139 research outputs found

    Incorporating risk in field services operational planning process

    Get PDF
    © Springer Nature Switzerland AG 2018. This paper presents a model for the risk minimisation objective in the Stochastic Vehicle Routing Problem (SVRP). In the studied variant of SVRP, service times and travel times are subject to stochastic events, and a time window is constraining the start time for service task. Required skill levels and task priorities increase the complexity of this problem. Most previous research uses a chance-constrained approach to the problem and their objectives are related to traditional routing costs whilst a different approach was taken in this paper. The risk of missing a task is defined as the probability that the technician assigned to the task arrives at the customer site later than the time window. The problem studied in this paper is to generate a schedule that minimises the maximum of risks and sum of risks over all the tasks considering the effect of skill levels and task priorities. The stochastic duration of each task is supposed to follow a known normal distribution. However, the distribution of the start time of the service at a customer site will not be normally distributed due to time window constraints. A method is proposed and tested to approximate the start time distribution as normal. Moreover, a linear model can be obtained assuming identical variance of task durations. Additionally Simulated Annealing method was applied to solve the problem. Results of this work have been applied to an industrial case of SVRP where field engineering individuals drive to customer sites to provide time-constrained services. This original approach gives a robust schedule and allows organisations to pay more attention to increasing customer satisfaction and become more competitive in the market

    Dynamic routing on stochastic time-dependent networks using real-time information

    Get PDF
    In just-in-time (JIT) manufacturing environments, on-time delivery is one of the key performance measures for dispatching and routing of freight vehicles. Both the travel time delay and its variability impact the efficiency of JIT logistics operations, that are becoming more and more common in many industries, and in particular, the automotive industry. In this dissertation, we first propose a framework for dynamic routing of a single vehicle on a stochastic time dependent transportation network using real-time information from Intelligent Transportation Systems (ITS). Then, we consider milk-run deliveries with several pickup and delivery destinations subject to time windows under same network settings. Finally, we extend our dynamic routing models to account for arc traffic condition dependencies on the network. Recurrent and non-recurrent congestion are the two primary reasons for travel time delay and variability, and their impact on urban transportation networks is growing in recent decades. Hence, our routing methods explicitly account for both recurrent and non-recurrent congestion in the network. In our modeling framework, we develop alternative delay models for both congestion types based on historical data (e.g., velocity, volume, and parameters for incident events) and then integrate these models with the forward-looking routing models. The dynamic nature of our routing decisions exploits the real-time information available from various ITS sources, such as loop sensors. The forward-looking traffic dynamic models for individual arcs are based on congestion states and state transitions driven by time-dependent Markov chains. We propose effective methods for estimation of the parameters of these Markov chains. Based on vehicle location, time of day, and current and projected network congestion states, we generate dynamic routing policies using stochastic dynamic programming formulations. All algorithms are tested in simulated networks of Southeast-Michigan and Los Angeles, CA freeways and highways using historical traffic data from the Michigan ITS Center, Traffic.com, and Caltrans PEMS

    A Novel Method of Violated Constraint Prediction with Modified Spatial Analysis based Fuzzy Sorting

    Get PDF
    Mobility Prediction of a Moving Node and Network Delay is an important performance characteristic of a wireless network. The Data delivery Delay of a network specifies how long it takes for a data to travel across the network from one node or endpoint to another. It is typically measured in multiples or fractions of seconds. The work presented here belongs to domain of data mining cum wireless network , the Real Time Early Prediction of network delay based on mobility is done using the proposed spatial analysis for constraint violation prediction method. A New application is presented concerning the Delivery delays of UDP packets in GPRS network. The GPS points that are collected from GPS module is analyzed using proposed spatial analysis, for future location prediction using Timestamps as primary data

    Frequency analysis of hazardous material transportation incidents as a function of distance from origin to incident location

    Get PDF
    According to the United States Department of Transportation (USDOT), more than 3.1 billion tons of hazardous materials (HazMat) are shipped within the country annually. This averages to about 800,000 individual shipments of hazardous materials per day, of which 300,000 are shipments of petroleum/flammable-combustible liquids. This paper presents a temporal trend study (1995-2004) of 1,850 HazMat incidents occurring through the transportation of flammable-combustible liquids. The study was centered about HazMat shipments originating within five states (California, Illinois, Iowa, New Jersey, Texas) chosen for their geographic variations in size and location. The main objective of this study is to conduct a frequency analysis of HazMat incident as a function of distance between origin and incident location. Procedures for this study entailed compiling a sample of HazMat road incidents originating within the selected states and generating the great-circle distance from their originating location to sites of incident. The distance between origin and incident locations were attained through great-circle calculations because data compilation did not allow for the identification of specific routes utilized in commodity transport. Key findings of the analysis illustrated a bimodal distribution of incident frequency as a function of the great-circle log distance. The first mode presented an average distance of incident which was short haul in classification. The second mode presented an average distance of incident which was long-haul in classification. The study also addressed incidents as they occurred within primary phases within transportation. For all phases, incidents occurred at average distances which are long haul in classification. Time series forecasting suggests continuing trends in HazMat incidents. Findings of this study speculate fatigue to be a contributing factor for incident occurrences. This requires that more research be carried out on various aspects of flammable-combustible liquids such as hours-of-service regulations, fatigue and incident reporting

    Multiperiod Dispatching and Routing for On-Time Delivery in a Dynamic and Stochastic Environment

    Full text link
    On-demand delivery has become increasingly popular around the world. Brick-and-mortar grocery stores, restaurants, and pharmacies are providing fast delivery services to satisfy the growing home delivery demand. Motivated by a large meal and grocery delivery company, we model and solve a multiperiod driver dispatching and routing problem for last-mile delivery systems where on-time performance is the main target. The operator of this system needs to dispatch a set of drivers and specify their delivery routes in a stochastic environment, in which random demand arrives over a fixed number of periods. The resulting dynamic program is challenging to solve due to the curse of dimensionality. We propose a novel approximation framework to approximate the value function via a simplified dispatching program. We then develop efficient exact algorithms for this problem based on Benders decomposition and column generation. We validate the superior performance of our framework and algorithms via extensive numerical experiments. Tested on a real-world data set, we quantify the value of adaptive dispatching and routing in on-time delivery and highlight the need of coordinating these two decisions in a dynamic setting. We show that dispatching multiple vehicles with short trips is preferable for on-time delivery, as opposed to sending a few vehicles with long travel times

    Service scheduling and vehicle routing problem to minimise the risk of missing appointments

    Get PDF
    This research studies a workforce scheduling and vehicle routing problem where technicians drive a vehicle to customer locations to perform service tasks. The service times and travel times are subject to stochastic events. There is an agreed time window for starting each service task. The risk of missing the time window for a task is defined as the probability that the technician assigned to the task arrives at the customer site later than the time window. The problem is to generate a schedule that minimises the maximum of risks and the sum of risks of all the tasks considering the effect of skill levels and task priorities. A new approach is taken to build schedules that minimise the risks of missing appointments as well as the risks of technicians not being able to complete their daily tours on time.We first analyse the probability distribution of the arrival time to any customer location considering the distributions of activities prior to this arrival. Based on the analysis, an efficient estimation method for calculating the risks is proposed, which is highly accurate and this is verified by comparing the results of the estimation method with a numerical integral method.We then develop three new workforce scheduling and vehicle routing models that minimise the risks with different considerations such as an identical standard deviation of the duration for all uncertain tasks in the linear risk minimisation model, and task priorities in the priority task risk minimisation model. A simulated annealing algorithm is implemented for solving the models at the start of the day and for re-optimisation during the day. Computational experiments are carried out to compare the results of the risk minimisation models with those of the traditional travel cost model. The performance is measured using risks and robustness. Simulation is used to compare the numbers of missed appointments and test the effect of re-optimisation.The results of the experiments demonstrate that the new models significantly reduce the risks and generate schedules with more contingency time allowances. Simulation results also show that re-optimisation reduces the number of missed appointments significantly. The risk calculation methods and risk minimisation algorithm are applied to a real-world problem in the telecommunication sector.</div

    Algorithms for the multi-objective vehicle routing problem with hard time windows and stochastic travel time and service time

    Get PDF
    This paper introduces a multi-objective vehicle routing problem with hard time windows and stochastic travel and service times. This problem has two practical objectives: minimizing the operational costs, and maximizing the service level. These objectives are usually conflicting. Thus, we follow a multi-objective approach, aiming to compute a set of Pareto-optimal alternatives with different trade-offs for a decision maker to choose from. We propose two algorithms (a Multi-Objective Memetic Algorithm and a Multi-Objective Iterated Local Search) and compare them to an evolutionary multi-objective optimizer from the literature. We also propose a modified statistical method for the service level calculation. Experiments based on an adapted version of the 56 Solomon instances demonstrate the effectiveness of the proposed algorithms

    Optimization of time-dependent routing problems considering dynamic paths and fuel consumption

    Get PDF
    Ces dernières années, le transport de marchandises est devenu un défi logistique à multiples facettes. L’immense volume de fret a considérablement augmenté le flux de marchandises dans tous les modes de transport. Malgré le rôle vital du transport de marchandises dans le développement économique, il a également des répercussions négatives sur l’environnement et la santé humaine. Dans les zones locales et régionales, une partie importante des livraisons de marchandises est transportée par camions, qui émettent une grande quantité de polluants. Le Transport routier de marchandises est un contributeur majeur aux émissions de gaz à effet de serre (GES) et à la consommation de carburant. Au Canada, les principaux réseaux routiers continuent de faire face à des problèmes de congestion. Pour réduire significativement l’impact des émissions de GES reliées au transport de marchandises sur l’environnement, de nouvelles stratégies de planification directement liées aux opérations de routage sont nécessaires aux niveaux opérationnel, environnemental et temporel. Dans les grandes zones urbaines, les camions doivent voyager à la vitesse imposée par la circulation. Les embouteillages ont des conséquences défavorables sur la vitesse, le temps de déplacement et les émissions de GES, notamment à certaines périodes de la journée. Cette variabilité de la vitesse dans le temps a un impact significatif sur le routage et la planification du transport. Dans une perspective plus large, notre recherche aborde les Problèmes de distribution temporels (Time-Dependent Distribution Problems – TDDP) en considérant des chemins dynamiques dans le temps et les émissions de GES. Considérant que la vitesse d’un véhicule varie en fonction de la congestion dans le temps, l’objectif est de minimiser la fonction de coût de transport total intégrant les coûts des conducteurs et des émissions de GES tout en respectant les contraintes de capacité et les restrictions de temps de service. En outre, les informations géographiques et de trafic peuvent être utilisées pour construire des multigraphes modélisant la flexibilité des chemins sur les grands réseaux routiers, en tant qu’extension du réseau classique des clients. Le réseau physique sous-jacent entre chaque paire de clients pour chaque expédition est explicitement considéré pour trouver des chemins de connexion. Les décisions de sélection de chemins complètent celles de routage, affectant le coût global, les émissions de GES, et le temps de parcours entre les nœuds. Alors que l’espace de recherche augmente, la résolution des Problèmes de distribution temporels prenant en compte les chemins dynamiques et les vitesses variables dans le temps offre une nouvelle possibilité d’améliorer l’efficacité des plans de transport... Mots clés : Routage dépendant du temps; chemins les plus rapides dépendant du temps; congestion; réseau routier; heuristique; émissions de gaz à effet de serre; modèles d’émission; apprentissage superviséIn recent years, freight transportation has evolved into a multi-faceted logistics challenge. The immense volume of freight has considerably increased the flow of commodities in all transport modes. Despite the vital role of freight transportation in the economic development, it also negatively impacts both the environment and human health. At the local and regional areas, a significant portion of goods delivery is transported by trucks, which emit a large amount of pollutants. Road freight transportation is a major contributor to greenhouse gas (GHG) emissions and to fuel consumption. To reduce the significant impact of freight transportation emissions on environment, new alternative planning and coordination strategies directly related to routing and scheduling operations are required at the operational, environmental and temporal dimensions. In large urban areas, trucks must travel at the speed imposed by traffic, and congestion events have major adverse consequences on speed level, travel time and GHG emissions particularly at certain periods of day. This variability in speed over time has a significant impact on routing and scheduling. From a broader perspective, our research addresses Time-Dependent Distribution Problems (TDDPs) considering dynamic paths and GHG emissions. Considering that vehicle speeds vary according to time-dependent congestion, the goal is to minimize the total travel cost function incorporating driver and GHG emissions costs while respecting capacity constraints and service time restrictions. Further, geographical and traffic information can be used to construct a multigraph modeling path flexibility on large road networks, as an extension to the classical customers network. The underlying physical sub-network between each pair of customers for each shipment is explicitly considered to find connecting road paths. Path selection decisions complement routing ones, impacting the overall cost, GHG emissions, the travel time between nodes, and thus the set of a feasible time-dependent least cost paths. While the search space increases, solving TDDPs considering dynamic paths and time-varying speeds may provide a new scope for enhancing the effectiveness of route plans. One way to reduce emissions is to consider congestion and being able to route traffic around it. Accounting for and avoiding congested paths is possible as the required traffic data is available and, at the same time, has a great potential for both energy and cost savings. Hence, we perform a large empirical analysis of historical traffic and shipping data. Therefore, we introduce the Time-dependent Quickest Path Problem with Emission Minimization, in which the objective function comprises GHG emissions, driver and congestion costs. Travel costs are impacted by traffic due to changing congestion levels depending on the time of the day, vehicle types and carried load. We also develop time-dependent lower and upper bounds, which are both accurate and fast to compute. Computational experiments are performed on real-life instances that incorporate the variation of traffic throughout the day. We then study the quality of obtained paths considering time-varying speeds over the one based only on fixed speeds... Keywords : Time-dependent routing; time-dependent quickest paths; traffic congestion; road network; heuristic; greenhouse gas emissions; emission models; supervised learning

    Routing Optimization Under Uncertainty

    Get PDF
    We consider a class of routing optimization problems under uncertainty in which all decisions are made before the uncertainty is realized. The objective is to obtain optimal routing solutions that would, as much as possible, adhere to a set of specified requirements after the uncertainty is realized. These problems include finding an optimal routing solution to meet the soft time window requirements at a subset of nodes when the travel time is uncertain, and sending multiple capacitated vehicles to different nodes to meet the customers’ uncertain demands. We introduce a precise mathematical framework for defining and solving such routing problems. In particular, we propose a new decision criterion, called the Requirements Violation (RV) Index, which quantifies the risk associated with the violation of requirements taking into account both the frequency of violations and their magnitudes whenever they occur. The criterion can handle instances when probability distributions are known, and ambiguity when distributions are partially characterized through descriptive statistics such as moments. We develop practically efficient algorithms involving Benders decomposition to find the exact optimal routing solution in which the RV Index criterion is minimized, and we give numerical results from several computational studies that show the attractive performance of the solutions
    • …
    corecore