . . . , m. Since the model

is highly complicated, only a brief description is given. The vector r ∈ R
n contains the
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recombination parameters. With respect to the Bell number2 ωn, h ∈ H ⊂ C0(I,Rωn)

represents the expectation of type-distribution with respect to all possible partitions of

{1, . . . , n} matching simulated data points ĥj = h(tj) for all time points tj . Finally, the

partitioning process at time tj is described by infitesimal generator Θ(N, r).

Probst uses direct Multiple Shooting [20] for the discretization of (7.7b) to obtain a

multistage boundary value problem (MSBVP) of finite dimension. More precisely, he

uses the observation time points tj as the shooting points for the discretization. The

resulting NLP has ωn(m + 1) + n variables and ωnm equality constraints corresponding

to the dynamics (7.7b), one equality constraint for equation (7.7c) and n variable bounds

(lower limits). Numerical solutions of the initial value problems on [tj−1, tj ], j = 1, . . . , m,

are computed using the integrators difsys [11, 56] and Metanb [3]. In his computational

experiments the discretized problem is solved using Clean::SQP and Clean::ASM. Matrix

data is stored in triplet sparse format, and linear systems are solved using the sparse solver

MA57 of the HSL library.

Figure 7.8 presents results of an inverse parameter estimation obtained by solving (7.7)

with a fixed population size of 10.000 individuals, three parameters and five partitions.

The discretized NLP has 108 variables, 101 equality constraints and three variable bounds.

The problem is relatively small, but it turns out that the initial value problem (7.7b) has to

be solved with high accuracy in every iteration. Unfortunately, this is the most expensive

computation in the solution of the problem.

The computed parameter vector r∗
opt = (r1, r2, r3)T at the determined solution is

r∗
opt = (0.997367, 0.001460, 0.001173)T .

Expected parameters given by simulation are r∗
sim = (0.997500, 0.001250, 0.001250)T ,

yielding an absolute error of

‖r∗
opt − r∗

sim‖2 = 0.000260.

Enlarging the problem, by expanding the model to four parameters, i.e. ω4 = 15 partitions,

yields a NLP comprising 319 variables, 301 equalities and four lower limits of variables.

The obtained solution is

r∗
opt = (0.998170, 0.000920, 0.000883, 0.000000)T with ‖r∗

opt − r∗
sim‖2 = 0.0011.

The size of the NLP is scaled linearly by the size of m, the number of time points

in the observation, and exponentially by n, the number of loci, due to the definition of

the Bell number ωn. The size of the population only infects the continuity conditions of

discretization and affects the computational costs in the solution of (7.7b). In applied

2The first 6 Bell numbers are ω1 = 1, ω2 = 2, ω3 = 5, ω4 = 15, ω5 = 52, ω6 = 203, ω7 = 877. For details,
see [79] and the thesis of Probst.
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NLP solution h
∗
j

0 200 400 600 800 1000

0.08
0.1

0.12
0.14
0.16
0.18

h
(1

2
|3

)(
t)

Simulated data ĥj
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Figure 7.8: Expected type-distributions with respect to all possible partitions of {1, 2, 3}.
Allelic states at n = 3 loci (⇒ ω3 = 5) for m = 20 time points are observed.
h(t) = (h(123)(t), . . . , h(1|2|3)(t))T denotes the time-course vector for a (single)
fixed type. The popultion comprises 10.000 individuals.
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mathematical biology evolutions in time are observed for around seven loci at a larger

number of observations. This, combined with a finer discretization used for multiple

shooting to improve the accuracy, leads to large-scale optimization problems with several

thousand variables and constraints.

The presented results are obtained within seconds and deal as a proove of concept for the

usage of numerical optimization in the field of mathematical biology. Since the structure of

the problem remains the same for large values of m, n and N it confirms the applicability

of Clean::SQP of Probst’s approach. Results for large-scale problems are not veryfied at

the time of publication.

7.3 Results for Multistage Boundary Value Problems with

Local Constraints

In this section the employability of specialized subsolvers within Clean::SQP is prooved by

the use of a structure exploiting KKT solver for the solution of a multistage optimization

problem for dynamic processes modeled by ordinary differential equations (ODE).

Assuming separability, i.e. variables on different stages j = 0, . . . , N are at most linearly

coupled, the representing NLP belongs to the class of ODE-constrained multistage boundary

value problems (ODE-MSBVP), cf. [88]. For I = [0, T ] and 0 = t0 < . . . < tN = T let

Ij = (tj−1, tj), Xj = C1(Ij ,Rnx), Uj = C0(Ij ,Rnx) (7.8)

as well as X = {x ∈ C0(I,Rnx) : x|Ij
∈ Xj} and U = {u : I → R

nu : u|Ij
∈ Uj}. Then,

problems of the described class read

min
x∈X ,u∈U

N
∑

j=0

fj(x(tj)) (7.9a)

s.t. 0 =
N
∑

j=0

rj(x(tj)), (7.9b)

0 = ẋ(t)− g(x(t), u(t)), t ∈ I, (7.9c)

b(x(t), u(t)) ≥ 0, t ∈ I. (7.9d)

Choosing a proper finite dimensional subspace Ū ⊂ U , e.g. piecewise constant functions,

and control ū0 the initial value x(t0) = x̄0 allows the representation of x(t) as a function

of t0, x̄0, ū0 (Picard-Lindelöf) yielding

x(t) = G(t, t0, x̄0, ū0), t ∈ I1. (7.10)
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The same applies to Ij , j > 1 such that integration over Ij gives

Gj(x̄j−1, ūj−1) = G(t, tj−1, x̄j−1, ūj−1). (7.11)

If the inequality constraints (7.9d) are only supposed to hold for time points tj finite

dimensional MSBVPs in a multiple shooting approach can be stated as

min
x̄∈X̄ ,ū∈Ū

N
∑

j=0

fj(x̄j) (7.12a)

s.t. 0 =
N
∑

j=0

rj(x̄j), (7.12b)

0 = Gj(x̄j−1, ūj−1)− x̄j , j = 1, . . . , N, (7.12c)

b(x̄j , ūj) ≥ 0, j = 0, . . . , N. (7.12d)

Problem (7.12) has a chain structure defined by the underlying discrete dynamic system

(7.12c). It is delegated to the quadratic subproblems and KKT systems in active-set SQP

methods, cf. Chapter 3 and 4. The arising KKT systems
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with its full multistage block-sparse substructure are stated as follows: partitionings of the

block-diagonal Hessian, state increment and the objective gradient gives
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Partitioning of the matrix, multiplier and vector of continuity conditions yields

G =











G1 E1 −I 0
. . .

GN EN −I 0











, λ =
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Matrix, multiplier and vector of the boundary conditions are partitioned according to

F =
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Augmentation of continuity and boundary conditions yields the reduced KKT system

[

H CT

C

](

y

−η

)

=

(

−g

c

)

(7.17)

which is compatible to the presented linear regularization scheme of Clean::ASM in Sec-

tion 4.2.2. For a detailed look onto the sparse structure of (7.13) and a recursive O(N)

algorithm for its solution see the thesis of Steinbach [83].

Interfaces

Steinbach et. al. presented the C-code MSTOP [89] for tackling optimization problems of

type (7.9). It includes a classical Runge–Kutta method (rk4) for the solution of (7.9c) and

incorporates a stage-wise BFGS update scheme for approximate Hessians of type (7.14).

Both tools are wrapped into a NLP problem class written in C++ suiting the required

interface for the problem evaluation and are plugged into Clean::SQP. This shows, that

the implementation of powerful problem classes - like the one at hand - is easy to achieve

due to the simple interface to Clean which outlines the quality of the code and software

concept.

As a part of MSTOP, the code MSKKT is used to solve arising linear systems of type

(7.17) in the presented linear relaxation scheme of Clean::ASM. Again, the interface is

simple; it only requires a proper initialization and projection of the KKT data with respect

to the workingset.

In the following the one-dimensional frictionless motion of a high velocity magnetic

levitation vehicle, which is known as the rocket car [70] in the literature, is modeled as a

MSBVP. Computational results are presented as a proof of concept for the flexibility of

the code developed for this thesis.
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7.3.1 Example: Rocket Car

The motion of the rocket car follows Newton’s third law of motion. It is s̈(t) = v̇(t) = F/m,

where s denotes the position of the vehicle, v its velocity and F is the driving power and m

its mass. Starting in s(0) = s0 with v(0) = v0, the task is to move the vehicle in minimal

time T to position s(T ) = se with a specified velocity v(T ) = ve at the destination. For

this purpose, it can be controlled by adjusting the acceleration u(t) = F/m ∈ [−û, +û].

The initial value problem for the equation of motion can be written as a first-order system,

yielding

(

ṡ(t)

v̇(t)

)

=

(

v(t)

u(t)

)

with

(

s(0)

v(0)

)

=

(

s0

v0

)

. (7.18)

Assuming a constant acceleration ū, the analytical solution of (7.18) is given by a polynomial

of second degree. It reads

s(t; ū, s0, v0) = ū
2 t2 + v0t + s0 and v(t; ū, v0) = ūt + v0. (7.19)

The optimal control of the rocket car when minimizing time T follows the bang-bang control

strategy for the acceleration u. At first the vehicle accelerates with maximum power |û|
towards the destination and until it reaches the switching point t̂ ∈ [0, T ] from where on

it accelerates with the same power into the opposite direction. For a closer look see, e.g.

Macki and Strauss [70] and Steinbach [87, 88].

Multistage NLP Formulation of Finite Dimension

In a multiple shooting approach the time interval [0, T ] is split into N − 1 subintervals

[tj , tj+1] with tj = jT
N

. The state and control variables for stages j ∈ {0, . . . , N} are

xj = (s(tj), v(tj), T )T and uj = u(tj), respectively. Stage functions

gj(xj−1, uj−1) =









gj,1(xj−1, uj−1)

gj,2(xj−1, uj−1)

xj−1,3









, for j = 1, . . . , N, (7.20)

describe the dynamics of the system. The solution of the IVP (7.18) on stage j − 1 for

initial values sj−1, vj−1 is represented by

(

gj,1(xj−1, uj−1)

gj,2(xj−1, uj−1)

)

=

(

s(tj ; uj−1, xj−1,1, xj−1,2)

v(tj ; uj−1, xj−1,1)

)

. (7.21)

Incorporation boundary values at the last stage (j = N) the problem to solve reads

min
x∈R3N

xN,3 = T (7.22a)
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Figure 7.9: Computed optimal control trajectory of problem (7.22) for s0 = 0, v0 = 0 and
sN = 42, vN = 1 for N = 2, 6, 30.
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Figure 7.10: Computed optimal state trajectories of the car’s position (left) and velocity
(right) of problem (7.22) for s0 = v0 = 0 and sN = 42, vN = 1 for N = 2, 6, 30.

s.t. 0 = gj(xj−1, uj−1)− xj , for j = 1, . . . , N, (7.22b)

0 = x0,0 − s0, 0 = x0,1 − v0, (7.22c)

0 = xN,0 − se, 0 = xN,1 − ve, (7.22d)

uj ∈ [−1, 1], for j = 0, . . . , N. (7.22e)

Computational Results

Exemplary (7.22) is solved for N = 2, 6, 30. The rocket car starts standing, i.e. v0 = 0,

at s0 = 0 and is driven to se = 42 with a final velocity of ve = 1 in minimal time TN .

The computed optimal driving times depend on the number of stages. More precisely, a

finer discretization offers a higher accuracy in the representation of the switching point t̂.

Solutions obtained are T2 = 12.471 12 s, T6 = 12.092 69 s and T30 = 12.042 98 s. Figure 7.9

and 7.10 show the computed control and state trajectories.



Chapter 8

Conclusion and Outlook

In this thesis the generic seqential quadratic programming framework Clean::SQP and the

elastic primal active-set method Clean::ASM are presented. It is in the main focus to allow

warm start and preserve problem-specific structures in the formulation of independent

subproblems on several levels. Maintaining sparsity the solution of self-contained problems

is delegated to exchangeable subalgorithms. This allows the user to employ any specialized

sub-solvers, e.g. for solving quadratic subproblems or KKT systems therein.

Filter SQP methods require the solution of closely related QPs in every iteration. The

QP solver should be warm started using the information determined in the preceeding

iteration. Because of that, Clean::ASM is predestined to be used within SQP because

of its relaxation scheme that avoids a phase 1. Furthermore, it is capable to compute

approximate solutions of inconsistent QPs making it usable in a feasibility restoration

phase.

The presented active-set method uses projection techniques that preserve the NLP

sparse structure leading to KKT systems that share a superstructure common in numerical

optimization. Due to modifications in the workingset the KKT size changes when constraints

are declared active or inactive. To avoid the refactorization of the changed KKT matrix in

this context a Schur complement method is used to update already computed factorizations.

In order to illustrate the robustness and performance of Clean::ASM computational

results on an established test set for convex quadratic programming by Maros and Mészáros

are presented. The code of Clean::SQP is proved to be applicable and strong on the solution

of hard to solve NLPs. This has been validated by solving optimization problems arising

in real-life applications incorporating differential equation constraints. This also proofs the

flexibility of Clean::ASM to be warm started from infeasible points as well as the algorithmic

concept and design of the code.

Nevertheless, a number of improvements are possible. The presented slack relaxation

scheme, especially ℓ1, is sensitive to the magnitude of penalization of infeasibility. On the

one hand feasibility may not be obtained if it is chosen too small but on the other hand

large values for ρ imply KKT systems that are hard to solve with the required accuracy.

As a remedy a constraint specific penalization could be implemented by introducing a

vector of penalty parameters corresponding to relaxed constraints.

101
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It is promising, that Clean::SQP is an efficient choice as the optimizer in (nonlinear) model

predictive control ((N)MPC). NMPC is an optimization based method for feedback control

of nonlinear systems with primary applications in stabilization and tracking problems. The

fundamental idea is to utilize a model of the process in order to predict and optimize the

future system behavior of a plant [59]. Figure 8.1 illustrates an open loop controller for

iterative online optimization in MPC.

PlantOptimizer
Input

u(t)

Output

y(t)

Reference

r(t)

Measurement

Figure 8.1: Open loop controller in model predictive control.

In online (N)MPC the sampling interval is short compared to the controller and plant

dynamics such that the NLPs are closely related. Solutions in terms of future input and

state trajectories can be time shifted one sampling period offering a good initialization for

warm start purposes [57, 59]. Especially active-set information at time t can be forwarded

to the QP solution algorithm to initialize the workingset of the primary QP subproblem in

SQP of the NLP at time t + 1. From the prediction horizon point of view, even complete

control sequences and state trajectories can be used in moving horizon estimations (see

Figure 8.2).

t0 t1 tNm
tNp

r(t)

input horizon

output horizon

u(t)

y(t)

Figure 8.2: Illustration of an NMPC step at time t0 in a moving horizont estimation.
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