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Abstract

Combinatorial optimization problems on (hyper)graphs are ubiquitous in science and indus-

try. Because many of these problems are NP-hard, development of sophisticated heuristics is of ut-

most importance for practical problems. In recent years, the emergence of Noisy Intermediate-Scale

Quantum (NISQ) computers has opened up the opportunity to dramaticaly speedup combinatorial

optimization. However, the adoption of NISQ devices is impeded by their severe limitations, both in

terms of the number of qubits, as well as in their quality. NISQ devices are widely expected to have

no more than hundreds to thousands of qubits with very limited error-correction, imposing a strict

limit on the size and the structure of the problems that can be tackled directly. A natural solution

to this issue is hybrid quantum-classical algorithms that combine a NISQ device with a classical

machine with the goal of capturing “the best of both worlds”.

Being motivated by lack of high quality optimization solvers for hypergraph partitioning,

in this thesis, we begin by discussing classical multilevel approaches for this problem. We present a

novel relaxation-based vertex similarity measure termed algebraic distance for hypergraphs and the

coarsening schemes based on it. Extending the multilevel method to include quantum optimization

routines, we present Quantum Local Search (QLS) – a hybrid iterative improvement approach that

is inspired by the classical local search approaches. Next, we introduce the Multilevel Quantum

Local Search (ML-QLS) that incorporates the quantum-enhanced iterative improvement scheme in-

troduced in QLS within the multilevel framework, as well as several techniques to further understand

and improve the effectiveness of Quantum Approximate Optimization Algorithm used throughout

our work.
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Chapter 1

Introduction

Graphs and hypergraphs model a plethora of real-world phenomena, from the structure of

human interactions to communication patterns in high-performance computing workloads. Under-

standing the properties of (hyper)graphs is instrumental in gaining an insight into many real-world

problems. Unfortunately, many of the problems that arise in such analysis are extremely hard and

finding exact solution is often computationally intractable. Therefore researchers resort to a variety

of heuristical algorithms.

A crucial heuristical technique for the work described in this dissertation is local search.

When a problem is too complex to tackle directly, it is intuitive to start with some initial solution

(random or produced by a simple heuristic) and try to iteratively improve it. Variations of this

idea of starting with some solution and iteratively searching its neighborhood have been successfully

applied to a wide range of optimization problems, from training neural networks with stochastic

gradient descent to solving general mathematical programming problems using simulated annealing.

Local search is central to many algorithms described in this dissertation, most notably in the form

of various local vertex-moving heuristics like KL-FM in hypergraph partitioning and quantum-

accelerated large-neighborhood local search in Quantum Local Search.

A major limitation of local-search-based approaches is the limited quality of the initial so-

lution. As most hard problems are non-convex and have multiple non-degenerate local optima, a

bad initial solution can lead the iterative improvement scheme to get stuck in a local optimum.

Many approaches were explored to tackle this, but the one we focus on in this dissertation is mul-

tilevel. A multilevel solver consists of three stages: coarsening, initial solution and uncoarsening.

1



During the coarsening stage, the problem is iteratively coarsened (reduced in size) with the goal of

preserving the global structure. During the initial solution stage, the coarsened problem is solved,

often exactly. During the uncoarsening, the solution is projected onto finer levels by reversing the

coarsening operators and is iteratively refined using a local-search heuristic. The main advantage of

this approach is that for each level in the multilevel hierarchy, the initial solution for the local search

is “good” in a sense that it is optimal for the coarser problem. Assuming an optimal solution to the

coarsest “initial” problem and coarsening that preserves the structure of interest, by induction the

final solution to the finest, original problem will be optimal too. This intuition provides an insight

into why multilevel methods have been so successful in tackling a variety of seemingly very different

problems, from solving partial differential equations to image segmentation.

The above discussion provides a motivation for the work described in Chapter 2. Clearly,

the quality of the initial solution projected from coarser levels is imperative for the success of the

local-search-based refinement. That requires a good coarsening scheme capable of preserving the

structure of the problem. Chapter 2 provides an in-depth discussion of advanced coarsening schemes

for multilevel hypergraph partitioning. Joint work with Jie Chen on coarsening using a novel vertex

similarity metric termed algebraic distance for hypergraphs is presented in Section 2.2. An extension

of this approach to aggregative coarsening is presented in Section 2.3.

While a good initial solution is instrumental for the success of a local search heuristic,

improving the local search procedure itself can yield great performance increases. Quantum Com-

putation (QC) provides an enticing novel approach, with potential to revolutionize computation.

Small quantum computers are becoming available on the cloud. These limited quantum computers

are commonly referred to as Noisy Intermediate-Scale Quantum (NISQ) devices. NISQ-era quan-

tum optimization techniques have the potential to provide speedups over classical state-of-the art

optimization algorithms for certain problems. Two most prominent algorithms being explored are

Quantum Approximate Optimization Algorithm (QAOA) on gate-based model quantum comput-

ers and Quantum Annealing (QA) on special-purpose quantum hardware. Chapter 3 provides an

overview of quantum optimization techniques and a large scale numerical study of QAOA (Sec-

tion 3.3) that presents some of the challenges associated with using QAOA. These challenges are

partially addressed in a joint work with Jeffrey Larson on improving the performance of QAOA

(Section 3.4). A further understanding of the mechanism of QAOA is gained through an application

of graph theoretical approach to the analysis of structure of QAOA subspace. This approach and

2



its application to predicting QAOA performance with machine learning is discussed in Section 3.5.

While both QAOA and QA can be understood in terms of local search, we focus on applying them

as subproblem solvers within a larger iterative improvement scheme. Quantum optimization has

the potential to explore larger neighborhoods of the current solution more efficiently than classi-

cal approaches. Chapter 4 presents Quantum Local Search (QLS, Section 4.1), a framework for

community detection that uses quantum optimization techniques for improving the performance of

a local-search approach to network community detection problem. This approach is extended to

MultiLevel (ML-QLS) and graph partitioning problem in Section 4.2.
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national Symposium on Experimental Algorithms (SEA 2018), 103. Contribution: I developed
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Computing Conference (IGSC 2019)). Contribution: I performed all the experiments and was

the primary contributor to writing all sections.
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Chapter 2

Advanced Coarsening Schemes for

Multilevel Hypergraph

Partitioning

Hypergraphs are generalizations of graphs. Both graphs and hypergraphs are ordered pairs

of sets (V,E), where V is the vertex set and E is the set of (hyper)edges such that each e ∈ E is

a subset of vertices. The difference is that in a graph, the cardinality of each edge is exactly two,

whereas in a hypergraph, a hyperedge can contain an arbitrary number of vertices. The hypergraph

partitioning (HGP) problem is therefore a generalization of the graph partitioning (GP) problem.

In GP the goal is to split the set of vertices into multiple sets (usually called partitions) of similar

sizes, such that a cut metric is minimized. Here, a cut defines a set of (hyper)edges spanning more

than one partition. In the HGP generalization, the hyperedges can possibly span more than two

partitions. There exist several versions of minimization objectives, constraints, and cut metrics

in both GP and HGP [31, 45]. Hypergraph partitioning has many applications, including VLSI

design [130, 13], parallel matrix multiplication [47], classification [266], cluster ensembling [235], and

combinatorial scientific computing [171], among others [31, 184].
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2.0.1 Multilevel method

The multilevel method for graph partitioning was initially introduced to speed up exist-

ing algorithms [24], but was quickly recognized as a good way to improve the quality of partition-

ing [129, 110]. It is used as a global suboptimal heuristic framework [45], in which other heuristics are

incorporated at different stages. These three stages are coarsening, initial partitioning, and uncoars-

ening. A multilevel hypergraph partitioning of a hypergraph constructed from LPnetlib/lp_scfxm2

matrix is presented in Figure 2.1.

During the coarsening stage a hypergraph H = (V,E) is approximated via a series of

successively smaller hypergraphs Hi = (V i, Ei), 1 ≤ i ≤ l, where l is the number of levels in the

hierarchy. The superscript denotes the number of the corresponding level for hypergraphs, nodes,

and edges, respectively. Each next-coarse hypergraph is constructed by merging or aggregating

vertices in the previous one according to some heuristic: vik = {vi−1
k1

, ..., vi−1
kj
}. That is, a vertex vik

in the coarse hypergraph Gi at the ith level is created by grouping a set of vertices vi−1
k1

, ..., vi−1
kj

from the finer hypergraph Hi−1. Vertices can be grouped by using different criteria, with the aim of

interpolating solution from coarse level nodes to the corresponding fine level nodes with minimum

loss of solution quality. In the case of pairwise grouping of vertices, such a coarsening is referred

to as matching. The weight of the new coarse vertex is equal to the sum of weights of the merged

vertices:

w(vik) = w(vi−1
k1

) + ...+ w(vi−1
kj

).

A coarse vertex is contained in all hyperedges that contain the merged vertices. Hyperedges of

cardinality one are discarded. Coarsening terminates when the size of the hypergraph is below a

certain threshold or when a solution is easy to compute.

In the partitioning stage, the coarsest hypergraph H l is partitioned using exact or ap-

proximate solver. In many existing implementations, the solver is a local search heuristic. This

partitioning is anticipated to approximate the global solution in the sense that it incorporates the

global structure of the hypergraph. In some cases, when H l is sufficiently small, an exact solution

can be computed.

The uncoarsening stage consists of two steps, namely, interpolation and refinement. During

uncoarsening, the partitioning from the coarse hypergraph Hi+1 is projected onto the fine Hi (in-

terpolation) and refined using a local search heuristic such as Kernighan-Lin (KL) [132] or Fiduccia-
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Mattheyses (FM) [79] (refinement). This retains the global information of the partitioning of the

coarse hypergraph while optimizing it locally. Typically, solving a local search subproblem only

improves the global solution at the same level.

2.1 Related work

Because HGP is NP-complete [84], many heuristics and approximations have been devel-

oped. The most common practical approach to HGP is the multilevel framework. This section

begins with a brief description of non-multilevel techniques, followed by multilevel ones.

2.1.1 Spectral methods

An important family of non-multilevel techniques is spectral methods. It is necessary to

point out that while they can be used as standalone methods, they are also often used within the

multilevel framework. As we discussed in Section 2.0.1, the multilevel method for combinatorial

optimization problems is a heuristic that incorporates other heuristics as well, such as different

similarity concepts and iterative refinement techniques. Spectral hypergraph partitioning generalizes

spectral graph partitioning methods to hypergraphs. It usually utilizes the spectral properties of

the adjacency matrix. Two main approaches are identified.

The first one is to construct a graph from the hypergraph [102] and then apply spectral graph

partitioning methods that are more well-developed [177, 80]. Two of the most common approaches

are star and clique expansions. In the case of clique expansion, a hyperedge is replaced by a set of

edges that form a complete subgraph for the vertices in the hyperedge. In the case of star expansion,

a hyperedge is replaced by a new vertex, which is connected by new edges to all vertices previously

contained in the hyperedge.

This approach suffers from an obvious loss of information: when a hyperedge is expanded

(i.e., replaced by a clique or a star), its vertices are connected by a number of edges. The information

that they are equal members of a hyperedge is lost. Ihler et al. show [118] that even for bi-partitioning

there exists no min-cut graph model of a hypergraph. That is, one cannot create a graph whose edge

cut is equal to the hyperedge cut in the original hypergraph, if negative weights are not allowed [118].

Finally, the hypergraph-to-clique conversion greatly increases the size of the problem. Nevertheless,

we point out that despite these limitations, good practical results can still be obtained by using
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graph models of a hypergraph.

The second approach is to build hypergraph Laplacian and to study its properties, bypassing

the graph representation. This can be done in various ways. Bolla defines an unweighted hypergraph

Laplacian matrix and shows the link between its spectral properties and the hypergraph cut [33].

Zhou et al. define a Laplacian matrix and show a way to use it for k-way partitioning [266]. Hu

et al. argue that Laplacian tensors naturally extend the graph Laplacian matrices to hypergraphs.

They describe a Laplacian tensor for an even uniform hypergraph and define algebraic connectivity

for it [114]. Chan et al. define a Laplacian operator induced by a stochastic diffusion process on the

hypergraph and generalize Cheeger’s inequality for it [50]. However, these recent advances of the

spectral approaches, while promising, are not yet well developed for large-scale instances.

2.1.2 Multilevel methods

Most state-of-the-art hypergraph partitioners (such as hMetis2 [130], PaToH [46], Zoltan

[67] and Mondriaan [248], to name a few) use a multilevel approach inspired by simplified multigrid

and the principles of multiscale computing.

In the coarsening stage of the V-cycle, most hypergraph partitioners use, with some vari-

ations, a heuristic that greedily aggregates neighboring vertices, with some preference based on a

similarity metric. These similarity metrics are local and usually very simple. The metric used by

Mondriaan [248], hMetis2 [130] and Zoltan [67] is inner product matching. The inner product of two

vertices is defined as the Euclidean inner product of their hyperedge incidence vectors [67]. In other

words, the inner product of two vertices is the number of hyperedges they have in common or, in the

weighted case, total weight of those hyperedges. PaToH uses a different metric as a default option,

called absorption matching :

am(u, v) =
∑

e=(u,v)∈E

1

|e| − 1
,

where |e| is the cardinality of an edge e. However, there are scenarios where these simple solu-

tions, while computationally efficient and easy to implement, are not very effective and can be im-

proved [52]. This is the major reason for us to revise the coarsening strategy for hypergraphs. In the

refinement step, all of the aforementioned partitioners use some variation of Fiduccia-Mattheyses [79]

or Kernighan-Lin [132] including their advanced efficient implementation introduced in [9].

However, there is relatively little research on how to improve the coarsening of a hypergraph.
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Figure 2.1: Multilevel partitioning of a hypergraph constructed from LPnetlib/lp_scfxm2 matrix
from SuiteSparse Matrix Collection [64] using row-net model: each column becomes a vertex and
each row becomes a hyperedge. On the left side of the 11V” the hypergraph (represented here as the
sparsity pattern of the underlying matrix) is iteratively coarsened. At the bottom of the ”V” the
hypergraph is partitioned into two parts. This is represented by coloring the columns corresponding
to vertices from one part into blue and another into red. On the right side of the ”V” the hypergraph
is uncoarsened and the partitioning is refined.
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Figure 2.2: Outline of the algorithm used to aggregate vertices at kth coarsening level.

Existing research was motivated mainly by the intuition that a decision made earlier in the coarsening

stage has substantial influence on the quality of the final cut: any error or wrong decision would

be propagated all the way down the V-cycle and accumulate. Some methods that improve the

coarsening include a use of rough set theory [146], as well as some variations on the greedy heavy

matching scheme. A very promising but unfinished attempt to generalize HGP coarsening using

algebraic multigrid was published in Sandia Labs Summer Reports [44]. Another extension of a

multilevel method, namely, the n-level recursive bisection, was introduced in [218]. For a more

extensive review of hypergraph partitioning algorithms the reader is referred to [244].

2.2 Algebraic Distance on Hypergraphs

In this section, we introduce a new distance measure that plays a crucial role in improving

the quality of coarsening. To demonstrate its effectiveness, we use Zoltan [67] as the baseline solver.

The outline of our approach is as follows. At each level of coarsening, we compute new

weights for the hyperedges. These weights are passed to Zoltan’s coarsening subroutine, allowing it

to use this additional information for making matching decisions. After the matching is computed,

the weights are set back to the original hyperedge weights and the multilevel algorithm continues.

In other words, we leverage the hyperedge weights to pass information on the structure of the

hypergraph, derived by our algorithm, to the HGP solver’s coarsening scheme. We refer to these

weights as algebraic weights. The outline is shown in Figure 2.2.

Discussion of this algorithm would not be complete without a brief description of the coars-

ening scheme used by Zoltan. Zoltan uses an agglomerative matching technique known as inner-
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product matching [48], or called heavy-connectivity clustering in PaToH [47]. In this technique,

the vertices are visited in random order. If the visited vertex v is unmatched, an adjacent vertex

u with the highest connectivity is selected and the current vertex is added to its cluster Cu. The

connectivity is defined as Nv,Cu/Wv,Cu , where Nv,Cu is the total weight of the edges connecting v

with the vertices in the cluster Cu, and Wv,Cu
is the total weight of the vertices in the candidate

cluster [47].

2.2.1 Algorithm

Recall that the hypergraph is denoted as H = (V,E). We call the star expansion graph

G. In general, we use primed variables when referring to the elements of G and non-primed for the

elements of H. At each coarsening level the following happens:

1. Build the star expansion graph G = (V ′, E′) of H [237]. Each hyperedge is replaced by a new

vertex, which is connected to every vertex contained in the original hyperedge, i.e., V ′ = V ∪E

and E′ = {(v, h) | v ∈ h, h ∈ E} [237]. This way, each hyperedge is replaced by a “star” in

the bipartite graph G, with all vertices v ∈ V in one part and hyperedges h ∈ E in another

(hence the new set of vertices is V ′ = V ∪ E). The weights of the vertices stay the same.

The vertices introduced to replace hyperedges are assigned the weights of the corresponding

hyperedges they represent, divided by the number of vertices in that hyperedge; i.e.,

w′(v′) = w(v), ∀v ∈ V ⊂ V ′, and

w′(h′) =
w(h)

|h| , ∀h ∈ E ⊂ V ′. (2.1)

The edges e′ ∈ E′ of the star expansion G are left unweighted (we can assume they all have

weight 1). We refer to the vector of weights in the graph G as w′ ∈ R|V ′| and that in the

hypergraph H as w ∈ R|V |+|E|, to distinguish the two cases. Note that since V ′ = V ∪ E,

these vectors are of the same size.

2. Compute algebraic coordinates of the vertices in star expansion graph G by using Jacobi over-

relaxation (JOR, a stationary iterative relaxation), beginning with random initialization. The

iterative process is repeated for several random initial vectors.
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For each random vector, all coordinates are initialized with random values from the uniform

distribution on (−0.5, 0.5). We denote the algebraic coordinates as a 2-dimensional array X,

where x[r][v′] is the algebraic coordinate for the vertex v′ ∈ V ′ = V ∪ E and the rth random

initial vector. Then, for a certain number of iterations (denoted in pseudocode as num iter),

JOR is performed on all v′ ∈ G as follows. The vertices are visited in random order. After each

iteration, the algebraic coordinates are rescaled such that the smallest algebraic coordinate is

equal to −0.5 and the largest to 0.5. The iteration scheme can be written as follows

x∗[r][v′] =

∑
∀u′∈V ′:(u′,v′)∈E′

w′(u′) · xi−1[r][u′]∑
∀u′∈V ′:(u′,v′)∈E′

w′(u′)

x∗∗[r][v′] = ω · x∗[r][v′] + (1− ω)xi−1[r][u′],

(2.2)

where ω is a relaxation factor. It is used in the same way as in Successive overrelaxation [43], to

make the convergence more stable. Weighting, rescaling and the denominator in Equation 2.2

are introduced in part to prevent algebraic coordinates from converging to machine precision,

i.e., becoming so close that they are no longer distinguishable. In our experiments, nondistin-

guishable coordinates tend to occur on hypergraphs whose hyperedges have high cardinality,

since vertices contained in these hyperedges very quickly “pull” each other together.

Denote the smallest (“leftmost” on the real line) algebraic coordinate before rescaling as l and

the largest (“rightmost”) as r. Then, the rescaling is done as follows:

xi[r][v′] =
x∗∗[r][v′]− l

r − l − 0.5.

3. Define the algebraic weight of a hyperedge h ∈ E as one over the algebraic distance between

two farthest apart vertices in h, maximized over all random vectors:

alg weight(h) =
1

max
∀r

max
u,v∈h

|x[r][v]− x[r][u]| .

Compute the final weights w̃ to be passed to Zoltan from the original hyperedge weights w as
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follows

w̃(h) = w(h) · alg weight(h)∑
h∗∈E

alg weight(h∗)/|E|
.

Hyperedge weights are multiplied by the ratio between the computed algebraic distance for

this hyperedge and the average algebraic weight for all hyperedges. Note that here w(h) is the

weight of the original hyperedge, before the star expansion.

4. Pass these new weights w̃ to Zoltan’s [67] agglomerative inner product matching. After the

matching, all weights are reset back to the ones before the star expansion (i.e., back to w) and

the multilevel process continues.

The pseudocode for computing the algebraic weights (steps 1–3) is presented in Algorithm 1.

ALGORITHM 1: Computing algebraic weights

Input : Relaxation factor ω, number of random vectors R , number of iterations num iter
Output: algebraic weights alg weight
for r = 1 : R do

Randomly initialize x[r];
for k = 1 : num iter do

// Perform iteration sweep over all vertices

for v′ ∈ V ′ do

x∗[r][v′] =

∑
∀u′∈V ′:(u′,v′)∈E′

w′(u′)·xi−1[r][u′]∑
∀u′∈V ′:(u′,v′)∈E′

w′(u′)
;

x∗∗[r][v′] = ω · x∗[r][v′] + (1− ω)xi−1[r][u′];

end
for v ∈ V ′ do

// Rescale

l = min
u∈V ′

x[r][u];

r = max
u∈V ′

x[r][u];

xi[r][v′] = x∗∗[r][v′]−l
r−l

− 0.5;

end

end

end
for h in E do

// Compute algebraic weights for hyperedges

alg weight(h) = 1 / max
∀r

max
u,v∈h

|x[r][v]− x[r][u]|;

end

13



2.2.2 Convergence analysis

Algorithm 1 is an iterative process that computes x[r][v′] for all vertices v′ ∈ V ′ and random

initial vector numbers r. To analyze the convergence of this process and understand the properties of

the computed algebraic weights, we need additional notation. Let x(i) ∈ R|V ′| denote the ith iterate

of the vector x[r] for the rth random initial vector. Since the same iterative process is performed for

all vectors of random initial coordinates, we will perform the analysis on only one (arbitrary) vector

and hence omit the dependence on r.

Let A ∈ R|E|×|V | be the incidence matrix of the hypergraph; that is, Aij = 1 if vertex j

belongs to the hyperedge i and 0 otherwise. Let Sv ∈ R|V |×|V | and Sh ∈ R|E|×|E| be diagonal

matrices such that

Svjj = w(vj) and Shii =
w(hi)

|hi|
,

where |hi| denotes the cardinality of the ith hyperedge (same as in Equation 2.1). Define the

following matrix

W =

 0 ATSh

ASv 0


and let D be the diagonal matrix with elements Djj =

∑
iWij . For convenience of analysis, we

decompose D as

D =

Dv 0

0 Dh


with Dv ∈ R|V |×|V | and Dh ∈ R|E|×|E|, such that the block sizes of D are compatible with those of

W . Note that W is asymmetric.

It is not hard to see that Algorithm 1 computes the following update:

x(i) =
1

r − l
[
ωD−1Wx(i−1) + (1− ω)x(i−1)︸ ︷︷ ︸

x∗(i−1)

]
− r + l

2(r − l)1

where 1 is the vector of all ones, and r and l are the maximum and the minimum of the elements in

x∗(i−1), respectively (see Algorithm 1). Then, we simplify the update formula as

x(i) = α(i−1)Hx(i−1) + β(i−1)1, (2.3)

14



where

H = ωD−1W + (1− ω)I, α(i−1) =
1

r − l , and β(i−1) = − r + l

2(r − l) .

The convergence of the iteration depends on the properties of the iteration matrix H. We

first note that the matrix D−1W is diagonalizable with real eigenvalues.

Theorem 2.2.1. Let (Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2 admit the following singular value decom-

position:

(Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2 =

r∑
i=1

σiuiz
T
i .

Then, D−1W has a zero eigenvalue of multiplicity |V | + |E| − 2r = |V ′| − 2r. Moreover, for the

nonzero eigenvalues,

D−1W

(Sv)−1/2(Dv)−1/2zi

(Sh)−1/2(Dh)−1/2ui

 = σi

(Sv)−1/2(Dv)−1/2zi

(Sh)−1/2(Dh)−1/2ui

 (2.4)

and

D−1W

−(Sv)−1/2(Dv)−1/2zi

(Sh)−1/2(Dh)−1/2ui

 = −σi

−(Sv)−1/2(Dv)−1/2zi

(Sh)−1/2(Dh)−1/2ui

 , i = 1, . . . r. (2.5)

Proof. The identities 2.4 and 2.5 are straightforward to verify based on the singular value decom-

position. On the other hand, if λ is an eigenvalue of D−1W with corresponding eigenvector [ cd ],

then,

(Dv)−1ATShd = λc and (Dh)−1ASvc = λd,

which implies that

[(Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2]T [(Dh)1/2(Sh)1/2d] = λ[(Dv)1/2(Sv)1/2c],

and

[(Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2][(Dv)1/2(Sv)1/2c] = λ[(Dh)1/2(Sh)1/2d].

In form, these two equalities define all nonzero singular values |λ|

of (Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2. Thus, if λ is not equal to any of the ±σi’s, then λ must

be zero.
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Second, note that the diagonal of the matrix D−1W is zero and each row is nonnegative,

summing to one. Hence, by Gershgorin’s circle theorem, the eigenvalues of D−1W must lie between

−1 and 1. Indeed, the two ends of this interval are attainable.

Theorem 2.2.2. The spectral radius of D−1W is 1. In particular, there exists a pair of eigenvalues

±1, and 1 is an eigenvector associated with an eigenvalue +1.

Proof. By the definition of W and D, we have D−1W1 = 1. Therefore, D−1W has an eigenvalue

+1 with eigenvector 1. From Theorem 2.2.1 we know that D−1W must also have an eigenvalue

−1. Then, because all the eigenvalues of D−1W lie between −1 and +1 by the Gershgorin’s circle

theorem, its spectral radius is 1.

Third, recall that the star expansion graph is a bipartite graph, with one part containing the

vertices of the original hypergraph and the other part the hyperedges. Rather than defining vertex

weights as in Equation 2.1 and leaving the edges unweighted, alternatively, one may view W as the

weighted adjacency matrix of a graph with exactly the same vertex-edge structure, but the edges

are weighted according to W and the vertices are left unweighted. Then, the block and the sparsity

structure of W indicates that the directed edges of this bipartite graph (in the alternative view)

always come in pairs with opposite directions. Hence, we may ignore the directions and treat the

graph undirected, if at all convenient for analyzing graph connectivity. Then, the directed version

of the graph is strongly connected if and only if the undirected version is connected, although

the edge weights are asymmetric in the directed version. Consequently, the number of strongly

connected components of the directed version is equal to the number of connected components of

the undirected version. Such a view allows the application of the Perron–Frobenius theorem for

exploring the extreme eigenvalues of D−1W .

Theorem 2.2.3. The eigenvalues of D−1W equal to +1 are all simple. The number of such eigen-

values is equal to the number of strongly connected components of the directed version of the bipartite

graph (or equivalently, the number of connected components of the undirected version of the graph).

Proof. If the directed graph is strongly connected, then D−1W is irreducible. Hence, by the Perron–

Frobenius theorem, there exists an eigenvalue equal to the spectral radius 1. This eigenvalue is

simple and is unique. If the graph has C strongly connected components, then D−1W may be

symmetrically permuted into a C × C block-diagonal matrix, where each block corresponds to one
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strongly connected component. In such a case, D−1W has C eigenvalues equal to 1, all of which are

simple.

The above three theorems reveal the beautiful symmetry of the eigenvalues of D−1W . They

are real, come in pairs, and straddle around zero (except those being exactly zero). The number of

nonzero pairs is equal to the rank of the incidence matrix A. The eigenvalues all lie inside [−1, 1].

Moreover, there exists (at least) one pair attaining exactly ±1, and the number of such pairs is equal

to the number of connected components of the star expansion graph when viewed as undirected.

With this knowledge, we see that there is a one-to-one correspondence between the eigenpairs

of the iteration matrix H and those of D−1W . Specifically, denote by (µi, φi) an eigenpair of H.

Then,

Hφi = µiφi ⇔ D−1Wφi =
µi − 1 + ω

ω
φi, 0 < ω < 1.

Because the eigenvalues of D−1W are symmetric around 0 with range [−1, 1], the eigenvalues µi of

H are symmetric around 1− ω with range [1− 2ω, 1]. Because ω is strictly less than 1, the largest

eigenvalue of H is 1, which is equal to the largest eigenvalue in magnitude. The multiplicity of

this eigenvalue is equal to the number of connected components of the undirected version of the star

expansion graph. For simplicity of analysis, we will assume from now on that the graph is connected.

Then, we have an ordering of the eigenvalues according to their magnitude:

1 = µ1 > |µ2| ≥ |µ3| ≥ · · · ≥ |µ|V ′||,

with φ1 = 1 being an (unnormalized) eigenvector associated with µ1. Note the use of the strictly-

greater-than sign > and the greater-than-or-equal-to sign ≥. In particular, the second eigenvalue,

in magnitude, must be strictly less than 1. In what follows, we will present a result that relates

the difference between the elements of x(k) to that between the corresponding elements of some

vector in the eigensubspace spanned by one or a few eigenvectors, including φ2. This eigensubspace

depends on how many eigenvalues are equal to |µ2| in magnitude. If only one, that is, |µ2| > |µ3|,

then the eigensubspace is spanned by only φ2. However, if more than one, then let us assume that

|µ2| = |µ3| = · · · = |µt| > |µt+1|. Such a case includes two subcases:

case 1: µ2 = µ3 = · · · = µt; and

case 2: µ2, µ3, . . . , µt are not all equal.
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In each subcase, the vector is some linear combination of φ2, . . . , φt.

Theorem 2.2.4. Assume that the undirected version of the star expansion graph is connected. Let

the initial iterate x(0) be expanded in the eigen-basis of H as

x(0) = a1φ1 + a2φ2 + · · ·+ a|V ′|φ|V ′|.

(i) If µ2 = µ3 = · · · = µt and |µt| > |µt+1| for some t ≥ 2, and if a2, . . . , at are not all zero,

then for any pair i, j,

lim
k→∞

(x(k))i − (x(k))j
α(0)α(1) · · ·α(k−1)µk2

= ξi − ξj ,

where

ξ = a2φ2 + · · ·+ atφt.

(ii) If |µ2| = |µ3| = · · · = |µt| > |µt+1| for some t ≥ 3 where µ2, µ3, . . . , µt are not all equal, and

if a2, . . . , at are not all zero, then for any pair i, j,

lim
k→∞

(x(2k+p))i − (x(2k+p))j

α(0)α(1) · · ·α(2k+p−1)µ2k+p
2

= (ηp)i − (ηp)j ,

where

ηp = a2φ2 + a3(µ3/µ2)pφ3 + · · ·+ at(µt/µ2)pφt, p = 0, 1.

Proof. For notational convenience, let n = |V ′|. Write the diagonalization of H as H = ΦΛΦ−1,

where Φ = [φ1, . . . , φn] and Λ = diag(µ1, . . . , µn). Also write x(0) = Φa, where a = [a1, . . . , an]T .

Then, expanding (2.3) k times, we have

x(k) = α(0) . . . α(k−1)Hkx(0)+

+ (β(0)α(1) . . . α(k−1)Hk−1 + β(1)α(2) . . . α(k−1)Hk−2 + · · ·+ β(k−1)H0)1.

(2.6)

Because 1 is an eigenvector of H corresponding to eigenvalue 1, the term in the second line

is equal to γ(k)1 with γ(k) = β(0)α(1) . . . α(k−1) +β(1)α(2) . . . α(k−1) + · · ·+β(k−1). For the first term

on the right of the first line,

Hkx(0) = ΦΛka = a1φ1 + a2µ
k
2φ2 + · · ·+ anµ

k
nφn,
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with φ1 = 1. Therefore,

x(k) = α(0) . . . α(k−1)(a11 + a2µ
k
2φ2 + · · ·+ anµ

k
nφn) + γ(k)1,

and hence

(x(k))i − (x(k))j
α(0) . . . α(k−1)µk2

= (ei − ej)T [a2φ2 + a3(µ3/µ2)kφ3 + · · ·+ an(µn/µ2)kφn].

(i) When k is large, the term inside the square bracket is dominated by

a2φ2 + · · ·+ atφt,

because all other µi’s are smaller than µ2 in magnitude. Thus, when k → ∞, only this term

remains, hence the result.

(ii) Similar to the above case,

(x(2k+p))i − (x(2k+p))j

α(0) . . . α(2k+p−1)µ2k+p
2

= (ei − ej)T [a2φ2 + a3(µ3/µ2)2k+pφ3 + · · ·

· · ·+ an(µn/µ2)2k+pφn].

When k →∞, in the square bracket only the term

a2φ2 + a3(µ3/µ2)2k+pφ3 + · · ·+ at(µt/µ2)2k+pφt

remains and the rest vanishes. Because the eigenvalues µ2, . . . , µt are all real, the ratios

µ3/µ2, . . .µt/µ2 can only be ±1. Hence, taking square, the ratios all become 1. We thus

obtain the result in the theorem.

Informally speaking, the above theorem states that in the limit, the difference between two

elements of the iterate vector x(k) is proportional to that between the corresponding elements of some

vector ξ. When |µ2| is strictly greater than |µ3|, this vector ξ may be taken to be the eigenvector

φ2. When there exist more than one eigenvalue equal to µ2, say, µ2 = · · · = µt for some t > 2, then
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ξ is a linear combination of φ2, . . . , φt, where the coefficients of the combination are the expansion

coefficients of the initial iterate x(0) along the eigen-basis of the iteration matrix H. However, when

there exist more than one eigenvalue whose magnitude is equal to |µ2| but these eigenvalues are not

all the same, then the situation is slightly complicated. Every other iterate x(k) form a subsequence

and the limiting behaviors of these two interleaving subsequences correspond to two different vectors,

which are η0 and η1 defined in the theorem. Both of them are a linear combination of the eigenvectors

φ2, . . . , φt. For η0, the coefficients of the combination are the expansion coefficients of x(0) along the

eigen-basis of H; for η1, some of these coefficients flip signs.

The existence of these various cases is owing to the different choices of ω. Recall that

the eigenvalues of D−1W are symmetrically distributed around zero. Then, the eigenvalues of

H = ωD−1W + (1 − ω)I are symmetrically distributed around 1 − ω, with the smallest one being

1 − 2ω. We will use σ2 > 0 to denote the second largest eigenvalue of D−1W , which is consistent

with the notation in Theorem 2.2.1. By the connected-graph assumption, σ2 < σ1 = 1. We also

have that the multiplicity of 1−2ω is one, by the same assumption. Furthermore, the second largest

eigenvalue of H is ωσ2 + 1− ω.

(a) If ω > 2
3−σ2

, then 1− 2ω is negative and it has a larger magnitude than does ωσ2 + 1− ω . In

such a case, µ2 = 1− 2ω and |µ2| is strictly greater than |µ3|. This scenario corresponds to the

case (i) of Theorem 2.2.4 with t = 2.

(b) If ω ≤ 1
2 , then 1− 2ω is nonnegative, and hence all eigenvalues of H are nonnegative. In such a

case, µ2 = ωσ2 +1−ω. This scenario also corresponds to the case (i) of Theorem 2.2.4, because

if there are more than one eigenvalue whose magnitude is equal to µ2, then the nonnegativity

implies that these eigenvalues must be the same as µ2. The multiplicity of µ2 is equal to the

multiplicity of σ2. It could happen that either the multiplicity of σ2 is one, in which case t = 2;

or the multiplicity of σ2 is greater than one, in which case t > 2.

(c) If ω = 2
3−σ2

, then 1 − 2ω is negative, ωσ2 + 1 − ω is positive, and the two have the same

magnitude. This scenario corresponds to the case (ii) of Theorem 2.2.4. Whether t = 3 or t > 3

depends on the multiplicity of ωσ2 + 1−ω (equivalently that of σ2), because the multiplicity of

1− 2ω is one. If the multiplicity of σ2 is one, then only two eigenvalues have magnitude equal

to |µ2|, and hence t = 3; otherwise, t > 3.

(d) If 1
2 < ω < 2

3−σ2
, then 1 − 2ω is negative and ωσ2 + 1 − ω is greater than the magnitude of
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1−2ω. This scenario is similar to that of the above item (b), except that not all the eigenvalues

of H are nonnegative. All other properties are otherwise the same.

2.2.3 Mutually influenced model

In the standard graph case, the edge weights provide a first-order measurement of vertex

similarity/distance. This measure is applicable to only adjacent vertices. Hence, for a pair of

vertices that are not adjacent, global information of the graph must be incorporated for extending

the measurement. The algebraic distance on graphs [52] defines algebraic coordinates for every

vertex through an iterative process similar to that in the present work. In the limit, the coordinate

difference, which serves the notion of “distance,” is proportional to the difference of the corresponding

elements of some vector y. Specifically, if we let wij be the weights of a pair of vertices ij in the

graph, then the elements of the vector y satisfy an equilibrium state

yi = γyi +
∑
j

wij
di
yj , (2.7)

where di =
∑
j wij is used for normalization and 0 < γ < 1 is a constant factor for all i. The

algebraic coordinates do not need to coincide with the yi’s; it suffices for their differences to be

proportional. When one treats the vertices to be entities of a mutually influenced environment, then

the value yi of each entity is composed of two components according to (2.7): a portion of itself (γyi)

and a normalized weighted contributions of its neighbors (
∑
j
wij

di
yj). If yi denotes the amount of

information stored at vertex i, Equation 2.7 essentially signifies a global equilibrium of the flow of

information. Such a view is used to interpret the global similarity of vertices through neighborhoods.

In short, two vertices are similar if their neighborhoods are similar, because the common factor γ is

constant and similarity relies on the neighboring weights wij .

The present work extends this notion to hypergraphs. In such a setting, the hyperedges

cover not just a pair ij of vertices, but rather, a subset of any size (excluding of course empty sets

and singletons). Hence, a proxy of the pairwise environment is the star expansion graph G, whose

vertex set V ′ includes not only the original vertices V of the hypergraph, but also the hyperedges

E. Naturally, the edges of G come from the containment relation between V and E; that is, v ∈ V

and h ∈ E are connected if and only if v ∈ h. Therefore, the edge weights of G come from the

weights in the original hypergraph, properly scaled. It is important to note that the scaling is
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not symmetric, because potentially one hyperedge may contain a large number of vertices. Thus,

whereas the weights for the directed edge from v to h are w(v) without scaling, those for the edges

from h to v are w(h) scaled by |h|.

Then, the algebraic distance on hypergraphs enjoys the same equilibrium

model Eq. 2.7. From Theorem 2.2.4 and the subsequent discussions, we know that γ = (1− µ2)/ω,

where µ2 is the second largest eigenvalue in magnitude of the iteration matrix H, and y is a vec-

tor in the subspace spanned by the eigenvectors associated with eigenvalues whose magnitude are

equal to |µ2|. In practice, ω is often set to be 1/2, then µ2 is positive1 and all other eigenvalues

having the same magnitude must be equal to µ2. If furthermore the multiplicity of µ2 is 1, then the

subspace is spanned by the eigenvector φ2 only and hence y can be taken to be φ2. Note that the

multiplicity of eigenvalue µ2 is the same as the multiplicity of the singular value σ2 of the matrix

(Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2 in Theorem 2.2.1.

Finally, when extending the notion of the algebraic distance to hypergraphs, we have to

take into account the non-pairwise nature of the relations between the vertices. While in pairwise

graph setting it is natural to use the simple difference between two vertices’ algebraic coordinates

as the measure of similarity between them, in non-pairwise hypergraph setting this approach has to

be extended. In the hypergraph case we instead assume that the hyperedge is only as important

as two most dissimilar vertices in it. In hypergraph partitioning terms, this means that we want to

avoid cutting the hyperedges that contain only similar vertices. Therefore we define the algebraic

weight of the hyperedge as:

alg weight(h) =
1

max{|x[v]− x[u]| | u, v ∈ h}

This way, we penalize cutting the hyperedges that contain only similar vertices, with the notion of

similarity defined according to the mutually influenced model.

2.2.4 Experimental Results

In this section, we first illustrate the empirical convergence of Algorithm 1 and then com-

pare the quality of the partitioning produced by our algorithm with those by other state-of-the-art

hypergraph partitioners. Our major goal is to study the effectiveness of the algebraic distance on

1We assume the nondegenerate case where µ2 is nonzero. Otherwise, all eigenvalues except for the largest one is
zero.
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Figure 2.3: Squared sine of the angle between x(k) and x(k+1) as a function of the iteration number
k.

hypergraph partitioning by introducing it into a coarsening scheme. We note that these results can

clearly be further improved by using more advanced refinement techniques which are beyond the

scope of this work.

2.2.4.1 Convergence

The speed of the convergence of algebraic weights depends on the gap between the second

largest eigenvalue in magnitude, |µ2|, of the iteration matrix H and the next eigenvalue with a

different magnitude, denoted as |µt+1| in the preceding section. Estimating this gap is no less

expensive than computing the corresponding eigenvectors. Hence, in practice, we use the squared

sine of the angle between two iterates x(k) and x(k+1):

1−
〈

x(k)

||x(k)|| ,
x(k+1)

||x(k+1)||

〉2

,

to measure how parallel the two iterates are, as a proxy of convergence test.

The two consecutive iterates generally become parallel very quickly. In Figure 2.3 we pick

five hypergraphs and plot the squared sine for the first 50 iterations. These hypergraphs represent

different sizes (from 2426 − by − 3602 to 103631 − by − 395979) and different origins (from social

networks to circuit simulation) of hypergraphs in the benchmark. One sees that the value is indis-

tinguishable from zero after 10 to 20 iterations. Such a phenomenon is typical to our experience and

we generally set num iter comparable to these numbers.
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It is worth noting that the parallelism of two consecutive iterates does not necessarily mean

true convergence. As noted by Chen and Safro [52], the eigenvalue gap may be so small that it

might take a huge number of iterations for the difference

(x(k))i − (x(k))j

(after scaling) to get close enough to ξi − ξj . The parallelism before convergence corresponds to a

transient state wherein the change of the iterates is small. It turns out that in practice, a transient

state is sufficient for the algebraic distance to be useful for coarsening.

2.2.4.2 Cut improvements

We implement our algorithm with algebraic distances by using the Zoltan [67] package of the

Trilinos Project [111]. Zoltan is an open-source toolkit of parallel combinatorial scientific computing

algorithms [67] designed to optimize load balancing. It includes a hypergraph partitioning algorithm

called PHG (Parallel HyperGraph partitioner). We augment Zoltan’s PHG partitioner with algebraic

distances as described in the preceding section. Our algorithm is called Zoltan-AlgD. All comparisons

with Zoltan are indeed comparisons with Zoltan’s PHG partitioner. In this study we use Zoltan in

the serial mode. In addition to comparing Zoltan-AlgD to Zoltan, we compare it with two other

state-of-the-art partitioners, namely hMetis2 [130] and PaToH v3.2 [46].

PaToH is used as a plug-in for Zoltan, as described in Zoltan’s User Guide [68]. We run

PaToH with two different parameters: default (here denoted as PaToH-D) and quality (PaToH-Q).

hMetis2 is used to directly optimize k-way partitioning. All parameters are set as default: greedy

first-choice scheme for coarsening, random k-way refinement, and min-cut objective function.

Each algorithm is run 10 times and the smallest cuts over all runs are compared. In the

experiments, standard deviation of the cuts is usually small (< 5%). Interestingly, in a small number

of hypergraphs, we observe that the distribution of cuts is bimodal (i.e., the partitioner produces

cuts close to either one of two modes). In this case, the standard deviation is high; however, within

each mode, the deviation is low. Such behavior demonstrates that in certain settings the solvers

cannot escape false local attraction basins obtained at the coarse levels. This hints that the current

state of hypergraph partitioning solvers is still far from being optimal and there is a lot of space for

improvement.
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Because the implementation of our algorithm has not been optimized, the run time of Zoltan-

AlgD is on average two to four times longer than that of Zoltan (see Figure 2.8). However, since the

iteration scheme is easily parallelizable (for example, among different random vectors, the iteration

is pleasingly parallel as well as parallelization of Jacobi-based relaxations has been studied and used

in many works), the overhead of computing the algebraic distances may be minimized and thus the

run time may be made similar to that of Zoltan. Moreover, the algebraic distance is, in fact, several

iterations of Jacobi over-relaxation whose parallelization has been studied a lot.

We also have to point out the lack of progress in coarsening techniques in the recent years,

with all major hypergraph partitioning packages using the same approach, making our contribution

more valuable. While the way we select vertices to be merged together during coarsening is indeed

more expensive than traditional approaches, it introduces very low overhead (constant number of

passes over vertices) and shows great improvement in the area where state-of-the-art has not changed

for a long time.

The different algorithms are compared on three groups of hypergraphs: big-bench, SNAP-

bench, and social-networks-bench.

The first two groups (big-bench and SNAP-bench) are generated from matrices obtained

from the University of Florida Sparse Matrix Collection [64] by using a row-net model: a vertex i

belongs to hyperedge j if there is a non-zero element on the intersection of ith column and jth row.

Big-bench contains 443 matrices; many of them are derived from optimization problems. SNAP-

bench consists of 42 matrices from the SNAP (Stanford Network Analysis Platform) Network Data

Sets [140].

The third group of the benchmark, social-networks-bench (12 hypergraphs), has two parts.

The first part contains two networks with known communities (youtube and flickr) from the IMC

2007 Data Set [160]. The hypergraphs are constructed in the following way: each vertex represents a

user and each hyperedge represents a community. After generating the hypergraph, isolated vertices

are removed. The second part contains “similar hypergraphs.” They are generated by using the

following pipeline: a graph of pairwise links is obtained for the same dataset and then a similar

graph is generated by using the BarabasiAlbertGenerator [24, 26] of NetworKit [234]. Afterwards,

the adjacency matrix of the new graph is interpreted by using the row-net model.

In Figures 2.4,2.5,2.6 and 2.7 the results are presented graphically. Each curve plots the
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ratio

cut obtained using another algorithm

cut obtained using Zoltan-AlgD
,

where for the light grey ”X” markers curve, the “other algorithm” is Zoltan; black triangle markers

curve, PaToH-Q; dark grey dot markers curve, PaToH-D; and dim grey ”Y” markers curve, hMetis2.

Each plot corresponds to a certain number of parts and a certain imbalance factor. The hypergraphs

are ordered in the the increasing ratio. Colorblind-safe color versions of the figures are available

online at http://bit.ly/relaxation2019.

For readability, the results for big-bench are split in two parts: those with ratios

cut obtained using another algorithm

cut obtained using Zoltan-AlgD
< 1.5

and those with ratios greater than 1.5 (i.e., with more than 50% improvement in cut). The results for

the social-networks-bench and SNAP-bench are plotted on the same figure, since the social-networks-

bench is considerably smaller than the other two. The results show substantial improvement over

Zoltan without algebraic distance, as well as over hMetis2 and PaToH on most of the hypergraphs.

For the full set of results, please refer to http://shaydul.in/hypergraph-partitioning-archive/.

2.3 Aggregative Coarsening for Multilevel Hypergraph Par-

titioning

The standard approach to coarsening used in most state-of-the-art hypergraph partitioners

is matching-based (see discussion in Section 2.1.2). Originally, this meant that at each level pairs

of adjacent vertices are selected to become one vertex at the next level. This technique has later

been extended to include non-pairwise matchings (i.e., more than two fine vertices can form a coarse

vertex). One of the alternative approaches is aggregative coarsening inspired by algebraic multigrid.

In aggregative coarsening, the set of vertices V is separated into disjoint sets of seeds and non-seeds,

namely, C and F such that F ∪ C = V . The non-seed vertices aggregate themselves around the

seeds (hence the name aggregative coarsening). The aggregation can be strict (F -vertices are not

split) and weighted (F -vertices can be split between multiple seeds with vertex weight conservation).

At the refinement stage, the partitioning decision (i.e., partition assignment) is interpolated from
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Figure 2.4: First half ( cut obtained using another algorithm
cut obtained using Zoltan-AlgD < 1.5) of big-bench (443 hypergraphs), with

light grey ”X” markers curve corresponding to Zoltan, black triangle markers to PaToH-Q, dark
grey dot markers to PaToH-D, and dim grey ”Y” markers to hMetis2. The improvements are with

respect to the whole big-bench, including those with improvement greater than 1.5.
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with light grey ”X” markers curve corresponding to Zoltan, black triangle markers to PaToH-Q,
dark grey dot markers to PaToH-D, and dim grey ”Y” markers to hMetis2 (greater is better).
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Figure 2.6: First half ( cut obtained using another algorithm
cut obtained using Zoltan-AlgD < 1.5) of SNAP-bench and

social-networks-bench (54 hypergraphs), with light grey ”X” markers curve corresponding to
Zoltan, black triangle markers to PaToH-Q, dark grey dot markers to PaToH-D, and dim grey ”Y”
markers to hMetis2. The improvements are with respect to the whole big-bench, including those

with improvement greater than 1.5
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Figure 2.7: Second half ( cut obtained using another algorithm
cut obtained using Zoltan-AlgD ≥ 1.5) of SNAP-bench and

social-networks-bench (54 hypergraphs), with light grey ”X” markers curve corresponding to
Zoltan, black triangle markers to PaToH-Q, dark grey dot markers to PaToH-D, and dim grey ”Y”
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each seed to the non-seeds in its aggregate. This separation between seed and non-seeds helps to

introduce additional guarantees. For example, on graphs Safro et al. [213] introduce the notion of

strong connection and guarantee that each vertex in the graph is strongly connected to at least

one seed. The weighted aggregation was initially introduced for several cut problems on graphs

[212, 205, 214] including GP [215]. There was an unfinished attempt to extend this approach to

hypergraphs. Buluç and Boman [44] describe several challenges in applying aggregative coarsening

to hypergraphs, as well as propose two very similar coarsening schemes, strict and weighted. In this

work, we limit our discussion to strict aggregation.

In aggregative coarsening, two main questions have to be addressed: seed selection and

aggregation of non-seeds around seeds. In the process of seed selection, Buluç and Boman [44]

follow Safro et al. [213] in using the concept of future volumes. Future volume is a measure of

how many vertices a seed can incorporate into itself (in other words, how large a vertex can grow).

They propose computing future volumes on the star expansion of the hypergraph (thus limiting

the complexity), then iteratively adding vertices with high future volumes to the set of seeds C

until |C| reaches a certain threshold. Aggregation rules are established on the star expansion of

the hypergraph. Seeds and non-seeds select a constant number of adjacent hyperedges to ”invade”

based on the exclusive coarseness (a metric indicating how many seeds an hyperedge contains).

2.3.1 Two Aggregation Algorithms

Our algorithm combines the ideas of aggregative coarsening described in [213] and [44]

with the algebraic distance [205, 223] presented in Section 2.2. Aggregative coarsening is a two-

step process, so we have to address both the seed selection and the rules of aggregation. At each

coarsening level, a set of seeds is selected and each seed is assigned a set of non-seeds to form a

cluster. The cluster at a given coarsening level becomes one vertex at the next level.

Both introduced schemes utilize algebraic distances by augmenting hyperedge weights with

algebraic weights. We define the algebraic weight of hyperedge e as an inverse of the algebraic

distance between two farthest apart vertices in e, i.e.,

ρ(e) = 1 / max
i,j∈e

algdistij . (2.8)
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2.3.1.1 Seed selection

For the seed selection we utilize two core concepts: future volumes and strong connection.

The main goal is to construct a set of seeds C such that every vertex in the graph is strongly

connected to C. We define strong connection as follows: the vertex i ∈ F is strongly connected to

C if the sum of algebraic weights of the edges connecting it to C is more than a certain fraction of

the total algebraic weight of incident edges:

i is strongly connected to C ⇐⇒ Σj∈Cρ(eij)

Σjρ(eij)
> Q, (2.9)

where Q is a parameter (in our experiments Q = 0.5). The future volume of a vertex is a measure

of how large an aggregate seeded by it can grow. Intuitively, we want to add the vertices with very

high volume (or the ones that might become centers of the aggregates of very high volume) to the

set of seeds. Future volume of a vertex is defined as follows (note that here we use the hyperedge

weights w and not the algebraic weights ρ):

fv(i) = w(i) + Σjw(j)
w(eij)

Σkw(ejk)
. (2.10)

We begin the construction of set C by computing future volumes for all vertices. Then,

we initialize C with vertices with large future volumes (if mean future volume is mfv and standard

deviation of the distribution of future volumes is σfv, then i ∈ C ⇐⇒ fv(i) > mfv + 2σfv)

and initialize F with all other vertices, such that F ∪ C = V . After that the future volumes of

vertices in F are recomputed, only taking into account connections with other vertices in F (i.e., in

Equation (2.10) assume w(eij) = 0 if j ∈ C or i ∈ C). Finally, vertices in F are visited in order

of decreasing future volume and added to the set C if they are not strongly connected to C. Note

that at the end of this process each vertex in V is strongly connected to the set C and F ∪ C = V .

Pseudocode for this procedure is presented in Listing 2.1.

2.3.1.2 Aggregation

We investigate two approaches to establishing the rules of aggregation. First approach is a

scheme similar to inner-product matching used in Zoltan[48] and PaToH[47] but applied in algebraic

multigrid setting. Second approach consists of computing a stable assignment [97] between vertices
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Listing 2.1: Seed selection

f o r i in V:
fv [ i ] = w[ i ] + Σjw[ j ] (w[ eij ] / Σkw[ ejk ] )

f o r i in V:
i f fv [ i ] > mean( fv ) + 2 ∗ stdev ( fv ) :
C. i n s e r t ( i )

e l s e :
F . remove ( i )

f o r i in F :
fv [ i ] = w[ i ] + Σj∈Fw[ j ] (w[ eij ] / Σk∈Fw[ ejk ] )

f o r i in s o r t i n d i c e s ( fv ) :
i f Σj∈Cw[ eij ] / Σjw[ eij ] < Q:

C. i n s e r t ( i )
F . remove ( i )

Listing 2.2: Inner-product aggregation

f o r i in F :
j = argmaxu∈C ipm (v , u)
Cj . i n s e r t ( i )

of C and F . Both approaches take advantage of algebraic distances as a similarity measure when

establishing aggregation rules.

Inner-product aggregation proceeds by visiting the non-seed vertices in the random order.

For each unmatched vertex v ∈ F , a neighboring seed u ∈ C with the highest inner product is

selected and v is added to the cluster Cu seeded by it. The inner product is defined as the total

algebraic weight of the edges connecting v with the seed u. Concretely, ipm(v, u) = Σe|v,u∈e ρ(e). See

Listing 2.2 for pseudocode. We experimented with visiting the non-seeds in order of decreasing future

volume and with using connectivity to make decisions when establishing aggregation rules. These

approaches are more computationally intensive and do not produce better results (see Section 2.3.3

for the comparison of different parameters).

Stable assignment aggregation begins by constructing preference lists. Each seed orders

adjacent non-seeds in the order of decreasing total algebraic weight of the hyperedges connecting

them (and vice versa): prefi(j) = Σρ(eij). Then the stable assignment is computed using an

algorithm similar to the classical one described in Ref. [82]. Each seed in C proposes to non-seeds

in its preference list. If the non-seed does not have a better offer, it tentatively accepts the proposal

and is put on the waitlist. If that non-seed later receives a better offer (i.e., an offer from a seed

that ranks higher on its preference list), it rejects the current offer and the rejected seed proposes

to the next candidate on its preference list. To discourage the creation of very large clusters, we
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Listing 2.3: Stable matching aggregation

de f propose ( i ) :
f o r j in p r e f l i s t [ i ] :

i f w a i t l i s t [ i ] . s i z e > th r e sho ld :
r e turn

i f propos [ j ] == −1: // j ho lds no proposa l
propos [ j ] = i
w a i t l i s t [ i ] . push back ( j )
cont inue

i f i i s p r e f e r a b l e to propos [ j ] :
r e j e c t e d = propos [ j ]
propos [ j ] = i
w a i t l i s t [ i ] . push back ( j )
propose ( r e j e c t e d )

// Step 1 : compute p r e f e r e n c e l i s t s
f o r i in F :

f o r j in s e ed ne i ghbor s [ i ] :
p r e f [ j ] = Σρ(eij) // p r e f i s a hashtab le

f o r j in s o r t b y v a l u e ( p r e f ) . keys ( ) :
p r e f l i s t [ i ] . push back ( j )

f o r i in C:
f o r j in non seed ne ighbor s [ i ] :

p r e f [ j ] = Σρ(eij)
f o r j in s o r t b y v a l u e ( p r e f ) . keys ( ) :

p r e f l i s t [ i ] . push back ( j )

// Step 2 : compute s t a b l e ass ignment
f o r i in C:

propose ( i )

limit the size of waitlist for a seed to the maximal vertex weight on a given coarsening level times

three plus ten: len(waitlist) = 3 × max vtx wgt + 10. Procedure terminates when each non-seed

has been assigned to a waitlist or a seed has been rejected by every non-seed. At this point each

seed forms a cluster with all vertices on its waitlist, subject to size constraint (we guarantee that

no cluster can be larger than total vertex weight over the number of parts). The fact that we use

a classical problem as a subproblem in our heuristic allows us to potentially leverage the previous

work in optimizing and parallelizing stable assignment, such as [147],[151] and [87]. The pseudocode

is presented in Listing 2.3.

2.3.2 Results

We implemented all algorithms described in this section within Zoltan [67] package of the

Trilinos Project [111]. Zoltan is an open-source toolkit of parallel combinatorial scientific comput-
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ing algorithms [67]. It includes a hypergraph partitioning algorithm PHG (Parallel HyperGraph

partitioner) and interfaces to PaToH and hMetis2. We added our new coarsening schemes and left

other phases of the multilevel framework unchanged. Our implementation, data, and full results are

available at http://bit.ly/aggregative2018code.

The hypergraphs in our benchmark are generated from a selection of matrices using the

row-net model. In the row-net model, each column of the matrix represents a vertex, each row

represents an edge and a vertex j belongs to the hyperedge i if there is a non-zero element at the

intersection of j-th column and i-th row, i.e., Aij 6= 0. All matrices (more than 300) were obtained

from SuiteSparse Matrix Collection [64] that includes other collections. For each combination of

hypergraph/algorithm/set of parameters, we executed 20 experiments.

We compare our algorithm with four state-of-the-art partitioners: hMetis2 [130], PaToH

v3.2 [46], Zoltan PHG [67] and Zoltan-AlgD [223]. PaToH is used as a plug-in for Zoltan with

default parameters described in Zoltan’s User Guide [68]. hMetis2 is used in k-way mode with all

parameters set to default: greedy first-choice scheme for coarsening, random k-way refinement, and

min-cut objective function. The reason we run hMetis in k-way mode is the way hMetis specifies

imbalance constraint. In recursive bisection mode, the imbalance constraint is applied at each

bisection step, therefore relaxing the constraint as the number of parts increases. We found it almost

impossible to compare hMetis in recursive bisection mode fairly (i.e., with the same imbalance) with

other partitioners. Both Zoltan and PaToH are used in serial mode.

Optimizing the constants in the running time of the proposed algorithms is beyond the scope

of this work. Currently, for the existing unoptimized implementation the running time of other state-

of-the-art hypergraph partitioners is not improved except for those that generate less levels in the

hierarchy. In the experiments, the runtime of unoptimized implementation of our algorithms is

up to an order of magnitude larger than the runtime of other state-of-the-art partitioners in worst

cases. However, we must point out that our algorithm utilizes the building blocks and ideas of

algebraic multigrid, which makes it possible to improve the runtime drastically by leveraging a

plethora of existing research in optimizing and parallelizing algebraic multigrid solvers(e.g. [263],

[188]). Similarly, there exists extensive research into optimizing the performance of stable matching

solvers. Manne et al. [151] demonstrate the connection between graph matchings and stable marriage

and show the scalability of Gale-Shapely type algorithms. Munera et al. [165] present an adaptive

search formulation of stable marriage problem and take advantage of a Cooperative Parallel Local
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Search framework [164], achieving superlinear speedup. Gelain et al. [85] demonstrate a different

efficient local search method for stable marriage problem.

Figures 2.11, 2.12, 2.13, 2.14, 2.9 and 2.10 present experimental results comparing the pro-

posed schemes with state-of-the-art hypergraph partitioners. Figures 2.11 and 2.12 present the

results for imbalance factor 3%, Figures 2.13 and 2.14 for imbalance factor 5% and Figures 2.9 and

2.10 for imbalance factor 10%. In Figures 2.11, 2.13 and 2.9, we show the results of inner-product

algebraic multirgid aggregation coarsening. In Figures2.12, 2.14 and 2.10, the stable matching

aggregation is demonstrated. We use frequency histograms to present the distribution of cut dif-

ferences between our methods and other state-of-the-art hypergraph partitioners. The value being

represented (see horizontal axes) is the ratio

ζ =
cut obtained using another partitioner

cut obtained using our method
. (2.11)

Each bin corresponds to a range of the ratios (for example, the middle bin corresponds

to the differences of less than ±5% and the rightmost to the improvements of > 20%). Each

rectangle corresponds to a partitioner: blue corresponds to PaToH, red corresponds to hMetis2,

green corresponds to Zoltan PHG and cyan corresponds to Zoltan-AlgD. For the full results, please

refer to http://bit.ly/aggregative2018results

Figures 2.11 and 2.12 present the results for imbalance factor 3%, Figures 2.13 and 2.14 for

imbalance factor 5% and Figures 2.9 and 2.10 for imbalance factor 10%.

Figure 2.15 presents comparison of the quality of the solutions for the two proposed coarsen-

ing methods. Analogously to other barcharts, this figure compares the two algorithms by presenting

the value

ζ =
cut obtained using stable matching aggregation

cut obtained using inner-product aggregation
. (2.12)

The figure demonstrates that two algorithms produce solutions of very similar quality.

The results demonstrate that given the same refinement, the proposed schemes are at least

as effective as traditional matching-based schemes, while outperforming them on many instances.

Both proposed coarsening schemes almost equally succeed in improving the quality of solvers. This

is be due to the fact that the two methods are equivalent if the waitlist for a seed in stable matching

scheme in unlimited in size. In this work, we limited the size of the waitlist, making the two
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Figure 2.14: Histogram of ζ for coarsening using stable matching aggregation with imbalance factor
5%. Blue rectangle corresponds to PaToH, red to hMetis2, green to Zoltan PHG and cyan to
Zoltan-AlgD
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Figure 2.15: Histogram of ζ comparing coarsening using inner-product aggregation (denominator of
ζ) with coarsening using stable matching aggregation (nominator of ζ) with imbalance factor 10%.
It is easy to see that the two algorithms perform very similarly.
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aggregation strategies non-equivalent. However, the limitation on the size of the waitlist is not

triggered often (i.e. most waitlists are short), resulting in very similar performance. Since Zoltan

utilizes recursive bisectioning scheme, we can see that improvements decrease as number of parts

increases. This can be attributed to refinement becoming more and more important as number of

parts increases.

2.3.3 Interesting observation about algorithmic variations and additional

parameters for algebraic multigrid inner-product aggregation

We explore two additional approaches to inner-product aggregation (see Listing 2.2). First,

instead of visiting the vertices in random order, we investigate visiting them in the order of decreasing

future volume. Second, instead of using the inner-product as a metric when selecting a seed to join,

we explore using the connectivity metric: each non-seed v a neighboring seed u with the highest

connectivity is selected and v is added to the cluster Cu seeded by it. The connectivity is defined as

Nv,Cu
/Wv,Cu

, where Nv,Cu
= Σe|Cu∩e6=∅,v∈e ρ(e) is the total algebraic weight of the edges connecting

v with the vertices in the cluster Cu, and Wv,Cu
= Σi∈Cu

w(i)+w(v) is the total weight of the vertices

in the potential cluster [47]. The results of combinations of these two variations are presented in

Figures 2.16, 2.17 and 2.18. All include imbalance factors of 10%.

Surprisingly for us, we observed relatively insignificant differences in the results of these two

(on the first glance) very important variations. The variation related to the strength of connectivity

that depends on the capacity of already chosen cluster directly affects the size of the coarse aggregate.

Too big aggregates can result in additional work (and thus computational time) of the refinement

and getting trapped in false local attraction basins with KL/FM refinement. However, we observe

that the entire framework resolves this issue without any problems.

2.4 Discussion

In this section we have introduced a new similarity measure for hypergraph vertices—

algebraic distances, and two novel aggregative coarsening schemes for hypergraphs. This similarity

measure is used for more accurate vertex aggregation during the coarsening stage of a multilevel

algorithm. A serial iterative procedure for computing algebraic distances is introduced and imple-

mented within the multilevel hypergraph partitioning framework Zoltan. The procedure results in
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Figure 2.16: Histogram of ζ for coarsening using inner-product aggregation with additional param-
eters. Vertices are visited in the order of decreasing future volumes, inner-product metric is used.
Blue rectangle corresponds to PaToH, red to hMetis2, green to Zoltan PHG and cyan to Zoltan-AlgD
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Figure 2.17: Histogram of ζ for coarsening using inner-product aggregation with additional parame-
ters. Vertices are visited in the order of decreasing future volumes, connectivity metric is used. Blue
rectangle corresponds to PaToH, red to hMetis2, green to Zoltan PHG and cyan to Zoltan-AlgD
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Figure 2.18: Histogram of ζ for coarsening using inner-product aggregation with additional param-
eters. Vertices are visited in random order, connectivity metric is used. Blue rectangle corresponds
to PaToH, red to hMetis2, green to Zoltan PHG and cyan to Zoltan-AlgD
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a significant improvement (average of 34.3%) over the same framework without algebraic distances,

while decreasing the cut by more than two times for some hypergraphs. The algorithm is shown to

outperform other state-of-the-art partitioners as well.

The experimental results indicate that one may gain substantial performance improvements

through exploiting the global structure of highly irregular hypergraphs (e.g. social networks and

other hypergraphs with power-law degree distribution). Exploiting the spectral properties of the

hypergraph and its star expansion through some iterative procedure, like the one proposed in the

work, is one way to achieve the gain. There remains ample room for improvement for current

state-of-the-art hypergraph partitioners, particularly for the coarsening stage.
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Chapter 3

Quantum Optimization

In recent years, quantum devices with up to tens of qubits on universal quantum computers

(UQC) and a few thousand qubits on quantum annealer (QA) devices have become available. It

enabled researchers to use real quantum hardware to solve ”toy problems” for the first time. Un-

fortunately, in the near term, the devices are expected to stay very limited both in the number and

the quality of qubits, making it hard to use these quantum computers for practical applications,

which often require hundreds or even thousands of qubits. Such challenges as the qubit connectiv-

ity limitations, high level of noise, overhead of full error-correction, and concerns about scalability

raise questions about the ability of near-term quantum hardware to effectively incorporate a larger

number of qubits and deliver the theoretical speedups promised by many algorithms developed since

1990s

Hybridization of quantum and classical algorithms is one of the expedient answers that

researchers suggest today to tackle real-life problems with existing quantum hardware. These hybrid

algorithms combine both classical and quantum computers in an attempt to take the advantage of

“the best of both worlds”, leveraging the power of quantum computation while using a classical

machine to address the limitations of Noisy Intermediate-Scale Quantum (NISQ) computers (see

Fig. 3.1). This is true not only for optimization algorithms, as discussed in this work, but also

for other problems, including quantum simulation [40], quantum machine learning [28, 203, 180]

and more [154]. For example, classical computers have large memory and are capable of storing

the entire global problem which is a challenge for NISQ devices with a small number of qubits.

At the same time, quantum algorithms have shown improved performance for certain problems. To
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• Large memory 
(compared to QPU)

• Stores the global problem
• Performs problem 

decomposition 
• Cannot solve certain hard 

problems efficiently

• Noisy Intermediate Scale
• Performs quantum 

simulation
• Solves computationally 

hard subproblems using 
quantum algorithms

CPU

Figure 3.1: Hybrid algorithms combine computations performed in both, a classical computer (CPU)
and a NISQ quantum computer (QPU). Hybrid algorithms are designed with the goal of leveraging
the strength of each mode of computation while dealing with its weaknesses. For example, CPUs can-
not efficiently perform quantum simulation whereas modern small near-term QPUs cannot compute
problems with many variables.

unambiguously distinguish between the stages of computation performed on two principally different

types of hardware, we will refer to the classical and quantum stages of hybrid algorithms as CPU

(including such accelerators as GPUs and FPGAs) and QPU (Quantum Processing Unit, including

quantum annealer and a universal quantum computer), respectively.

We primarily focus on two classes of NISQ-era devices, namely, UQCs and QAs, using

IBM and D-Wave as exemplars. The IBM devices belong to the class of UQCs, which evolve the

system by applying gates described using quantum assembly language (QASM). Other companies

developing UQCs include Rigetti, Google, Microsoft, IonQ, and more. Alternatively, D-Wave devices

are QAs designed to solve computational problems via quantum evolution towards the ground states

of the cost Hamiltonians that encode quadratic integer optimization problems, without necessarily

insisting on universality or adiabaticity1. While the two paradigms are very different, they share a

lot of limitations and challenges.

3.1 Quantum Computing Paradigms

Quantum annealing (QA) can be considered a special, restricted case of adiabatic quantum

computation (AQC) [157]. QA solves an optimization problem by encoding it as an Ising model

Hamiltonian, with the ground state of that Hamiltonian corresponding to the global solution of

the optimization problem. The Ising Hamiltonian describes the energy of a collection of n spin

variables, with each variable being in one of two spin states (±1). A spin configuration describes

1As a side note, noiseless adiabatic computation in general is universal and equivalent to gate-based model
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assignment of states to spin variables, with si denoting the state of spin variable i (note that the

2-community problem maps naturally to this system, with the resulting spin state, si, denoting

community assignment). The energy of a configuration is then defined by:

H(s) =
∑
i>j

Jijsisj +
∑
i

hisi

where hi correspond to external forces applied to spin variables, and Jij to coupling strengths

between pairwise spin interactions [157].

An equivalent mathematical formulation is the Quadratic Unconstrained Binary Optimiza-

tion (QUBO) problem. The objective of a QUBO problem is to minimize (or maximize) the following

function:

H(x) =
∑
i<j

Qijxixj +
∑
i

Qiixi, x ∈ {0, 1}.

QA finds the ground state of the objective Hamiltonian by performing a quantum evolu-

tion. As the initial Hamiltonian, QA uses a transverse field Hamiltonian. It introduces quantum

fluctuations that help the annealing process to escape local minima by “tunneling through” hills in

the energy landscape, enabling the evolution to move faster than adiabatic requirement would allow.

As the evolution is performed, the transverse field Hamiltonian is slowly “turned off” (scaled with

a coefficient decreasing to 0), such that the evolution finishes in a system described by the problem

Hamiltonian [157].

Since AQC was introduced in 2000 by Farhi et al. [74], D-Wave Systems Inc [61], IARPA’s

QEO effort [117] and other researchers [179] have achieved a lot of progress in developing a system

implementing QA [157] and applying it to a variety of problems, including optimization problems

on graphs [245], machine learning [180], traffic flow optimization [175], integer factoring [190] and

simulation problems [106]. Optimization problems can be solved by QA when formulated in the

Ising form or as a quadratic binary optimization (QUBO).

Universal (or gate-based) quantum computing was introduced in the 1980s [66] and has

seen great theoretical advances since. Shor’s [231] and Grover’s [93] algorithms are two most famous

examples of quantum algorithms with theoretically proven speedups over classical state-of-the-art.

Universal quantum computing has been implemented in hardware by a number of companies, na-
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tional laboratories and universities [20, 23, 192, 7, 211].

To solve an optimization problem on a universal quantum computer, we use a hybrid

quantum-classical approach, Quantum Approximate Optimization Algorithm (QAOA) [75, 76]. Sim-

ilar to QA, a problem is encoded as an objective Hamiltonian H. Then a quantum evolution is per-

formed starting with some fixed initial easy-to-prepare state (traditionally, uniform superposition

over computational basis states is used). The difference is that unlike QA, in which the evolution

is analog, in QAOA the evolution is performed by applying a series of gates parameterized by a

vector of variational parameters θ. A hybrid approach, combining the quantum device performing

the evolution and a classical optimizer, finds the optimal variational parameters. QAOA starts with

an initial set of variational parameters θ0. At each step, a multi-qubit state |ψ(θ)〉 parameterized

by the variational parameters θ is prepared on the quantum co-processor. Then a cost function

E(θ) = 〈ψ(θ)|H |ψ(θ)〉 is measured and the result is used by the classical optimizer to choose new

parameters θ with the goal of finding the ground-state energy EG = minθ 〈ψ(θ)|H |ψ(θ)〉. QAOA

provides a viable path to quantum advantage [73], making it a good algorithm to explore on near-

term quantum computers.

QAOA has attracted considerable attention as a candidate algorithm for NISQ devices.

When QAOA was originally introduced in 2014, it was shown to outperform the state-of-the-art

classical solver for the combinatorial problem of bounded occurrence Max E3LIN2 [76]. (Thereafter,

an improved classical algorithm was introduced that outperformed QAOA on this problem [21].) A

recent paper [59] shows that QAOA (using a circuit with modest depth) can exceed the performance

of Goemans-Williamson [90] algorithm for max-cut. In addition to these empirical results, theoretical

results demonstrate that QAOA for max-cut improves on the best-known classical approximation

algorithms for certain graphs [186, 256]. Although there is an active discussion about exactly how

many qubits are required for meaningful quantum speedups [95, 226], the future of QAOA looks

bright.

3.2 Quantum Approximate Optimization Algorithm (QAOA)

Consider a cost Hamiltonian ĤC encoding the classical optimization problem (later in this

section we present a cost Hamiltonian for network community detection and max-cut). Because the

underlying optimization problem we are solving is maximization, we construct the cost Hamiltonian

53



ĤC such that its highest-energy eigenstate encodes the solution, as opposed to the ground or lowest-

energy state commonly used in VQE.2 The goal of the hybrid algorithm is to prepare this eigenstate.

In hybrid quantum-classical algorithms, the evolution is performed by applying a set of parameterized

gates (ansatz). The goal then is to find a set of parameters that describe the evolution that prepares

the desired state.

In QAOA, the quantum evolution starts in the initial state |+〉⊗n. Then the evolution is

performed by applying two alternating operators based on the cost Hamiltonian ĤC and mixing

Hamiltonian ĤM =
∑
i σ̂

x
i :

|ψ(θ)〉 = |ψ(β,γ)〉

= e−iβpĤM e−iγpĤC · · · e−iβ1ĤM e−iγ1ĤC |+〉⊗n .
(3.1)

Here p is the number of alternating operators or QAOA “steps.” Then the objective function

f (i.e., the energy of ĤC in the state |ψ(β,γ)〉) is

f(β,γ) = −〈ψ(β,γ)| ĤC |ψ(β,γ)〉 . (3.2)

Based on the value f(β,γ), the classical optimizer chooses the next set of parameters β,γ

with the goal of finding parameters that minimize f :

β∗,γ∗ = arg minβ,γ f(β,γ)

= arg minβ,γ(−〈ψ(β,γ)| ĤC |ψ(β,γ)〉).
(3.3)

The objective function f is periodic with respect to β and γ, allowing the parameters to be

restricted to βi ∈ [0, π], γi ∈ [0, 2π]. Therefore the optimization domain is compact: (β,γ) ∈ D =

([0, π]× [0, 2π])p.

3.3 Evaluating Quantum Approximate Optimization Algo-

rithm: A Case Study

In this Section, we present a large-scale numerical study of the performance of QAOA on 90

random 10-node max-cut instances. For each problem instance we perform extensive (though not

2Note that in our case it is just a matter of convention, since introducing a minus sign changes a maximization
problem into a minimization problem.
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exhaustive) search of the variational parameter space, performing 990 million QAOA evaluations

in total. We find that the average approximation ratio attained by QAOA on our set of problems

is 0.77 as compared to the ground truth obtained by IBM CPLEX solver [56]. The maximum

approximation ratio we observe is 0.91. We observe high variation in approximation ratios both

between classes of instances and within the same class of instances. We observe that the difference

between QAOA approximation ratio grows with the graph edit distance between underlying graphs.

We find that QAOA parameters concentrate for the problem instances in our benchmark, indicating

that the complexity of QAOA parameter optimization can be addressed by parameter reusing.

3.3.1 Problem Definition

We explore QAOA applied to graph maximum cut (or max-cut) problem. Consider a graph

G = (V,E), where V is the set of vertices and E is the set of edges. The goal of max-cut is to

partition of the graph vertices V into two disjoint subsets V1 and V2, V1 ∪ V2 = V , such that the

total number of edges connecting the two subsets is maximized,

max ‖{(u, v) ∈ E s.t. u ∈ V1, v ∈ V2}‖ (3.4)

(3.4) can be reformulated as [169],

max
s

∑
i,j∈V

wijsisj + c, sk ∈ {−1, 1},∀k (3.5)

where wij = 1 if (i, j) ∈ E and 0 otherwise, and c is a constant. The binary decision variables si in

(3.5) designate partition membership of the vertices of G after the cut. Finding an exact solution

to the max-cut problem is known to be NP-hard [127]. To solve max-cut using QAOA, the cost

Hamiltonian is constructed by mapping the binary variables sk onto eigenvalues of Pauli Z operator

σ̂z,

ĤC =
∑
i,j∈V

wij σ̂
z
i σ̂

z
j . (3.6)

Max-cut is the most well-studied target problem for QAOA due to the equivalence between

max-cut and Unconstrained Quadratic Binary Optimization [199].
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3.3.2 Methods

We follow Ref. [267] in performing extensive searches for QAOA parameters by running

many instances of a relatively simple black-box local optimizer. We use derivative-free Bound Opti-

mization BY Quadratic Approximation (BOBYQA) [195] as implemented in the NLopt nonlinear-

optimization package [121]. BOBYQA was shown to perform well for QAOA parameter optimiza-

tion [224] as compared to other off-the-shelf derivative-free optimization methods (see Section 3.4 for

an in-depth discussion). We set the tolerances on change in the function value to 10−3 and on the

change in optimization parameters to 10−2. We allow BOBYQA 1 million evaluations for p = 1, 2

and 3 million for p = 4, 6, 8. BOBYQA is restarted from a new random point as it converges, with

random starting points drawn from a uniform distribution over D. In our experience, with the tol-

erance levels we use, BOBYQA takes 10-40 iterations to converge, resulting in 20,000-300,000 initial

points (exceeding the 10,000 random initial points used in Ref. [267]).

Our benchmark consists of 90 Erdős-Rényi random graphs [71] with 10 nodes and edge

creation probabilities ep between 0.3 and 0.7 (10 random graphs for each value of ep). We use

high-performance quantum simulator Qiskit Aer [12] for noiseless simulations of QAOA circuits.

We use NetworkX [101] for graph manipulations. We use GNU Parallel for large-scale numerical

experiments [240]. All ensemble calculations were performed on Bebop cluster located in Argonne’s

Laboratory Computing Resource Center (LCRC) and Palmetto cluster at Clemson University.

3.3.3 Results

In this section we present the four main findings:

1. Optimization of QAOA parameters becomes challenging for derivative-free black box local

optimizers even for relatively low number of steps p.

2. In low-depth regime, average approximation ratios attained by QAOA are limited (0.77 for

our benchmark), making it challenging to compete with state-of-the-art classical heuristical

solvers.

3. In low-depth regime, approximation ratios exhibit high degree of variability from one problem

instance to another even within the same class of instances. The difference in approximation

ratio grows with the graph edit distance between problem instances.
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4. We observe strong concentration of optimal QAOA parameters, extending the results presented

in Ref. [36]
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Figure 3.2: Best approximation ratio found by QAOA for different problem classes as a function of
edge creation probability ep. (3.2a) presents results for p = 1 and (3.2b) for p = 2. (3.5a) presents
the absolute difference in QAOA approximation ration as a function of graph edit distance.

First, we observe that despite considerable budget of evaluations (1−3 million evaluations, ≈

100, 000 initial points) provided to classical optimizer, for p > 4 we do not obtain optimal variational

parameters. As depth of QAOA is increased, the subspace reachable from the initial state is only

increased. Therefore the best approximation ratio attained by QAOA with depth p = k is always

less or equal than the best approximation ratio for QAOA with depth p = k + 1.

However, we observe that for p > 4 the approximation ratios obtained by QAOA are lower

than those for p ≤ 4. We define approximation for problem instance G and a fixed QAOA depth p

as the ratio between value of f given best found β,γ and the solution obtained by CPLEX for the

same problem instance:

rG,p =
fG,p(βopt,γopt)

CPLEXG.

As we allow CPLEX to converge to 0% gap, we are guaranteed that the CPLEX solution

corresponds to the ground truth. Figure 3.3 presents this phenomenon on three representative

problem instances. Figure 3.4 presents approximation ratios as a function of depth for the entire

dataset. The median approximation ratio increases for p = 1, 2, 4, 6 and decreases for p = 8.
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Figure 3.3: Three representative examples of approximation ratio decreasing with the number of
QAOA steps due to suboptimality of the parameters β,γ. Three lines correspond to three Erdős-
Rényi random graphs with 10 nodes and edge creation probabilities ep. Seed corresponds to Net-
workX implementation of Erdős-Rényi random graph generator [174].
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Figure 3.4: Boxplot of approximation ratio as a function of the number of QAOA steps p. Median
approximation ratio increases for p ≤ 6 and deacreases for p = 8. High variation of the approximation
ratio attained by QAOA can be observed.
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Second, we observe that the approximation ratios obtained by QAOA in low-depth regime

are limited. Figure 3.2 presents the approximation ratios for different classes of problem instances

for p ∈ {1, 2}. We follow [267] and examine the optimal parameters obtained for p ∈ {1, 2} to

confirm that they correspond to the global optimum of f . We observe that approximation ratio

exhibits high variability within a problem instance class and does not exceed 0.91.

Third, we observe that the difference in approximation ratio obtained by QAOA grows with

graph edit distance between problem instances (in other words, QAOA achieves similar approxima-

tion ratios for similar problems). Graph edit distance is a graph similarity measure. For graphs G1

and G2, graph edit distance is defined as minimum cost of edit path (a sequence of node and edge

operations) transforming G1 into a graph isomorphic to G1. The absolute value of the difference in

approximation ratio obtained by QAOA is defined as

dG1,G2
= |rG1

− rG2
|.

where rG = maxp∈{1,2,4,6,8} rG,p. We present d as the function of graph edit distance in Figure 3.5.
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Figure 3.5: The absolute value of the difference in QAOA approximation ratio d as a function of
graph edit distance between problem instances. Dashed trend line presents least squares linear fit.

Fourth, we observe a strong concentration in optimal parameters. This has been observed

previously for max-cut on 3-regular graphs [36]. Here we extend this observation to max-cut on

Erdős-Rényi random graphs with unbounded vertex degree. Figure 3.6 presents the QAOA param-
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(a) p = 1 (b) p = 1, 50% of the points

(c) p = 2 (d) p = 2, 50% of the points

Figure 3.6: Parameters β,γ corresponding to the values of approximation ratio within 1% of the
best observed for a given problem instance. For p = 2 we only plot parameters corresponding to the
second QAOA step.
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eters β,γ corresponding to the values of approximation ratio within 1% of the best observed for

a given problem instance for the entire benchmark (i.e. all values of ep). For p = 2 (Figure 3.6c

and 3.6d) we present only the parameters corresponding to the second QAOA step. We demonstrate

concentration by randomly removing points corresponding to 50% of instances. We observe that the

optimal QAOA parameters concentrate around the same values for the problems in our benchmark.

3.3.4 Discussion

Our results highlight the need for further research into techniques for optimizing QAOA

parameters and motivate the work presented in Section 3.4. It is clear that for to achieve good

approximation ratios we need to go beyond p = 1, 2, 4. At the same time, as the depth increases, the

limitations of local optimization methods become evident. The potential of QAOA cannot be realized

without advances in variational parameter optimization, including through better understanding of

the structure of QAOA objective.

Many recent results provide a path to scaling QAOA to higher p. FOURIER heuristic [267]

is a promising approach, as it is shown to outperform brute force on some classes of max-cut

problem instances. Combined with other approaches, like multistart methods [224] and gradient-

based backpropagation-inspired approaches [59], these methods have the potential to make larger-

depth QAOA competitive with classical state-of-the-art heuristics.

Finally, the concentration results presented in Figure 3.6 suggest that the QAOA training

costs can be amortized across a class of problem instances. As optimal parameters concentrate

around the same values, it should be possible to fit a model using precomputed optimal parameters

for a subset of problem instances and then use that model to efficiently produce optimal QAOA

parameters for other problem instances in that class. This approach, originally proposed in [36], can

be combined with local optimization heuristics to further improve the performance.

3.4 Multistart Methods for Quantum Approximate Optimiza-

tion

Variational hybrid quantum-classical algorithms like QAOA are considered the most promis-

ing path to demonstrating quantum advantage, that is, demonstrating superior performance of a
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quantum system on some problem when compared with state-of-the-art classical methods. Demon-

strating quantum advantage is a prerequisite for quantum computers to become a valuable high-

performance computing resource. Variational hybrid algorithms, including VQE and variational

implementations of QAOA, require reliable classical optimization methods to obtain solutions of

good quality. Moreover, the performance of classical optimization methods in terms of the num-

ber of function evaluations directly translates into an improvement in performance of a variational

quantum algorithm. Therefore, it is imperative that efficient and reliable optimization methods

be developed for finding optimal variational parameters (see Section 3.3). Unfortunately, the pa-

rameter space for these problems is nonconvex and contains many low-quality, nondegenerate local

optima [267]. Figure 3.7 shows an example energy landscape of a QAOA objective function with

two parameters. This landscape has many low-quality optima that a local optimizer can get stuck

in. In this Section, we address this challenge by using a multistart local optimization method.

Our results are twofold. First, we explore direct optimization of QAOA parameters under realistic

time constraints and show that the multistart framework APOSMM [138, 139] is able to find better

parameters than single-start local search methods can (when using the same number of objective

evaluations). Second, we demonstrate that the optimal QAOA parameters found for a given problem

can be reused as an initial point for similar problems, both improving the quality of the solution

and reducing the number of evaluations required to obtain it.

3.4.1 Problem Definition

We explore QAOA applied to the modularity maximization problem for the network com-

munity detection. Also known as graph clustering, network community detection aims to group

vertices of the graph so that they are nontrivially connected compared with a random graph model.

Modularity maximization often (but not necessarily) groups vertices so that there are as many edges

as possible within the groups and as few as possible between the groups. Formally, for an undirected

graph G = (V,E) with two communities, modularity is defined as in [176]:

C =
1

4|E|
∑
ij

(Aij −
kikj
2|E| )sisj =

1

4|E|
∑
ij

Bijsisj , (3.7)

where A is the adjacency matrix of G, ki is the degree of vertex i ∈ V , and the variables si ∈ {−1,+1}

indicate community assignment of vertex i. That is, si = −1 denotes vertex i as being assigned
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Figure 3.7: Energy landscape of QAOA objective function 〈ψ(β, γ)| ĤC |ψ(β, γ)〉 for modularity
maximization community detection on connected caveman graph [257, 101] with 4 cliques of 4
vertices. Higher (white) is better. Left: the points evaluated by a single run of COBYLA [194,
196, 121]; each point corresponds to a pair (β, γ) that the local optimizer queried. Right: trace of
APOSMM [138, 139] coordinating multiple COBYLA instances. Both methods were given a budget
of 200 function evaluations.

to the first community, and sj = +1 denotes that vertex j is assigned to the second community.

Modularity maximization for general graphs is NP-hard [37] and has a variety of applications in

complex systems [183, 236, 22, 178, 172].

The modularity maximization problem can be mapped onto QAOA by promoting variables

si in (3.7) to Pauli spin operators σ̂z [226, 222, 245], resulting in the Hamiltonian

ĤC =
1

4|E|
∑
ij

Bij σ̂
z
i σ̂

z
j . (3.8)

Multiple ansatzes (sets of gates used to produce trial state |ψ(θ)〉) have been explored for

QAOA, with the hardware-efficient ansatz [123] (originally proposed for VQE) being one of the most

successful [226]. A similar ansatz leveraging nearest-neighbor interactions available on the device has

been shown to achieve a better-than-random-guess approximation ratio for the max-cut problem on

3-regular graphs [77]. In this work we do not consider these ansatzes, however, because at the time

of writing there is no evidence that QAOA with such ansatzes can beat the best classical algorithms.

Instead, we focus on the alternating operator ansatz in (3.1).
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3.4.2 Related Work

While the most commonly used strategy for identifying optimal QAOA parameters is using

a classical optimizer in a variational loop, QAOA is not necessarily a variational algorithm. For

example, Parekh et al. show that for one-step (p = 1) QAOA for max-cut on k-regular triangle-free

graphs, parameters can be derived analytically [186]. Wang et al. show a similar result for one-

dimensional antiferromagnetic rings [256]. More generally, Farhi et al. [75] proposed discretizing

parameters into a grid. For N -qubit QAOA, however, this approach requires NO(p) evaluations,

making it impractical even for small p. Finding good QAOA parameters remains a challenging

problem, which motivates this work.

3.4.2.1 Parameter optimization in hybrid algorithms

Despite the recent advances in gradient-based methods [96, 27, 202, 267, 59, 107], gradient-

free black-box methods remain the most common approach for optimizing parameters in hybrid

quantum-classical algorithms. A variety of methods have been used, including the Nelder-Mead

method [173] (for both QAOA parameter optimization [95, 96] and training quantum Boltzmann

machines [249]), Bayesian methods [182], Powell’s method [258], and an interior-point minimiza-

tion method [264]. Researchers resort to derivative-free methods because analytic gradients for

quantum circuits may not be available and approximating gradients can be computationally ex-

pensive [59]. (In some cases, algorithmic differentiation techniques may provide gradient informa-

tion [27].) Since gradient-based methods can be sensitive to noise [268], they may be less suitable

for noisy intermediate-scale quantum hardware.

A number of recent advances in finding good parameters have been made in the recent years,

potentially making their optimization simpler. For QAOA, multiple results have shown connections

between adiabatic schedule and QAOA parameters [36, 59, 267].

Zhou et al. [267] show that even at small depth p the schedule defined by optimal QAOA

parameters is reminiscent of adiabatic quantum annealing, where ĤC is gradually turned on while ĤM

is gradually turned off (see Sec. 3.4.1). Similar results were found by Crooks [59]. Additionally, Zhou

et al. [267] demonstrate that the optimal values β∗,γ∗ have small variation between similar problem

instances, a finding that we confirm in this work for a different graph problem (see Sec. 3.4.4). Zhou

et al. use these insights to introduce a novel parameterization of QAOA and a heuristic optimization
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scheme based on it.

Brandao et al. [36] show that for max-cut on 3-regular graphs, the objective function value is

concentrated; that is, typical instances have nearly the same value of objective function. They make

a case that the same holds for any combinatorial search problem where the number of clauses with a

given variable is bounded (e.g., max-cut on a bounded-degree graph). They propose reusing optimal

parameters between problems that come from the same distribution and refining them using a local

optimization heuristic. In this work, we successfully apply this strategy to modularity clustering, a

problem where the number of clauses in which a variable can appear grows with n (see Sec. 3.4.4).

Periodicity of the objective function with respect to QAOA parameters, visible on heatmaps

in Fig. 3.7, has been demonstrated for max-cut [256, 267]. The periodicity was also observed for

quasi-maximum-likelihood decoding of classical channel codes [153]. This can potentially allow for

further restriction of the domain, eliminating some of the local optima and making the optimization

problem easier. However, the theoretical results so far are problem specific. Therefore, we restrict

our optimization domain to βi ∈ [0, π], γi ∈ [0, 2π], following [75]. Note that this differs from

the approach in [59], where the values of β and γ were not constrained. A recent result shows

that exploiting the periodicity of variational parameters of certain ansatzes for QAOA and other

variational algorithms can improve optimization performance [168].

3.4.2.2 Derivative-free optimization methods

Selecting β and γ values that maximize the objective function in (3.3) is a central optimiza-

tion problem in variational algorithms. Since the gradient of the objective function with respect to

β and γ is unavailable on real quantum computers, researchers usually resort to so-called derivative-

free optimization (DFO) methods: those that work only with observations of the objective function.

Classical derivative-free direct-search methods are commonly applied to such problems: for exam-

ple, Nelder-Mead is the default method for VQE problems in Grove [198]. Yet McClean et al. [154]

shows that modern DFO methods achieve considerable benefits in terms of the number of func-

tion evaluations required. The BOBYQA method [195] is one such method for bound-constrained

derivative-free optimization that builds quadratic models of the objective and optimizes them over

a trust region in order to produce candidate points.

In the numerical optimization community, one commonly starts local optimization methods

from different initial conditions in an attempt to identify better optima. While such an approach
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Figure 3.8: Ratio between the value of the objective function found by an optimization method
and the best-found value. All local methods are run with no restart and zero tolerances. Heights
of bars represent median over (10 seeds per problem) × (6 problems) = 60 runs. Error bars repre-
sent quartiles (25th and 75th percentiles). When compared with local methods without restarting,
APOSMM finds solutions with much higher objective function values. This is due to local methods
converging before exhausting the budget on number of function evaluations. p is number of QAOA
steps (p = 1 corresponds to 2-dimensional domain D (A), p = 2 corresponds to dim(D) = 4 (B), and
p = 4 corresponds to dim(D) = 8 (C).) Note that the approximation ratio 1.0 corresponds to the
maximum value observed for a given problem and given value of p. The maximum absolute values
of the objective function vary between the different numbers of QAOA steps.

may be easy to implement, it may result in unnecessary objective function evaluations. Assuming

there are a finite number of local optima, the ideal approach would identify each using only a single

local run.

The multilevel single linkage method (MLSL) [200, 201], uniformly samples points over the

domain D and starts runs from those points that do not have a better point within a ball of some

radius. They show favorable results for a specific approach for updating the radius as the number

of sampled points increases, although such results are only asymptotic. MLSL was generalized by

APOSMM [138, 139] to consider all points generated by an ensemble of local optimization runs, and

not just those sampled from the domain.

3.4.3 Difficulty of Optimizing QAOA Parameters

In this section we present the results from using DFO methods to find optimal QAOA pa-

rameters. We use the high-performance simulator Qiskit Aer [12] to perform noiseless simulations of

QAOA circuits. We measure the quality of the solution found by six derivative-free local optimiza-

tion methods as implemented in the NLopt nonlinear-optimization package [121]: BOBYQA [195],

COBYLA [194, 196], NEWUOA [193], Nelder-Mead [173], PRAXIS [42] and SBPLX [208]. We

compare their performance to the implementation of APOSMM from the libEnsemble library [116].
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Figure 3.9: Data profiles for seven optimization methods on the p = 1 (A), p = 2 (B), and p = 4 (C)
benchmark problems with τ = 0.01. For the p = 1 (i.e., two-dimensional) problems, most methods
are competitive; but as the number of parameters (i.e., circuit depth) increases, all methods have
difficulty in identifying high-quality solutions on a large fraction of the test problems. Yet, we see
that APOSMM+BOBYQA performs noticeably better.

APOSMM coordinates multiple local optimization runs in an attempt to identify better local op-

tima. In this work, we use BOBYQA as the local optimization method within APOSMM (we

denote this method as APOSMM+BOBYQA in figures). The performance of all methods is evalu-

ated using two-way modularity maximization community detection problem on six synthetic graphs

with community structure: three instances of connected caveman graph [257] and three instances

of random partition graph [81]. All graphs have between 10 and 12 vertices and were gener-

ated with NetworkX [101]. The code used to perform the experiments is available on GitHub:

https://github.com/rsln-s/Multistart-Methods-for-Quantum-Approximate-Optimization.

We performed two sets of experiments. First, we set the tolerances of local solvers to zero

and allow them to run until convergence. The quality of the obtained solutions was then compared

with the solutions found by APOSMM using the same number of evaluations. We observe that

APOSMM finds solutions with a much higher value of the objective function (see Fig. 3.8). Since

APOSMM is allowed another local optimization run after one has converged, a local method may

not take full advantage of the function evaluations budget. To allow for a more equal comparison,

we performed a second set of experiments. In the second set, we set the tolerances of local solvers

to be equal to the tolerance of BOBYQA within APOSMM and if the method converges before

exhausting function evaluations, it is restarted at a different random point. This restart scheme is

essentially a naive version of MLSL. These results are also compared with APOSMM (see Fig. 3.9).

For both sets of the experiments, we limit the number of evaluations to 1,000. We choose

this number as the realistic number of evaluations based on the estimates in [95]. We use the same
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realistic if aggressive assumption of 1 millisecond per single run. Estimating the objective function

in Eq. 3.2 requires thousands to tens of thousands measurements in practice [95, 123, 182]; we use

an optimistic assumption of 1,000 measurements per run for obtaining the statistics to estimate the

objective function. This gives an estimate on the time cost of performing the optimization equal to

(time per single run)×(1,000 measurements per run)×(1,000 evaluations) ≈ 16 min. Note that this

runtime is still orders of magnitude greater than the runtime of classical state-of-the-art MAXSAT

solvers applied to the same problem [95]. Additionally, as the hardware is rapidly evolving, it is

not possible to project these estimates into the future with certainty. However, it provides a useful

estimate on the reasonable number of calls to the quantum device in a QAOA run.

Results show that a single run of a local optimization method cannot identify parameters

(β,γ) corresponding to a high-quality solution of the underlying problem (i.e., a high value of

objective function). Fig. 3.8 shows that APOSMM is capable of finding parameters corresponding

to values of objective function much larger than just the local solvers. This is partly due to local

solvers converging before exhausting the limit on number of function evaluations (1,000).

If we set tolerances for local methods to the same values as in APOSMM (the tolerances on

change in the function value to 10−3 and on the change in optimization parameters to 10−2) and

restart local methods after convergence, we observe that APOSMM is still solving more problems

within the same budget of function evaluations. This is measured in the data profiles in Fig. 3.9; these

data profiles track the fraction of problems solved to some level τ after a given number of function

evaluations. Explicitly, if tp,s is the number of function evaluations required for each optimization

method s to solve problem p in the set of problems P , then the data profile is

ds(α) =
|{p : tp,s ≤ α}|

|P | .

where α is the number of function evaluations. Data profiles require some definition of solving a

problem to a level τ . For these problems, an optimization method s is determined to have solved

problem p to a level τ after j evaluations if

f(x0)− f(xj) ≥ (1− τ)(f(x0)− f̃p), (3.9)

where x0 is the problem’s starting point, xj is the jth point evaluated by the method, and f̃p is the

68



A
p
p
ro

x
im

at
io

n
ra

ti
o

<latexit sha1_base64="47u5NrbDFmjAw33TiGJe5recnV8=">AAACA3icbVDLSgMxFM34rPU16k43wSK4KjNV0JVU3LisYB/QDiWTpm1oJglJRlqGght/xY0LRdz6E+78GzPTWWjrgZDDOfdy7z2hZFQbz/t2lpZXVtfWCxvFza3tnV13b7+hRawwqWPBhGqFSBNGOakbahhpSUVQFDLSDEc3qd98IEpTwe/NRJIgQgNO+xQjY6Wue9iJQjFOrqVUYkyjTIUq/aZdt+SVvQxwkfg5KYEcta771ekJHEeEG8yQ1m3fkyZIkDIUMzItdmJNJMIjNCBtSzmKiA6S7IYpPLFKD/aFso8bmKm/OxIUaT2JQltptxzqeS8V//PaselfBgnlMjaE49mgfsygETANBPaoItiwiSUIK2p3hXiIFMLGxla0IfjzJy+SRqXsn5Urd+el6lUeRwEcgWNwCnxwAargFtRAHWDwCJ7BK3hznpwX5935mJUuOXnPAfgD5/MHBeKYYw==</latexit>

A
<latexit sha1_base64="L59Ul3CkZHHAnzTXuC+KIDPpvoo=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexGQU8S8eIxgnlAsoTZySQZMo91ZlYMS37CiwdFvPo73vwbJ8keNLGgoajqprsrijkz1ve/vdzK6tr6Rn6zsLW9s7tX3D9oGJVoQutEcaVbETaUM0nrlllOW7GmWEScNqPRzdRvPlJtmJL3dhzTUOCBZH1GsHVSqyMi9ZReT7rFkl/2Z0DLJMhICTLUusWvTk+RRFBpCcfGtAM/tmGKtWWE00mhkxgaYzLCA9p2VGJBTZjO7p2gE6f0UF9pV9Kimfp7IsXCmLGIXKfAdmgWvan4n9dObP8yTJmME0slmS/qJxxZhabPox7TlFg+dgQTzdytiAyxxsS6iAouhGDx5WXSqJSDs3Ll7rxUvcriyMMRHMMpBHABVbiFGtSBAIdneIU378F78d69j3lrzstmDuEPvM8fPDaQFQ==</latexit>

B
<latexit sha1_base64="Fjc8VtLWIr1VpX6aLUtYlLNKab0=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexGQU8S9OIxgnlAsoTZySQZMo91ZlYMS37CiwdFvPo73vwbJ8keNLGgoajqprsrijkz1ve/vdzK6tr6Rn6zsLW9s7tX3D9oGJVoQutEcaVbETaUM0nrlllOW7GmWEScNqPRzdRvPlJtmJL3dhzTUOCBZH1GsHVSqyMi9ZReT7rFkl/2Z0DLJMhICTLUusWvTk+RRFBpCcfGtAM/tmGKtWWE00mhkxgaYzLCA9p2VGJBTZjO7p2gE6f0UF9pV9Kimfp7IsXCmLGIXKfAdmgWvan4n9dObP8yTJmME0slmS/qJxxZhabPox7TlFg+dgQTzdytiAyxxsS6iAouhGDx5WXSqJSDs3Ll7rxUvcriyMMRHMMpBHABVbiFGtSBAIdneIU378F78d69j3lrzstmDuEPvM8fPbuQFg==</latexit>

Figure 3.10: Ratio between the value of the objective function found by an optimization
method and the best-found value. Left (A): we compare the best-performing local method
and APOSMM with optimal points from similar problems (“w/ reused pts”) and with random
initial points. Heights of bars represent median over (10 seeds per problem) × (6 problems) ×
(5 different random edges removed) = 300 runs. Right (B): for each problem we remove only one
“worst-case” edge. Error bars represent quartiles (25th and 75th percentiles). Reusing precom-
puted optimal points allows optimization methods to find better solutions (corresponding to higher
objective values) within the same budget of function evaluations.

best-found function value by any optimization method on problem p. For example, if τ = 0.01, the

convergence test in (3.9) determines a method to solve problem p when a point is evaluated with

99% of the possible decrease on the problem (among the implementations being compared).

Figures 3.8 and 3.9 demonstrate that finding optimal parameters becomes increasingly

harder as the dimension of the domain D (i.e., the number of QAOA steps p) increases. For p = 1,

BOBYQA and APOSMM solve most of the problems (Fig. 3.9A) within 1,000 function evaluations,

for p = 2 and p = 4 the best-performing method (APOSMM) solves only 60% and 40% of the

problems, respectively. These results indicate that even for small number of QAOA steps (p = 4)

direct optimization of variational parameters is hard under realistic time constraints.

3.4.4 Reusing Optimal QAOA Parameters

Sec. 3.4.3 presents results demonstrating the complexity of finding good QAOA parameters

under realistic time constraints. Recently a number of researchers proposed amortizing the cost

of finding good QAOA parameters for max-cut by reusing optimal parameters found for a given

problem on similar problems [59, 267, 36]. We confirm and extend these findings by reusing optimal

QAOA parameters found by exhaustive search. Optimal parameters for QAOA for modularity
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maximization on a given graph are used as an initial guess for the local solver on a similar graph

constructed by removing an edge from the original graph. This simulates a realistic scenario of

solving community detection on a dynamical graph, for example, a social network where new friend

connections are dynamically added and removed.

We estimate true optimal parameters by setting the tolerance on the change in the function

value to 10−3 and the tolerances on the change in the parameters to 10−2 and restarting BOBYQA

after each convergence until 100,000 function evaluations have been used. We observe that this

exhaustive approach identifies multiple high-quality local optima. We then use these high-quality

QAOA parameters as initial guesses for local methods and APOSMM. After a local method con-

verges, it is restarted from the next-best local optima.

Our contribution extends previous work in two ways. First, we consider a different opti-

mization problem, namely, modularity community detection. Second, in addition to random similar

problems, we consider “worst-case” small changes. To simulate a “worst-case” scenario, we remove

an edge from the graph that has the greatest impact on its spectrum. Concretely, we compute the

spectrum of the graph Laplacian before and after removing an edge. The change in the spectrum is

measured by computing the Euclidean distance between the eigenvectors of the graph Laplacians.

The graph spectrum has deep connections to many optimization problems on graphs, including

graph partitioning and community detection [54, 167].

Figure 3.10 presents the results. We observe that using optimal parameters from similar

problems allows optimization methods to find high-quality solutions under realistic time constraints.

Thus, we are hopeful that the high cost of finding good QAOA parameters can be amortized by

reusing the parameters from similar problems.

3.4.5 Discussion

This section present results on finding optimal QAOA parameters to improve the perfor-

mance of quantum optimization solvers. We show that multistart methods such as APOSMM can

utilize a fixed number of function evaluations more efficiently by interleaving multiple local optimiza-

tion runs and considering all (β,γ) parameters generated by them. We observe that as the number

of QAOA steps and the dimension of the corresponding optimization domain D is increased, the

optimization problem becomes increasingly hard. These results highlight the need to develop more

efficient approaches to finding optimal parameters to accelerate and improve the performance of
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QAOA—a challenge because, in order to compete with state-of-the-art classical solvers on problems

with fewer than 200 variables, QAOA has to run in no more than a minute [95, 226]. An additional

challenge is presented by the high levels of noise on near-term hardware.

We show that the obstacles can be partially addressed by reusing optimal parameters found

for a similar problem. We observe that parameters can be reused both for similar problems with a

random change introduced and in “worst-case” scenarios, where the change in the underlying problem

has the greatest impact on its structure. For example, reusing optimal parameters found for p = 1

using BOBYQA or APOSMM for a dynamic graph over 1,000 changes and allowing local methods

a realistic 10–30 iterations in order to refine reused optimal points at each iteration, would bring

amortized cost down from (1 ms per run)×(1,000 measurements per run)×(1,000 evaluations) ≈ 16

minutes to a more competitive ≈ 10 seconds. Reusing parameters and employing heuristic techniques

such as FOURIER proposed in [267] could bring down amortized costs of a QAOA run even further.

We believe this could make quantum optimization solvers a valuable extreme-computing resource.

The limited connectivity between qubits in many hardware implementations presents an

additional challenge. For example, superconducting qubit technology, developed by, among others,

IBM, Rigetti, and Google, provides only nearest-neighbor connectivity with qubits arranged on a

two-dimensional lattice. The modularity maximization graph clustering problem discussed in this

Section requires all-to-all connectivity. The connectivity limitation can be addressed by a SWAP

network [15, 18, 59] with only O(N) overhead (where N is the number of qubits). Additionally,

ion-trap architectures (the most famous implementation developed by IonQ) do not have the same

connectivity limitations, because they allow the application of gates between any pair of qubits.

All these factors strengthen the potential of QAOA. As hardware continues to improve and

more advanced techniques for parameter optimization are developed, QAOA has the potential to

outperform classical state-of-the-art solvers.

3.5 Subspace Symmetry Predicts QAOA Performance

A number of recent results have shed some light on the potential of QAOA as compared

with classical algorithms. Nontrivial performance guarantees for QAOA circuits have thus far been

obtained only in very limited settings, e.g., [75, 256, 98, 119]. A recent paper of Hastings [109]

demonstrates that for QAOA with (high-level circuit depth) p = 1, classical local algorithms can
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achieve the same (or better) performance guarantees as QAOA, and shows that for some problems

increasing the QAOA depth by any bounded amount would not lead to significant improvements

in performance. Bravyi et al. [41] show that ground states of some families of Hamiltonians with

Z2 symmetry (exhibited, for example, by the MaxCut problem) cannot be prepared with constant

depth quantum circuits. A corollary of this result shows that constant-depth QAOA for the Max-

Cut problem is outperformed by the classical Goemans-Williamson algorithm for some families of

graphs. Farhi et al. [78] show an upper bound for the approximation ratio attainable by a particu-

lar realization of QAOA for MaxIndependentSet on d-regular graphs with depth growing less than

logarithmically with number of nodes, implying that the depth p must grow at least logarithmically

for QAOA to outperform a certian approximation ratio. They note the relationship between the

required depth and the graph diameter, suggesting that for graphs with larger diameter (e.g., 2d

lattices) the depth required to obtain a quantum advantage may be polynomial in the problem size

in this case.

While clearly important, these findings leave many important practical questions unresolved,

for instance, “What is the QAOA depth required to adequately solve a given problem?” For example,

Farhi et al. [78] note that a class of 3-regular graphs with 2 million qubits, the upper bound they

prove only yield a necessary depth of p = 7. Similarly, the majority of rigorous bounds to the

optimal approximation ratio achieved by QAOA have been obtained only for small depth, primarily

p = 1 [75, 76, 256, 98]. Furthermore, such results are typically worst-case and do not take advantage

of the structure of a given problem instance. Indeed, initial numerical studies on small problem

instances have indicated that going beyond small p appears necessary to obtain potential quantum

advantage [220, 256, 267, 59].

Our work aims to help bridge the gaps between existing performance bounds and numerical

results by introducing a novel approach to studying QAOA and the mechanism by which it explores

qubit Hilbert space (i.e., the space of possible solutions). Our approach leverages connections be-

tween the quantum symmetry of the QAOA state and operators, and the classical symmetries present

in the underlying optimization problem instance. The primary example we consider throughout the

Section is the MaxCut problem, for which the classical symmetries we consider are the permuta-

tions of the problem graph (i.e., graph automorphisms). The MaxCut problem has been studied for

QAOA in [75, 256, 98, 59, 267, 220, 95, 41], among others.

Our contributions are two-fold. In the first part (Section 3.5.2), we prove a series of results
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connecting the symmetry of QAOA reachable space to the symmetry of the (hyper)graph represen-

tation of the optimization problem in the general case. Our results cover a wide range of problems,

including general quadratic unconstrained binary optimization (QUBO) and Ising form problems and

can be extended to higher-order problems by generalizing graphs to hypergraphs (Section 3.5.2.1).

Our theoretical results are applicable both to transverse field mixer QAOA introduced by Farhi [75],

as well as to its generalization, Quantum Alternating Operator Ansatz [100]. In the second part

(Section 3.5.3), we use this connection to study QAOA performance. While our theoretical results

are general and impose no constraints on QAOA schedules, in Section 3.5.3 we limit QAOA to lin-

ear schedules to sidestep the challenge of finding optimal QAOA parameters (Section 3.5.3.1) and

focus specifically on the MaxCut problem. We study MaxCut as an application because its classical

symmetries are easily understood as those of the underlying graph for each problem instance. We

use exact and approximate graph symmetry measures (defined in Section 3.5.3.2) as features for

machine learning models that we train to predict QAOA performance as defined by the minimum

depth required to achieve a given approximation ratio on the target problem. We discuss our choice

of target approximation ratio for MaxCut in depth in Section 3.5.3.3. We use Support Vector Re-

gression and an ensemble of Support Vector Machine classifiers to achieve median absolute error on

predicted depth of < 1.5.

Reproducibility: We make the code for the experiments in Section 3.5.3 and the entire generated

dataset available online [1, 5].

3.5.1 Background

In this section we briefly review our notions of binary optimizaiton, QAOA, and classical

symmetries. Consider a function f(x), x ∈ {0, 1}n, and a binary optimization problem

max
x

f(x), x ∈ {0, 1}n, (3.10)

which may be encoded as the n-qubit Hamiltonian

C = diag(f(x)), C ∈ C2n×2n

.

A compact representation of such Hamiltonians (in terms of Ising spin or Pauli matrices) can be
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constructed efficiently for many combinatorial optimization problems [99]. A binary string x∗ ∈

{0, 1}n achieves approximation ratio r ≤ 1 if

f(x∗)

maxx f(x)
≥ r,

and an algorithm is said to give an r-approximation for (3.10) if it returns a string achieving at least

r for every problem instance (i.e., in the worst case).

The particular optimization problem that we focus on in this Section is MaxCut on un-

weighted graphs. Given a graph G = (V,E), the goal of the problem is to partition the set of

nodes v into two disjoint parts such that the number of edges with endpoints in both parts is

maximized. The set of edges that span both parts is called a cut. The MaxCut problem is APX-

complete [185], which means it has no polynomial-time approximation scheme in general unless

P=NP (i.e., it cannot be approximated in polynomial time better than some constant), but efficient

approximation algorithms exist for particular classes of graphs [16]. MaxCut is encoded by Hamilto-

nian CMaxCut = 1
2

∑
(u,v)∈E(I −ZuZv), where Zj is a single-qubit Pauli-Z operator applied to qubit

u.

Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-classical al-

gorithm that combines a parameterized quantum evolution with a classical outer-loop optimizer to

approximate the ground state of the problem or cost Hamiltonian C. At each call to the quantum

computer, a trial state is prepared by applying a series of quantum alternating operators:

|~β,~γ〉p = |~β,~γ〉 = UB(βp)UC(γp) . . . UB(β1)UC(γ1) |ψ〉 , (3.11)

where UC(γ) = e−iγC is the phase operator, UB(β) is the mixing operator and |ψ〉 is some easy

to prepare initial state. We refer to the number of alternating operator pairs p as the QAOA

depth. The parameters ~β,~γ are said to define a schedule, analogous to the choice of a schedule in

quantum annealing. For unconstrained optimization problems that we consider in this Section, the

mixing operator is UB(β) = e−iβ
∑

j Xj (i.e. time evolution under the transverse field Hamiltonian

B =
∑
j Xj), and the initial state is the uniform superposition |ψ〉 = |+〉n. Here Xj is single-qubit

Pauli-X operator applied to qubit j. We let Prp(x denote the probability of obtaining bitstring

x ∈ {0, 1}n when measuring the QAOA state:
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Prp(x) = | 〈x|~β,~γ〉p |2.

For given phase and mixing operators and initial state, we define the QAOA reachable space

or QAOA subspace to be the space of states exactly reachable by QAOA with any schedule and

depth:

|~β,~γ〉p = |~β,~γ〉p∈N,~β,~γ∈R2p .

Consider the group S2n of permutations on n bit strings (i.e., permutations of 2n ob-

jects), and its natural subgroup Sn ⊂ S2n of permutations of the bit indices. We define a clas-

sical symmetry of the cost function f(x) to be a transformation σ ∈ Sn : {0, 1}n → {0, 1}n such

that for all x ∈ {0, 1}n we have f(x) = f(σ(x)). We may lift σ(x) to the quantum operator

A = A(σ) =
∑
~x∈{0,1}n |xσ(1) . . . xσ(n)〉 〈x1 . . . xn| induced by σ, which acts as A |x〉 = |σ(x)〉 for

each computational basis state |x〉. Equivalently, we may write A ∈ S2n , where here the representa-

tion of S2n is implicitly understood.

A state |φ〉 is said to be symmetric under operator A if it is invariant under A, i.e., A |φ〉 =

|φ〉. Equivalently, |φ〉 is symmetric under A if its projection onto symmetric components is preserved:

〈x|φ〉 = 〈x|A |φ〉 = 〈a(x)|φ〉 for all x ∈ {0, 1}n. In particular, observe that for any A ∈ S2n the

QAOA initial state |s〉 = |+〉n satisfies A |s〉 = |s〉. A subspace is said to be symmetric under an

operator A if each state in this subspace is symmetric under A.

An illustrative example is Z2 symmetry for QAOA state for MaxCut problem. Note that

both MaxCut and transverse field Hamiltonians commute with A = X1X2 . . . Xn. Therefore it is easy

to see that both phase and mixing operators will affect |x〉 and A |x〉 = |¬x〉 components of QAOA

state equally. Therefore 〈x|~β,~γ〉 = 〈¬x|~β,~γ〉 ,∀x ∈ {0, 1}n (see Theorem 3.5.1 and Corollary 3.5.2.4

for more general discussion). In particular, observe that this symmetry satisfies A ∈ S2n but A /∈ Sn.

Similarly to the symmetry of QAOA subspace, graph symmetry is a transformation of a

graph that preserves its structure. The most well-studied such transformation is a (vertex) auto-

morphism. Graph automorphism is a permutation of nodes that preserves edges. More formally, for

a graph G = (V,E), automorphism is a permutation σ : V → V s.t. (σ(v), σ(u)) ∈ E iff (u, v) ∈ E.

Two vertices u, and v are said to belong to the same orbit if there exists an automorphism σ such

that σ(v) = u. Note that orbits impose classes of equivalence on the graph G. For a further discus-

sion of graph automorphisms and their properties the reader is referred to the third part of [32] by
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Biggs.

3.5.2 Graph theoretical approach for analyzing QAOA symmetry

We establish a novel connection between the symmetry of QAOA subspace and the symmetry

in the graph representation of the problem. We begin by showing that if an operator commutes with

both mixing and cost Hamiltonians and preserves the initial state, then it preserves QAOA (in the

sense of Theorem 3.5.1 below). Then we show that graph automorphism satisfies this condition

for QAOA for unconstrained problems (transverse field mixing operator and uniform superposition

initial state). Finally, we explicitly show how the graph representations can be constructed for

common problem classes (Corollaries 3.5.2.4 and 3.5.2.5).

Lemma 1. Consider QAOA of depth p with problem Hamiltonian C, mixing Hamiltonian B and

initial state |ψ〉:

|~β,~γ〉p = |~β,~γ〉 = UB(βp)UC(γp) . . . UB(β1)UC(γ1) |ψ〉

Consider A ∈ S2n such that:

1. [A,UC(θ)] = 0, ∀θ ∈ R

2. [A,UB(θ)] = 0, ∀θ ∈ R

3. A† |ψ〉 = |ψ〉

Then QAOA is symmetric under A, i.e., if A |x〉 = |a(x)〉, with x, a(x) ∈ {0, 1}n, then |x〉

and |a(x)〉 will have the same overlap with QAOA state

〈x|~β,~γ〉 = 〈a(x)|~β,~γ〉

for all such ~γ, ~β.
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Proof.

〈a(x)|~β,~γ〉 = 〈a(x)|UB(βp)UC(γp) . . . UB(β1)UC(γ1) |ψ〉

= 〈a|S†UB(βp)UC(γp) . . . UB(β1)UC(γ1) |ψ〉

= 〈a|UB(βp)UC(γp) . . . UB(β1)UC(γ1)S† |ψ〉

= 〈a|UB(βp)UC(γp) . . . UB(β1)UC(γ1) |ψ〉

= 〈a|~β,~γ〉

In practice, we are interested not in overlap between states, but rather in the probability

of observing a given measurement outcome. The results of Lemma 1 can be easily reformulated in

terms of probabilities.

Lemma 2. Consider QAOA of depth p with problem Hamiltonian C, mixing Hamiltonian B and

initial state |ψ〉 and a symmetry A ∈ S2n , A |x〉 = |a(x)〉 satisfying conditions 1-3 of Lemma 1.

Then applying A does not change the probability of obtaining a given bitstring x when mea-

suring the QAOA state: ∀x ∈ {0, 1}n, Prp(x) = Prp(a(x))

Proof. From Lemma 1 we have 〈x|~β,~γ〉 = 〈a(x)|~β,~γ〉. Therefore:

Prp(a(x)) = | 〈a(x)|~β,~γ〉 |2 = | 〈x|~β,~γ〉 |2 = Prp(x)

The conditions of Lemma 1 are general, but are hard to verify in practice. Therefore in

many cases a formulation focusing on cost and mixer Hamiltonians, rather than operators, is more

natural.

Theorem 3.5.1. Consider QAOA of depth p with problem Hamiltonian C, mixing Hamiltonian B

and initial state |ψ〉:

|~β,~γ〉p = |~β,~γ〉 = UB(βp)UC(γp) . . . UB(β1)UC(γ1) |ψ〉

Consider A ∈ S2n such that:

1. [A,C] = 0
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2. [A,B] = 0

3. A† |ψ〉 = |ψ〉

Then applying A does not change the probability of obtaining a given bitstring x when mea-

suring the QAOA state: ∀x ∈ {0, 1}n, Prp(x) = Prp(a(x))

Proof. If [A,C] = 0 then [A,UC(θ)] = 0 ∀θ ∈ R, and if UB(θ) = e−iθB and [A,B] = 0 then

[A,UB(θ)] = 0 ∀θ ∈ R. Therefore A satisfies the conditions of Lemma 2, which completes the

proof.

Remark. In the conditions for Lemma 1, the angles θ need not extend over all reals. Generally,

for a particular application it may be beneficial to restrict the range of angles considered and only

require the symmetry to hold for that range. Note that this is a practically interesting restriction

that is weaker than [A,C] = 0 = [A,B]. However, in this Section we consider the simpler, general

case.

Theorem 3.5.2 (QAOA symmetry group). Consider QAOA of depth p with problem Hamiltonian

C, mixing Hamiltonian B and initial state |ψ〉:

|~β,~γ〉p = |~β,~γ〉 = UB(βp)UC(γp) . . . UB(β1)UC(γ1) |ψ〉

Consider A1, . . . A` ∈ S2n such that:

1. [Aj , C] = 0

2. [Aj , B] = 0

3. A†j |ψ〉 = |ψ〉

Then taking matrix products of the Aj generates a subgroup A = {A0 = I, A1, . . . A`, A`+1 . . . A`′} ⊂

S2n of order `′ ≥ ` such that QAOA is symmetric under Aj, j = 1, . . . , `′, i.e., if Aj |x〉 =

|aj(x)〉 , x, aj(x) ∈ {0, 1}n, then the bitstrings x and aj(x) will have the same probability of being

found upon measuring the QAOA state: Prp(x) = Prp(aj(x)).

We call this subgroup A ⊂ S2n QAOA symmetry group.

Proof. Follows trivially from repeating proof of Theorem 3.5.1 for each A = Aj .
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Corollary 3.5.2.1. Consider an optimization problem with objective function f(x), x ∈ {0, 1}n. If

σ ∈ Sn is a permutation of variables (qubits) that preserves the objective f (f(x) = f(σ(x)), ∀x ∈

{0, 1}n), B =
∑
iXi is the transverse field Hamiltonian and initial state is uniform superposition

|ψ〉 = |+〉n, then QAOA is symmetric under permutation operator A(σ) induced by σ, A ∈ S2n , i.e.,

if A |x〉 = |σ(x)〉 , x, σ(x) ∈ {0, 1}n, then the bitstrings x and σ(x) will have the same probability of

being found upon measuring the QAOA state: Prp(x) = Prp(σ(x)).

Proof. Let’s show that if σ ∈ Sn preserves the objective f , then A = A(σ) ∈ S2n satisfies the

conditions of Theorem 3.5.1. Condition (1) is satisfied trivially, since C = diag(f(x)), so if σ

preserves the objective f , then A will only permute elements that correspond to the same values of

the f : AC = CA = C. Since B
∑
j Xj , B acts on all qubits in the same way, so AB = BA (i.e., it

doesn’t matter if we first permute the qubits and apply B or first apply B and then permute the

qubits) and Condition (2) is satisfied. Condition (3) is satisfied trivially.

Corollary 3.5.2.2. Consider graph G, |V | = n with some (label-independent) objective function f

defined on G. If σ ∈ Sn is an automorphism of G, B =
∑
iXi is the transverse field Hamiltonian

and initial state is uniform superposition |ψ〉 = |+〉n, then QAOA is symmetric under A(σ).

Proof. Since a graph automorphism preserves graph G, it preserves any label-independent objective

defined on graph G. Combined with Corollary 3.5.2.1 this concludes the proof.

Corollary 3.5.2.3 (Graph automorphism group is a subgroup of QAOA symmetry group). Consider

graph G, |V | = n, its group of automorphisms Aut(G) ⊂ Sn and some (label-independent) objective

function f defined on G. Consider QAOA with transverse field mixing operator B =
∑
iXi and

initial state |ψ〉 = |+〉n, and the group of permutations operators A(G) ⊂ S2n induced by elements

of Aug(G) ⊂ Sn. Then A(G) is a subgroup of QAOA symmetry group.

Proof. Follows trivially from repeating Corollary 3.5.2.2 for each element of A(G).

Remark. In practice obtaining the full symmetry group is often prohibitively expensive. For exam-

ple, computing the full graph automorphism group is as hard as solving graph isomorphism [152], for

which no polynomial algorithm is known for the general case.

However, our results are applicable even if we know only a subgroup of the full group of

symmetries. Such subgroups may be known apriori or computed efficiently in some cases.
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3.5.2.1 Application to the analysis of common problem classes

The Corollary 3.5.2.2 allows us to use graph theoretical apparatus to study the QAOA

subspace of a given problem. We can now specify how this can be done for two popular problem

formulations: QUBO and Ising forms.

Corollary 3.5.2.4 (QUBO and Ising subspaces). Consider the following quadratic unconstrained

binary optimization problem (QUBO) on n variables:

min
∑

1<i,j<n

Qijxixj +
∑

1<i<n

qisi, xk ∈ {0, 1}

And an alternative formulation in Ising form:

min
∑

1<i,j<n

Jijsisj +
∑

1<i<n

hisi, sk ∈ {−1,+1}

Note that the two formulations are equivalent up to additive constant. For a this QUBO

(Ising) problem, consider a graph G on n nodes with the weight of node k equal to qk (hk) and the

weight of the edge between nodes u, v equal to Qu,v (Ju,v). If σ ∈ Sn is an automorphism of G

preserving edge weights, B =
∑
iXi is the transverse field Hamiltonian and initial state is uniform

superposition |ψ〉 = |+〉n, then QAOA is symmetric under A(σ) ∈ S2n .

Proof. Trivial from Corollary 3.5.2.2.

Remark. Note that MaxCut problem we study in this Section can be formulated in Ising form by

setting J equal to the graph adjacency matrix.

This approach can be extended to higher-order problems by using hypergraphs. Hypergraph

H = (V,E) is a generalization of a graph where an edge is not limited to two nodes, but instead can

connect an arbitrary subset of vertices.

Corollary 3.5.2.5 (Higher-order binary optimization subspace). Consider the following optimiza-

tion problem on n variables:

min
∑
e∈E

Qe
∏
v∈e

vi, vi ∈ {0, 1}
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(a) 100000 (b) 010000 (c) 001000 (d) 000100

(e) 000010 (f) 000001 (g) 000111 (h) 010101

Figure 3.11: All six red nodes in Figs. 3.11a to 3.11f are on the same vertex orbit (i.e., there exists
an automorphism that takes one into another). Therefore from Corollary 3.5.2.2, the corresponding
bitstrings will have the same probabilities in QAOA state. There is no automorphism that takes the
red nodes in Fig. 3.11g into Fig. 3.11h.

Consider a hypergraph H(Q) on n nodes with the weight of the edge connecting the nodes in

subset e equal to Qe. Here e is an edge containing variables corresponding to all terms in the product

term
∏
v∈e vi. Then if σ ∈ Sn is an automorphism of H(Q) preserving edge weights, B =

∑
iXi is

the transverse field Hamiltonian and initial state is uniform superposition |ψ〉 = |+〉n, then QAOA

is symmetric under A(σ) ∈ S2n .

Proof. Trivial from Corollary 3.5.2.2.

3.5.2.2 Example: MaxCut on K3,3 graph

To illustrate the results in the previous section, consider the example of the MaxCut on 6-

node complete bipartite graph K3,3. This graph has only one vertex orbit (see Fig. 3.11). Therefore

from Corollary 3.5.2.2 all bitstrings with Hamming weight one will have the same probabilities in

QAOA state |~β,~γ〉p, regardless of depth p or the choice of parameters ~β,~γ: Prp(100000) = . . . =

Prp(000001). At the same time, there’s no automorphism taking the part assignment represented

by the bitstring 000111 into the part assignment represented by 010101 (see Figs. 3.11g and 3.11h).

This does not mean that these two bitstrings will always have different probabilities. For example,

for the trivial case of p = 1, β = 0, γ = 0, QAOA state reduces to uniform superposition over com-

putational basis states: |~β,~γ〉p = |+〉n. In this case Prp(000111) = Prp(000111) = Prp(010101) =

Prp(010101).
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3.5.3 Using subspace symmetry to predict QAOA performance

In this Section, we apply the ideas introduced in Section 3.5.2 to study QAOA performance

and its relationship with QAOA subspace structure. This requires quantifying two things. First, we

have to specify a metric of “QAOA performance” for a problem instance. Second, we have to have

a way of quantifying the structure of QAOA subspace. Note that from Corollary 3.5.2.2 both the

structure of QAOA subspace as well as QAOA performance are in general specific to a particular

problem instance (e.g., the MaxCut on unweighted K3,3 graph) and not problem class (e.g. MaxCut

on unweighted graphs) (See also Theorem 1 of [256].) Therefore we focus on studying the connection

between properties of the particular instance and QAOA performance on that instance.

Let us begin with a metric of “QAOA performance”. We discuss the choice of the QAOA

parameters ~β,~γ in Section 3.5.3.1, but for the moment let us assume we have a classically efficient

means of determining a sufficiently good set of parameters ~β,~γ for each given optimization problem

instance. A central question for any approximate optimization algorithm is “can this algorithm

achieve an approximation ratio of (1− ε) for a given instance?”3 From the adiabatic limit, we know

that as p → ∞, QAOA can solve any optimization problem exactly [75]. Therefore, the answer to

that question is “yes, with sufficiently high p”. However, the running time of QAOA grows linearly

with its depth p, so p cannot grow faster than polynomially with problem size for such approaches

to remain efficient. Moreover, in the NISQ era the depth p is further limited by the error rate of the

hardware. Therefore a more practical question to ask is “what is the smallest p with which QAOA

achieves an approximation ratio of (1−ε) for a given instance?” This number (pmin = pmin(C,B, |ψ〉))

is a meaningful measure of QAOA performance: the smaller pmin is, the lower is the time-to-solution

for QAOA4. Now all we need to do to define a metric of QAOA performance is a reasonable way of

finding parameters (schedules) ~β,~γ, which we present in Section 3.5.3.1.

The second part of the proposed approach to analyzing QAOA is a metric or an index of

QAOA subspace symmetry. The connection in Corollary 3.5.2.2 allows us to study QAOA subspace

for a particular instance by studying the symmetry of the corresponding graph representation. For

MaxCut problem, this duality is trivial, as graph representation of the optimization problem is

exactly the graph on which we want to solve MaxCut. We discuss the symmetry metrics we use to

3Note that here we approach QAOA as a heuristic applied to a particular problem instance. In doing this, we are
explicitly not making a general statement about QAOA solving classes of problems efficiently to a given approximation
ratio. Rather, we are interested in defining a reasonable measure of QAOA performance on a particular instance.

4We are explicitly not making any predictions about whether pmin grows exponentially with problem size in worst
case. Rather, we use it as a metric to understand QAOA performance on specific problem instances.
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measure the symmetry in Section 3.5.3.2. We study both exact and approximate symmetry.

Finally, in Section 3.5.3.3 we treat the metrics of the graph symmetry presented in Sec-

tion 3.5.3.2 as instance features. We observe that they correlate with the chosen measure of QAOA

performance (namely, pmin), and use them as input to machine learning models that we train to

predict pmin. The success of these models, which only have access to the information about graph

symmetry, is indicative of the power of the proposed approach.

3.5.3.1 Smooth schedules: a practical approach to QAOA

One challenge in both the analysis and implementation of QAOA is the need to sufficiently

optimize the algorithm parameters ~β,~γ. It is known that optimizing parameters for QAOA, e.g.,

variationally, appears to be difficult in practice [224, 220, 133], which in particular presents two

challenges for numerical experiments. First, performing such numerical studies requires solving the

parameter optimization problem for a large number of instances, which is difficult in practice due

to the lack of fast high-quality optimization methods. Second, even if such data were collected,

it would likely not be representative of the QAOA performance, as finding optimal parameters for

every instance is not a practical way of using QAOA as the depth p becomes large.

0 1 2 3 4 5 6 7 8 9

0

π
4

π
2

3π
4

π β
γ

Figure 3.12: Example of a lin-
ear schedule for p = 10. βj
changes linearly from π/2 at
the first QAOA step to 0 at
the last QAOA step, and γj
changes from 0 to π.

Instead, there are two practical approaches to using

QAOA. The first approach, explored in [133, 259, 250], is choos-

ing a class of instances and training a machine learning model to

quickly produce high quality QAOA parameters for this class of

instances. While powerful, this approach only resolves the second

challenge, as to train the model one still has to find optimal pa-

rameters for a sufficiently large dataset representative of the chosen

class of instances. The second approach, explored in this Section,

is inspired by the smooth schedules observed in Ref. [267, 59], and

in particular by the reparameterization developed in [267]. In this

approach, we specify a class of parameter schedules, and then fit a

schedule of this class to a particular problem instance. The goal of this restriction is to dramatically

reduce the difficulty of the parameter optimization problem. There are various reasonable choices for

the class of schedules; in this work, we focus on smooth schedules, i.e., schedules where the change

from one component to the next in ~β ∈ Rp and ~γ ∈ Rp is small relative to the difference between

83



minimum and maximum values of β and γ. Specifically, we focus on linear schedules, i.e., schedules

where the components βj , γj , 1 ≤ j ≤ p change linearly with step j (an example of such schedule is

presented in Fig. 3.12).

Restricting QAOA parameters to a particular class of schedules clearly yields a tradeoff

between the difficulty of parameter optimization and the algorithm’s performance, relative to unre-

stricted parameters. Fitting a particular class of schedules is much easier than finding an optimal

general schedule. For example, in general for p = 10 finding optimal parameters requires optimizing

2 × p = 20 parameters, whereas fitting linear schedule only requires to optimize over 4 parameters

(slope and intercept for both β and γ). We also observe this in practice, with multistart meth-

ods [224] capable of finding optimal linear schedules quickly and reliably. At the same time, this

restriction may increase the minimum depth needed to achieve the desired approximation ratio (i.e.,

pmin(C,B, |ψ〉) > pmin(C,B, |ψ〉 , linear schedule)). Note that in adiabatic limit p→∞ linear sched-

ules are sufficient, so such minimum depth pmin always exists. For the rest of this Section we will

only consider QAOA with linear schedules: pmin = pmin(C,B, |ψ〉 , linear schedule).

3.5.3.2 Measuring subspace symmetry

Quantitative analysis of graph symmetry is a challenging problem. Over the years, multiple

symmetry indices have been introduced to attempt to tackle this problem. Some notable examples

are graph entropy [162, 232], index of symmetry [163], network redundancy [148] and normalized

network redundancy [19]. However, we observe that all of those metrics fail to capture fine difference

between instances, required for achieving high predictive power. Therefore we propose constructing

a data-driven symmetry index that is tailored to our particular application. We construct this index

by noting that all of the metrics outlined above are a combination of the number of vertex orbits,

the size of orbits, the size of group of automorphisms, the number of nodes of a graph and the

graph entropy. Instead of combining them in an index constructed from some prior intuition above

graphs, we use them as features in a machine learning model. The resulting trained model serves as

a symmetry measure of a graph.

First, use the following exact symmetry measures:

1. Logarithm of the size of the group of automorphisms of the graph: log |Aut(G)|

2. Number of vertex orbits of the graph: |O(G)|
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3. Entropy of the graph: I(G) = 1
n

∑
i |Ai| log |Ai|, where |Ai| is the size of i-th vertex orbit and

n is the number of nodes in G.

Second, we add the following approximate symmetry measures to further improve the per-

formance of our model. Let G′e denote a graph constructed from G by removing edge e. Intuitively,

if G′e has an automorphism σ, then σ is an approximate automorphism of G. Therefore for each

measure of exact symmetry of G, we can introduce a measure of approximate symmetry of G defined

as the average value of such measure on G′e, averaged across all edges e. Similarly, we consider G′′e1,e2

that is constructed by removing two edges (e1, e2) from G, and use the symmetry of G′′e1,e2 averaged

across all pair of edges e1, e2 as an measure of approximate symmetry of G. This adds another six

metrics to the list of features:

1. Average size of group of automorphisms for graphs constructed from G by removing one edge:

1
h′

∑h′

i=1 log |Aut(G′i)|, where h′ =
(|E|

1

)
= |E|

2. Average size of group of automorphisms for graphs constructed from G by removing one edge:

1
h′′

∑
i,j log |Aut(G′′i,j)|, where h′′ =

(|E|
2

)
3. Average number of vertex orbits for graphs constructed fromG by removing one edge: 1

h′

∑h′

i=1 |O(Gi)|,

where h′ =
(|E|

1

)
= |E|

4. Average number of vertex orbits for graphs constructed from G by removing two edges:

1
h′′

∑
i,j |O(G′′i,j)|, where h′′ =

(|E|
2

)
5. Average entropy of graphs constructed from G by removing one edge: 1

h′

∑h′

i=1 I(Gi), where

h′ =
(|E|

1

)
= |E|

6. Average number of vertex orbits for graphs constructed from G by removing two edges:

1
h′′

∑
i,j I(G′′i,j), where h′′ =

(|E|
2

)
Finally, we add the number of nodes in the graph as a feature, for a total of ten features.

3.5.3.3 Learning the relationship between symmetry and performance

To numerically study the relationship between QAOA subspace symmetry and QAOA per-

formance we use the MaxCut problem on a dataset of 294 graphs, selected as described in Table 3.1

below. We set the tolerance in the definition of pmin to be 0.05, i.e., pmin =“the smallest p with which
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QAOA achieves an approximation ratio of 0.95 for a given problem.” The choice of the tolerance

is not special in any way, as long as there is not efficient classical algorithm that can achieve that

approximation ratio in the worst case. In the case of MaxCut, the best approximation ratio in the

worst case is 0.87856 under the Unique Games conjecture, achieved by the Goemans-Williamson

algorithm [90]. Without the assumption of Unique Games conjecture, it is known that for MaxCut

it is NP-hard to achieve approximation ratio better than 16
16 ≈ 0.941. Both of those approximation

ratios are lower than our chosen target approximation ratio of 0.95.

An important caveat is that while the choice of 0.95 approximation ratio does appear to

imply that the problems we are solving are “classically hard”, it is not necessarily the case. The

bounds we mention above are worst case, and identifying hard instances for which the worst-case

conditions are triggered is hard. For many of the graphs in our benchmark (e.g. the cycle graph)

the MaxCut problem is trivial classically. Moreover, all the problems we consider are bounded

in size (the largest one has only 22 nodes), making it impossible to make any kind of asymptotic

argument. Rather, the correct way to understand the choice of approximation ratio of 0.95 is by

viewing at it as “classically non-trivial” regime. In other words, choosing approximation ratio above

the ones that are known to be classically hard opens a possibility of quantum advantage, whereas

for approximation ratios known to be efficiently attainable classically, no such possibility exists.

Name # graphs min |V | max |V | min |E| max |E|
Antiprism 7 6 22 12 44

Circular Ladder 7 6 18 9 27
Complete 18 3 20 3 190

Cycle 18 3 20 3 20
2D Grid 4 16 21 24 42

Hand-picked 7 10 20 15 30
Ladder 7 6 18 7 25

Random 3-regular 60 10 20 15 30
Random 4-regular 59 10 20 20 40
Random 5-regular 60 10 20 25 50

Star 18 4 21 3 20
Trivial 13 7 19 6 18
Wheel 16 5 20 8 38
Total 294 3 22 3 190

Table 3.1: Description of the dataset. ”Trivial” is graph with a trivial group of automorphisms.
”Hand-picked” includes various textbook graphs with large groups of automorphisms, e.g. Peterson
and Heawood graphs. We make the full dataset available online [5]

We use nauty [158] to compute the features. We compute pmin for each problem in the
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dataset by considering iteratively larger depths p, starting with p = 2, and optimizing the linear

schedule for this depth, until we achieve the desired approximation ratio. We use COBYLA [194, 196]

implemented in SciPy [122] package as a local optimizer in the libEnsemble [116] implementation of

APOSMM [138, 139]. We use NetworkX [101] for graph operations and GNU-Parallel for large-scale

experiments [240]. The code is available online at [1].

Initial observations First, we observe correlation between the chosen features and pmin. Cor-

relation coefficients are presented in Table 3.2, where Pearson correlation coefficient is defined as∑n
i=1(xi−x̄)(yi−x̄)√∑n

i=1(xi−x̄)2
√∑n

i=1(yi−ȳ)2
, x̄ = 1

n

∑n
i=1 xi is the sample mean. Note that measures of approximate

symmetry (e.g. average size of group of automorphisms for G′) have similar correlation coefficients

to the corresponding exact symmetries, as expected.

Feature Pearson r p-value
logAut(G) -0.36397 0.00000
1
h′

∑h′

i=1 logAut(G′i) -0.32851 0.00000
1
h′′

∑
i,j logAut(G′′i,j) -0.30854 0.00000

|V | +0.37075 0.00000
|O(G)| +0.39314 0.00000
1
h′

∑h′

i=1 |O(Gi)| +0.44326 0.00000
1
h′′

∑
i,j |O(G′′i,j)| +0.43035 0.00000

I(G) -0.32295 0.00000
1
h′

∑h′

i=1 I(Gi) -0.36913 0.00000
1
h′′

∑
i,j I(G′′i,j) -0.34254 0.00000

Table 3.2: Pearson correlation coefficient r and p-value for the test of non-correlation of features
with pmin. See Section 3.5.3.2 for the definitions of the features.

Second, we observe that the hardest for QAOA problems in our dataset are the problems

corresponding to the least symmetric graphs and the easiest are the ones corresponding to the most

symmetric graphs. Fig. 3.13a shows the scaling of pmin with problem size. The hardest problems

are the ones for which pmin grows quickly with problem size (i.e., QAOA depth required to achieve

the desired approximation ratio grows quickly with problem size) and the easiest problems are the

ones for which pmin grows slowly or does not grow at all. Fig. 3.13a shows that for problems with

no symmetry (graphs with trivial group of automorphisms of size 1), pmin grows the fastest, and

for problems with the most symmetry (all permutations of nodes are an automorphism for complete

graph) pmin grows the slowest. This supports the intuition that there exists a connection between

symmetry and QAOA performance.
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dicted by Support Vector Re-
gression for both training and
testing data. Median absolute
error on the test set is 1.37.

Figure 3.13: Using problem symmetry to predict pmin.

Machine learning approaches to predicting QAOA performance To quantify the intuition

arising from Fig. 3.13a, we use the metrics discussed in Section 3.5.3.2 as features for a machine

learning model that we train to predict pmin. We reserve 30% on the dataset as the testing set and

use the rest for training the model. We approach the problem in two ways. In the first approach, we

treat the task of predicting pmin as a regression problem. In the second approach, we use an ensemble

of classifiers to predict pmin. Below we discuss both approaches and the trade-offs they introduce.

We choose median absolute error as our target metric. This choice is motivated by the physical

meaning of pmin, namely, the minimum depth required to achieve 0.95 approximation ratio by using

QAOA with linear schedules. As pmin is an integer, absolute error is an easily interpretable metric.

Moreover, absolute error of one or close to one is tolerable for most applications (e.g. if we want to

use the trained model to predict the value of depth p to use in QAOA or if we want to establish

whether a given problem requires depth beyond the capabilities of target quantum hardware).

First, we approach the problem of predicting QAOA performance (i.e., predicting the num-

ber pmin) directly as a regression problem. We use Support Vector Regression (SVR) [69, 189, 51]

with radial basis function kernel. We use 5-fold cross-validation stratified by graph class for hy-

perparameter optimization. We achieve 0.73 median absolute error on training set and 1.37 on the

testing set (i.e., on the instances previously unseen by the model). We observe correlation between

predicted pmin and true pmin with Pearson correlation coefficient of 0.71 on the test set. The results

are visualized on Fig. 3.13b.

Second approach we use for predicting pmin is training an ensemble of classifiers. We simulate
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a realistic scenario of limited circuit depth by grouping all instances with pmin ≥ 15 into one class

corresponding to “depth beyond the capabilities of the target hardware”. As pmin is a discrete value

(an integer), classification is a natural choice. An issue with using a classifier directly is that assigning

each value of pmin to be a class discards the information that two consecutive integers are more

similar than two integers that are far apart. To address this, we instead train an ensemble of binary

classifiers, where each classifier answers the question “is the value of pmin smaller than specified

cutoff?” Using an ensemble of “cutoff” classifiers is a standard approach for ordinal regression [253,

191]. Each classifier is a Support Vector Machine classifier (SVC) [189, 51]. We use the radial basis

function kernel and the optimal hyperparameters found by cross-validation for the Support Vector

Regression.
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(c) True pmin and pmin pre-
dicted by an ensemble of Sup-
port Vector Machine for both
training and testing data. Me-
dian absolute error on the test
set is 1.35. See Fig. 3.13 for
the color legend.

Figure 3.14: Using an ensemble of SVM classifiers to predict pmin.

The ensemble of “cutoff” binary classifiers is used to predict pmin in the following way. For

a new point, we compute the distance to the decision boundary for each classifier. By convention,

if the distance is positive, then the point belongs to the first class (pmin is smaller than the cutoff),

else it belongs to the second class (pmin is greater or equal to the cutoff). Therefore minimum cutoff

value at which the binary classifiers are assigning the point to the second class (i.e., at which the

distance to the decision boundary changes sign) is the pmin for this point. To make the distances to

the decision boundary directly comparable for all classifiers, we standardize them in the following

way. For each classifier we compute distances to the decision boundary on the entire training set. If

the standard deviation of these distances is σ, we let the standardized distance to decision boundary
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be dz = d/σ, where d is the distance to the decision boundary for the new point. To predict pmin

for the point, we fit a least squares quadratic function to the standardized distances to the decision

boundary as a function of the cutoff value for all classifiers, and use its intersection with x-axis as

the predicted value. This process is visualized in Figs. 3.14a and 3.14b. We achieve median absolute

error of 1.35 on the test set.

Both approaches demonstrate very similar performance. We observe high ratio of support

vectors, indicating that the performance can be further improved by introducing more datapoints

(problem instances).

3.5.4 Discussion

In this Section we introduce a novel connection between QAOA subspace symmetry and the

symmetry in the (hyper)graph representation of the problem. We show the power of this connection

by training machine learning models to predict QAOA performance on a given MaxCut instance

solely from the information about exact and approximate symmetries in the graph.

A limitation to applying our machine-learning approach in practice is that many of the

metrics defined in Section 3.5.3.2 cannot be computed in polynomial time in general. While for

small problem instances off-the-shelf tools like nauty [158] can compute them in seconds, this is

not a scalable approach. Therefore a crucial next step is coming up with ways to compute a

heuristic approximate metric of symmetry, both exact symmetry as well as approximate symmetry.

Techniques like network alignment [197] can be applied to quickly measure the amount of symmetry

in the graph. Interpretability of the machine learning approach may also evolve with both the size

of instances and consequently the training set size. Although, the SVM/SVR approach is one of

the most interpretable learning models that helps to estimate the importance of features and their

combinations, advanced scalable nonlinear methods such as [210] will be required to avoid over-fitting

of the model.

Second important future direction is replacing global symmetries with local ones. As QAOA

is a local algorithm in constant depth regime [78], local symmetries (e.g. two small subgraphs of G as

isomorphic) should be more a more precise predictor of QAOA performance than global symmetries.

We take a step in this direction by considering approximate symmetries, which can be understood as

“almost” global: a permutation is an approximate automorphism of G if it is an isomorphism of two

subgraphs of G. Further research in this direction is complicated by the fact that local symmetries
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only come into play for larger graphs, limiting our ability to perform numerical studies.
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Chapter 4

Decomposition-based Hybrid

Quantum-Classical Algorithms

The number of qubits in NISQ-era devices available at the time of writing is not nearly

enough to demonstrate quantum advantage, which makes it especially hard to demonstrate the

usefulness of quantum computers to solve real problems. For example, the possibility of quantum

speedup using the hybrid quantum approximate optimization algorithm (QAOA) for a network

problem similar to the one discussed in this Section (max-cut) is a subject of active discussion. On

one hand, there are theoretical results demonstrating that QAOA for max-cut problem improves

upon best know classical approximation algorithms for certain graphs [186, 256]. At the same time,

there are indications that achieving speedup using QAOA might require at least several hundred

qubits [95]. Research and development of quantum algorithms is necessary as the number and

quality of qubits is improving. These quantum algorithms can also be used to improve classical

algorithms [239]. The need for development of new quantum algorithms was highlighted in the

recent National Academy of Science report [94]. One of the important directions to make quantum

computing feasible in the near future is to use various problem decomposition approaches to solve a

large problems as a set of subproblems. This can be accomplished at various levels such as problem

formulation or at the algorithmic level as demonstrated in this Section.

The decomposition approach might be the key method to achieve a quantum speedup on

even modest-size NISQ devices in near-term future. To support this claim, there is an important
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and encouraging work [30], where it was shown that large combinatorial optimization problems can

be effectively decomposed into subproblems on quantum annealing hardware, while still obtaining

high quality of the overall solution. It was demonstrated for solving embedding problems on D-Wave

quantum computers, but we believe that the same technique can be used to improve dramatically

the speed and performance of QAOA algorithms on universal quantum computers.

4.1 Quantum Local Search for Network Community Detec-

tion on Small Quantum Computers

In this Section, we introduce the quantum local search (QLS) algorithm for the network

community detection problem that is based on the local search method [6]. Many different versions

of the local search have been applied to numerous computationally hard problems such as the

satisfiability testing [219], and the traveling salesman problem [261, 120]. Local search is used

for problems where a global solution cannot be computed directly but instead can be iteratively

approximated in the space of candidate solutions (sub-problems), until optimal (or sufficiently good).

The important feature of QLS is that it is a hybrid hardware-agnostic algorithm that combines a

classical machine with a small quantum device. In this method, QLS allows us to leverage available

NISQ-era quantum devices to solve machine learning problems of practical size for the first time.

A version of the network community detection (also known as graph clustering) is an unsu-

pervised machine learning problem used to identify sub-structure as communities in such networks

as computer and information infrastructures, social activities, and biological interactions or co-

occurrences. It is used to find non-trivial topological features, with patterns of connection between

nodes that are neither exactly regular nor random. For example, in metabolic networks, communities

correspond to a series of chemical reactions called metabolic pathways [105], whereas in a protein in-

teraction network, communities correspond to proteins with similar functionality inside a biological

cell [53]. In this work we focus on using Newman’s modularity-based community detection [176].

QLS was applied to solving the 2-community detection problem on real networks of up

to 410 nodes, while solving a 16 variable subproblem on a quantum device. To the best of our

knowledge, this is the first attempt to tackle problems of this size using gate-model (universal)

quantum computing. Also, QLS is shown to work with the D-Wave quantum annealer. We explore

the potential of QLS as quantum devices become more and more capable and demonstrate its
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potential.

The small size of available quantum devices creates a challenge, since typical algorithms

(both quantum and classical) look at a problem “as a whole”, requiring large amounts of resources to

store the description of the entire problem. While on classical computers storing the problem usually

does not constitute a problem, it becomes a bottleneck when working with quantum computers

that only have limited numbers of qubits and limited connectivity between qubits. The number of

variables that can be represented in a quantum device is dependent on its underlying architecture.

A problem decomposition approach like local search presents a natural solution to this

problem. A local search heuristic starts with some initial solution and searches its neighborhood

iteratively, trying to find a better candidate solution with improved criterion (which is often an

objective of the corresponding minimization or maximization of the problem). If a better solution

is found, it replaces the current solution, and the search continues [6]. Searching the neighborhood

is a local problem and its size can be restricted to fit on a small quantum device. In QLS for

graph community detection, the neighborhood of the solution is searched by selecting a subset of

vertices and collectively moving them between the communities with the goal of improving the global

modularity metric.

The QLS approach provides an additional benefit of being fundamentally hardware-agnostic.

Local neighborhood search can be encapsulated as a routine, allowing researchers to easily switch

between different hardware implementations. This is especially useful, since the landscape of quan-

tum computing in the NISQ era is in a constant state of flux with many QC architectures available

and new development happening constantly. It is not clear at this stage which architecture will

become dominant in future. In this work we demonstrate how the two most developed and popular

current paradigms, universal quantum computing (UQC) and quantum annealing (QA), can be in-

tegrated into the QLS framework and utilized to solve problems of practical size. Both paradigms

have demonstrated great potential on a number of important problems [134, 202, 14, 70].

In this Section, we do not aim to analyze performance of quantum optimization algorithms

like quantum annealing or QAOA. Although we do present some performance results (see Fig. 4.2),

they by no means constitute an exhaustive comparison with classical state-of-the-art. Instead, they

provide motivation for our work, demonstrating that the subproblems offloaded to quantum solvers

are not trivial and that hybridization is needed. For benchmarking, analysis and exploration the

reader is referred to one of a number of recent papers analyzing QAOA performance [267, 95, 186].
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In other words, we do not focus on finding and quantifying quantum speedups. Instead, we focus on

a different question: if these algorithms are indeed capable of providing speedups in the near term,

how can we leverage them to solve practical problems?

It is important to point out that the introduction of a problem decomposition heuristic

like QLS limits the possible quantum speedup. Since to the best of our knowledge no asymptotic

speedups have been shown so far for QAOA or QA, decomposition schemes limit the multiplicative

speedup on the entire global problem by the multiplicative speedup on a small local subproblem.

However, they still provide a way to take advantage of the small quantum devices that are becoming

available.

4.1.1 The Community Detection Problem

For an introduction to the community detection problem the reader is refered to Sec-

tion 3.4.1.

Community detection using a hybrid quantum-classical approach targeted for specific quan-

tum architectures has been demonstrated previously. The 2-community problem was solved using

qbsolv and the D-Wave quantum annealer [245] and extended for k-communities [161, 172]. Solv-

ing for 2-communities using QAOA and the IBM Q Experience was shown in [161]. Solving for

k-communities on signed graphs using block coordinate descent [269, 206] and D-Wave quantum

annealer was shown in [265].

4.1.2 Quantum-accelerated Decomposition Heuristics for Optimization

Central to the discipline of QC in the NISQ era is the problem of a limited number of

available noisy qubits. For example, at the time of writing, the largest gate-model QC device

available on the cloud was IBM Q 20 Tokyo [58] with twenty superconducting qubits. Twenty qubits

translates into up to 20 variables due to connectivity constraints. This implies that the maximum

number of nodes of a network we can cluster directly is 20. This example highlights the challenges

of leveraging limited NISQ-era devices to solve practical problems and motivates our local-search

approach. Note that same considerations apply for problems other than optimization. For example,

similar hybrid approaches have been applied to Blind Quantum Computation [88, 25, 227, 229],

and distributed quantum machine learning [228]. Parallel Quantum Computation (PQC) [145] can
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be used to speed up Grover’s search algorithm [93] by dividing a database on which the search is

performed between an ensemble of quantum computers running in parallel [262, 144].

In response to the challenges of quantum computation in the NISQ era, a number of decom-

position approaches have been explored. The methods described in this section use limited in size

quantum optimization solvers to search a restricted neighborhood of a given solution with the goal

of finding a better solution. Here the given solution comes either from running a classical heuris-

tic solver on a CPU or from the previous iteration. These methods are inspired by the success of

classical large-scale neighborhood local search methods (the reader is referred to [207] for a survey

of local-search heuristics in general and to [8] for a survey of large-scale neighborhood methods in

particular). It is important to note that unlike this Section, all the works described in this section

focus exclusively on D-Wave quantum annealers.

The first family of methods builds on classical pre-processing methods for quadratic uncon-

strained binary optimization (QUBO) problems (see [241] for a review). One such pre-processing

technique is heuristically fixing variables. The variables are chosen by maintaining a set of elite

solutions and fixing the variables that have the same value across many or all local optima, with the

intuition being that they will have the same values for the global optimum [255]. Sample persistence

variable reduction (SPVAR) [125] in its basic version uses a sample of solutions (obtained either from

a quantum annealer or a classical heuristic) and fixes the variables that have the same value across

the entire sample. Then SPVAR uses a quantum annealer as the solver for the restricted QUBO.

This method was later extended by introducing multistart (multiple samples) and was extensively

benchmarked using both the D-Wave quantum annealer as well as state-of-the-art classical heuristics

for Chimera Hamiltonians [126].

The second family of methods extends iterative large-scale neighborhood local search meth-

ods. Local search commonly considers the neighborhood of bit strings that have Hamming distance

one from the current solution at each step. The performance of local search methods can be improved

by considering larger neighborhoods (Liu et al. [142] shows significant performance improvements

for neighborhood of Hamming distance four, equivalent to fixing all but four variables). Quantum

optimizers provide a potentially efficient way to explore these larger neighborhoods. This rather

straightforward idea was introduced in [29] and extended and rigorously tested in [30, 206, 269].

A similar hybrid tree search method was presented in [243]. These methods utilize the D-Wave

quantum annealer as the quantum optimizer, enabling them to solve problems with thousands of
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variables. In this work we limit the subproblem size to be small enough to fit on the IBM Q quantum

computer, limiting the size of the problems we can tackle. D-Wave provides a set of utilities for

problem decomposition, including a hybrid extension of the tabu search QSage [63].

4.1.3 Quantum Local Search

To address the challenges outlined above, we introduce the QLS algorithm. QLS is a hybrid

quantum-classical local-search approach, inspired by numerous existing local-search heuristics. QLS

is motivated by the successful application of local-search heuristics to a variety of optimization

problems. The novelty of QLS is that it can utilize both quantum annealers and universal quantum

computers. In this work, we apply QLS to the problem of 2-community detection on graphs, but

the success and versatility of local-search heuristics make us confident that QLS can be extended to

other optimization problems.

In QLS for community detection, the local search starts with a random assignment of com-

munities to vertices and attempts to iteratively optimize the current community assignment of a

subset of vertices with the goal of increasing modularity. Here the space of potential community

assignments of a subset of vertices plays the role of the neighborhood where the local search is

performed. At each iteration, a subset X ⊂ V is populated by selecting vertices with the highest

potential gain in modularity obtained when changing their community assignment. This can be

done efficiently [176] since at each iteration we only need to update the gains of vertices in X and

their neighbors. Then at each iteration, the community assignment of the vertices in the subset

X (subproblem) is optimized using a routine that includes a call to a quantum device. The local

search proceeds until it converges. We define convergence as three iterations with no improvement

in modularity. Note that in general it is not necessary to consider all vertices before convergence:

in the 2-community problem, random initial assignment would be correct for 50% of vertices on

average. Our approach is outlined in Algorithm 1.
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Algorithm 1 QLS Community Detection

solution = initial guess(G)

while not converged do

X = populate subset(G)

// using IBM UQC or D-Wave QA

candidate = solve subproblem(G, X)

if candidate > solution then

solution = candidate

end

end

The subproblem of optimizing community assignment of the subset is formulated by fix-

ing community assignment for all vertices not in the subset (i 6∈ X) and encoding them into the

optimization problem as boundary conditions. This is a commonly used technique in many heuris-

tics [141, 103]. Denoting fixed assignments by s̃j , the subproblem can be formulated as:

Qs =
∑
i>j|i,j∈X 2Bijsisj +

∑
i∈X

∑
j 6∈X 2Bijsis̃j

=
∑
i>j|i,j∈X 2Bijsisj +

∑
i∈X Cisi,

where Ci =
∑
j 6∈X 2Bij s̃j

(4.1)

Clearly, maximizing (4.1) can only increase global modularity (3.7). The objective defined

in Eq. (4.1) can be optimized using a QC algorithm. The exact way the optimization is performed

can vary between different QC implementations, making our approach extendable to new emerging

QC platforms. We demonstrate this portability by implementing two subproblem optimizing rou-

tines that use IBM Q 16 Rueschlikon [58] and D-Wave 2000Q [61]. Additionally, we implement a

subset optimization routine that uses the classical Gurobi solver [181] for quality comparison. The

choice of Gurobi is not of importance, since for subproblems with 16 variables any classical integer

programming solver is capable of finding the optimum.

4.1.4 Results and discussion

We implement the classical part of QLS in Python 3.6, using NetworkX [101] for network

operations. The subproblem solvers are implemented using QA (D-Wave SAPI), QAOA (IBM

QISKit [60]) and the classical Gurobi solver [181]. Our framework is modular and easily extendable,
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Figure 4.1: Box-plots showing the range of modularity scores for 2-community detection (left, greater
is better) and number of solver calls (right, less is better) respectively for the three different sub-
problem solvers. The results show that the proposed approach is capable of achieving results close
to the state-or-the-art (Global Solver)

allowing researchers to add new subproblem solvers as they become available. The framework is

available on GitHub at http://bit.ly/QLSCommunity.

In order for a subproblem to be solved on the D-Wave system, the problem is embedded onto

the physical layout (Chimera graph). The clique embedder [35] is used to calculate an embedding

of a complete 16-variable problem once and is reused for each subproblem. In this work, we utilized

D-Wave’s Solver API (SAPI) which is implemented in Python 2.7, to interact with the system. We

used the D-Wave 2000Q which has up to 2048 available qubits. Subproblems of approximately 64

variables can be solved on the the 2000Q, however, for a fair comparison, we limit ourselves to up to

16 variables. The D-Wave system is intrinsically a stochastic system, where solutions are sampled

from a distribution corresponding to the lowest energy state. For each subproblem, the best solution

out of 10,000 samples is returned.

The QAOA subproblem solver is implemented using the IBM QISKit framework. We ran

QAOA with RYRZ ansatz [57] on the IBM 16 Q Rueschlikon [58] with 16 qubits. For optimization

of the variational parameters we used a SciPy [122] implementation of Constrained Optimization

BY Linear Approximation (COBYLA) method [194]. For each subproblem, we performed optimiza-

tion of the variational parameters θ using a high-performance simulator [260] and ran QAOA with

optimized parameters on a quantum device using the IBM Q Experience [58] cloud service. We

allowed COBYLA 100 function evaluations (i.e. 100 QAOA runs on the simulator) to find optimal
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Figure 4.2: A projection of QLS performance as the hardware size of quantum devices increases.
(A) Projected of QLS performance as the quality of the local search solver solution is improved.
The projection is performed by comparing the performance of classical solver Gurobi with time
limit fixed at 0.25s (D-Wave time to solution) and Gurobi with time limit 1000s (projected good
solution). The assumption is that the new quantum optimization algorithms would be able to scale
and provide results of the same quality as Gurobi with time limit 1000s while taking approximately
the same time to solve the problem as they do today. (B) Projected number of iterations for
QLS to converge as larger devices become available (projection performed by using Gurobi as a
subproblem solver).

parameters θ. We used this setup (training on a simulator and running on the quantum device)

because of the limitations of the IBM Q Experience job queue at this time. In our experience,

jobs submitted to the IBM quantum device can spend minutes to hours in queue, requiring days to

complete a full variational parameter optimization loop. It is our understanding that this will be

remedied in the future. The main downside of this setup is that the variational parameters trained

on a simulator do not encode the noise profile of the device, decreasing the quality of the solution.

This is one of the main factors contributing to slightly slower convergence for QAOA compared to

other methods. In the future, as various QC devices become available, it will be straightforward

to perform QAOA fully on a QC device. However, even using the current setup we achieved very

promising results, indicating great potential for applying variational quantum-classical methods to

combinatorial optimization problems.

Our results are presented in Fig. 4.1. We ran our algorithm on six real-world networks

from the KONECT dataset [136] with up to 410 nodes as our benchmark. The networks come from

different real world phenomena and include social and metabolic networks. For each network, we ran

30 experiments with different random seeds. The same set of seeds was used by the three subproblem

solvers, with all solvers starting with the same initial guess and therefore making the results directly

comparable. We fixed the subproblem size at 16 vertices. Our results demonstrate that QLS with
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both D-Wave QA and QAOA on IBM Q as quantum subproblem solvers perform similarly in terms

of quality of the solution (modularity) and the number of iterations to convergence, and are capable

of achieving results comparable to state-of-the-art. Our results are compared to results using the

Gurobi Optimizer, which is a state-of-the-art solver for mathematical programming. We use the

Gurobi Optimizer in two ways: first as a solver for solving the entire problem at once, which we

report as the Global Solver and second as a solver for solving small size subproblems of fixed size

within the local search framework. For solving the entire problem, the Gurobi Optimizer is unable

to reach a provable global optima for most of the problems within the specified time-frame. For the

graph problems of up to approximately 400 variables, we run Gurobi (as a global solver) for up to

72 hours and the results reported are within an optimality gap of up to 33%. For the smaller size

subproblems of 16 variables, Gurobi was able to find the optimal solution within less than second.

The networks and the set of seeds we used are available online at http://bit.ly/QLSdata.

The results demonstrate the promise of the proposed approach. We presented a framework

that is able to find 2 communities in graphs of size up to 410 vertices using only NISQ-era devices.

We explored the potential of our approach as new and better QC hardware becomes available in two

ways. First, we used the classical Gurobi solver [181] to simulate the performance improvements

in QLS as the subproblem size is increased (see Fig. 4.2B). We generate a 2000 node random

graph with realistic community structure and known modularity [216]. Unsurprisingly, QLS finds

the optimal solution faster (using fewer local search iterations) as the subproblem size increases.

Second, we demonstrate the need for quantum acceleration by demonstrating the limitations of

existing state-of-the-art solvers. We used Gurobi [181] as a subproblem solver with subproblem size

of 200. Fig. 4.2A shows that for the subproblem of this size, Gurobi cannot produce a good solution

quickly. We compared Gurobi with time limit 0.25s (the running time of QA on D-Wave) with

Gurobi with time limit 1000s, with the assumption that Gurobi would converge to a good solution.

We use the running time of QA as our estimate because at the time of writing we do not have a good

way of measuring the running time of QAOA due to the architecture of the IBM Q Experience. We

expect QAOA to have similar performance. This assumes that quantum methods would scale well to

larger problems, which is a strong assumption. However, the goal here is to motivate the exploration

of quantum optimization heuristics by showing the limitations of classical state-of-the-art and not

to demonstrate quantum advantage. Using a better solution within the local search enables 25%

(4 iterations) improvement in time to convergence (convergence is defined as three iterations with
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no improvement). This demonstrates that the subproblems become computationally hard even for

sizes that are small enough to potentially fit on near-term devices. It is important to note that

even though in our experiments Gurobi performed better than other integer programming solvers,

it is quite possible that other solvers can perform better on this problem, especially after tuning.

Indeed, in the past the improvements in classical heuristics have forced researchers to downgrade

claims of quantum advantage [149, 150]. However, demonstrating quantum advantage is outside of

scope of this Section. Instead, we use these results to motivate our hybrid approach by showing the

computational complexity of the subproblems offloaded to quantum solvers. As quantum solvers

improve and become capable of providing speedups at subproblem level, out QLS will enable us to

leverage these speedups at the global problem level.

4.2 Multilevel Combinatorial Optimization Across Quantum

Architectures

Across different domains, computational optimization problems that model large-scale com-

plex systems often introduce a major obstacle to solvers even if tackled with high-performance

computing systems. There are several reasons for this, including but not limited to a large number

of variables and even larger number of interactions, dimensionality required to describe each variable

or interaction, and time slices. The combinatorial and mixed integer optimization problems intro-

duce additional layers of complexity with integer variables often making the problem NP-hard (e.g.,

in cases of non-linearity and non-convexity). A common practical approach to solve these problems

is to use iterative methods. The iterative methods, while being composed with completely different

algorithmic principles, share a common property: several fast improvement iterations are followed

by a long tail of slow improvement iterations [252, 131]. Typically, in such iterative algorithms,

solving a large-scale system with respect to the first-order interaction laws per iteration advances

the solution towards a local attraction basin at each iteration, which often appears to be false with

respect to the global optimal solution. In other words, local methods tend to converge to a false

local optimum, which often corresponds to the solution of much lower quality than the true global

optimum [113]. Moreover, in some cases, another problem may exist within each iteration – the

algorithms used to solve them are not necessarily exact. To accelerate the solvers at each iteration

various heuristics, parallel-friendly methods, and ad-hoc tricks are employed, which often reduce the

102



quality of the solution.

In this section, we take steps towards building more robust solvers for mid- to large-scale

combinatorial optimization problems by fusing two areas whose simultaneous application is only

beginning to be explored, namely, quantum computing and multiscale methods. Recent advances

in quantum computing provide a new approach for algorithm development for many combinatorial

optimization problems. However, Noisy Intermediate Scale Quantum (NISQ) devices are widely

expected to be limited to a few hundred, and for certain sparse architectures up to a few thousands

qubits. The current state of quantum computing theory and engineering suggests moderately opti-

mistic expectations. In particular, it is believed that in the near future, we will witness relatively

robust small-scale architectures with much less noise. This would allow algorithms like the Quantum

Approximate Optimization Algorithm (QAOA) and Quantum Annealing (QA) to be run on hard-

ware with limited error correction. Given the realistic level of precision and, in the case of QAOA,

ansatz depth, these algorithms are prime candidates for demonstrating Quantum Advantage, that

is solving a computationally hard problem (such as NP-hard) faster than classical state-of-the-art

algorithms. Such algorithms are our first building block.

The multiscale optimization method is our second building block. These methods have been

developed to cope with large-scale problems by introducing an approach to avoid entering false local

attraction basins (local optima), a complementary method to stochastic and multi-start strategies

that help to escape it if trapped. Because of historical reasons, on graph problems, they have been

termed multilevel (rather than multiscale), which we will use here. The multilevel (or multiscale)

methods have a long history of breakthrough results in many different optimization problems [55,

38, 159, 86, 129, 205, 92, 214, 215, 141, 103, 204, 223, 221, 210, 209] and have been implemented on

a variety of hardware architectures. The success of multilevel methods for optimization problems

supports our optimism about proposed ideas.

There is no unique prescription on how to design multilevel algorithms, but the main idea

behind them is to “think globally while acting locally” on a hierarchy of coarse representations of the

original large-scale optimization problem. A multilevel algorithm therefore begins by constructing

such a hierarchy of progressively smaller (coarser) representations of the original problem. The goal of

the next coarser level in this hierarchy is to approximate the current level problem with a coarser one

that has fewer degrees of freedom and thus can be solved more effectively. When the coarse problem

is solved, its solution is projected back to the finer level and further refined, a stage that is called
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uncoarsening. As a result of such a strategy, the multilevel framework is often able to significantly

improve the running time and solution quality of optimization methods. The quality of multilevel

algorithms in large part depends on that of the optimization solvers applied at all stages of the

multilevel framework. In many cases, these locally acting optimization solvers are either heuristics

that get stuck in a local optimum or exact solvers applied on a small number of variables (i.e.,

on subproblems). In both cases, the quality of a global solution can significantly suffer depending

on the quality of the solution from the local solver. The optimization algorithms running on the

NISQ devices that may replace such local solvers are expected to be a critical missing component to

achieve a game changing breakthrough in multilevel methods for combinatorial optimization. While

the performance of these NISQ-era optimization algorithms is not fully understood (see Sec. 4.2.1.2

for an overview), in this work we do not attempt to rigorously benchmark them. Rather, we focus

on the problems arising when integrating these optimization algorithms into a multilevel framework.

In this Section, we introduce Multilevel Quantum Local Search (ML-QLS), which uses an

iterative refinement scheme on NISQ devices within a multilevel framework. ML-QLS extends the

Quantum Local Search (QLS) (presented in Section 4.1) approach to solve larger problems. This

work builds on early results using a multilevel framework and the D-Wave quantum Annealer for the

Graph Partitioning Problem [246]. We demonstrate the general approach of solving combinatorial

optimization problems with NISQ devices in a multilevel framework on two well-known problems as

our use cases. In particular, we solve the Graph Partitioning Problem and the Community Detection

Problem on graphs up to approximately 29, 000 nodes using subproblem sizes of 20 and 64 that map

onto NISQ devices such as IBM Q Poughkeepsie (20 qubits) and D-Wave 2000Q (∼2048 qubits).

Such graphs are orders of magnitude larger than those solved by state-of-the-art hybrid quantum-

classical methods. To implement this approach, we develop a novel efficient subproblem formulation

method.

The rest of Section is organized as follows. In Section 4.2.1, we discuss the relevant back-

ground on quantum optimization, multilevel methods, and define the problems. In Sections 4.2.2

and 4.2.3, we discuss the hybrid quantum-classical multilevel algorithm and computational results,

respectively. A discussion of the outlook and important open problems that represent major future

research directions are presented in Section 4.2.4.
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4.2.1 Background

The methods proposed and implemented in this work aim to solve large graph problems by

integrating NISQ optimization algorithms into a multilevel scheme. In this section, we provide a

brief introduction into the target graph problems (Sec. 4.2.1.1) and multilevel methods (Sec. 4.2.1.3).

For an overview of quantum optimization schemes see Chapter 3.

4.2.1.1 Problem Definitions

In this Section, we reintroduce modularity maximization problem to help us highlight its

connection to the graph partitioning problem. For additional details on modularity maximization

(also known as community detection), see Section 3.4.1. Let G = (V,E) be an undirected graph with

vertex set V and edge set E. We denote by n andm the numbers of nodes and edges, respectively. For

each node i, define vi ∈ R as the volume of node i and Aij ∈ R as the positive weight of edge (i, j).

For a fixed integer k, the Graph Partitioning Problem is to find a partition V1, . . . , Vk of the vertex

set V into k parts with equal total node volume such that the total weight of cut edges is minimized.

A cut edge is defined as an edge whose end points are in different partitions. A requirement of equal

total sizes of Vi for all i is sometimes referred as perfectly balanced graph partitioning, otherwise an

imbalancing parameter is usually introduced to allow imbalanced partitions [45]. However, in this

Section we deal with perfect balancing constraints and limit the number of parts to k = 2. In this

case we can write the GP problem as the following quadratic program

max sTAs

s.t.

n∑
i=1

visi = 0

si ∈ {−1, 1}, i = 1, . . . , n,

(4.2)

which, as shown in [245], can be reformulated into the following Ising model,

max sT (βA− αvvT )s

s.t. si ∈ {−1, 1}, i = 1, . . . , n,

(4.3)

for some constants α, β > 0, where v is a column vector of volumes such that (v)i = vi.

Maximization of modularity is a famous problem in network science where the goal is to
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find communities in a network through node clustering (also known as modularity clustering) [176].

For the graph G, the problem of Modularity Maximization is to find a partitioning of the vertex

set into one or more parts (communities) that maximizes the modularity metric. The modularity

matrix is a symmetric matrix given by

Bij = Aij −
kikj
2|E| , (4.4)

where ki is the weighted degree of node i, namely, ki =
∑
j Aij . Whereas the modularity is typically

defined on unweighted graphs, within the multilevel framework, due to the coarsening of nodes, we

primarily work with weighted graphs. It can equivalently be written in matrix-vector notation as

B = A− 1

2|E|kk
T (4.5)

where k is a vector of weighted degrees of the nodes in the graph. For up to 2 communities, the

Modularity Maximization Problem, also referred to as the Community Detection Problem, can be

written in Ising form as follows:

max
1

4|E|s
T
(
A− 1

2|E|kk
T
)
s

s.t. si ∈ {−1, 1}, i = 1, . . . , n

(4.6)

where the objective value of equation 4.6, for a given assignment of resulting communities, is re-

ferred to as the modularity. For more than 2 communities, the Ising formulation of the Community

Detection Problem is given in [172].

Note that the above formulation of Modularity Maximization can be viewed as the Graph

Partitioning Problem in the Ising model given in equation (4.3) where the volume of a node is defined

as the weighted degree and the penalty constants β = 1, α = 1
2|E| . We exploit this deep duality

between the two problems in our implementation.

4.2.1.2 On the Scalability of Quantum Optimization Heuristics

The question of asymptotic scaling is the central question in the analysis of algorithms.

Unfortunately, for many of the most promising quantum optimization algorithms, rigorous analysis

(such as provable approximation ratios) beyond the most simple problems is unavailable. Therefore
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the researchers have to resort to experimental evaluations and back-of-the-envelope projections. This

gives rise to the second major complication, namely, the fact that empirical results on small problem

instances are almost totally uninformative of the overall scaling behavior. Famously, the adiabatic

quantum algorithm initially appeared to be practically useful for solving NP-complete problems in

polynomial time based on numerical simulations of problems of up to tens of variables [74, 72].

However, later analysis has shown that for many problems, both synthetica ones that are classically

easy and hard problems like 3-SAT [247], eigengaps diminish exponentially, leading to exponential

worst-case running time for the adiabatic quantum algorithm [11]. This provides a cautionary

example for researchers trying to analyze modern quantum optimization approaches. The exact

number of variables needed for the separation between polynomial and exponential scaling to become

apparent varies from problem to problem, and the separation might not be clear for small problem

instances (i.e. the scaling that is in fact exponential looks polynomial for small instance sizes).

However, the increased size of the simulations as well as the hardware (in the case of quantum

annealers, reaching into thousands of qubits) provides increasing confidence in the potential of

quantum optimization heuristics.

Performance on the D-Wave quantum annealer depends on the input, the solver, and the

hardware platform [156]. Changes to the solver include modifying the anneal time or schedule. In this

case the platform is the D-Wave 2000Q. Bigger problems are better when comparing against classical

approaches. Pre-processing strategies such as variable reduction, error mitigation and improved

embeddings applied to the input contribute to more optimized performance. Minimizing the number

of qubits per variable results in shorter chains and improved embeddings. The solver tuning strategies

include finding an optimal anneal time dependent on the problem, as well as modifying the anneal

schedule. Longer anneal times may be required for larger problems. Performance scaling for quantum

applications is viewed as problem size vs. time to solution (TTS) for optimized run parameters,

similar to classical.

Considering the ground-state success probability for Sherrington-Kirkpatrick (SK) model

and MAX-CUT problems of increasing size was shown to be helpful in understand scaling [104].

When evaluating the TTS it is important to optimize the run parameters as much as possible,

in particular the optimal annealing time. Small problems require short anneals where the success

probability is always close to unity and insensitive to the annealing time. Larger problems require

long anneals where the success probability dominates.
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Work focused on determining the optimal anneal time on a quantum annealer over classical

simulated annealing (SA) for logical-planted instances demonstrated a scaling advantage over SA on

the D-Wave quantum annealer [10]. Scaling advantage in both system size and inverse temperature

was demonstrated for simulation of frustrated magnetism in quantum condensed matter for the

D-Wave quantum annealer over classical path-integral Monte Carlo (PIMC) [135].

A D-Wave API is available for collecting timing information on the details of the Quantum

Processing Unit (QPU) access time [62]. The QPU access time consists of programming time, sam-

pling time, post-processing time, and a small amount of time spent in initialization. Programming

time measures how long it takes to initialize the problem on the QPU. The sampling time is further

broken down into per sample times for the anneal, readout, and delay. Using this API, runtime

scaling for the quantum isomer search problem on the D-Wave QA was shown to grow linearly with

problem size [242]. In this case the problem size is defined by the number of carbon atoms n in an

alkane, which translates to 4(n−2) variables. And the number of isomer solutions increases with the

number of carbon atoms. We use this API similarly to show the scaling of the D-Wave contribution

on problems of increasing size in Sec. 4.2.3.1.

The scaling of Quantum Approximate Optimization Algorithm (QAOA) is particularly hard

due to two factors, namely the presence of outer-loop optimization and the lack of understanding

of the scaling of the depth of QAOA circuit required to achieve a good solution. The first factor

complicating the analysis of QAOA is the outer-loop optimization, i.e., the need to optimize pa-

rameters β,γ in Eq. 3.1. As the landscape is known to be highly non-convex [224, 220, 267], this

optimization becomes a daunting task. Little is known about the structure of this landscape, making

it hard to provide an upper bound on the computational hardness of the problem. At the time of

writing the best known upper bound is that the problem of optimizing β,γ is as hard as finding a

global minimizer to a nonconvex problem, where even verifying a feasible point is a local minimizer

is NP-hard [166]. However, in practice a number of techniques have been developed to successfully

solve this problem. While the structure is hard to analyze, there have been successful attempts to

leverage it using machine learning techniques [83, 250, 133]. These results make us hopeful that with

the help of a pre-trained model, high-quality QAOA parameters can be found in a small number of

objective evaluations. There have been promising results showing that in higher-depth regime for

some problems it is possible to avoid optimization altogether and use a smoothly extrapolated set

of parameters reminiscent of adiabatic schedule [267].

108



The second factor in the lack of analytical and empirical results on QAOA behavior in low-

to medium-depth regime (e.g., 5 ≤ p ≤ 100). Analytically, QAOA appears to be hard to analyze

beyond p = {1, 2} for non-trivial problems [256, 36, 238]. At the same time, even for very simple

problems and small instance sizes it is clear that achieving a good solution requires going beyond at

least p = 5 [220, 59, 238]. Therefore we have to rely on empirical results to answer the question of

exactly how large the p needs to be in order to achieve a good solution. This empirical evaluation is

impeded by the complexity of simulating QAOA in medium depths. On one end, traditional state-

vector based simulators have running time exponential in number of qubits, limiting the problem sizes

to tens of variables. On the other end, tensor network based simulators have running time that is

exponential in the number of gates, limiting the depth of the QAOA circuit that can be simulated. At

the time of the writing, the state-of-the-art simulators were limited to simulating a thousand qubits

to depth p = 5 [115]. These two constraints (on number of qubits for one simulation approach

and on the depth for the other) make it challenging to numerically analyze QAOA performance in

the crucial zone of medium-sized problems (hundreds to thousands of variables) and medium-depth

circuit (p > 10). The high levels of noise and small number of available qubits make this analysis

impossible on the currently available quantum hardware. All of the aforementioned complications

contribute to the lack of the results showing how QAOA depth p scales with the size of the problem.

At the same time, results presented in [59, 267] indicate that at least for the problem sizes small

enough to fit on near-term quantum computers, 10 ≤ p ≤ 30 is sufficient to achieve high-quality

solutions.

Due to the limitations of the available hardware, in this work we do not run full QAOA

ansatz on the IBM Q hardware. Instead, we use a shallow-depth hardware-efficient ansatz (HEA)

[123]. Much less is known about the potential of such ansatzes to produce quantum speedup. Nu-

merical experiments on small problem instances do not show that quantum entanglement provides

an advantage in optimization [169]. At the same time, recent analytical results show that HEAs

are efficiently simulatable classically in constant depth [170] and suffer from exponentially vanish-

ing gradients in polynomial depth [155] (here depth is a function of number of qubits). A recent

result shows that in logarithmic depth regime gradient vanishes only polynomially, making HEAs

trainable in this regime [49]. This result indicates a potential for quantum advantage using HEAs in

logarithmic depth, as they are both hard to simulate classically and do not suffer from exponentially

vanishing gradients. Evaluating the potential for quantum advantage from using logarithmic-depth
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HEAs in QAOA setting for optimization remains an open problem.

4.2.1.3 Multilevel Combinatorial Optimization with NISQ solvers

Coarsening Uncoarsening

Level 0
Original Graph

Level 1
Coarse Graph

Level 2
Coarsest 
Graph

1. Find similarities between 
nodes 

2. Derive the restriction 
operator that will ensure good 
interpolation at uncoarsening

3. Create coarse nodes. Repeat steps 1 and 2.

4. Create coarse variables. Do 
not coarsen further if the 
problem fully fits on a NISQ 
device 5. Solve coarse problem on 

the NISQ device

6. Interpolate solution Si from Level 2 
into initial solution at Level 1

7. Refine the interpolated 
solution by solving 
subproblems on a NISQ device

6. Interpolate solution Si from Level 1 
into initial solution at Level 0

8. Refine the interpolated 
solution by solving 
subproblems on a NISQ device

Figure 4.3: V-cycle for a graph problem. First, the problem is iteratively coarsened (left). Second,
the coarse problem is solved using a NISQ optimization solver (bottom). Finally, the problem is
iteratively uncoarsened and the solution is refined using a NISQ solver (right).

The goal of the multilevel approach for optimization problems on graphs is to create a

hierarchy of coarsened graphs G0, G1, ... ,Gk in such a way that the next coarser graph Gi+1 “ap-

proximates” some properties of Gi (that are directly relevant to the optimization problem of interest)

with fewer degrees of freedom. After constructing such a hierarchy, the coarsening is followed by

solving the problem on Gk as best as we can (preferably exactly) do and finally uncoarsening the

solution back to G0 through gradual refinement at all levels of the hierarchy, with a refined solution

at level i+ 1 serving as the initial solution at level i. The entire coarsening-uncoarsening process is

called a V-cycle. There are other variations of hierarchy levels’ coarsening-uncoarsening order, e.g.,

W- and Full cycles [39]. Fig. 4.3 presents an outline of a V-cycle.

Typically, when solving problems on graphs in which nodes represent the optimization

variables (such as those in the partitioning and community detection), having fewer degrees of

freedom implies a decreased number of nodes in each next coarser graph |V0| > |V1| > |V2| > ... >
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|Vk|.1 With a smaller number of variables at each level, one can use more sophisticated algorithms

at each level. However, it is still not sufficient to solve the whole problem until the coarsening

reaches the coarsest level. As a result, at each level, the actual solution is produced by a refinement.

Refinement is typically implemented with a decomposition method that uses a previous iteration or a

coarser level solution as an initial guess. The multilevel algorithms rely heavily [254] on the quality

of refinement solvers for small and local subproblems at all levels of coarseness. Thus, the most

straightforward way to use NISQ devices in multilevel frameworks is to iteratively apply them as

local solvers to refine a solution inherited from the coarse level. Because the refinement is executed

at all levels of coarseness, it is clear that even a small improvement of a solution at the coarse level

may cause a major improvement at the finest scale. Typically, this is the most time-consuming stage

of the multilevel solvers which is expected to be fundamentally better if improved by NISQ devices.

Most refinement solvers in multilevel frameworks rely on fast but low-quality heuristics,

rather than on the ability to compute an optimal solution. Moreover, in many existing solvers, the

number of variables in such local subproblems is comparable with or smaller than the the size of the

problems that can be directly embedded on the NISQ devices (see examples in [103, 141]), making

them a perfect target for NISQ optimization algorithms. In most multilevel/multiscale/multigrid-

based optimization solvers, a refinement consists of covering the domain (or all variables) with small

subsets of variables (i.e., small subproblems) such that solving a small local problem on a subset

improves the global solution for the current level.

Multilevel graph partitioning and community detection algorithms are examples of the most

successful applications of multilevel algorithms for large graphs, achieving excellent time/quality

trade-off [45]. In this work, we use the simplest version of coarsening (in order to focus on the hybrid

quantum-classical refinement) in which the edges of the fine level graph are collapsed and create

coarse level vertices by merging the fine level ones. There are several classes of refinement for both

problems but in all of them, at each step a small subset of nodes (or even a singleton) is reassigned

with partition (or cluster) that either better optimizes the objective or improves constraints. Some

variants of stochastic extensions also exist.

1Note that this does not necessarily imply |E0| > |E1| > |E2| > ... > |Ek|
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4.2.1.4 On Scalability of Multilevel Methods

If we do not consider algorithmic frameworks with very limited space (such as streaming),

the scalability of a traditional multilevel framework with its instance graphs is practically limited

to the available memory size. Requirements to keep graphs in memory (not necessarily RAM) for

multilevel partitioning and community detection are similar to those of matrices for multigrid [39],

so the complexity is also comparable up to the factor of refinement. Theoretically, the multilevel and

multigrid frameworks exhibit O(|E|) or O(number of non-zeros in a matrix) complexity. However,

for optimization on graphs, the refinement stage is typically computationally more expensive than

that for multigrid (e.g., compare Gauss-Seidel relaxation sweeps [143] and Kernighan-Lin or min-

cut/max-flow refinement in graph partitioning [45]) because at each step of the refinement, an

integer problem has to be solved. Refinement for the relaxed versions of integer problems (e.g., for

the minimum 2-sum or bandwidth [214]) are usually faster but the quality suffers and in the end

they should follow some rounding scheme for integer solution. However, even if the the complexity

of refinement is linear in the number of edges or corresponding matrix non-zeros, some overhead is

typically introduced for the integer problems.

In this work, we use a simple coarsening model which folds edges by merging pairs of nodes.

The situation with the scalability of multilevel frameworks if high-order interpolation coarsening is

involved (e.g., algebraic multigrid inspired weighted aggregation [213] when nodes can be split into

several fractions, and different fractions form coarse nodes) is different. The high-order interpolation

coarsening may result in increasing number of edges at several fine levels immediately implying

increased running time. In such cases, the complexity can increase to maxlevel iO(Ei). Subsequently,

a larger graph at each level requires more intensive refinement. In addition, the number of refinement

calls required to achieve a very good solution strongly depends on the coarsening quality which makes

it difficult to get a complexity required for a nearly optimal solution. The only practical solution

to that is artificially limiting the number of refinement calls (see all major solvers such as Metis,

Jostle, Kahip, and Scotch reviewed in [45]).

The criteria for limiting the number of refinement calls is never ideal. The refinemnt algo-

rithms always heuristically decide what vertex or group of vertices should be optimized with respect

to the current assignment of vertices to clusters (or parts) to make the current solution better. Typ-

ically, they take so called “boundary” nodes in all parts, i.e., those whose move from part to part
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can potentially improve the solution and optimize them or their groups. Therefore, the scalability

of multilevel graph partitioning and clustering frameworks can be loosely described in terms of |V |

and |E|. Instead, it is better to describe it in terms of expected cut similar to the analysis in [128].

To the best of our knowledge, there is no analysis that connects the size of the graph and perfor-

mance of multilevel algorithms providing any practically useful theoretical bounds. Currently, the

best way to describe the scalability of multilevel graph partitioning and clustering solvers is to use

O(|E|). However, the hidden constant in the linear complexity depends on the type of refinement.

Thus, we anticipate that with the advent of reliable quantum hardware, one can expect a significant

improvement in the running time and quality of the refinement in multilevel frameworks which will

eliminate computationally expensive solvers to locally optimize groups of variables. We refer the

reader to one of the most recent examples of multilevel scalability in [65] (e.g., see Table IV) in

which a graph with 3.8B edges was (suboptimally) solved in 255 seconds.

4.2.2 Methods

An iterative improvement scheme is a common approach for solving large scale problems

with NISQ devices. Traditionally, this is done by formulating the entire problem in the Ising model

or as a QUBO and then solving it using hybrid quantum-classical algorithms (see, for example,

”qbsolv” from D-Wave systems [34]). These methods decompose the large QUBO into smaller sub-

QUBOs or decrease the number of degrees of freedom to fit the subproblem on the hardware (for

example, using a multilevel scheme), and iteratively improve the global solution by solving the small

subproblems (sub-QUBOs). One of the main limitations of this approach is the size and density of

the original QUBO. For example, in the graph partitioning formulation given by equation 4.3, the

term vv
T leads to the formulation of a completely dense n×n QUBO matrix regardless of whether

or not the original graph was sparse. Storing and processing this dense matrix can easily make

this method prohibitively computationally expensive even for moderately sized problems. In our

implementation of Quantum Local Search (QLS) [226] we circumvent this limitation by developing

a novel subproblem formulation of the Graph Partitioning Problem and Modularity Maximization

as a QUBO that does not require formulating the entire QUBO.

Another concern is the effectiveness of selection criteria of candidate variables (or nodes) to

be included in each subproblem. A common metric used in selecting whether or not a variable is to

be included in the subproblem is whether or not changing the variable value would reduce (increase)
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the objective value for a minimization (maximization) problem. Thus, since computing the change

in objective value for a small change in the solution is performed multiple times, it is important to

ensure that this computation is efficient. We derive a novel efficient way to compute the change in

the objective value of the entire QUBO also without formulating the entire QUBO and thus provide

an efficient refinement scheme using current NISQ devices.

We begin by introducing an efficient QUBO subproblem formulation for the Graph Par-

titioning Problem, and the Community Detection Problem. Then we present an efficient way to

compute the gain and change in the objective of the entire QUBO. Finally, we put it all together

and outline our algorithm.

4.2.2.1 QUBO formulation for subproblems

Let M be an n× n symmetric matrix that represents the QUBO for a large scale problem

such that it is prohibitively expensive to either generate or store M . However, for QLS we need

to generate constant-size sub-QUBOs of M which in turn represent subproblems of the original

problem. In order to generate a sub-QUBO, let k be the size of the desired sub-QUBO. In other

words, the sub-QUBO will have k variables and n− k fixed variables that remain invariant for this

specific sub-QUBO. We refer to the k variables as free variables. Without loss of generality, let the

the first k variables of s be the free variables, then we write s as

s =

sv

sf

 ,
where sv represents the k free variable terms and sf represents the n − k fixed terms. In the next

step, M can be represented using block form

M =



Mvv Mvf

MT
vf Mff


(4.7)
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such that Mvv is a k × k matrix. Next, we can write sTMs as

sTMs = sTvMvvsv + sTv (2Mvfsf ) + sTfMffsf (4.8)

Since sf are fixed values, we have sTfMffsf as a constant thus

min sTMs = min sTvMvvsv + sTv (2Mvfsf ) (4.9)

From equation (4.7), we have

vv
T =



vvv
T
v vvv

T
f

vfv
T
v vfv

T
f


(4.10)

Therefore, from equation (4.9), we have

min sTvvT s = min sTv vvv
T
v sv + 2sTv vvv

T
f sf (4.11)

The formulation in (4.11) is particularly important because it shows that the matrix vv
T does

not need to be explicitly created at each iteration during refinement. This is a crucial observation

because vvT is a completely dense matrix.

As described in Sec. 4.2.1.1, the Community Detection Problem is given by

max
1

4|E|s
T
(
A− 1

2|E|kk
T
)
s (4.12)

or

min sT
( 1

2|E|kk
T −A

)
s (4.13)

and the Graph Partitioning Problem is given by

min sT
(
αvvT − βA

)
s. (4.14)
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In the above formulation, modularity clustering can be viewed as the Graph Partitioning Problem

in a QUBO model, where the volume of a node is defined as the weighted degree and the penalty

constant is 1
|E| Therefore, in both cases we can perform a refinement while defining fixed values as

min sT
( 1

2|E|kk
T −A

)
s = min sTv

( 1

2|E|kvk
T
v

)
sv + sTv

( 1

|E|kvk
T
f

)
sf − sTAs (4.15)

and

min sT
(
αvvT − βA

)
s = min sTv

(
αvvv

T
v

)
sv + sTv

(
2αvvv

T
f

)
sf − βsTAs (4.16)

with

min −βsTAs = min −βsTv Avvsv − sTv (2βAvfsf ) (4.17)

The formulation in (4.15) and (4.16) are particularly important during the refinement step because

this implies that the complete dense (and therefore prohibitively large) QUBO or Ising model does

not need to be created at each iteration. These formulations also demonstrate a close relationship

between the Graph Partitioning Problem and the Community Detection Problem.

4.2.2.2 Efficient Evaluation of the Objective

In order to select the free variables for the subproblem, we need to be able to efficiently

compute the change of the objective function by moving one node from one part to another. In

other words, for each vertex v, we need to efficiently compute the gain which is the decrease (or

increase) in the edge-cut together with penalty if v is moved to the other part.

For a symmetric matrix M , the change in the value Q = sTMs by flipping a single variable

si corresponding to the node i is given by

∆Q(i) = 2(
∑
j∈C1

Mij −
∑
j∈C2

Mij) (4.18)

where C1 and C2 correspond to all variables with si = −1 and si = 1 respectively. Next, we define

deg(v, C) :=
∑
j∈C

Avj ; Deg(C) :=
∑
i∈C

ki; V ol(C) :=
∑
i∈C

vi
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then

2(
∑
j∈C1

Aij −
∑
j∈C2

Aij) = 2deg(vi, C1)− 2deg(vi, C2)

and finally

2(
∑
j∈C1

(vvT )ij −
∑
j∈C2

(vvT )ij) = 2
(
vi

∑
j∈C1,i6=j

vj − vi
∑
j∈C2

vj

)
= 2vi

(
V ol(C1\i)− V ol(C2)

)
where we assume that i ∈ C1. This expression can be computed in O(1) time.

In the same way

2(
∑
j∈C1

(kkT )ij −
∑
j∈C2

(kkT )ij) = 2
(
ki

∑
j∈C1,i6=j

kj − ki
∑
j∈C2

kj

)
= 2ki

(
Deg(C1\i)−Deg(C2)

)
can also be computed in O(1) time given Deg(C1) and Deg(C2), where Deg(Ci) represents the sum

of weighted degrees of nodes in community i.

Therefore, the change in modularity is given by

∆Q(i) =
ki
|E|
(
Deg(C1\i)−Deg(C2)

)
− 2
(
deg(vi, C1)− deg(vi, C2)

)
(4.19)

and change in edge-cut together with penalty value is given by

∆Q(i) = 2αvi
(
V ol(C1\i)− V ol(C2)

)
)− 2β

(
deg(vi, C1)− deg(vi, C2)

)
(4.20)

For each node i, both expressions (4.19) and (4.20) can be computed in O(ki) time, where

ki is the unweighted degree of i.

At no point during the algorithm should the complete QUBO matrix be formulated. This

also applies to the process of evaluating a given solution. In other words, evaluating the modular-

ity for the Community Detection Problem or edge-cut together with penalty term for the Graph
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Partitioning Problem should be done in O(1) time and space. The term is

sTvvT s =
(
V ol(C1)− V ol(C2)

)2
where as

sTAs = 2(|E| − 2cut).

Therefore,

sT (αvvT − βA)s = α
(
V ol(C1)− V ol(C2)

)2

− 2β(|E| − 2cut) (4.21)

and

sT
( 1

2|E|kk
T −A

)
s =

1

2|E|
(
Deg(C1)−Deg(C2)

)2

− 2(|E| − 2cut) (4.22)

where equations (4.21) and (4.22) give the formulations for computing the modularity and edge-cut

with corresponding penalty value respectively without creating the QUBO matrix.

4.2.2.3 Algorithm Overview

Now we can combine the building blocks described in the previous two subsections. Let

G = (V,E) be the problem graph. ML-QLS begins by coarsening the problem graph. During

the coarsening stage, for some integer k, a hierarchy of coarsened graphs G = G0, G1, . . . , Gk is

constructed. In this work, we used the coarsening tools implemented in KaHIP Graph Partitioning

package [217]. We used the coarsening implementation that is performed using maximum weight

matching with “expansion∗2” metric as described in [112]. The maximum edge matching is found

using the Global Path Algorithm [112]. In the next step, a QUBO is formulated for the smallest

graph Gk and solved on the quantum device. If |Vk| is greater than the hardware size2, QLS [226]

with a random initialization is used to solve for Gk. Then, the solution is iteratively projected onto

finer levels and refined using QLS. The algorithm overview is presented in Alg. 2.

For the Graph Partitioning Problem, the initial weight of each node is one by definition,

therefore coarsening of the nodes keeps the total node volume constant at each coarsening level. For

the Community Detection Problem, the initial weight of each node is set to the degree of the node.

This ensures that the size of the graph (total number of weighted edges) is also kept constant at

2more specifically, greater than the maximum number of variables in a problem that can be embedded on the
device
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Algorithm 2 Multilevel Quantum Local Search

function ML-QLS(G, problem type):
if problem type is modularity then

G = UpdateWeights(G)
end
G0, G1, . . . , Gk = KaHIPCoarsen(G)
if |Vk| ≤HardwareSize then

// solve directly
QUBO = FormulateQUBO(Gk)
solution = SolveSubproblem(QUBO)

else
// use QLS
initial solution = RandomSolution(Gk)
solution = RefineSolution(Gk, initial solution)

end
for Gi in Gk−1, Gk−2, . . . , G0 do

projected solution = ProjectSolution(solution, Gi, Gi+1)
solution = RefineSolution(Gi, projected solution)

end
return solution

function RefineSolution(Gi, projected solution):
solution = projected solution
while not converged do

∆Q = ComputeGains(Gi, solution)
X = HighestGainNodes(∆Q)
QUBO = FormulateQUBO(X)
// using IBM UQC or D-Wave QA
candidate = SolveSubproblem(QUBO)
if candidate > solution then

solution = candidate
end

end
return solution

each level. Note that Graph Partitioning is defined with respect to total node volume (|V |), while

modularity is defined with respect to the size (|E|, the total number of weighted edges) of the graph.

4.2.2.4 Addressing the Limited Precision of the Hardware

One of the subproblem solvers we used in this work is Quantum Annealing, which we ran on

the LANL D-Wave 2000Q machine. The D-Wave 2000Q is an analog quantum annealer with limited

precision. In this work, we used a simple coarsening that constructs coarser graphs by aggregating

nodes at a finer level to become a single node at the coarser level (i.e. many nodes on the finer level

are merged into one node at the coarser level, with the volume of the new node set to be the sum of

the volumes of the nodes on the coarser level). This causes the precision required to describe the node

119



0 2500 5000 7500 10000 12500
Value

100

101

102

F
re

q
u

en
cy

A

(a) Edge weights of the coarsest graph SSS12.

0 1 2 3 4 5
Value ×106

101

102

103

F
re

q
u

en
cy

vvT

(b) Entries of the matrix vv
T .

Figure 4.4: In Figure 4.4a, the maximum value is approximately 13× 103.In Figure 4.4b, the maxi-
mum value is approximately 5×106 and minimum value 1. A naive scaling of QUBO matrix A−vvT
can result in values that are too large to be handled by the quantum annealer due to its limited
precision. Such values of A are ignored, leading to random balanced partitions.

volumes and edge weights for coarser graphs to increase dramatically, especially for the large scale

problems. Thus, a QUBO describing the coarsest graph could require significantly more precision

to represent compared to the finest graph. For example, in Graph Partitioning where the QUBO

problem to be minimized is A−αvvT , the range of values in the matrix A increase at a different rate

than the range of values in the matrix vvT during the coarsening process, increasing the precision

required to describe the overall QUBO formed at each level (see an example on Fig. 4.4a). Thus,

if the QUBO A − αvvT is directly scaled to accommodate the limited precision of the device, the

quality of the results can suffer. In our experiments, we observe that directly scaling the QUBO

returned feasible, but low quality solutions. In order to overcome this challenge, for the problems

solved on the D-Wave device, we first scaled the matrices A and αvvT separately, and then formed

the QUBO to be optimized. This approach then resulted in achieving results with high quality

solutions on the D-Wave device.

4.2.3 Experiments and Results

Implementation The general framework for ML-QLS is implemented in Python 3.7 with Net-

workX [101] for network operations. We have used the coarsening algorithms available in the KaHIP

Graph Partitioning package [217] which are implemented in C++. The code for the general ML-QLS
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framework is available on GitHub [3].

Systems The refinement algorithms presented in this work require access to NISQ devices capable

of solving problems formulated in the Ising model. To this end, we have used the D-Wave 2000Q

quantum annealer located at Los Alamos National Laboratory, as well as IBM’s Poughkeepsie 20

qubit quantum computer available on the Oak Ridge National Laboratory IBM Q hub network

together with the high-performance simulator, IBM Qiskit Aer Simulator [12]. However, our frame-

work is modular and can easily be extended to utilize other novel quantum computing architectures

as they become available.

The D-Wave 2000Q is the state-of-the-art quantum annealer at this time. It has up to 2048

qubits which are laid out in a special graph structure known as a Chimera graph. The Chimera

graph is sparse, thus the device has sparse connectivity. Fully connected graphs as dense prob-

lems need to be embedded onto the device, which leads to the maximum size of 64 variables. We

have used the embedding algorithm described in [35] to calculate a complete embedding of the

64 variable problem. We found this embedding only once and reused it during our experiments.

We utilized D-Wave’s Solver API (SAPI) which is implemented in Python 2.7, to interact with the

system. The D-Wave system is intrinsically a stochastic system, where solutions are sampled from

a distribution corresponding to the lowest energy state. For each subproblem, the best solution out

of 10,000 samples is returned. The annealing time for each call to the D-Wave system was set to 20

microseconds.

In order to solve problems formulated in the Ising model on IBM’s Poughkeepsie quantum

computer and simulator, we implemented QAOA using the SBPLX [208] optimizer to find the

optimal variational parameters. We allowed 2,000 iterations for SBPLX to find optimal parameters

for QAOA. At each iteration, the circuit is executed 5,000 times (5,000 “shots”) to obtain the statistic

on the objective function. After the optimal parameters are found, the solution corresponding to

best of 5,000 samples produced by running the ansatz with optimal parameters is returned. Due to

the limitations of NISQ devices available in IBM Q hub network [225], we used the RYRZ variational

form [57] (also known as a hardware-efficient ansatz) as the ansatz for our QAOA implementation.

For the experiments run on IBM quantum device Poughkeepsie, we perform the variational parameter

optimization on the simulator locally and run QAOA on the device via the IBM Q Experience cloud

API. This is done due to the job queue limitations provided via the IBM Q Experience. However,
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we expect to be able to run QAOA variational parameter optimization fully on a device as more

devices are becoming available on the cloud. We have used GNU Parallel [240] for the large-scale

numerical experiments performed on the quantum simulator.

Considering the fact that solutions from the NISQ devices and simulator do not provide

optimality guarantees, we have also solved various subproblems formulated in the Ising model using

the solver Gurobi [181] together with modeling package Pyomo [108]. The results using Gurobi

as a solver for each subproblem are denoted as ”Optimal” in our plots. Note that while each

subproblem was solved and proven to be optimal for subproblem size 20, the same is not always true

for subproblem size 64. For subproblem size 64 we occasionally observe non-zero gaps.

Instances A summary of the graphs used in the experiments together with their properties is

presented in Table 4.1. For the Graph Partitioning Problem, we evaluate ML-QLS on five graphs,

four of which are drawn from The Graph Partitioning Archive [233] (4elt, bcsstk30, cti and data)

and one from the set of hard to partition graphs (vsp msc10848 300sep 100in 1Kout, denoted in

figures as SSS12) [215]. For the Modularity Maximization Problem, we evaluate ML-QLS on six

graphs. The graphs roadNet-PA-20k and opsahl-powergrid are real-world networks from the

KONECT dataset [136]. Graphs msc23052 and finan512-10k are taken from the graph archive

presented in [212]. The graphs finan512-10k and roadNet-PA-20k are reduced to 10,000 and 20,000

nodes respectively by performing a breadth-first search from the median degree node. Note that due

to the high diameter of these networks and their structure (portfolio optimization problem and road

network), this preserves their structural properties. GirvanNewman is a synthetic graph generated

using the model introduced by Girvan and Newman (GN) [89]. The graph lancichinetti1 is a

synthetic graph generated using a generalization of the GN model that allows for heterogeneity in the

distributions of node degree and community size, introduced by Lancichinetti et al. [137]. Table 4.2

shows the parameters used to generate the synthetic graphs.

Experimental Setup Our experiments are performed in order to compare the solutions from

ML-QLS with those of high-quality classical solvers, and the best known results, if available. For

the Graph Partitioning Problem, the results are compared to those produced by KaHIP [217] which

is a state-of-the-art multilevel Graph Partitioning solver. The best known results are taken at The

Graph Partitioning Archive [233] where applicable. In order to make our approach more comparable
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Network name |V | |E| davg dmax
SSS12 21996 1221028 111.02 722
4elt 15606 45878 5.88 10

bcsstk30 28924 1007284 69.65 218
cti 16840 48232 5.73 6
data 2851 15093 10.59 17

roadNet-PA-20k 20000 26935 2.69 7
opsahl-powergrid 4941 6594 2.67 19

msc23052 5722 103391 36.14 125
finan512-10k 10000 28098 5.62 54

Table 4.1: Properties of the networks used to evaluate ML-QLS. davg is average degree, dmax is
maximum degree

Network name |V | |E| davg dmax γ β µ
GirvanNewman 10,000 75,000 15.0 15 1 1 0.1

lancichinetti1 10,000 76,133 15.22 50 2 1 0.1

Table 4.2: Properties of synthetic networks used in the Modularity evaluation. davg is average
degree, dmax is maximum degree, γ is the exponent for the degree distribution, β is the exponent
for the community size distribution and µ is the mixing parameter. For a detailed discussion of the
parameters the reader is referred to Ref. [137]

to KaHIP, we follow the user guide [2], and use the kaffpaE version of the solver with the option

--mh enable kabapE for high quality refinement for perfectly balanced parts. We use the option

--preconfiguration=fast to ensure results are compared with a single V-cycle. Our results (cut

values) are normalized with either the best known value when applicable or by the smallest cut value

found by any of the solvers used.

For the Modularity Maximization Problem, we compare our solutions using ML-QLS with

two classical clustering methods, Asynchronous Fluid Communities [187] (implemented in Net-

workX [101]) and Spectral Clustering [230, 251] (implemented in Scikit-learn [189]). Note that

even though these methods solve the same problem (namely, Community Detection or clustering),

they do not explicitly maximize modularity. Therefore, it is unfair to directly compare the mod-

ularity of the solution produced by them to ML-QLS, which is explicitly maximizing modularity.

However, they provide a useful baseline. Moreover, since the maximum possible modularity for at

most 2 communities is 0.5, the best solutions found by all methods are no more than 1%–10% away

from the optimal (see Table 4.5)

The experimental results are presented in Figure 4.6. We have made all raw result data

available on Github [4]. For each problem and method (except for QAOA on IBM Q Poughkeepsie
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Network name Best modularity
finan512-10k 0.499
GirvanNewman 0.459

lancichinetti1 0.452
msc23052 0.499

opsahl-powergrid 0.497
roadNet-PA-20k 0.499

Figure 4.5: Highest modularity value found by all methods for a given problem. The highest possible
modularity value for at most 2 communities is 0.5.

quantum computer, labeled “QAOA (IBMQ Poughkeepsie)” in Figure 4.6), we perform ten runs of

a single V-cycle with different seeds. For “QAOA (IBMQ Poughkeepsie)”, we perform just one run

per each problem due to the limited access to quantum hardware.

Observations We observe that ML-QLS is capable of achieving results close to the best ones

found by other solvers for all problems. For Graph Partitioning, Figure 4.6 shows significant vari-

ability in the quality of the solution across different solvers and problem instances. This effect is also

observed for the state-of-the-art Graph Partitioning solver KaHIP, when run for a single V-cycle.

This is partially due to the fact that we normalize the objectives to make them directly comparable.

For example, for the graph 4elt the best known cut value presented in The Graph Partitioning

Archive [233] is 139. Therefore, an absolute difference of 28 edges in cut obtained by a solver trans-

lates into a 20% relative difference presented in Figure 4.6. However, the same absolute difference of

28 edges would translate into ≈ 0.44% for the graph bcsstk30 (best known cut 6394). The graph

SSS12 is specifically designed to be hard for traditional Graph Partitioning frameworks [215]. This

explains the high variation in the performance of KaHIP on it.

It is worth noting that QAOA on the IBM quantum computers (see “QAOA (IBM Q Pough-

keepsie)” in Figure 4.6) takes more iterations to converge to a solution compared to D-Wave. This

is partially due to the fact that we perform the QAOA variational parameter optimization on the

simulator and only run once with the optimized parameters on the device. As a result, the learned

variational parameters do not include the noise profile of the device, limiting the quality of subprob-

lem solutions. As devices become more easily available, we expect to be able to run full variational

parameter optimization on the quantum hardware.

To project the performance improvements for future hardware, we simulate the performance

of ML-QLS as a function of hardware (subproblem) size shown in Figure 4.7. As the subproblem size
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Figure 4.7: Modularity (Approximation ratio) as the function of the size of the subproblem (hardware
size). The performance is projected using Gurobi as the subproblem solver. The top plot presents
the mean approximation ratio averaged over the entire benchmark. The bottom plot presents the
standard deviation. As the hardware size increases, the quality of the solution found by ML-QLS
improves.

increases, the average quality of the solution found by ML-QLS improves and variation in results

decreases. This shows that performance of ML-QLS can be improved as larger size quantum devices

and better quantum optimization routines are developed. Note that this makes the assumption that

the subproblem is solved to optimality or to a solution that is close to optimal. Evaluating the

scaling of quantum optimization algorithms used for solving the subproblems falls outside of the

scope of this work (we provide an overview of relevant recent results in Sec. 4.2.1.2).

4.2.3.1 Scaling and running time estimates

The proposed ML-QLS approach is based on the traditional multilevel methods for graph

partitioning and graph clustering and therefore a lot of scaling and running time considerations are

shared between the two family of methods. Concretely, in our implementation we use the coarsening

available in KaHIP graph partitioning package [217], making the running time and the scaling of the

coarsening stage of our method and KaHIP equal. The running time of solving the problem on the

coarsest level does not scale with problem size, as the size of the coarsest level is fixed to be equal

to the hardware size. Therefore in this section we will focus on the analysis of the refinement stage.
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Figure 4.8: The number of iterations (calls to optimizer) to solution for the modularity maximization
problem as a function of problem size. The performance is projected using Gurobi as the subproblem
solver with subproblem size 20 and allowing it to solve each subproblem to optimality, as well as
using D-Wave as the subproblem solver with subproblem size 64. For Gurobi, the subproblem size
was limited to 20 to guarantee that each subproblem is proven to be solved the optimum.

To evaluate how the proposed approach scales with the problem size, we construct a series

of graphs with the number of nodes ranging from 1, 000 to 128, 000. The graphs are constructed in

the same way as the graph roadNet-PA-20k, namely by performing a breadth-first search from the

median degree node of roadNet-PA [136] and including nodes until the desired size is reached. We

fix the subproblem size to 20 for Gurobi and to 64 for D-Wave. The results are presented in Fig. 4.8.

We note that the number of iterations scales roughly logarithmically with the problem size, as we

observe roughly constant number of iterations per uncoarsening level. As we do not constraint the

number of refinement iterations, this indicates that the solution projected from coarser levels is of

high quality and does not need to be significantly changed at the refinement stage, indicating that

the coarsening has successfully constructed a multilevel hierarchy that preserves problem structure.

The success of coarsening in this example might be due to the simplicity of the problem structure

(planar graph of a road network). However, in all major multilevel solvers the number of refinement

calls is artificially limited, preserving the scaling (see Sec. 4.2.1.4 for an in-depth discussion).

The number of iterations to solution presented in Fig. 4.6 and 4.8 allows us to compute

rough estimates of the running time of the algorithm. To do that, we need to estimate the running

time of QAOA and quantum annealing for our problems. We observe that as the running time
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of coarsening is approximately 1 second. for the problems in our benchmark, the overall running

time is dominated by refinement. Same is true of this class of multilevel algorithms in general (see

Sec. 4.2.1.4).

For QAOA, we are going to follow the assumptions from Ref. [124]. Ref. [124] discusses a

cloud platform optimized for variational hybrid algorithms. In this work, we utilized IBM Quantum

Experience, which has a different architecture with a queue system, resulting in different latency

profile. However, in the idealized scenario of a full access to the machine (i.e. zero wait time in

the queue), the projected running times and latencies are very similar to the ones in Ref. [124].

QAOA with hardware-efficient ansatz, as implemented in this work, is a variational algorithm, i.e.

to solve the subproblem, the variational parameters have to be optimized (see Sec. 4.2.1.2). In this

work, we allowed optimizer 2,000 iterations to find good variational parameters. At each of these

steps, the circuit has to be compiled into the native gateset and the topology of the hardware,

then converted into pulses and then ran 5,000 times (5,000 “shots”) to assemble the statistic on the

objective. Assuming the programmer has implemented the circuit in the native gateset and aligned

the two-qubit gates with the native topology of the hardware, we can omit the overhead associated

with the compilation into the native gateset. For the second step, compilation from gates-level into

pulse-level, we will extrapolate the numbers in Ref. [124]. Ref. [124] provides the compilation time

of about 50 ms for a two-qubit QAOA circuit with 11 gates. Assuming realistic linear scaling of the

translation from gates into pulses, for the 20-qubit RYRZ ansatz used in this work with 99 gates

the extrapolated compilation time is 450 ms. Finally, the circuit has to be run for 5,000 shots. For

the hardware-efficient ansatz, the circuit depth is fixed and constant (2 two-qubit gates, 4 one-qubit

gates in depth). Therefore the per-shot time is dominated by the passive reset time, about 100

µs [124]. Note that the per-shot time varies between hardware implementations. For the device

used in Google’s quantum supremacy demonstration, the reported time for three million shots is 600

seconds with the limiting time being control hardware communications [17], giving 2 ms per shot.

Note that the reported net quantum processor time (30 seconds) gives same 100 µs of net processor

time per shot. Running the circuit for 5,000 shots gives estimated runtime of 100µs∗5, 000 = 500ms

using more optimistic per-shot time estimate. Therefore total running time for one QAOA iteration

is equal to 450ms + 500ms ≈ 1s. We used 2,000 iterations to find good QAOA parameters in this

work, resulting in 2,000 seconds ≈ 30 minutes projected runtime per subproblem. For a problem that

takes 60 iterations to solve (e.g. modularity maximization for 4elt), this gives projected running
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time of about 30 hours.

This number might give the reader pause. However, we want to point out that numbers

in the above estimate can be improved and a number of ways. First, the cost of finding good

variational parameters can be reduced drastically by using machine learning techniques. Ref. [133]

demonstrates that for an alternating operator ansatz high-quality parameters can be found in as

few as 100 iterations. Reducing the number of iterations per subproblem from 2,000 to 100 would

reduce the projected running time to 1.5 hours. Further, compiling time can be greatly reduced by

compiling the parameterized circuit into pulses once and reusing the compiled pulse schedule [91].

An additional benefit of this approach is that it would allow for better optimization of the pulse

schedule, as it can be optimized once offline. Assuming the compilation time can be reduced to that

of two-qubit circuit, the projected running time is reduced to ≈ 45 minutes. Finally, the hardware

is rapidly evolving and it is not yet clear what architecture will become the standard. Therefore

further improvements in running time, while hard to predict, are expected.

For Quantum Annealing on D-Wave, each iteration of the refinement process requires the

execution of a single Quantum Machine Instruction (QMI) which includes the QUBO parameters

and annealing-cycle parameters sent to the D-Wave system for processing. The total time accessing

the QPU (QPU Access time) for a single QMI can be broken down into 4 parts. The first is the one-

time initialization step to program the QPU. Then for each sample requested we have the following

times. The annealing time, followed by the time needed to wait for the QPU to regain its initial

temperature, referred to as the QPU Delay Time, and lastly the time needed to read the sample

from the QPU referred to as the QPU Readout Time. In other words,

qpu access time = qpu programming time+N ∗ (annealing time+ delay time+ readout time)

(4.23)

where N is the number of samples requested in a single QMI. The timing N ∗ (annealing time +

delay time+readout time) is referred to as the QPU Sampling time. In our experiments we request

1000 samples for each QMI and fixed the annealing time to 20µs per sample. In order to test and

demonstrate scalability of the proposed approach on the D-Wave system, similar to the experiments

presented in Figure 4.8, we varied the number of nodes for a road network graph from approximately

103 nodes up to 105 nodes and computed the maximum modularity of each graph. Similar to the case

in Figure 4.8 where each QUBO was solved up to optimality we observe a logarithmic scaling in the
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Figure 4.9: D-Wave timing results showing a breakdown of the total time accessing the QPU as the
problem size respresented by the number of nodes of the graph increases.

number of calls to the D-Wave system (number of iterations) as shown in Figure 4.8. Figure 4.9 gives

a breakdown of the total time (Total QPU Access time) for all iterations to compute the modularity

for a given input graph where the smallest graph with approximately 1000 nodes required a QPU

Access time of 5 seconds while the largest graph with approximately 127, 000 nodes required a QPU

Access time of approximately 15 seconds. However, the majority of the QPU Access time was

actually in the QPU Readout time. Requiring less than 2 seconds of total annealing time for 1000

samples is an impressive result for a graph of approximately 127,000 nodes. This time could be

significantly reduced by requesting a smaller number of samples per iteration. For example, if one

requested a single sample per iteration this would approximately reduce the total QPU sampling

time by a factor of 1000. Note that the QPU Access time is a linear function in the number of

iterations of the refinement method. Due to the heuristic nature of the proposed approach, the total

number of iterations by itself is not a strictly increasing function in the number of nodes of the

input graph. Thus for example, we observe in Figure 4.8, the number of iterations is not a strictly

increasing function and the graphs with 2K and 8K nodes required a smaller number of iterations

than the graphs with 1K and 4K nodes respectively. This is subsequently observed in the running

times as shown in Figure 4.9.
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4.2.4 Open Problems and Discussion

Revising (un)coarsening operators in anticipation of the new class of high-quality refinement

solvers is the first major open problem. The majority of multilevel algorithms for combinatorial op-

timization problems are inspired by the idea of ”thinking globally while acting locally”. However,

there is a crucial difference between these algorithms for combinatorial problems and such methods

as multigrid for continuous problems or multiscale PDE-based optimization. In multigrid (e.g., for

systems of linear equations), a relaxation at the uncoarsening stage is convergent [38], and in most

cases assumes an optimal solution (up to some tolerance) for a subset of relaxed variables given other

variables are invariant (i.e., a fixed solution for those variables that are not in the optimized subset).

Examples include easily parallelizable Jacobi relaxation, as well as hard to parallelize Gauss-Seidel

relaxation in which most variables are typically optimized sequentially, and many more. Both coars-

ening and uncoarsening operators (also known as the restriction, and prolongation in multigrid)

assume this convergence which in the end provides guarantees for the entire multilevel framework.

However, for the combinatorial multilevel solvers, the integer variables make this assumption practi-

cally impossible, even for subproblems containing tens of variables optimized simultaneously. With

the development of less noisy quantum devices, we can assume that in our hands will be extremely

fast heuristics to produce nearly (if hypothetically not completely) optimal solutions for combina-

torial optimization problems of up to several hundreds variables. In order to use the multilevel

paradigm correctly, there will be a critical need to revise (un)coarsening operators that take this

feature into account because (to the best of our knowledge) all existing versions of coarsening oper-

ators do not consider optimality of the refinement. Moreover, most existing multilevel frameworks

exhibit more emphasis on computational speedup rather than on the quality of the solution to better

approximate the fine problem.

The second problem is not unique to multilevel methods but to most decomposition based

approaches. Even if quantum devices become fully developed and become more accessible for the

broad scientific community, they will still remain more expensive than regular CPU based devices.

The decomposition approaches split the problem into many small local subproblems, while multilevel

methods may need even more of them because solving subproblems is required at all levels of

coarseness. Thus, there is a critical need in developing an extremely fast routing classifier for a

subproblem that will decide whether solving a particular subproblem on the NISQ device will be
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beneficial in comparison to the CPU.

4.2.5 Conclusion

Current Noisy Intermediate-Scale Quantum (NISQ) devices are limited in the number of

qubits and can therefore only be used to directly solve combinatorial optimization problems that

exhibit a limited number of variables. In order to overcome this limitation, in this work we have

proposed the multilevel computational framework for solving large-scale combinatorial problems

on NISQ devices. We demonstrate this approach on two well-known combinatorial optimization

problems, the Graph Partitioning Problem, and the Community Detection Problem, and perform

experiments on the 20 qubit IBM gate-model quantum computer, and the 2048 qubit D-Wave 2000Q

quantum annealer. In order to implement an efficient iterative refinement scheme using the NISQ

devices, we have developed novel techniques for efficiently formulating and evaluating sub-QUBOs

without explicitly constructing the entire QUBO of the large-scale problem, which in many cases can

be a dense matrix that makes it computationally expensive to store and process. In our experiments,

for the Graph Partitioning Problem, five graphs were chosen such that the smallest graph had 2851

nodes while the largest had 28924 nodes, while for the Community Detection Problem, the smallest

graph had 4941 nodes and largest had 10,000 nodes. For both problems, for comparison purposes,

we run one V-cycle of the multilevel framework with the different NISQ devices multiple times and

compared the results to the state-of-art methods. Our experimental results give comparable results to

the state-of-the-art methods and for some cases we were able to get the best-known results. This work

therefore provides an important stepping stone to demonstrating practical Quantum Advantage. As

the capabilities of NISQ devices increase, we are hopeful that similar methods can provide a path

to adoption of quantum computers for a variety of business and scientific applications.
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namics, and function using NetworkX. In Gaël Varoquaux, Travis Vaught, and Jarrod Mill-
man, editors, Proceedings of the 7th Python in Science Conference (SciPy 2008), pages 11–15,
Pasadena, CA USA, 2008.

[102] Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and
clustering. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 11(9):1074–1085, 1992.

[103] William W Hager, James T Hungerford, and Ilya Safro. A multilevel bilinear programming
algorithm for the vertex separator problem. Computational Optimization and Applications, 69
(1):189–223, 2018.

139

https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1145/3352460.3358313
https://doi.org/10.1038/s41598-019-43176-9


[104] Ryan Hamerly, Takahiro Inagaki, Peter L. McMahon, Davide Venturelli, Alireza Marandi,
Tatsuhiro Onodera, Edwin Ng, Carsten Langrock, Kensuke Inaba, Toshimori Honjo, Koji
Enbutsu, Takeshi Umeki, Ryoichi Kasahara, Shoko Utsunomiya, Satishi Kako, Ken-ichi
Kawarabayashi, Robert L Byer, Martin M Fejer, Hideo Mabuchi, Dirk Englund, Eleanor Ri-
effel, Hiroki Takesue, and Yoshihisa Yamamoto. Experimental investigation of performance
differences between coherent ising machines and a quantum annealer. Science Advances, 5(5):
eaau0823, 2019.

[105] Niels W Hanson, Kishori M Konwar, Alyse K Hawley, Tomer Altman, Peter D Karp, and
Steven J Hallam. Metabolic pathways for the whole community. BMC genomics, 15(1):619,
2014.

[106] R. Harris, Y. Sato, A. J. Berkley, M. Reis, F. Altomare, M. H. Amin, K. Boothby, P. Bunyk,
C. Deng, C. Enderud, S. Huang, E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky,
T. Lanting, R. Li, T. Medina, R. Molav, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-
Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, and J. Yao.
Phase transitions in a programmable quantum spin glass simulator. Science, 361:162–165,
2017.

[107] Aram Harrow and John Napp. Low-depth gradient measurements can improve convergence in
variational hybrid quantum-classical algorithms. arXiv:1901.05374, 2019.

[108] William E Hart, Carl D Laird, Jean-Paul Watson, David L Woodruff, Gabriel A Hackebeil,
Bethany L Nicholson, and John D Siirola. Pyomo-optimization modeling in python, volume 67.
Springer, 2017.

[109] Matthew B. Hastings. Classical and quantum bounded depth approximation algorithms.
arXiv:1905.07047, 2019.

[110] Bruce Hendrickson and Robert W Leland. A multi-level algorithm for partitioning graphs.
SC, 95(28), 1995.

[111] Michael A Heroux, Roscoe A Bartlett, Vicki E Howle, Robert J Hoekstra, Jonathan J Hu,
Tamara G Kolda, Richard B Lehoucq, Kevin R Long, Roger P Pawlowski, Eric T Phipps,
et al. An overview of the trilinos project. ACM Trans. Math. Software, 31(3):397–423, 2005.

[112] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. Engineering a scalable high quality
graph partitioner. In 2010 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS). IEEE, 2010. doi: 10.1109/ipdps.2010.5470485. URL https://doi.org/10.1109/

ipdps.2010.5470485.

[113] Reiner Horst, Panos M Pardalos, and Nguyen Van Thoai. Introduction to global optimization.
Springer Science & Business Media, 2000.

[114] Shenglong Hu and Liqun Qi. Algebraic connectivity of an even uniform hypergraph. J. Comb.
Optim., 24(4):564–579, 2012.

[115] Cupjin Huang, Mario Szegedy, Fang Zhang, Xun Gao, Jianxin Chen, and Yaoyun Shi. Alibaba
cloud quantum development platform: Applications to quantum algorithm design, 2019.

[116] Stephen Hudson, Jeffrey Larson, Stefan M. Wild, and David Bindel. libEnsemble users man-
ual, 2019. URL https://buildmedia.readthedocs.org/media/pdf/libensemble/latest/

libensemble.pdf.

[117] IARPA. Quantum Enhanced Optimization (QEO). https://www.iarpa.gov/index.php/

research-programs/qeo. [Online; accessed September 25, 2018].

140

https://doi.org/10.1109/ipdps.2010.5470485
https://doi.org/10.1109/ipdps.2010.5470485
https://buildmedia.readthedocs.org/media/pdf/libensemble/latest/libensemble.pdf
https://buildmedia.readthedocs.org/media/pdf/libensemble/latest/libensemble.pdf
https://www.iarpa.gov/index.php/research-programs/qeo
https://www.iarpa.gov/index.php/research-programs/qeo


[118] Edmund Ihler, Dorothea Wagner, and Frank Wagner. Modeling hypergraphs by graphs with
the same mincut properties. Inf. Process. Lett., 45(4):171–175, 1993.

[119] Zhang Jiang, Eleanor G Rieffel, and Zhihui Wang. Near-optimal quantum circuit for Grover’s
unstructured search using a transverse field. Physical Review A, 95(6):062317, 2017.

[120] DS Johnson. Local search and the traveling salesman problem. In Proceedings of 17th Inter-
national Colloquium on Automata Languages and Programming, Lecture Notes in Computer
Science,(Springer-Verlag, Berlin, 1990), pages 443–460, 1990.

[121] Steven G Johnson. The NLopt nonlinear-optimization package, 2019. URL http://github.

com/stevengj/nlopt.

[122] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–. URL http://www.scipy.org/. [Online; accessed September 21, 2018].

[123] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M
Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. Nature, 549(7671):242, 2017.

[124] Peter J Karalekas, Nikolas A Tezak, Eric C Peterson, Colm A Ryan, Marcus P da Silva, and
Robert S Smith. A quantum-classical cloud platform optimized for variational hybrid algo-
rithms. Quantum Science and Technology, 5(2):024003, April 2020. doi: 10.1088/2058-9565/
ab7559. URL https://doi.org/10.1088/2058-9565/ab7559.

[125] Hamed Karimi and Gili Rosenberg. Boosting quantum annealer performance via sample per-
sistence. Quantum Information Processing, 16(7):166, 2017.

[126] Hamed Karimi, Gili Rosenberg, and Helmut G Katzgraber. Effective optimization using sam-
ple persistence: A case study on quantum annealers and various monte carlo optimization
methods. Physical Review E, 96(4):043312, 2017.

[127] Richard M Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

[128] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. Technical Report TR-
95-037, Computer Science Dept., Univ. of Minnesota, Minneapolis, MN, 1995.

[129] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[130] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph
partitioning: applications in vlsi domain. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
7(1):69–79, 1999.

[131] Carl T Kelley. Iterative methods for optimization. SIAM, 1999.

[132] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J., 49(2):291–307, 1970.

[133] Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, and Prasanna Balaprakash.
Learning to optimize variational quantum circuits to solve combinatorial problems. Proceedings
of the Thirty-Forth AAAI Conference on Artificial Intelligence (AAAI-20), 2019.

[134] Andrew D King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew
Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, et al. Observation
of topological phenomena in a programmable lattice of 1,800 qubits. Nature, 560(7719):456,
2018.

141

http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
http://www.scipy.org/
https://doi.org/10.1088/2058-9565/ab7559


[135] Andrew D King, Jack Raymond, Trevor Lanting, Sergei V Isakov, Masoud Mohseni, Gabriel
Poulin-Lamarre, Sara Ejtemaee, William Bernoudy, Isil Ozfidan, Anatoly Y Smirnov, Mauri-
cio Reis, Fabio Altomare, Michael Babcock, Catia Baron, Andrew J Berkley, Kelly Boothby,
Paul I Bunyk, Holly Christiani, Colin Enderud, Bram Evert, Richard Harris, Emile Hoskin-
son, Shuiyuan Huang, Kais Jooya, Ali Khodabandelou, Nicolas Ladizinsky, Ryan Li, P Aaron
Lott, Allison J R MacDonald, Danica Marsden, Gaelen Marsden, Teresa Medina, Reza
Molavi, Richard Neufeld, Mana Norouzpour, Travis Oh, Igor Pavlov, Ilya Perminov, Thomas
Prescott, Chris Rich, Yuki Sato, Benjamin Sheldan, George Sterling, Loren J Swenson,
Nicholas Tsai, Mark H Volkmann, Jed D. Whittaker, Warren Wilkinson, Jason Yao, Hart-
mut Neven, Jeremy P Hilton, Eric Ladizinsky, Mark W Johnson, and Mohammad H Amin.
Scaling advantage in quantum simulation of geometrically frustrated magnets. arXiv preprint
arXiv:1911.03446, 2019.
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