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Résumé

Ces dernières années, le transport de marchandises est devenu un défi logistique à multiples
facettes. L’immense volume de fret a considérablement augmenté le flux de marchandises
dans tous les modes de transport. Malgré le rôle vital du transport de marchandises dans le
développement économique, il a également des répercussions négatives sur l’environnement et
la santé humaine. Dans les zones locales et régionales, une partie importante des livraisons
de marchandises est transportée par camions, qui émettent une grande quantité de polluants.
Le Transport routier de marchandises est un contributeur majeur aux émissions de gaz à effet
de serre (GES) et à la consommation de carburant.

Au Canada, les principaux réseaux routiers continuent de faire face à des problèmes de conges-
tion. Pour réduire significativement l’impact des émissions de GES reliées au transport de
marchandises sur l’environnement, de nouvelles stratégies de planification directement liées
aux opérations de routage sont nécessaires aux niveaux opérationnel, environnemental et tem-
porel. Dans les grandes zones urbaines, les camions doivent voyager à la vitesse imposée par
la circulation. Les embouteillages ont des conséquences défavorables sur la vitesse, le temps
de déplacement et les émissions de GES, notamment à certaines périodes de la journée. Cette
variabilité de la vitesse dans le temps a un impact significatif sur le routage et la planification
du transport.

Dans une perspective plus large, notre recherche aborde les Problèmes de distribution temporels
(Time-Dependent Distribution Problems – TDDP) en considérant des chemins dynamiques
dans le temps et les émissions de GES. Considérant que la vitesse d’un véhicule varie en
fonction de la congestion dans le temps, l’objectif est de minimiser la fonction de coût de
transport total intégrant les coûts des conducteurs et des émissions de GES tout en respectant
les contraintes de capacité et les restrictions de temps de service. En outre, les informations
géographiques et de trafic peuvent être utilisées pour construire des multigraphes modélisant la
flexibilité des chemins sur les grands réseaux routiers, en tant qu’extension du réseau classique
des clients. Le réseau physique sous-jacent entre chaque paire de clients pour chaque expédition
est explicitement considéré pour trouver des chemins de connexion. Les décisions de sélection
de chemins complètent celles de routage, affectant le coût global, les émissions de GES, et le
temps de parcours entre les nœuds. Alors que l’espace de recherche augmente, la résolution
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des Problèmes de distribution temporels prenant en compte les chemins dynamiques et les
vitesses variables dans le temps offre une nouvelle possibilité d’améliorer l’efficacité des plans
de transport.

Une façon de réduire les émissions est de considérer la congestion et d’être en mesure de
l’éviter. L’évitement des routes encombrées est possible, car les données de trafic requises sont
facilement disponibles et, en même temps, ont un grand potentiel d’économies d’énergie et de
coûts. Par conséquent, nous effectuons une analyse empirique des données historiques de trafic
et d’expédition. Nous introduisons le Problème du chemin le plus rapide dépendant
du temps avec la minimisation des émissions, dans lequel la fonction objectif comprend
les coûts des émissions de GES, du conducteur et de congestion. Les coûts de déplacement
sont affectés par le trafic en raison de l’évolution des niveaux de congestion en fonction de
l’heure de la journée, des types de véhicules et de la charge transportée. Nous développons
également des limites inférieures et supérieures dépendant du temps, qui sont à la fois précises
et rapides à calculer. Les expériences numériques sont effectuées sur des instances réelles qui
intègrent la variation du trafic tout au long de la journée. Nous étudions ensuite la qualité
des trajectoires obtenues en considérant des vitesses variant avec le temps par rapport à celles
basées uniquement sur des vitesses fixes.

Une variété de chemins alternatifs peut exister entre deux destinations si l’on considère tous
les arcs individuels les reliant. Le Problème de tournées des véhicules dépendant du
temps avec minimisation des émissions et des coûts en considérant les chemins
dynamiques consiste à planifier les déplacements d’un parc de véhicules pour desservir un
ensemble de clients sur un réseau dépendant du temps modélisé en multigraphe. La vitesse
de déplacement sur chaque arc change avec le temps. Pour résoudre le problème, nous pro-
posons une heuristique efficace du plus proche voisin, impliquant le calcul rapide de trajets
point à point dépendant du temps en fonction de différentes mesures telles que le temps, la
consommation de carburant ou le coût. Basées sur de nouvelles instances à grande échelle qui
représentent de manière réaliste des opérations de transport de fret et qui capturent les pé-
riodes congestionnées en utilisant des réseaux routiers réels et de grands ensembles de données
d’observations de vitesse, des expériences de calcul approfondies sont menées. Nous effectuons
également une analyse de sensibilité pour évaluer les effets du choix du moment de départ,
des décisions d’évitement de congestion et des demandes des clients sur les plans de routage
résultants. Nous effectuons une évaluation approfondie de l’efficacité de notre méthode de
solution par rapport à celle classique basée sur les limites de vitesse sans tenir compte de la
congestion du trafic.

L’estimation de la consommation de carburant étant un élément clé de la logistique durable,
la thèse contribue à proposer et à évaluer l’exactitude des modèles classiques et à développer
de nouveaux modèles de consommation pour les tournées de véhicules. À partir de données
réelles sur la consommation instantanée de carburant, d’observations de vitesses variables
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dans le temps et de données de trafic liées à un grand nombre d’opérations de livraison, nous
proposons des méthodes efficaces pour estimer la consommation de carburant. En effectuant
une analyse de régression non linéaire en utilisant des méthodes d’apprentissage supervisé, à
savoir les Réseaux de neurones, Machines à vecteurs de support, Arbres d’inférence
conditionnelle et Descente de gradient, de nouveaux modèles de consommation pour
améliorer la précision de la prévision sont développés. Notre objectif est d’estimer correctement
la consommation pour un acheminement point à point dépendant du temps dans des conditions
réalistes en tenant compte des opérations de transport de marchandises pendant l’heure de
pointe, des schémas de conduite arrêt-départ, des états de ralenti et de la variation des charges.
Nous comparons l’efficacité des modèles de consommation basés sur l’apprentissage supervisé
par rapport au modèle CMEM (Comprehensive Modal Emissions Model) et la méthodologie
d’estimation de la consommation de carburant provenant des transports (MEET) dans la
prédiction de la consommation.

Cette thèse est organisée comme suit. Après un chapitre général d’introduction, nous présen-
tons une étude bibliographique des thèmes étudiés, suivie de deux chapitres sur le problème de
distribution temporel en considérant les trajectoires dynamiques et les émissions de GES sur
un réseau dépendant du temps. Le quatrième chapitre se concentre sur les méthodes de prévi-
sion de la consommation de carburant en utilisant l’apprentissage supervisé. Des conclusions
et orientations pour les travaux futurs sont présentées dans le dernier chapitre.

Mots clés: Routage dépendant du temps; chemins les plus rapides dépendant du temps;
congestion; réseau routier; heuristique; émissions de gaz à effet de serre; modèles d’émission;
apprentissage supervisé
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Abstract

In recent years, freight transportation has evolved into a multi-faceted logistics challenge. The
immense volume of freight has considerably increased the flow of commodities in all transport
modes. Despite the vital role of freight transportation in the economic development, it also
negatively impacts both the environment and human health. At the local and regional areas,
a significant portion of goods delivery is transported by trucks, which emit a large amount
of pollutants. Road freight transportation is a major contributor to greenhouse gas (GHG)
emissions and to fuel consumption.

To reduce the significant impact of freight transportation emissions on environment, new
alternative planning and coordination strategies directly related to routing and scheduling
operations are required at the operational, environmental and temporal dimensions. In large
urban areas, trucks must travel at the speed imposed by traffic, and congestion events have
major adverse consequences on speed level, travel time and GHG emissions particularly at
certain periods of day. This variability in speed over time has a significant impact on routing
and scheduling.

From a broader perspective, our research addresses Time-Dependent Distribution Problems
(TDDPs) considering dynamic paths and GHG emissions. Considering that vehicle speeds
vary according to time-dependent congestion, the goal is to minimize the total travel cost
function incorporating driver and GHG emissions costs while respecting capacity constraints
and service time restrictions. Further, geographical and traffic information can be used to
construct a multigraph modeling path flexibility on large road networks, as an extension to
the classical customers network. The underlying physical sub-network between each pair of
customers for each shipment is explicitly considered to find connecting road paths. Path
selection decisions complement routing ones, impacting the overall cost, GHG emissions, the
travel time between nodes, and thus the set of a feasible time-dependent least cost paths. While
the search space increases, solving TDDPs considering dynamic paths and time-varying speeds
may provide a new scope for enhancing the effectiveness of route plans.

One way to reduce emissions is to consider congestion and being able to route traffic around
it. Accounting for and avoiding congested paths is possible as the required traffic data is
available and, at the same time, has a great potential for both energy and cost savings. Hence,
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we perform a large empirical analysis of historical traffic and shipping data. Therefore, we
introduce the Time-dependent Quickest Path Problem with Emission Minimization,
in which the objective function comprises GHG emissions, driver and congestion costs. Travel
costs are impacted by traffic due to changing congestion levels depending on the time of the
day, vehicle types and carried load. We also develop time-dependent lower and upper bounds,
which are both accurate and fast to compute. Computational experiments are performed on
real-life instances that incorporate the variation of traffic throughout the day. We then study
the quality of obtained paths considering time-varying speeds over the one based only on fixed
speeds.

A variety of alternative paths exist between a pair of customer nodes and each path is taken as a
distinct sequence of arcs connecting the two nodes. The Time-dependent Vehicle Routing
Problem with Emission and Cost Minimization considering Dynamic Paths consists
of routing a fleet of vehicles to serve a set of customers across a time-dependent network
modeled as a multigraph in which the traveling speed of each arc changes over time. To solve
the problem we propose an efficient nearest neighbor improvement heuristic involving the fast
computation of time-dependent point-to-point paths based on different measures such as time,
fuel consumption, or cost. Based on new large-scale benchmark instances that realistically
represent typical freight distribution operations and capture congested periods using real-life
road networks and large data sets of speed observations, extensive computational experiments
are conducted. We also carry out sensitivity analysis to assess the effects of departure time
choice, congestion avoidance decisions and customer demands on the resulting routing plans.
We perform an extensive assessment of the efficiency of our solution method compared to a
classical one based on speed limits without regard to traffic congestion.

Since emission estimations is a key element of green logistics, this thesis proposes and assesses
the accuracy of both classical and new emission models for vehicle routing. Based on real-world
data of instantaneous fuel consumption, time-varying speeds observations, and traffic data re-
lated to a large set of shipping operations we propose effective methods to estimate GHG
emissions. By carrying out nonlinear regression analysis using supervised learning methods,
namely Neural Networks, Support Vector Machines, Conditional Inference Trees,
and Gradient Boosting Machines, we develop new emission models to improve prediction
accuracy. Our purpose is to correctly estimate emissions for time-dependent point-to-point
routing under realistic conditions taking into account freight transportation operations during
peak hour traffic congestion, stop-and-go driving patterns, idle vehicle states, and the varia-
tion of vehicle loads. Through extensive computational experiments under real data sets we
compare the effectiveness of the proposed machine learning emissions models against the Com-
prehensive Modal Emissions Model (CMEM) and the Methodology for Estimating air pollutant
Emissions from Transport (MEET) in the prediction of emissions.

This thesis is organized as follows. After a general introduction chapter, we present a literature
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survey of the studied themes, followed by two chapters on the time-dependent distribution
problem considering dynamic paths and GHG emissions on a time-dependent network. The
fourth chapter focuses on emissions estimation using supervised learning methods. Conclusions
and directions for future work are presented in the last chapter.

Keywords: Time-dependent routing; time-dependent quickest paths; traffic congestion; road
network; heuristic; greenhouse gas emissions; emission models; supervised learning.

viii



Contents

Résumé iii

Abstract vi

Contents ix

List of Tables xii

List of Figures xiii

List of Abbreviations xiv

Acknowledgments xvii

Preface xix

1 Introduction 1
1.1 Road freight transportation and environment . . . . . . . . . . . . . . . . . 2

1.1.1 Freight traffic growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Greenhouse gas emissions trends in the freight transportation sector 3
1.1.3 High cost of congestion . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Efficiency of distribution operations and environmental performance 5

1.2 Machine learning in green logistics . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Stating the research problem . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The shortest path problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The time-dependent shortest path problem and its variants . . . . . . . . . 12

2.3.1 Basic definitions, mathematical models and properties . . . . . . . . 12
2.3.2 FIFO property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Existing models for time-dependent networks . . . . . . . . . . . . . 15

2.3.3.1 Flow speed model . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3.2 Link travel time model . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Major contributions on the TDSPP and typologies of the problem . 18
2.3.4.1 The basic time-dependent shortest path problem . . . . . . 18
2.3.4.2 The time-dependent quickest path problem . . . . . . . . . 20

ix



2.3.4.3 The time-dependent emissions minimizing path problem . . 23
2.4 The green routing problem and its variants . . . . . . . . . . . . . . . . . . 24

2.4.1 Mathematical model for the pollution routing problem . . . . . . . . 24
2.4.2 Contributions on the GVRP and its extensions . . . . . . . . . . . . 27

2.4.2.1 The bi-objective PRP . . . . . . . . . . . . . . . . . . . . . 28
2.4.2.2 The fleet size and mix PRP . . . . . . . . . . . . . . . . . . 28
2.4.2.3 The time-dependent green vehicle routing problem . . . . . 32

2.5 Discussion and direction for future research . . . . . . . . . . . . . . . . . . 33

3 Time-Dependent Quickest Path Problem with Emission Minimization 35
Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 The time-dependent quickest path problem . . . . . . . . . . . . . . 39
3.2.2 Time-dependent pollution-routing and emissions-minimized paths . . 40

3.3 Formal description and problem statement . . . . . . . . . . . . . . . . . . . 41
3.3.1 Time-dependent GHG emission and fuel consumption functions . . . 43
3.3.2 Time-dependent travel cost function . . . . . . . . . . . . . . . . . . 44

3.4 Time-dependent lower and upper bounds for the TDQPP-EM . . . . . . . . 45
3.4.1 A lower bound on the cost ϕ(p∗c) . . . . . . . . . . . . . . . . . . . . 46
3.4.2 A worst-case analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Design of efficient TDQPP-EM algorithms . . . . . . . . . . . . . . . . . . . 49
3.5.1 Time-dependent arrival time and travel time computation . . . . . . 49
3.5.2 Time-dependent fuel consumption and travel cost computation . . . 49
3.5.3 Time-dependent Dijkstra algorithms . . . . . . . . . . . . . . . . . . 51
3.5.4 Dijkstra-SL and fast computation of time-dependent least cost upper

and lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Benchmarks set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.3 Computational results and analysis . . . . . . . . . . . . . . . . . . . 55

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A An integer linear programming formulation for the TDQPP-EM 63

4 Time-dependent Vehicle Routing Problem with Emission and Cost
Minimization considering Dynamic Paths 65
Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Green logistics problems . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Time-dependent routing . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Modeling GHG emissions . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Modeling travel costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Heuristic methods for the TDVRP-ECMDP . . . . . . . . . . . . . . . . . . 75

x



4.4.1 Static nearest neighbor heuristic . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Time-dependent nearest neighbor heuristic . . . . . . . . . . . . . . 76
4.4.3 Time-dependent nearest neighbor and improvement heuristic . . . . 78

4.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.1 Proposed benchmark instances . . . . . . . . . . . . . . . . . . . . . 80
4.5.2 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B CMEM parameters 91

C Time-dependent Dijkstra label-setting algorithm 92

5 Measuring emissions in vehicle routing: new emission estimation mod-
els using supervised learning 93
Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Existing emission estimation models . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Time-dependent emission function using CMEM . . . . . . . . . . . 98
5.2.2 Time-dependent emission function using MEET . . . . . . . . . . . . 100

5.3 Data collection and analysis of emissions . . . . . . . . . . . . . . . . . . . . 101
5.4 Emission modeling with supervised learning methods . . . . . . . . . . . . . 105

5.4.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.3 Conditional Inference Trees . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.4 Gradient Boosting Machines . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5.1 Experimental results and analysis . . . . . . . . . . . . . . . . . . . . 110

5.6 Conclusions and future research . . . . . . . . . . . . . . . . . . . . . . . . . 114

Conclusion 117

Bibliography 121

xi



List of Tables

2.1 Classification of the papers on the TDQPP based on the solution methods . . . 21
2.2 Classification of contributions on GVRP and its variants . . . . . . . . . . . . . 29
2.3 Organization of contributions on the GVRP based on solution methods . . . . 31

3.1 Parameters used in the CMEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Overview of experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Algorithm performances under different optimization criteria . . . . . . . . . . 57
3.5 Impacts of departure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Average results under the total cost optimization criterion . . . . . . . . . . . . 60
3.7 Impact of carried load on performance measures . . . . . . . . . . . . . . . . . 61

4.1 Additional notation used by the TDNNH . . . . . . . . . . . . . . . . . . . . . 76
4.2 TDVRP-ECMDP benchmark instances . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Overview of experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Computational results of the SNNH and TDNNH for different optimization

criteria considering low demand patterns . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Computational results of the designed TDNSIH according to the cost optimiza-

tion criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 Impacts of departure time on the emissions of alternative routes considering

medium demand patterns: average using TDNNH for different optimization
criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Impact of the variation in demand on the emissions of routes: average across
TDVRP-ECMDP benchmark instances using the TDNNH . . . . . . . . . . . . 89

5.1 Parameters used by CMEM for the computation of fuel consumption . . . . . . 99
5.2 Comparative performance of the proposed machine learning models against

MEET and CMEM regarding emission prediction aggregated by paths . . . . . 111
5.3 Comparative performance statistics of the GBM, NNET, CMEM and MEET

models regarding multiple performance indicators . . . . . . . . . . . . . . . . . 115

xii



List of Figures

2.1 Illustrations of a link traversing three time periods . . . . . . . . . . . . . . . . 17

3.1 Portion of the geographical area . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Impact of departure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Illustration of a classical simplified network . . . . . . . . . . . . . . . . . . . . 68
4.2 Illustration of a subset of customers and segment nodes of the road network of

Quebec City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Effects of flexible departure times on fuel consumption and costs considering

100 customers with medium demand . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Illustration of a portion of the road network in Québec City . . . . . . . . . . . 99
5.2 Fuel consumption histogram of real-world shipping trips in Québec City . . . . 102
5.3 Variation of daily fuel consumption of real-world shipping trips in Québec City 103
5.4 Fuel consumption as a function of instantaneous speed and acceleration for all

observations with a travel time of 11 seconds . . . . . . . . . . . . . . . . . . . 104
5.5 Instantaneous variation in fuel consumption and speed during a typical shipping

day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6 Schematic diagram of the NNET emission model . . . . . . . . . . . . . . . . . 106
5.7 Sample of the estimations produced by CMEM, MEET, NNET and GBM mod-

els against real-world fuel consumption. . . . . . . . . . . . . . . . . . . . . . . 111
5.8 Scatter plots of predicted outcomes by CMEM, MEET and machine learning

models against observed fuel consumption . . . . . . . . . . . . . . . . . . . . . 113
5.9 Boxplots of emissions models prediction performance against observed fuel con-

sumption aggregated by days . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xiii



List of Abbreviations

CIT Conditional Inference Trees
CMEM Comprehensive Modal Emissions Model
FIFO First-in, First-out
FSM Flow Speed Model
GBM Gradient Boosting Machines
GHG Greenhouse Gas
GVRP Green Vehicle Routing Problem
LTM Link Travel Time Model
MCPP Minimum-Cost Path Problem
MEET Methodology for Estimating air pollutant Emissions from Transport
NN Neural Networks
PRP Pollution Routing Problem
QPP Quickest Path Problem
SNNH Static Nearest Neighbor Heuristic
SVM Support Vector Machines
TD Time-dependent
TD-Dijkstra Time-dependent Dijkstra
TDDP Time-dependent Distribution Problem
TDLCPP Time-dependent Least Cost Path Problem
TDLEPP Time-dependent Least Emission Path Problem
TDNNH Time-dependent Nearest Neighbor Heuristic
TDNSIH Time-dependent Neighborhood Search Improvement Heuristic
TDQPP Time-dependent Quickest Path Problem
TDQPP-EM Time-dependent Quickest Path Problem with Emission Minimization
TDSPP Time-dependent Shortest Path Problem
TDTSP Time-dependent Traveling Salesman Problem
TDVRP Time-dependent Vehicle Routing Problem
TDVRP-ECMDP Time-dependent Vehicle Routing Problem with Emission and Cost

Minimization considering Dynamic Paths
VRP Vehicle Routing Problem

xiv



To mom and dad, and to my
amazing grandparents...

You will always be in my heart.

xv



The important thing is to not
stop questioning. Curiosity has
its own reason for existing.

Albert Einstein, 1955

xvi



Acknowledgments

First and foremost, I want to present not only my thanks, but also my admiration to my
advisors, Professor Jacques Renaud and Leandro C. Coelho, who inspired me in many ways.
I want to thank them for all the effort they make to provide their teams with a great research
environment, precious guidance, and financial support. I appreciate their open-mindedness,
their attention to details, their scientific rigor, and their non-stop quest for challenges. First,
I thank Jacques for creating an atmosphere, which helps us to produce high quality scientific
research while developing our own autonomy and scientific vision. Second, I would like to thank
my co-advisor, Professor Leandro C. Coelho, for offering me the right assistance, sharing his
knowledge with me, and supporting me both scientifically and professionally. Both Jacques
and Leandro were always supportive and encouraging me to strive beyond my limits. Thanks
to both of you for all your riveting discussions, feedback, guidance, and trust in my choices
throughout this research work.

I would also like to express my gratitude to the professors who participated in this thesis, the
thesis project, the Ph.D exam committees, and the doctoral courses: Gilbert Laporte, Fayez
Boctor, Monia Rekik, and Daniel Pascot.

My deepest appreciation is extended to Laval University, the Faculty of Business Adminis-
tration and, beyond them, all the wonderful people that work hard to make our doctoral
experience memorable. I must mention Judy-Anne Hélie, Carole Lalonde, Johanne Nadeau,
Catherine Vézina, Dominique Bernier, as well as many others who work behind the scenes.

A huge thanks are due to Benoit Montreuil and Sehl Mellouli for enabling me to begin my
doctoral studies at Laval University.

I would also like to express my gratitude to Professor Pascal Pallé for administrative assistance.

Furthermore, I would like to extend my sincere gratitude to the institutions that provided
support for projects developed in this doctoral thesis: the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), Centre d’Innovation en Logistique et Chaîne
d’Approvisionnement Durable (CILCAD) and Canada Research Chair on Integrated Logistics.
I also profoundly thank Ameublements Tanguay Canada and Logix Operations Inc for both
their financial support and their proactive collaboration.

xvii



Within our Interuniversity Research Centre on Enterprise Networks, Logistics and Transporta-
tion (CIRRELT), I would like to thank all of my colleagues, those who left and those who are
still with us. The support and administrative staff: Pierre Marchand, Olivier Duval-Montminy,
Martine L’Heureux, Mireille Leclerc, Louise Doyon and Alexis Roy.

Furthermore, I am happy to have met many graduate and undergraduate students during my
studies with whom I have not only shared similar interests, exchanged cutting edge ideas, and
offered unwavering support to each other, but also developed important friendships: Sergine
Arona Diop, Rabie Jaballah, Khaled Belhassine, Patrick Walther, Maryam Darvish, Thomas
Chabot, Salma Naccache, Muhammad Mohiuddin, Moez Charfeddine, Salman Kimiagari,
Helia Sohrabi, Sidi-Mahmoud Aidara Mbibi, Hamza El Fassi, Bala Diop, Parfait Aïhounhin,
Roubila Lilya Kadri and Michel David Nebnoma Sawadogo, and many others.

I also want to express my sincere gratitude to all of my friends in Canada, France and Tunisia,
who have become my extended family, for always being there when I need them, for supporting
me, and for shedding happiness and joy on my life: Akrem, Najib, Chaker and Amal; Driss
and Lois; Marwene and Wiem; Nidhal and Maha; Maher and Raja; Hichem and Sana; Louis
and Anne; Lotfi and Kalthoum; Jamel, Zied, Emmanuel, Martin, Mourad, Mohammed, Amin,
Issam, Sami, Nabil, and Mondher.

My great appreciation and thanks to my dearest wife Intissar for her never-ending uncondi-
tional support and understanding during my busy and long doctorate journey.

My deepest gratitude goes to my family for their patience and love throughout all of my studies
and my life. Thanks to my wonderful parents Oumar and Sadiya who always encouraged us to
study and who made our achievements their priority in life. Thank you for your unconditional
love, for your unlimited support, for your endless devotion through every step I did in this
world, and for brightening my universe all the time. Thanks to my amazing sisters Olfa,
Nesrine, and Aycha, who are always soothing me, caring about me, and reminding me how
lucky and honored I am to have them in.

To all of those I may have left out, thank you.

xviii



Preface

This thesis presents my work as a Ph.D. student developed at the Centre Interuniversitaire
de recherche sur les Reseaux d’Entreprise, la Logistique et le Transport (CIRRELT) at the
Faculty of Business Administration of Laval University. The thesis consists of three papers,
each of which is written in collaboration with other researchers of the CILCAD and the
Canada Research Chair in Integrated Logistics, mainly my directors Jacques Renaud and
Leandro Callegari Coelho. Revision of one of these papers was received and the others have
been submitted to the corresponding journals. In all three papers, I remain the first author
and have played the principal role of setting up and conducting the research, description and
modeling of the problems, implementation of algorithms, analyzing the results, preparing and
writing the papers.

The first paper entitled Time-Dependent Quickest Path Problem with Emission Minimization
is written in collaboration with Leandro C. Coelho and Jacques Renaud. The paper has been
submitted for publication in Transportation Science in September 2017 and a revision was
received in February 2018.

The second paper entitled Time-dependent Vehicle Routing Problem with Emission and Cost
Minimization considering Dynamic Paths is written in collaboration with Jacques Renaud and
Leandro C. Coelho. The paper has been submitted for publication in Transportation Research
Part B: Methodological in February 2018.

The third paper entitled Measuring emissions in vehicle routing: new emission estimation
models using supervised learning is written in collaboration with S. Arona Diop, Leandro
C. Coelho and Jacques Renaud. The paper has been submitted for publication in Production
Operations Management (POMS) in March 2018.

xix



Chapter 1

Introduction

In recent years, freight transportation has evolved into a multi-faceted logistics challenge. The
immense volume of freight has considerably increased the flow of commodities in all transport
modes. Despite the vital role of freight transportation in the economic development, it also
negatively impacts both the environment and human health. Nowadays freight transportation
by truck is one of the most challenging sectors facing environment pollution and climate
changes due to increasing energy demand and to its high dependence on diesel and fuel.

The distribution of goods between a set of geographically scattered customers through urban
area networks is a central activity in vehicle routing and scheduling. Third-party logistics
(3PL) service providers, transport operators as well as trucking companies are looking for
effective ways to enhance goods distribution, dispatching and delivery efficiency, to maximize
the operational profits and benefits from the economic perspective. They also try to reduce
the environmental impacts of freight transportation activities by reducing energy usage. For
example, Transports Canada has introduced the ecoFREIGHT program to deploy efficient
business models and operating policies that enhance the use of information and decision tech-
nologies and industrial practices by enterprises operating in the logistics sector in order to
reduce fuel consumption and emissions, and achieve sustainable levels of transportation en-
ergy use (Transports Canada 2011).

The first chapter of this thesis is organized as follows. In Section 1.1 the main trade-offs
between road freight transportation and environmental awareness are discussed. Subsequently,
routing and scheduling issues of green road freight transportation are briefly presented. Section
1.2 presents the scope of machine learning in green logistics field. The main problem that will
be studied, the time-dependent routing problem with dynamic paths, is introduced in Section
1.3. The objectives of this thesis are presented in Section 1.4. Finally, the overall structure
and conceptual organization of this thesis are explained in Section 1.5.
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1.1 Road freight transportation and environment

Over the past half century, the demand for goods has grown significantly, so that today a vital
component of a more competitive economy is a cost-effective freight transportation system
(Zenghelis 2006). Road transportation plays a central position in the economy and is by far
the most prominent among the various modes of freight transportation (Bektaş, Demir, and
Laporte 2016).

Freight transportation is a key element of the economic and logistics of the supply chain that is
designed to provide efficient distribution and timely availability of manufactured goods to meet
client requirements at minimum cost (Crainic 2000, 2003). Considering the multiple decision
levels of freight transportation networks, it can be viewed as a complex activity that includes
various players with many objectives interrelated with a number of human, technological and
operational costs factors and resources (Crainic and Roy 1988).

In the remainder of this section, the growth of freight transportation flows is discussed as
well as freight transportation greenhouse gas (GHG) emissions trends in Canada and Québec.
Additionally, the effects of congestion on distribution costs are briefly presented. Finally, in
the last part of this section, we take a closer look at distribution operations and how their
level of efficiency affects environmental performance.

1.1.1 Freight traffic growth

Road or trucking transportation provides mobility for passengers and facilitates the distribu-
tion of goods. As Canada’s largest freight transportation subsector among rail, marine, and
air transportation, it is particularly crucial for the transport of manufactured goods and mer-
chandises in terms of freight volume, flow and value (Transports Canada 2017). In 2014, 72%
of the total freight was transported between provinces by for-hire trucking, representing about
$168 billion of interprovincial merchandise trade (Transports Canada 2017). Major truck-
ing companies were centralized in four provinces: Ontario (41.5%), Alberta (16.2%), Québec
(15.1%), and British Columbia (14.2%) (Transports Canada 2017). In the United States (U.S.)
the annual gross domestic product (GDP) spending on freight transport approached 9.5% and
U.S. reliance on the freight transportation system has steadily grown in scale (United States
Department of Transportation 2017). In this subject, in European union countries about
45.8% of total freight was transported via road transportation in 2010 (Europeia 2012).

The increase of population and goods flow causes an increase in transportation costs due to the
growth of congestion. Medium and heavy-duty trucks carrying freight share the same streets
and arteries with private and public vehicles transporting people (Lahyani, Khemakhem, and
Semet 2015, Crainic, Gendreau, and Potvin 2009). All these vehicles contribute to the growth
of congestion and environmental nuisances, such as GHG emissions, accidents and environ-
mental damage that negatively affect the quality of life and human health in urban areas
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(Southworth and Peterson 2000, Patier et al. 2002, Figliozzi 2007).

1.1.2 Greenhouse gas emissions trends in the freight transportation sector

Road freight transportation is a major contributor to GHG emissions and to fuel consumption
(Demir, Bektaş, and Laporte 2014b). At the local and regional areas, a significant portion of
goods delivery is transported by truck, which emits a large amount of pollutants. Concern has
been growing over the environmental effect of freight transportation operations. Thus, atten-
tion of business organizations and governments has moved to the growth in GHG emissions
from the freight transportation sector (Piecyk and McKinnon 2010).

Freight transportation in urban areas is among the largest sources of GHG emissions in most
countries (Laporte 2016). With increasing road transportation activity within city limits and
the expected growth of freight volumes at a fast rate, GHG is expected to continue to increase
at a similar pace (Crainic, Gendreau, and Potvin 2009, Transports Canada 2017). Energy
use and emissions from freight transportation are increasing at a more rapid rate than from
other modes of transportation. It is estimated that freight transportation in countries of the
Organization for Economic Co-operation and Development (OECD) is responsible for a third
of the CO2 emissions belonging to the transportation sector (Short 2008). In the U.S. in 2005,
freight transportation accounted for approximately 6800 trillion BTU (British Thermal Unit)
of energy consumption, representing 25.7% of total non-military transportation energy use
(Winebrake et al. 2008). Globally, according to the Stern report, transport accounts for 14%
of total greenhouse gas emissions, with three quarters of these emissions originating from road
transport (Stern 2007). In 2012, the transportation sector (including passenger, freight and
off-road emissions) in Canada was the second-largest source of GHG, reaching 24% of total
global GHG emissions (Environment Canada 2014). In 2014, the GHG emissions from road
transportation sectors were responsible for 142.6 Mt of CO2, approximately 83.2% of trans-
portation related GHG emissions and accounted for 19.5% of Canada’s total GHG emissions
(Transports Canada 2017). GHG emissions from on-road freight vehicles have increased by
almost 14% from 2005 to 2014, raising to 55 Mt compared with 48 Mt. Road freight activ-
ity, measured in tonne-kilometers, has increased by almost 25% over the same time period
(Transports Canada 2017).

GHG emissions vary significantly across provinces, depending on various factors such as popu-
lation size, manufacturing activities, economic growth and energy price (Environment Canada
2014). Concerning the province of Québec, the transportation sector accounted for the largest
share of the overall GHG emissions with 44% in 2014 (MDDELCC 2016). Emissions from
road transportation were responsible for 82% of downstream transportation emissions, which
accounts for about 33.6% of total emissions in Québec. This explains why reducing GHG
emissions in the transportation sector is a challenging task on account of the fast growth in
both passenger and shipping activity that could overtake all performance measures.
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In general, GHG emissions are directly proportional to the amount of fuel consumed which
in turn, depends on speed, distance, acceleration, weight of the vehicle, fleet size and mix,
backhauls and roadway gradients (Figliozzi 2011, Demir, Bektaş, and Laporte 2011, 2014b,
Franceschetti et al. 2013, Ehmke, Campbell, and Thomas 2016b). Optimization of routing
decisions related to these factors, notably average speed, as is often the case in the academic
literature, may not always be easy, particularly in dynamic urban areas (Ehmke, Campbell,
and Thomas 2016a).

1.1.3 High cost of congestion

In large urban areas, trucks must often travel at the speed imposed by traffic, and traffic
congestion has major adverse consequences on speed level and travel time particularly at
certain periods of day. This variability in speed has a significant impact on transport reliability,
GHG emissions and energy consumption (Vanek and Morlok 2000, Demir, Bektaş, and Laporte
2011, Eglese and Bektas 2014).

It is widely recognized that congestion seriously affects logistics operations and causes un-
desirable effects to the road freight transportation systems in major cities (Figliozzi 2010,
Verbeeck 2016). Traffic congestion occurs when the capacity of a particular transportation
link is insufficient to accommodate an incoming flow at a particular point in time. Increased
travel times as well as delay, queuing and reduced mobility caused by congestion impact the
efficiency of logistics operations. Congestion has a number of adverse consequences on both
economic, social and environmental dimensions, including longer travel times and variations
in trip duration which results in decreased transport reliability, increased fuel consumption
and large amount of emissions. In addition, the driver’s inefficiency caused by congestion sig-
nificantly increases the cost of goods movements and affects the just-in-time delivery expected
by most customers (Jula, Dessouky, and Ioannou 2008).

The effects of congestion on vehicle GHG emissions are prominent but difficult to forecast
since it is shown that it is possible to create routes for which distance or duration increases
but fuel consumption or emissions decrease (Figliozzi 2011). To reduce the significant im-
pact of freight transportation emissions on the environment, new alternative planning and
coordination strategies directly related to routing and scheduling operations are required at
operational, environmental and temporal dimensions.

Congestion occurs when many vehicles travel along the same path link at the same time period.
Nowadays, with the information and communication technologies advances it is possible for
several vehicles with a given set of origins and destinations, to coordinate shipping routes
and travel times along each arc of the road networks (Speranza 2018). It is well-known that
congestion has recurring patterns for different periods of the planning horizon, so one can use
historical traffic data to approximate and forecast time-dependent travel times and congestion
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ratios related to each link of the considered urban network (Ehmke, Meisel, and Mattfeld
2012).

In this thesis, to generate paths between scattered clients we assume that vehicles must travel
at the speed imposed by traffic conditions and do not have the ability to fully control their
speed in a way that minimizes GHG emissions as well as fuel consumption. Fuel consumption
depends on multiple factors that can be divided into four categories: i) vehicle related such
as curb weight and engine type, ii) drivers related like idle time, iii) environmental condi-
tions (roadway gradient, wind conditions, etc.) and iv) traffic conditions including speed and
acceleration, among others (Demir, Bektaş, and Laporte 2011, 2014b).

1.1.4 Efficiency of distribution operations and environmental performance

Road freight transportation is responsible for a large portion of GHG emissions, of which
manufactured goods transport constitutes a sizable portion (Jabali, Van Woensel, and de Kok
2012). Thus, there is a need to address both operational and environmental factors in the con-
text of freight transportation. 3PL and carrier companies may voluntarily adopt green policies
if this is aligned with cost reduction. This could be in the form of GHG greedy procedures, or
when CO2 emissions become taxable. As a largest contributor to GHG emissions, road freight
transportation has been an important focus of these initiatives (Piecyk and McKinnon 2010,
Ehmke, Campbell, and Thomas 2016b). Given current concerns about environment and energy
issues, numerous strategies and approaches have been established to reduce GHG emissions
in the field of green transportation logistics, which aims to involve the incorporation of envi-
ronmental dimension into distribution logistics (Psaraftis et al. 2016). Green transportation
logistics tries to achieve an acceptable level of environmental performance and sustainability in
transportation systems, while at the same time respecting traditional economic performance
criteria (Psaraftis et al. 2016).

Operations research has long concentrated in improving operations. Traditional routing mod-
els and policies for distribution of goods have focused on minimizing costs under various
operational constraints (Crainic 2000, Sbihi and Eglese 2010, Dekker, Bloemhof, and Mallidis
2012). Most works that addressed routing issues are focused on the resolution of the clas-
sical Vehicle Routing Problem (VRP) which consists of determining best routes through a
set of geographically scattered customers, subject to various operational constraints (Laporte
2016). The common standard objective is the minimization of routing costs (or distance).
However, the consideration of the several objectives and factors concerned with the Green
VRP (GVRP) leads to new schemes of delivery and efficient distribution methods, some of
which pose interesting new applications for logistics models (Sbihi and Eglese 2010, Dekker,
Bloemhof, and Mallidis 2012, Demir, Bektaş, and Laporte 2014b, Lin et al. 2014). With an
increasing concern for the environment impact in large cities, logistics providers and freight
transportation companies have started paying more attention to the negative effects of their
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distribution operations on human life.

Furthermore, consideration of various routes between a pair of nodes for distribution planning
is not well studied in the literature. A sustainable model for the logistics of distribution ought
to choose the routes which minimize the fuel consumption or GHG emissions. A variety of
alternative paths can exist between a pair of nodes and each path is taken as a distinct arc
connecting the two nodes (Gajanand and Narendran 2013, Ehmke, Campbell, and Thomas
2016b, Qian and Eglese 2016, Huang et al. 2017). If each lane of a highway is considered as an
alternative path, the length is the same but the speed will be different. Another possibility is
the existence of multiple paths with different lengths, different road types and different average
speeds. The availability of multiple paths between two clients can be observed in large urban
networks.

The rapid penetration of modern technology, such as the cellular technology, in our daily
habits, has allowed travelers to act as moving sources of real-traffic information. Therefore,
vehicle navigation and route planning vendors are nowadays in position to acquire in real-
time instantaneous live-traffic reports (e.g., road blockages due to car accidents), as well as
periodic speed-probes that allow the maintenance of historic traffic data about this time-
varying behavior of each and every road segment in a network.

1.2 Machine learning in green logistics

The availability of traffic data can allow new approaches to be applied in green logistics field for
producing high prediction accuracy and better routing models. Ultimately, machine learning
could be used to model complex relationships by learning from the field data (Choi, Wallace,
and Wang 2018). In fact, machine learning provides well-established supervised learning
methods, namely Neural Networks (NN), Support Vector Machines (SVM), and Gradient
Boosting Machines (GBM), to fit complex relationship and design flexible nonlinear models
(Kuhn and Johnson 2013). Supervised learning schemes can enhance the estimation accuracy
of different types of predictor variables such as speed and emission observations.

In this thesis, the importance of time-dependent setting and environmental dimension are
highlighted and the pertinence of extending the scope of distribution logistics management
from the tactical and operational levels to the temporal and environmental levels is addressed.
Such issues will be presented from various theoretical and practical facets related to distri-
bution and logistics using time-dependent models, in which traffic congestion patterns are
considered. Further, we employ supervised learning methods to model emissions and improve
the prediction accuracy in green logistics field.
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1.3 Stating the research problem

In the next chapter we present a literature review on time-dependent shortest path problems
and on green routing problems. We describe the terminology, the major concepts and intro-
duce the main studied problems. In this thesis we address two important Time-dependent
Distribution Problems (TDDPs) induced by time-dependent setting and environmental di-
mension. We also study the accuracy of emission estimation according to new scope in green
logistics, namely big data and machine learning techniques. These are described next.

To begin, the main goal of the first part of this thesis is to introduce and solve a new variant of
the classical time-dependent quickest path problem (Calogiuri, Ghiani, and Guerriero 2015),
entitled the Time-Dependent Quickest Path Problem with Emission Minimization
(TDQPP-EM). The TDQPP-EM combines decisions based on economic and environmental di-
mensions to evaluate alternative paths between nodes on the underlying physical road network.
The objective is to minimize the total cost considering a comprehensive objective function com-
posed by GHG emissions, fuel consumption, drivers and time-dependent congestion-induced
costs.

Thereafter, in the second part of this thesis we will focus on the analysis of the trade-offs that
occur in the total cost, time, distance, fuel consumption and GHG emissions in large time-
dependent road networks when optimizing these different measures. The problem of optimizing
the schedule for a fleet of vehicles given time-dependent travel times and taking into account
environmental factors is entitled the Time-dependent Vehicle Routing Problem with
Emission and Cost Minimization considering Dynamic Paths (TDVRP-ECMDP).
The TDVRP-ECMDP is an extension of the Pollution Routing Problem (Bektaş and Laporte
2011). The TDVRP-ECMDP is concerned with the routing of a fleet of heterogeneous vehicles
each with a finite capacity, in order to serve a set of customers across a time-dependent network
modeled as a multigraph in which the traveling speed of each arc changes over time. Each
customer has a certain demand and must be served within a pre-defined time window. The
TDVRP-ECMDP aims at minimizing an objective function comprising the fuel and duration
costs of all routes involving dynamic path choice decisions. The fuel consumption along a
route and its duration depend on the traveling speed. The cost function includes emissions
and driver costs, taking into account traffic congestion which, at peak periods, significantly
affects vehicle speeds and increases GHG emissions.

The main contribution of the third part of the thesis, named Measuring emissions in ve-
hicle routing: new emission estimation models using supervised learning, is the
analysis of the accuracy of emission estimations considering different input variables and large
sets of speed observations, that aims to enhance the prediction accuracy of emissions in time-
dependent road networks. From a machine learning point of view, a number of opportunities
may exist with the availability of time-varying speeds observations, instantaneous fuel con-
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sumption, roadway gradient, vehicle load, and stop-and-go traffic data related to vehicle trips
of logistics and freight companies across large cities. GPS and on-board real-time emission
measurement devices provide real-world observations of emissions of micro scale events under
real-world traffic congestion. In this work, the objective is to perform a large-scale empiri-
cal analysis of historical fuel consumption data on the underlying road network. Therefore,
using supervised learning methods we aim to build nonlinear emission models considering
time-varying speeds, vehicle load fluctuations, stop-and-go driving patterns, acceleration, and
breaking events.

1.4 Objectives

The research described throughout this thesis aims to study the trade-offs that occur in total
road freight transportation costs, travel time, distance, GHG emissions and fuel consumption
by analyzing and optimizing a variety of real-world time-dependent distribution problems.
The objectives of this thesis are to provide efficient heuristics and exact optimization methods
for three important time-dependent distribution problems:

1. the TDQPP-EM addressing direct routing between two clients, finding a least cost path
between two nodes on a discrete time-dependent and first-in, first-out (FIFO) network,

2. the TDVRP-ECMDP which consists of routing a fleet of vehicles to serve a set of scat-
tered customers on a FIFO network with time-dependent speed flow, minimizing the
total travel cost function encompassing driver and GHG emissions costs,

3. and the emissions prediction problem.

We will develop efficient routing algorithms and optimization methods used to assist online
vehicle routing and scheduling, yielding high-cost savings, low fuel consumption and GHG
emissions. In order to achieve these goals, the following objectives are considered:

• Present a literature review that highlights the contribution of operations research con-
cerning the time-dependent shortest path and pollution routing problems;

• Define and mathematically model the cost functions of the TDQPP-EM and the TDVRP-
ECMDP on a time-dependent network with FIFO consistency;

• Create benchmark instances that allow for a realistic way of testing time-varying speeds
and congestion patterns in large time-dependent road networks;

• Develop speed-up algorithms to update the least cost paths in time-dependent network
or multigraph when the link travel costs change over time;
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• Design and implement efficient heuristics and optimization methods to solve the studied
TDQPP-EM and TDVRP-ECMDP;

• Perform a large-scale empirical study of historical traffic and emissions data;

• Develop nonlinear emission models using supervised learning methods.

1.5 Outline of the thesis

The remainder of this thesis is organized as follows. In Chapter 2, a literature review of
time-dependent quickest path problems and pollution routing problems is presented.

In the first part of Chapter 3, the properties of TDQPP-EM are mathematically defined and
discussed, including least travel cost upper and lower bounds, among others. In the second part
of Chapter 3, efficient algorithms are proposed to solve the problem. More importantly, realis-
tic problem instances that originate from a large road network with available time-dependent
speed profiles will be solved by the proposed solution methods.

In Chapter 4, the TDVRP-ECMDP is addressed using data-driven approaches, time-dependent
quickest path optimization, and a multi-neighborhood local search improvement heuristic is
presented.

In Chapter 5, the challenge of emissions modeling and estimation in vehicle routing is studied
through machine learning approaches that allows previously developed heuristics to handle
time-dependent emissions prediction based on a large set of speed and fuel consumption ob-
servations.

Chapter 6 discusses the conclusions of this research as well as meaningful extensions to this
thesis.
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Chapter 2

Literature Review

2.1 Introduction

In recent years there has been a considerable resurgence in the area of time-dependent routing.
In practical transportation applications like Route Guidance System (RGS) and Fleet Man-
agement Software (FMS), link traversal costs may vary significantly over time due to traffic
congestion and environmental conditions, or when the speed flow is defined by decision makers
(Gendreau, Ghiani, and Guerriero 2015). Broadly speaking, the research on this field can be
divided into four principal broad areas (Ghiani and Guerriero 2014b, Cordeau, Ghiani, and
Guerriero 2014):

(i) travel time modeling and estimation;

(ii) the time-dependent shortest path problem (TDSPP);

(iii) the time-dependent traveling salesman problem (TDTSP) and its variants;

(iv) and the time-dependent vehicle-routing problem (TDVRP).

New technological advances on road transportation applications and the growing branch of
green logistics, and in particular green vehicle routing, have stimulated a renewed interest in
the study of time-dependent routing problems with new insights. On the one hand, time-
dependent routing problems have been studied on time-dependent networks where arc travel
times change over time. On the other hand, time-dependent routing problems have been
restated with the aim of minimizing a total cost function encompassing GHG emissions and fuel
consumption costs. In such a context, the purpose of this chapter is to present a comprehensive
survey of relevant works that have addressed the TDSPP, Green VRP (GVRP), TDVRP and
their extensions. Emphasis will be placed on time-dependent models, efficient heuristics and
exact methods used for solving the TDSSP, GVRP and TDGVRP arising in road freight
transportation.
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More precisely, the remainder of the chapter is organized as follows. Section 2.2 defines the
classical SPP and Section 2.3 the TDSSP and its variants. Section 2.4 presents relevant work
on the GVRP and its meaningful extensions.

2.2 The shortest path problem

The SPP in road networks has been the subject of extensive research for many years in diverse
fields such as transportation of goods and computer science (Ahuja et al. 2003). Freight
distribution management, real-time vehicle routing operations, web-based travel information
services and logistics planning are among several application areas involving the determination
of optimal shortest paths (Chabini 1998, Ghiani and Guerriero 2014b, Cordeau, Ghiani, and
Guerriero 2014, Gendreau, Ghiani, and Guerriero 2015).

In the basic version of SPP the arc travel costs, usually interpreted as an arc traversal time,
arc length or weight are static and deterministic. Hence, the information required to formulate
the problem is time-invariant.

We first start by presenting the notation as well as the basic problem. Let G = (V,A) be
a graph, where V is a node (road junction) or vertex set and A is an arc (traffic link) set.
Denote the numbers of nodes |V | = n and the number of arcs |A| = m. Each arc denoted by
(i, j) is represented as an ordered pair of nodes. Let c : A → R be a function which assigns
a numerical value for the cost cij of each arc. A path from an origin to a destination can be
defined as sequential list of nodes from the origin o to the destination d and the travel cost of
the path p = (o = v1, v2, ..., vk = d) is the sum of travel costs of its individual arcs. The SPP
consist of finding a least cost path from the origin node o ∈ V to the destination node d. For
simplicity, we will assume that:

• V and A are invariant.

• G does not contain any directed cycle with negative costs, thus guaranteeing a finite
solution to the SPP.

• G is strongly connected and does not include parallel arcs.

• All nodes are reachable from o.

Using a linear programming notation, the classical SPP can be formulated as follows:

(SPP ) min
∑

(i,j)∈A

cijxij (2.1)

subject to
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∑
j∈Γ+(i)

xij −
∑

j∈Γ−(i)

xji =


1 for i = o

0 for i ∈ V \ {o, d}

−1 for i = d

(2.2)

xij ≥ 0,∀(i, j) ∈ A (2.3)

x ∈ Z|A| (2.4)

where

xij = 1 if (i, j) is in the shortest path p.

Γ+(i) and Γ−(i) denote the arc sets leaving i and incident to i, respectively:

Γ+(i) = {(u, v) ∈ A : u = i},

and Γ−(i) = {(u, v) ∈ A : v = i}.

Typically, the function c refers to distance or cost, but any other measures of interest can be
used such as time or any function modeling the problem on hand.

2.3 The time-dependent shortest path problem and its
variants

In many transportation applications, travel times, speed profiles and costs on some arcs may
change over time. Based on real-time or historical traffic information, a new shortest path
problem can be defined in which only the travel time along a set of arcs of the network differs
from that of the original problem. In time-dependent road networks, also known as time-
varying or dynamic networks, the problem is called the Time-Dependent SPP (TDSPP). This
problem is also known as the minimum cost path problem or the dynamic SPP (DSPP). It
has been first considered by Cooke and Halsey (1966).

In Section 2.3.1 we review the TDSPP. This is done by presenting the mathematical formu-
lation and describing its properties including time-dependent network types, among others.
The FIFO property is presented in Section 2.3.2. In Section 2.3.3 we present the existing mod-
els of time-dependent transportation model. Section 2.3.4 is devoted to concisely summarize
the major contributions of TDSPP, exploring their variants and summarizing the algorithmic
approaches and optimization methods that have been proposed for solving it.

2.3.1 Basic definitions, mathematical models and properties

In general, the TDSPP is an SPP applied on a time-dependent network (Orda and Rom
1990, Kaufman and Smith 1993, Ziliaskopoulos and Mahmassani 1993, Chabini 1998). The
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TDSPP can be defined as follows. Let G = (V,A,C,D) be a graph, where V = {1, ..., n}
is the set of nodes, |V | = n, and A = {(i, j) ∈ V × V } the set of directed arcs connecting
the nodes, |A| = m. We denote by D = {τij(t)|(i, j) ∈ A} the set of time-dependent arc
travel times and by C = {cij(t)|(i, j) ∈ A} the set of time-dependent arc travel costs. Let
T = t0 + Kδ, where δ > 0 is the smallest increment over which a perceptible change in the
travel time will take place and K a finite number of discrete time slots considered. For each
arc (i, j) ∈ A, the time horizon [0, T ] is then composed by discrete time slots Zk = [zk, zk+1[

where 0 ≤ k ≤ K − 1, z0 = t0 and zK = T . For each t ∈ [0, T ] and each arc (i, j) ∈ A, the
function τij(t) assigns a positive, real-valued travel time incurred when traversing arc (i, j)

departing node i at starting time t ∈ [zk, zk+1[. Thus, τij(t) is a discrete and time-dependent
function that takes a constant value after a finite number of time slots K. Function cij(t) has
real-valued range and real-valued domain. Note that cij(t) has fixed value when the departure
time is greater than or equal to T . Let Γ+(i) denotes the set of successor nodes of node i,
thus, j ∈ Γ+(i) implies (i, j) ∈ A. Likewise, Γ−(i) denotes the set of predecessor nodes of node
i, hence j ∈ Γ−(i) implies (j, i) ∈ A. G is also called a discrete time-dependent or dynamic
network. It is assumed that:

• arc traversal times for each starting time t ∈ [0, T ],

• arc traversal times are known, and are at least as large as the discretization interval,

• waiting at the nodes is forbidden,

• cycle back through a previously visited node is not allowed.

The general TDSPP consists of finding a least cost path from an origin node to selected
destination nodes in the defined time-varying networks. Let ϕi(t) denote the minimum total
cost from an origin node o ∈ V to a destination node d ∈ V departing at time t ∈ [0, T ]. The
least-cost path is then formulated using the following recursion:

minj∈Γ+(o)(coj(t) + ϕj(t+ τoj(t))) if o 6= d

0 if o = d
(2.5)

Formally, a time-dependent network is a quintuple G = (V,A, τ, c), where V is the set of
nodes, |V | = n, A the set of directed arcs connecting the nodes, τ : A×R→ R+

0 the arc travel
time functions, and c : A× R→ R the travel cost function.

In TDSPP, the time-dependent network can be dynamic, stochastic or both of them. Based on
extensive literature survey related to TDSPP, time-varying networks, dynamic networks and
dynamic time-dependent networks have the same conceptual and practical meanings. In these
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types of network, the travel arc costs are time-dependent (Orda and Rom 1990, Kaufman and
Smith 1993, Ziliaskopoulos and Mahmassani 1993, Chabini 1998).

In the case of deterministic discrete time-dependent networks, the TDSPP can be analyzed
and solved by defining a space-time network R = (N,E) as follows:

N = {ik : i ∈ V, 0 ≤ k ≤ K − 1, }, |N | = nK (2.6)

and

E = {(ik, jh) : (i, j) ∈ A, tk + τij(tk) = th, 0 ≤ k < h ≤ K − 1}, |E| ≤ (m+ n)K. (2.7)

Furthermore, each vehicle that leaves node ih at time th ∈ [zh, zh+1[, will arrive at node jk at
time tk ∈ [zk, zk+1[ . With each arc is associated a tuple of the form 〈(i, j), z0, zK , (τij(t1), τij(t2),

..., τij(tK))〉 that gives the values of travel time τij(tk) incurred when traversing arc (i, j) de-
parting from node i at time tk ∈ [zk, zk+1[. Alternatively, because the flow of speed along
each arc (i, j) depends on the time period, then road speed pattern is defined as tuple of the
form 〈(i, j), z0, zK , (τij(t1), τij(t2), ..., τij(tK))〉, where sijk is the speed in a given arc (i, j) ∈ A,
which is assumed to be equal to a constant during each time interval Zk = [zk, zk+1[.

In real road networks, two vehicles traveling at the same speed along the same arc (i, j) will
arrive at the terminating node of the arc in the same order as they leave the node i, even
with multiple levels of traffic congestion during the trip (Sung et al. 2000). Hence, inside
time-dependent network, arc travel times possess some fundamental properties that need to
be integrated in the design of time-dependent point-to-point routing models and optimization
methods. To manage the effect of passing and ensure consistency with the requirements of
real-time transportation applications, first-in-first-out (FIFO) and cost consistency properties
are considered in numerous studies. They may be formulated in various mathematical forms.
Details about these properties are given in the next sections.

2.3.2 FIFO property

The FIFO property was first introduced by Ford Jr (1956), Bellman (1958) and Moore (1959).
Provided that FIFO property holds, the arrival time is a strictly monotonic (non-decreasing)
function of the departure time (Calogiuri, Ghiani, and Guerriero 2015). The FIFO property is
also called the non-passing property (Sung et al. 2000) or the no overtaking property (Carey
1986, Delling and Nannicini 2012, Nannicini et al. 2012). The satisfaction of FIFO dynamics
is ensured by arc travel time or arrival time functions, which results to be strictly monotonic
and piecewise linear function of the starting time.

More formally, let γij(t) denote the arrival time function for every arc (i, j) ∈ A. The function
γij(t) gives the arrival time at node j if one departs from i at time t ∈ [0, T ]. Given a start
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time t and a path p = (o = v1, v2, ..., vk = d), arrival time at the destination node d is defined
recursively as γp(t) = γvk−1vk(γvk−2vk−1

(...γv1v2(t))), with the initialization γv1v2(t) = r+τij(t).
The value given by the function γij(t)− 1 corresponds to the travel time τij(t) along the arc
(i, j) if one leaves node i at time t. The inverse arc arrival time function γ−1

ij (t) provides the
latest time one may start to move from node i to node j at time t. We also have γ−1

ij (t) ≤ t

(Dean 2004b). Thus, FIFO assumptions can be defined as follows:

FIFO assumption in the case of a deterministic time-dependent network (Orda and
Rom 1990, Kaufman and Smith 1993) The FIFO property states that if two vehicles starting
at the departure node u of an edge respectively at time t′ and t ≥ t′ are arriving at the end
node v of the edge at times γuv(t′) and γuv(t), respectively, then γuv(t′) ≤ γuv(t).

For any arc (u, v) ∈ A, t′ + γuv(t
′) ≤ t+ γuv(t) for all t, t′ ∈ [0, T ], if t′ ≤ t.

In the case of classical SSP, Dijkstra’s algorithm is able to find an optimal shortest path
between a pair of nodes (Dijkstra 1959). Nevertheless, when the objective is to minimize
travel costs in time-varying network rather than travel time, the classical Dijkstra’s algorithm
cannot guarantee finding an optimal path even if the FIFO condition is respected (Wen, Çatay,
and Eglese 2014).

When the FIFO condition holds for each arc of the network, then the time-dependent network
is FIFO (Chabini 1998). Thus, the arrival time γij(t) is non-decreasing for all arcs (i, j) ∈ A.
In this way, all arc travel times satisfy the FIFO property and the Bellman’s principle of op-
timality (Bellman 1958) can also be applied. The TDSPP in FIFO networks is polynomially
solvable (Kaufman and Smith 1993, Dean 2004b). In this context, Kim et al. (2014) have
demonstrated that a least travel time path can be optimally found in FIFO network by gen-
eralizing the classical shortest path algorithms using time-dependent algorithmic approaches.

In the case of non-FIFO networks, the TDSPP is NP-hard (Orda and Rom 1990). Even with
a single non-FIFO arc the TDSPP is no longer polynomially solvable, but NP-Hard (Sherali,
Hobeika, and Kangwalklai 2003). Non-FIFO networks may contain cycles and waiting at the
nodes are either allowed or disallowed (Orda and Rom 1990, Chabini 1998). The aim of the
next section is to present the relevant models for time-dependent networks.

2.3.3 Existing models for time-dependent networks

Sung et al. (2000) distinguishes between two types of models for time-dependent networks:

1. flow speed model (FSM) where it is the speed of each arc, and not the travel time, which
depends on the time period. In this case solution obtained by FSM models are consistent
with the FIFO dynamics and are stable to the variance of the time period length.
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2. link travel time model (LTM) where arc travel times depend on the time period. LTM
models may not satisfy the FIFO property.

These two kinds of models a discussed hereafter.

2.3.3.1 Flow speed model

In the FSM, introduced by Sung et al. (2000), the speed on each arc depends on the time
interval. So, it is the flow speed on each arc and not the travel time which changes over time.
For each arc (i, j) ∈ A let the set of speed flows sijk at time tk and the set of time slots [zk, zk+1[

be denoted by Sij and Γij , respectively, and S = ∪∀(i,j)∈ASij and Γ = ∪∀(i,j)∈AΓij . With each
arc is associated a non-negative travel distance Lij , which is assumed to be constant. Let lkij
denote the portion of the length Lij covered during time periods Zk. For the FSM the graph
is represented by G = (V,A, Γ, S).

Sung et al. (2000) have proved that with FSM, the arrival times γij(t) are consistent with
the FIFO assumption. It is easy to understand because all vehicles travel at the same speed
whatever the time at which they entered the arc. Assuming that ω ∈ [z1, z2[ the arrival time
γij(ω) is calculated using the following relationships proposed by (Sung et al. 2000):

γij(ω) = Lij/s
ij
0 + ω if Lij/s

ij
0 < z1 − w (2.8)

else γij(ω) = (Lij − l0ij)/s
ij
1 + z1 if (Lij − l0ij)/s

ij
1 < z2 − z1 (2.9)

else γij(ω) = (Lij − lk−1
ij )/sijk + zk if (Lij − lk−1

ij )/sijk < zk+1 − zk (2.10)

where

lkij =

s
ij
0 (z1 − w) if k = 0

lk−1
ij + sijk (zk+1 − zk) if k > 0.

(2.11)

Moreover, given a set of speeds, the arc travel time function τij(t) can be computed us-
ing Ichoua, Gendreau, and Potvin (2003) travel time calculation or derivation algorithms
(Cordeau, Ghiani, and Guerriero 2014, Ghiani and Guerriero 2014b). The main idea behind
this algorithm is that when a vehicle travels across a specific arc, speed is not a constant over
the entire length of Lij , but it changes when the boundary between two consecutive time slots
is crossed (Ichoua, Gendreau, and Potvin 2003) (see Figure 2.6). Thus for a given starting
time, it is easy to calculate when the link will be exited.

Let us assume that the start time t and the arrival time t + τij(t) belong respectively to the
time slots Zh1 and Zh, with h1 ∈ {0, ...,K − 1} and h ∈ {h1, ...,K}. The travel time on arc
(i, j) can be expressed as proposed by Cordeau, Ghiani, and Guerriero (2014):
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Figure 2.1: Illustrations of a link traversing three time periods

τij(t) =

h∑
k=h1

lkij/s
ij
k . (2.12)

2.3.3.2 Link travel time model

Another approach used in TDSPP is the LTM, first proposed by Cooke and Halsey (1966).
In the LTM the shortest paths may or may not satisfy the FIFO condition (Miller-Hooks and
Yang 2005). Hence, the shortest path is very unstable to the change on the time interval
length. In the LTM, the arc travel time function τij(t) is equal to the time needed by a vehicle
to travel across arc (i, j), where t denotes the departure time from i. Hence, arc travel times
are specified upon entrance on the head node of the arc and are assumed to be fixed for that
particular vehicle until it leaves the terminal node (Miller-Hooks and Yang 2005). In that case,
it is assumed that for each departure time t and each arc, τij(t+ ε) = τij(t) where 0 < ε < δ.
So, the arc traversal speed remains unchanged until a vehicle arrives at the next arc.

The travel time τij(t) is known for several breakpoints zk, with 0 ≤ zk ≤ T , k ∈ N, 0 ≤ k ≤
K−1, z0 = t0 and zK = T . In that case, τij(t) is considered to be a continuous piecewise linear
function of time. Thus, to avoid undesired and unrealistic effect of passing and satisfy the
FIFO condition, Fleischmann, Gietz, and Gnutzmann (2004) have constructed the following
travel time function:

τij(t) =

τijk for zk−1 + δij,k−1 ≤ t ≤ zk − δijk
τijk + (t− zk + δijk)ρijk for zk − δijk < t < zk − δijk

(2.13)

where

k = 1, ...,K − 1,

δijk is an appropriate parameter used to define the slope ρijk, such that: δij0 = δijK = 0,

δijk ≤ 1
2(zk − zk−1) and δijk ≤ 1

2(zk+1 − zk),

and ρijk =
τij,k−τijk

2δijk
.
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Furthermore, the arrival time function γij(t) = t+ τij(t) is continuous and strictly monotonic
over the interval, which satisfies the FIFO property.

The LTM was applied in several papers, such as Fleischmann, Gietz, and Gnutzmann (2004),
Nannicini et al. (2012) and Delling and Nannicini (2012).

2.3.4 Major contributions on the TDSPP and typologies of the problem

The TDSPP has been first introduced by Cooke and Halsey (1966). They solved the problem
with a recursion function, which is an extension of the Bellman (1958) principle of optimality,
that takes into account inter-nodal time requirements which are time-dependent. Dreyfus
(1969) generalized the Dijkstra’s algorithm (Dijkstra 1959), to find the fastest path between
two nodes where the travel time on an arc depends on the departure time from the origin
node.

Many variants of the TDSPP have been described over the past 50 years. There does not exist
a standard version of the problem. We will, therefore refer to basic versions of the TDSPP,
in which most of the research effort has been concentrated, and to variations of the basic
versions, which are more elaborate. Depending on the type of network, how time is treated
and involved constraints, time-dependent shortest path problems can be categorized in several
types:

(a) the basic TDSPP;

(b) the time-dependent quickest path problem (TDQPP);

(c) and other extensions of the TDSPP such as the time-dependent emissions minimizing
path problem.

Throughout the following sections we present a comprehensive review of the related TDSPP
literature. Specifically, we review the major contributions on the basic or dynamic TDSPP,
some relevant studies on the time-dependent quickest path problem (TDQPP) and the main
extensions of the TDSPP.

2.3.4.1 The basic time-dependent shortest path problem

The basic or dynamic TDSPP extends the classical SPP to the dynamic or time-dependent
scenario where arc costs are updated at regular periods (Delling and Wagner 2007, Delling
and Nannicini 2012). Obviously, the basic idea behind the TDSPP is to study the SPP in
time-dependent networks through a more realistic scenario that takes into consideration traffic
jams during rush hours (Delling and Wagner 2007).
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Kaufman and Smith (1993) have principally considered the problem of individual route guid-
ance in an intelligent vehicle-highway system, which corresponds to identifying the shortest
paths in time-dependent networks. Under the FIFO consistency the time-dependent shortest
path can be computed with exactly the same computational complexity as the SPP.

Based on the general Bellman’s principle of optimality (Bellman 1958), Ziliaskopoulos and
Mahmassani (1993) developed an efficient label-correcting shortest path algorithm that cal-
culates a least time path from all nodes to a specific destination node in a time-dependent
network. Their model does not satisfy the FIFO condition. With the aim of ensuring the
FIFO dynamics, Sung et al. (2000) designed the FSM model where the flow speed of each arc
dependent on the time slots. They showed that the computation of an optimal solution using
FSM is easier than one based on LTM models.

Chabini (1998) studied three types of TDSPPs: the one-to-all fastest path problem departing
from an origin node at a given time interval, the all-to-one shortest paths for all departure time
intervals, and the one-to-all shortest path for all departure time intervals. In these problems,
the cost of an arc is the travel time related to it. In addition, the components of arc costs
can be of general form. An algorithm based on the concept of decreasing order of time was
developed to solve these problems.

An alternative method for finding the shortest path in a time-dependent network is the A*
goal-directed search algorithm (Hart, 1968). A* organizes the search toward the target by
avoiding scans that are not in the direction of the target node. They either use a potential
function π : V → R on the arcs, which corresponds to a lower bound on the arc travel cost cij
when traveling from node i to j. The classical A* search algorithm was extended by Chabini
and Lan (2002) to find the shortest paths in time-dependent networks, in which arc travel
costs are time-dependent.

Miller-Hooks and Yang (2005) extended the work of Pallottino and Scutella (2003) to case of
the reoptimization of a least time path where future travel times in time-dependent networks
change. Two reoptimization algorithms were developed. The first one is called the time-
dependent least time path (TDLTP) that determines a minimum time path tree from all
origins to a single destination for each departure time in a specific time period. The second
one is called the Reverse Chrono-Shortest Path Tree (SPT) reoptimization algorithm, which
can be viewed as a modified version of the original Chrono-SPT algorithm developed by
Pallottino and Scutella (1998).

In Huang, Wu, and Zhan (2007), to solve the TDSPP the authors have proposed the Lifelong
Planning A* (LPA*) algorithm to consider both the changing locations of the driver and
changing traffic conditions in the road network. It is an incremental version of A* algorithm
that can share the results in previous search levels (Koenig, Likhachev, and Furcy 2004).
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Considering several related contributions on the TDSPP and its variants, we further summarize
the main characteristics of the reviewed papers in Table 2.1, which presents the criteria used to
classify them, namely, time-dependency, cost components, mathematical models, algorithmic
methods and the type of benchmark instances. Time-dependency refers to the setting of the
studied problem. Under a time-dependent network travel costs (TC) are time-dependent.
Objective function can encompass several components such as distance (D), travel time (TT),
carried load (CL) and emissions (E) or fuel consumption (FC). The benchmark instances can
either be constructed randomly or using road network and traffic information.

As seen in Table 2.1 the TDSPP has been the subject of extensive research over the past years.
An overview of the major variants of the TDSPP is given in the following sections.

2.3.4.2 The time-dependent quickest path problem

The time-dependent quickest (fastest) path problem (TDQPP) is a specific form of the TDSPP.
It can be formulated as follows (Calogiuri, Ghiani, and Guerriero 2015).

Let G = (V,A) be a graph, where V is the set of nodes and A is the set of arcs. Let τij(t)
denote a function designing the time that a vehicle takes to traverse an arc (i, j) ∈ A when
leaving at a specific starting time t. Assume that the travel time functions satisfies the FIFO
condition. If the vehicle leaves an origin o ∈ V to a destination d ∈ V at time t then the
traversal time zp(t) of a given path p = (o = i1, i2..., ik = d) can be defined recursively as
below:

zp(t) = z(p, t) = z((i1, ..., ik−1), t) + τij(t+ z((i1, ..., ik−1), t)) (2.14)

such that z((i1, i2), t) = τi1,i2(t).

The TDQPP aims to find a path p such that the traversal time zp(t) is minimum.

Solutions for determining quickest paths are crucial for the coordination and the planning of
routing in dynamic time-varying road networks, where detailed and reliable real-time traffic
information are available for some big cities (Calogiuri, Ghiani, and Guerriero 2015). This
stimulated the design of multiple speedup techniques for the dynamic scenarios where the
piecewise linear functions that are used to model time-dependent arc travel times or generalized
cost variations over time.
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Table 2.1: Classification of the papers on the TDQPP based on the solution methods

Reference Time
dependency

Cost
components Mathematical models Algorithmic methods

Benchmarks (traffic on road
networks)

Based on
historical
traffic data

GIS
or
real-life
network

Randomly
generated

Cooke and Halsey (1966) TT Adapted form of Bellman’s (1959) iteration scheme
using dynamic programming approach

Dreyfus (1969) D/TT/TC Extensions of Dijkstra method
Orda and Rom (1990) D/TT/TC/W Minimum-delay algorithms X X

Ziliaskopoulos and Mahmassani (1993) D/TT/TC Algorithm based on the Bellman’s
principle of optimality X X

Fu and Rilett (1998) D/TC Probability-based approximation models Heuristic algorithm based on shortest path algorithm X X

Chabini (1998) D/TT/W

Decreasing order of time (DOT) algorithm

Three dynamic adaptations of label-correcting
algorithms

X X

Cheung (1998) D/TT/TC

Variations of iterative label-correcting methods
including Bellman’s algorithm, the d-queue method,
the two-queue method, the threshold methods
and small-label-first principle

X

Miller-Hooks and Mahmassani (2000) D Least expected travel time paths
mathematical formulation Label-correcting expected value (EV) algorithm X

Desaulniers and Villeneuve (2000) TT/TC/W/TW

Nonlinear integer programming model

Two-resource generalized SPP with
resource constraints model

Adaptation of the dynamic programming algorithm
of Ioachim et al. (1998) X X

Sung et al. (2000) X TT Modified Djikstra’s label-setting
shortest path algorithm X

Bander and White (2002) D/TT/TC Finite-horizon Markov
decision process model

Dynamic programming approach
using AO* (AND/OR) search heuristic X X

Chabini and Lan (2002) D/TT/TC Dynamic adaptation of
the A* algorithm X

Pallottino and Scutella (2003) TC Linear programming model Reoptimization algorithm using dual feasibility
conditions and Dijkstrable subgraph

Miller-Hooks and Yang (2005) X D/TT/TC Time-dependent dynamic
Flow mathematical model

Time-dependent least time path (TDLTP) algorithm

Reverse Chrono-SPT (Shortest Path Tree)
Reoptimization algorithm

X X

Kim, Lewis, and White (2005) D/TT/TC/TW Discrete time, finite horizon Markov
decision processes mathematical model X X X

Huang, Wu, and Zhan (2007) D/TT/TC

A*-algorithm-Lifelong Planning A* (A*-LPA*)

Minimum bounded rectangle (MBR) constrained
shortest path search

X X
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Table 2.1 (Continued)

Reference Time
dependency

Cost
components Mathematical models Algorithmic methods

Benchmarks (traffic on road
networks)

Based on
historical
traffic data

GIS
or
real-life
network

Randomly
generated

Nie and Wu (2009) D/TT
Adaptive and a priori path model
based on Frank (1969) optimal
path formulation

Algorithm SPP with on-time arrival reliability
(SPORTAR-LC) X X

Ziliaskopoulos, Mandanas, and Mahmassani (2009) TT
Denardo and Fox label setting algorithm

Hybrid shortest path (HPS) algorithm
X

Bauer et al. (2010) D/TT
Adaptation of Dijkstra’s algorithm
using hierarchical and goal-directed speed-up
techniques

X

Nannicini et al. (2012) X D/TT/TC Bidirectional search with A* using lower bounds
on arc costs X X

Delling and Nannicini (2012) X D/TT/TC Core routing method combined with bidirectional
goal-directed search with A* X X

Huang and Gao (2012) D/TT Multistage adaptive feedback
control process formulation Picard’s method of successive approximation X X

Yang and Zhou (2014) TT/TC
IOptimal path model based
on disutility functions (linear
or nonlinear)

Exact label-correcting complete dependency-path
(CD-path) algorithm using minimum expected
disutility (MED)

X

Wen, Çatay, and Eglese (2014) X D/TT/FC/TC Modified Dijkstra’s algorithm X X X
Qian and Eglese (2014) X D/TT/FC/TC DP method X X X

Calogiuri, Ghiani, and Guerriero (2015) X TT Unidirectional A* algorithm embedding a static
and time-dependent lower bound X X

Ehmke, Campbell, and Thomas (2016a) X D/TT/CL/E
Path-based sampling A*-based algorithm

Arc-averaging time-dependent label setting algorithm
X X

Sun et al. (2017) D/TT/TC

Heap-based Bellman-Ford algorithm for the Query
FiST

Extended Bellman-ford algorithm for Query BeST

X X

Di Bartolomeo et al. (2017) X TT/TC
Branch-and-Bound

Time Expanded Network
X

Behnke and Kirschstein (2017) D/TT/CL/E Linear program
Dijkstra’s algorithm

Multigraph approach
X X
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Furthermore, efficient time-dependent hierarchical speedup techniques have been successfully
applied to solve the static shortest path problems. These techniques were evolved to the time-
dependent setting; such is the case of the works of Nannicini et al. (2008, 2012) which use A*
bidirectional search as a speed-up technique for fast computation of point-to-point shortest
paths on time-dependent road networks.

In Delling and Nannicini (2012) a core routing approach was combined with bidirectional
goal-directed search to find a quickest path in large-scale time-dependent road networks. The
insight behind core routing is to split the original network to generate new subnetwork (core
graph) with a smaller number of nodes, thus reducing the search space.

To handle spatial travel time correlations in time-dependent network Yang and Zhou (2014)
applied a Lagrangian relaxation-based solution approach. They also developed a modified
label-setting algorithm and a branch and bound method to solve the TDQPP.

On the other hand, Calogiuri, Ghiani, and Guerriero (2015) studied the properties and bounds
of time-dependent quickest path problems on a very large time-dependent road network. Using
the FIFO travel time model proposed by Ichoua, Gendreau, and Potvin (2003), they prove
that, if the congestion factors of all links are set to the lightest congestion factor during all time
slots of the planning horizon, the TDQPP can be solved as a static QPP. A time-dependent
lower bound on the time-to-target was developed which is both accurate and fast to compute.
To efficiently solve the TDQPP Calogiuri, Ghiani, and Guerriero (2015) incorporated these
bounds into an unidirectional A* algorithm.

Recently, Sun et al. (2017) generated time-dependent networks using traffic data to predict
the travel times and to dynamically find a quickest path. By analyzing traffic networks char-
acteristics of sparsity and hierarchy, they developed two algorithms to determine a quickest
path: heap-based Bellman–Ford algorithms and extended Bellman (1958) label correcting
algorithms.

2.3.4.3 The time-dependent emissions minimizing path problem

Green road freight transportation, aiming at reducing the harmful effects of transportation
on the environment, has gained importance in recent years. In particular, an explicit con-
sideration is given to reducing GHG emissions through better operational level of planning
and decision-making (Eglese and Bektas 2014). In their work Wen, Çatay, and Eglese (2014)
studied the minimum cost path in time-dependent network. The travel cost incorporates three
components: congestion, fuel and driver costs. The speed is defined according to real traffic
information and is not a decision variable. Two adaptations of the Dijkstra algorithm were
proposed to solve the problem. These authors have also demonstrated that minimum cost
paths may differ significantly from shortest paths in peak periods.
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Ehmke, Campbell, and Thomas (2016a) studied the emissions-minimizing shortest paths in
urban networks under congestion. Only emissions have been considered in their works and
load assumptions for the case of full and empty truck load were used to find the emissions
minimizing shortest paths reducing congestion charge. They proposed efficient adaptations of
A* heuristic and label-setting algorithm to compute least emission paths.

Recently, Behnke and Kirschstein (2017) studied the impact of path selection in road net-
works depending on vehicle specifications and payload. In particular, they adjust Dijkstra’s
algorithm to calculate all emission minimizing paths for a given vehicle.

2.4 The green routing problem and its variants

Over the last decade numerous works have addressed VRP problems in the broader con-
text of green logistics, and in particular the green vehicle routing (GVRP). By considering
both operational and environmental constraints a new extension of the VRP with Time Win-
dows (VRPTW) was introduced by Bektaş and Laporte (2011), the pollution routing problem
(PRP).

Demir, Bektaş, and Laporte (2014b) have presented a review on the green road freight trans-
portation focusing on factors affecting GHG emissions as well as microscopic and macroscopic
models of fuel consumption. A study by Lin et al. (2014) provides a state of the art review on
the GRVP in order to identify future research trends. Eglese and Bektas (2014) and Bektaş,
Demir, and Laporte (2016) presented a review of the GVRP, focused mainly on the PRP
which is a founding pillar of this new growing line of research. The main concern of this part
of the chapter is to build on previous reviews on GVRP by focusing on the cost functions
incorporated into the PRP models, routing decisions and resolution approaches. Section 2.4.1
presents a mathematical formulation for the PRP. Section 2.4.2 is devoted to review the ma-
jor contributions on the GVRP and its variants. Specifically, we summarize heuristics and
optimization methods applied to solve the GVRP.

2.4.1 Mathematical model for the pollution routing problem

The primary objective of PRP is to plan the trips of a fleet of vehicles while explicitly consid-
ering GHG emissions (Bektaş and Laporte 2011). The aim of this problem is to route a fleet of
vehicles in order to serve a set of customers under time windows restrictions, and determining
their speed along each route segment, so as to minimize a total cost function encompassing
fuel, GHG emissions, and driver costs.

The PRP is defined on complete graph G = (N,A) where N = {0, 1, 2, ..., n} is the set of
nodes and A = {(i, j)|i, j ∈ N, i 6= j} is the set of arcs between each pair of nodes. The
relevant notation used in the formulation of the PRP is listed below:
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• 0, the depot;

• N0 = N\{0}, the set of customers;

• m, number of homogeneous vehicles based at the depot to serve the customers;

• dij , the distance from i to j;

• qi, a non-negative demand of customer i;

• Q, the capacity limit of each vehicle;

• [ai, bi], the time windows of service associated to customers i, arriving early at the nodes
are allowed but vehicle has to wait until time ai before service can start;

• ti, the service time of customer i.

The approach taken in Bektaş and Laporte (2011) assumes that all parameters related to each
arc inside a route will remain constant, except speed and load that can vary along each arc
in a vehicle trip. When traveling across an arc (i, j) over a specific route each vehicle emits
a certain amount of GHG. The amount of GHG emissions of vehicles is proportional to the
amount of fuel consumed and is affected by a variety of key factors including load and speed,
among others. In their comparative analysis of several emissions models Demir, Bektaş, and
Laporte (2011) have shown that the rate of fuel consumption of heavy-duty vehicles is affected
significantly by the payload or carried loads. The load of a vehicle is made up of empty load
and carried loads.

Furthermore, along each arc (i, j) in the network the travel speed is constrained by a lower
bound and an upper bound, denoted lij and uij respectively, often speed limits are imposed
by road traffic regulations depending on the geographical area and the period of the day.

The PRP consists of designing a set R (|R| ≤ m) of routes to serve a set of customers
within preset time windows such that all vehicles depart from and return to the depot 0, and
determining the speeds along each arc of the routes and departure times from each node so as
to minimize an objective function encompassing fuel consumption, GHG emissions, and driver
costs. In PRP each customer is visited once by a single vehicle that doesn’t carry loads more
than its capacity Q.

More specifically, Bektaş and Laporte (2011) have addressed four problems, all of which involve
constructing routes for a homogeneous fleet of vehicles that must depart from and return to
the depot 0, such that each vehicle serves a quantity of demand that does not exceed its
capacity Q. Each problem has a different objective function. They are defined as follows:

(i) CD: a distance-minimizing objective function assuming constant speed on all arcs of the
road network, which is the case of the classical VRPTW;
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(ii) CL: a weighted load-minimizing objective function assuming constant speed on all arcs
of the road network, which corresponds to the delivery problem with variable payload;

(iii) CE : an energy-minimizing objective function assuming speed as a decision variable;

(iv) CC : a cost-minimizing objective function comprising fuel, GHG emissions and driver’s
costs assuming variable speed and loads along each arc of the trips.

The objective function defined by Bektaş and Laporte (2011) is based on the Comprehensive
Modal Emissions Model (CMEM) of Barth, Younglove, and Scora (2005), Scora and Barth
(2006), Barth and Boriboonsomsin (2008), and Barth and Boriboonsomsin (2009) to estimate
fuel consumption and GHG emissions for a given time instant. The CMEM is an extension
of the model of Ross (1994) comprising three modules, namely engine power, engine speed
and fuel rates. Further, the CMEM has two main characteristics (Bektaş and Laporte 2011,
Demir, Bektaş, and Laporte 2014b, Bektaş, Demir, and Laporte 2016):

(i) it is one of the few microscopic models that take into account the change in the vehicle
load as it travels;

(ii) it is also suitable to the GVRP when estimating heavy-duty vehicle GHG emissions as
well as fuel consumption.

In their modeling approach Bektaş and Laporte (2011) assume that a vehicle carrying a total
load M = w + fij will travel at a constant speed vij on a given arc (i, j) of length dij with
a road angle θij . They propose to estimate GHG emissions according to the CMEM model
using the following instantaneous fuel consumption or fuel use rate function (liter/second):

FR = ξ(kSV + P/η)/$ (2.15)

where ξ is fuel-to-air mass ratio, k is the engine friction factor, S is the engine speed, V is the
engine displacement, and a η and $ are constants. The parameter P represents the second-
by-second engine power output (in kilowatt), and is determined by the following formula:

P = Ptract/ε+ Pacc (2.16)

where ε is the vehicle drive train efficiency, and Pacc is the engine power demand associated
with running losses of the engine and the operation of vehicle accessories such as air condi-
tioning. Pacc is assumed to be zero. The total tractive power requirements Ptract (in kilowatt)
placed on the vehicle at the wheels is given by:
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Ptract = (Ma+Mg sin θ + 0.5CdAρv
2 +MgCr cos θ)v/1000. (2.17)

In the above expression M is the total vehicle weight (kilogram), v is the vehicle average
speed (meter/second), a is the acceleration (m/s2), θ is the road angle, g is the gravitational
constant, and Cd and Cr are the coefficients of the aerodynamic drag and rolling resistance,
respectively, ρ is the air density and A is the frontal surface area of the vehicle.

Recently, Dabia, Demir, and Van Woensel (2017) proposed a new mathematical formulation
of the PRR using a set partitioning formulation as well as a branching rules. They describe
the PRP as follows. Let Ω denote the set of feasible routes. A route is feasible if it satisfies
both capacity constraint and time window restrictions. Each vehicle must depart from and
return to the depot. Each customer is visited once by a single vehicle. A route is composed by
the sequence of customers visited, the departure time at the depot D and the traveling speed
v. For each route p ∈ Ω, the parameters sp and vp denote the departure time at the depot and
the traveling speed that lead to a least-cost route, respectively. Additionally, ep = δpn+1(sp, vp)

represents the arrival time at the end depot. Furthermore, cp = cd(ep − sp)F (vp) calculates
the path’s cost induced by the route duration and fuel consumption costs. The parameter σp
indicates if node i is visited by route p is used. Finally, yp is a binary variable equal to 1 if
and only if route p is used in the solution. Thus, the PRP is formulated as a set partitioning
problem:

Minimize
∑
p∈Ω

cpyp (2.18)

subject to

∑
p∈Ω

σipyp = 1, ∀i ∈ N (2.19)

yp ∈ {0, 1}, ∀p ∈ Ω (2.20)

where the objective function (2.18) minimizes the cost of the chosen routes. Constraints
(2.19) guarantee that each node is visited exactly once. The authors propose to use a column
generation method to solve the LP-relaxation of (2.18)-(2.20).

2.4.2 Contributions on the GVRP and its extensions

In this section, we concentrate our review on the major contributions on the GVRP and classify
its extensions. The contributions are presented in chronological order. A detailed classification
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of GVRP is presented on Table 2.2. Additionally, solution methods are summarized in Table
2.3.

In Table 2.2, time-dependency refers to the setting of the studied GVRP. It can either be
static or time-dependent. Under a static network travel cost is fixed along each arc. Under
a time-dependent network, the link travel cost is time-varying. Road network information
can be used to explicitly consider path flexibility. Different cost structure can be used to
better model the problem on hand, namely, distance, travel time, emissions, fuel consumption
and driver costs. Finally, more classical VRP considerations can be included such as fleet
composition which can be either homogeneous or heterogeneous, and the number of vehicles
available may be fixed or unconstrained.

2.4.2.1 The bi-objective PRP

The PRP is a single-objective optimization problem where each component of the travel cost
function is expressed in dollars and computed as a single objective metric. The reduction of
time spent on a specific route can be achieved by traveling at a higher speed, at the expense
of an increased fuel consumption and GHG emissions. Considering that the two objectives of
minimizing fuel and driving time are conflicting, the PRP can be viewed as a multi-objective
optimization problem. Hence, to address such an issue the bi-objective PRP was introduced
by Demir, Bektaş, and Laporte (2014a).

The two conflicting objectives in the bi-objective PRP are fuel consumption and total driving
time. The first one is similar to the fuel consumption objective modeled by Bektaş and Laporte
(2011) and Demir, Bektaş, and Laporte (2012). The second one corresponds to the sum of
the travel time across all routes starting and ending at the depot. To solve the bi-objective
PRP, Demir, Bektaş, and Laporte (2014a) have developed an enhanced version of the ALNS
algorithm as a search engine to determine a set of non-dominated solutions.

2.4.2.2 The fleet size and mix PRP

Available research on GHG emission and fuel consumption models (Demir, Bektaş, and La-
porte 2011, 2014b) shows the significant impact that the vehicle type has on fuel consumption.
Sometimes, routing smaller light-duty vehicles can increase the total distance traveled and may
also increase GHG emissions. In their study Kopfer, Schönberger, and Kopfer (2014) point out
that using multiple vehicles of different types may reduce in some case the amount of GHG
emissions.
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Table 2.2: Classification of contributions on GVRP and its variants

Reference Problem Objectives Time-
dependency

Path
flexibility

Fleet
composition Routing decisions Cost components

Mathematical
modeling
approaches

Bektaş and Laporte (2011) PRP

- Distance-minimization
- weighted-load minimization
- energy minimization
- cost minimization

Homogeneous

- speed
- payload
- time windows
- service time
- number of vehicles

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Integer linear programming
model

Demir, Bektaş, and Laporte (2012) PRP

- Distance minimization
- weighted-load minimization
- energy minimization
- cost minimization
- speed optimization

Homogeneous

- speed
- payload
- time windows
- service time,
- number of vehicles

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Integer linear programming
model

Franceschetti et al. (2013) TDPRP

- Distance minimization
- weighted-load
minimization
- energy minimization
- cost minimization
- speed optimization
- departure time
optimization

X Homogeneous

- speed
- payload
- time windows
- service time,
- number of vehicles
- congestion profiles
- driver wages/waiting

- distance
- GHG emissions
- fuel consumption
- driver
- congestion

- Analytical model
- Integer linear programming
model

Demir, Bektaş, and Laporte (2014a) Bi-objective
PRP

- minimization of fuel
consumption
- minimization of driving
time

Homogeneous

- speed
- payload
- time windows
- service time,
- number of vehicles

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Integer linear programming
model

Tajik et al. (2014) PRP-PD

- Distance minimization
- weighted-load
minimization
- energy minimization
- cost minimization

Homogeneous

- speed (more than 20 km/h)
- payload
- time windows
- service time,
- number of vehicles
- driver wages
- pickup and delivery

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Integer linear programming
model

Koç et al. (2014) Fleet size/mix PRP

- Distance minimization
- weighted-load
minimization
- energy minimization
- cost minimization

Heterogeneous

- speed (more than 20 km/h)
- payload
- time windows
- service time,
- number of vehicles
- driver wages
- type of vehicles (size/mix)

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Integer linear programming
model

Kramer et al. (2015b,a)

PRP with
flexible
departure
times

- cost minimization
- speed optimization
- departure time
optimization

Homogeneous

- speed (more than 20 km/h)
- payload
- time windows
- service time,
- driver wages
- departure time/waiting

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Set partitioning model

Xiao and Konak (2016) HGVRSP

- Distance minimization
- weighted-load
minimization
- energy minimization
- cost minimizing

X Heterogeneous

- speed
- payload
- time windows
- service time,
- number of vehicles
- type of vehicles (size and mix)
- driver wages
- congestion profiles
- departure time/waiting

- distance
- GHG emissions
- fuel consumption
- driver
- congestion

- Analytical model
- Mixed-integer programming
model
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Table 2.2 (Continued)

Reference Problem Objectives Time-
dependency

Path
flexibility

Fleet
composition Routing decisions Cost components

Mathematical
modeling
approaches

Suzuki (2016) Practical PRP
- weighted-load
minimizing objective
- energy minimization

- Homogeneous
- HDV

- payload
- number of vehicles
- driver wages

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Mixed-integer programming
model

Qian and Eglese (2016) TDVRP-EM - Distance minimization
- energy minimization X X Homogeneous

- speed
- payload
- time windows
- service time,
- number of vehicles
- driver wages/arrival times

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Set partitioning model

Ehmke, Campbell, and Thomas (2016b) TDVRP-EM

- weighted-load
minimization
- energy minimization
- cost minimization

X X Homogeneous

- speed
- payload
- time windows
- service time,
- number of vehicles
- driver wages/arrival times

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model

Dabia, Demir, and Van Woensel (2017) PRP

- Distance minimization
- weighted-load
minimization
- energy minimization
- cost minimization

Homogeneous

- speed (more than 20 km/h)
- payload
- time windows
- service time,
- number of vehicles
- driver wages/arrival times

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Set partitioning model

Franceschetti et al. (2017a) TDPRP

- Distance minimization
- weighted-load
minimization
- energy minimization
- cost minimization

X Homogeneous

- speed
- payload
- time windows
- service time,
- number of vehicles
- driver wages/arrival times

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model

Huang et al. (2017) TDVRP-PF

- Distance minimization
- weighted-load
minimization
- energy minimization
- cost minimization

X X Homogeneous

- speed
- payload
- time windows
- service time,
- number of vehicles
- driver wages/arrival times

- distance
- GHG emissions
- fuel consumption
- driver

- Mixed integer program
- Stochastic mixed integer
program

Androutsopoulos and Zografos (2017) BTL-VRPTW

- Distance minimization
- weighted-load
minimization
- energy minimization
- cost minimization

X X Homogeneous

- speed
- payload
- time windows
- service time,
- number of vehicles
- driver wages/arrival times

- distance
- GHG emissions
- fuel consumption
- driver

- Analytical model
- Set partitioning model
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Table 2.3: Organization of contributions on the GVRP based on solution methods

Reference Branch-
and-cut

Branch
and price

Set
partitioning RVND ALNS ILS INS SOA DSOP SD-TOA Column

generation
Label-setting
algorithm Multigraph

Bektaş and Laporte (2011) X
Demir, Bektaş, and Laporte (2012) X X X

Franceschetti et al. (2013) X X
Demir, Bektaş, and Laporte (2014a) X X

Tajik et al. (2014) X X X
Koç et al. (2014) X X

Kramer et al. (2015a) X X X X
Kramer et al. (2015b) X X X

Suzuki (2016) X
Xiao and Konak (2016) X
Qian and Eglese (2016) X X

Ehmke, Campbell, and Thomas (2016b) X
Dabia, Demir, and Van Woensel (2017) X X X

Franceschetti et al. (2017a) X X
Huang et al. (2017) X X

Androutsopoulos and Zografos (2017) X X

ALNS: Adaptive Large Neighborhood Search; DSOP: Departure Time and Speed Optimization Problem; ILS: Iterated Local Search; INS:
Iterated Neighborhood Search; RVND: Randomized Variable Neighborhood Descent ; SD-TOA: Speed and Departure-time Optimization
Algorithm; SOA: Speed Optimization Algorithm.
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Koç et al. (2014) have introduced the fleet size and mix PRP which extends the PRP by
considering the decision of the choice of the vehicle to use within a heterogeneous fleet of
vehicles. The aim of the FSMPRP is to determine a set of routes for a heterogeneous fleet of
vehicles that meet the demands of all customers within their respective time window restric-
tions. Thus, the objective is to minimize a total cost function incorporating vehicle, driver,
fuel and GHG emissions costs. Koç et al. (2014) have studied three types of vehicles, namely
light duty, medium duty and heavy-duty.

2.4.2.3 The time-dependent green vehicle routing problem

The TDPRP was introduced first by Franceschetti et al. (2013). The objective of the TDPRP
is to construct a set of routes that meet the demands of all customers within their respective
predefined time windows, starting and ending at the depot, and determine the speeds on each
arc of the routes as well as the departure times from each node so as to minimize a total
cost function encompassing vehicles, driver fuel, emissions and congestion costs (Franceschetti
et al. 2013). Recently, Xiao and Konak (2016) considered a heterogeneous fleet of vehicles in
the context of Green VRSP with time-dependent traffic congestion schemes.

Time-dependent routing considering dynamic paths and GHG emissions amounts to design
optimal routes in a large road network in which link traversal times may vary over time. The
incorporation of time-dependent optimization approaches into the Quickest Path Problem
(QPP) and the Pollution Routing Problem (PRP) makes them more realistic and effective,
because they account for speed variability and congestion patterns which are almost always
present in urban areas. Slightly different from the classical GVRP, some have worked on the
paths connecting two customers. Many studies have dealt with emission-minimizing paths
between customers in vehicle routing (Ehmke, Campbell, and Thomas 2016a, Qian and Eglese
2016, Wen, Çatay, and Eglese 2014). These applied the Methodology for Estimating Emissions
from Transport (MEET) (Hickman et al. 1999) to calculate GHG emissions which does not
explicitly take the changing weight of the carried load into account. Ehmke, Campbell, and
Thomas (2016b) proposed an emissions-minimizing model that explicitly accounts for the path
finding problem between stops. The majority of paths between customers are pre-computed
in advance using path averaging and approximation method. However, none of these works
considered the effects of flexible departure times or waiting at depot and traffic conditions on
both emissions and costs.

Androutsopoulos and Zografos (2017) deal explicitly with the trade-offs between travel time
and emissions considering time-varying traffic conditions. Focusing on a bi-objective time,
load and path dependent vehicle routing problem, they proposed an Ant Colony System algo-
rithm to enhance capacity-feasible routes with a routing method that considers simultaneously
routing and path finding decisions on multigraph (Garaix et al. 2010).
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2.5 Discussion and direction for future research

The results of the previous works show that the traditional objectives consisting of only travel
times do not necessarily imply the minimization of either fuel or driver costs, and that least
cost solutions do not imply a GHG emissions-optimal solution. Indeed, there is a gap in the
PRP research area related to the integration of GHG emissions models into TDQPP. Few
papers have addressed path flexibility and GHG emissions-minimized paths. The exceptions
are the works of Wen, Çatay, and Eglese (2014), Ehmke, Campbell, and Thomas (2016a,b),
Qian and Eglese (2016) and Huang et al. (2017). As a direction for future research, more
comprehensive objective functions can be considered to capture and minimize the cost of GHG
emissions and fuel consumption along with operational costs considering time-varying speeds
on the underlying road network. Based on the above reasoning, future work could model a
more comprehensive cost objective function which measures and minimizes the cost of GHG
emissions along with the operational costs of drivers and fuel consumption, and perform the
analysis of time-dependent travel cost lower and upper bounds on time to destination. Also,
finding the path with the overall minimum cost can be considered as an additional issue to
the above-mentioned class of papers and take into account a time-dependent cost associated
to each arc which depends on the arrival time at each visited nodes.

Considering that vehicle speeds vary according to time-dependent congestion patterns, the
objective is to minimize the total travel cost function encompassing driver and GHG emissions
costs while respecting capacity constraints and service time windows. Costs are based on driver
wages, GHG emissions and fuel consumption, which in turn depends on multiple factors, such
as travel distance, load carried and speed variations. Further, the underlying physical sub-
network between two clients for each shipment is explicitly considered to determine road paths
between any pair of customers (Qian and Eglese 2016, Huang et al. 2017). Nowadays, with the
availability of historical traffic data obtained from real-world transportation applications and
shipments data provided by the supply chain partners, more comprehensive routing constraints
can be embedded, such as traffic congestion schemes, speed variability and environmental
impacts. Path choice decisions complement routing ones, impacting the overall cost, GHG
emissions, the travel time between nodes, and thus the set of a feasible time-dependent least
cost (cheapest) path. Therefore, accounting for and avoiding congested road paths is possible
as the required traffic data is easily available and, at the same time, has a great potential for
both energy and cost savings (Kok, Hans, and Schutten 2012, Ehmke, Campbell, and Thomas
2016a). Omitting time-dependent settings and paths flexibility in routing decisions might lead
to overtime and missed deliveries (Kok, Hans, and Schutten 2012, Dabia et al. 2013, Ehmke,
Campbell, and Thomas 2016b, Huang et al. 2017). In particular, methods like multigraph
(Ben Ticha et al. 2018) would seem appropriate for the case of the time-dependent version
with dynamic paths.

With the real-time traffic information collected as well as the historical data provided by
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traffic systems, numerous studies have been conducted mainly on routing through a time-
independent road networks (Calogiuri, Ghiani, and Guerriero 2015). This stimulated the
design of a number of efficient solution algorithms for the time-dependent scenarios where
piecewise linear functions are used to model time-dependent arc traveling speed or generalized
cost variations over time. Solutions for determining the expected quickest paths are crucial
for the coordination and the planning of routing and could be enhanced with the availability
of real-time traffic information for some big cities. Further, there have been a few works that
explicitly address the question of emission estimations in time-dependent routing with road
network information. A promising extension is to study and design effective emission models
using big data analytic techniques such as machine learning may uncover additional potential
for enhancing scheduling in time-dependent routing.
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Chapter 3

Time-Dependent Quickest Path
Problem with Emission Minimization

Résumé

En tant que principal contributeur aux émissions de gaz à effet de serre (GES) dans le secteur
du transport, le transport routier de marchandises est au centre de nombreuses stratégies
pour lutter contre la pollution accrue. Une façon de réduire les émissions est de considérer
la congestion et d’être en mesure d’acheminer le trafic autour d’elle. Dans ce chapitre, nous
avons étudié le problème du chemin le plus rapide dépendant du temps avec la minimisation
des émissions (TDQPP-EM), dans lequel la fonction objectif prend en compte les coûts des
émissions de GES, du conducteur et de congestion. Les coûts de déplacement sont affectés
par le trafic en raison de la variation des niveaux de congestion en fonction de l’heure de la
journée, des types de véhicules et de la charge transportée. Nous avons développé également
des bornes inférieures et supérieures dépendant du temps, qui sont à la fois précises et rapides
à calculer. Des expérimentations numériques ont été effectuées sur des instances qui intègrent
la variation du trafic tout au long de la journée, en utilisant trois adaptations de l’algorithme
de Dijkstra. Nous avons montré que la prise en compte des vitesses variables dans le temps
apporte des améliorations substantielles par rapport à des vitesses fixes. Nos résultats de
calcul démontrent que contrairement au TDQPP, l’obtention de la solution optimale se fait
plus difficilement dans le cas du TDQPP-EM, mais les algorithmes proposés sont robustes et
efficaces pour réduire le coût total même pour les grandes instances.
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Chapter information A research paper based on this chapter, named Time-Dependent
Quickest Path Problem with Emission Minimization, has been submitted to the journal Trans-
portation Science by Heni H., Coelho L. C., and Renaud J. in September 2017.

Abstract

As the largest contributor to greenhouse gas (GHG) emissions in the transportation sector,
road freight transportation is the focus of numerous strategies to tackle increased pollution.
One way to reduce emissions is to consider congestion and being able to route traffic around it.
In this paper we study the time-dependent quickest path problem with emission minimization
(TDQPP-EM), in which the objective function comprises GHG emissions, driver and conges-
tion costs. Travel costs are impacted by traffic due to changing congestion levels depending
on the time of the day, vehicle types and carried load. We also develop time-dependent lower
and upper bounds, which are both accurate and fast to compute. Computational experi-
ments are performed on real-life instances that incorporate the variation of traffic throughout
the day, by using three adaptations of the Dijkstra’s label-setting algorithm. We show that
considering time-varying speeds provides substantial improvements over the one based only
on fixed speeds. Our computational results demonstrate that contrary to the TDQPP, the
TDQPP-EM is more difficult to solve to optimality but the proposed algorithms are shown to
be robust and efficient in reducing the total cost even for large instances.

Keywords: time-dependent networks; congestion; emission; quickest path; label-setting al-
gorithm.
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3.1 Introduction

Road freight transportation is a significant contributor to greenhouse gas (GHG) emissions
(Demir, Bektaş, and Laporte 2014b). This is mostly driven by increased traffic congestion due
to the high number of vehicles on urban areas. When traveling in cities, fuel consumption and
GHG emissions are highly affected by speed levels depending on paths used by vehicles. To
reduce the emissions intensity and environmental pollution caused by road freight transporta-
tion activities, new alternative planning and coordination strategies directly related to routing
and scheduling operations are required for both operational and environmental considerations
(Savelsbergh and Van Woensel 2016, Franceschetti et al. 2017b).

Many works have demonstrated the importance of speed in minimizing travel costs. Most of
the existing research assumes that trucks can travel at the emissions-minimizing speed, which
largely ignores the effect of congestion, notably in urban areas. In this work we introduce and
solve a new variant of both the classical time-dependent quickest path problem (TDQPP) of
Calogiuri, Ghiani, and Guerriero (2015) and the time-dependent emissions-minimizing path
problem of Ehmke, Campbell, and Thomas (2016a) which we call the Time-Dependent Quick-
est Path Problem with Emission Minimization (TDQPP-EM). Here, the cost of an arc depends
not only on distance but also on fuel consumption (the rate of GHG emissions) and on driver
costs, which are all affected by speed variation. The overall objective is to determine a least
cost path based on a time-dependent network with time-varying speeds. With data obtained
for Québec City, we test our algorithms on a large road network with real traffic data. We
adapt Dijkstra’s label-setting algorithm to account for time-dependent traffic and our com-
prehensive objective function, and we compute lower and upper bounds on the overall cost
taking into account the time-dependent context.

By conducting extensive experiments, we show that GHG emissions, fuel consumption as well
as cost savings can be achieved through the fast computation of point-to-point least cost paths
using a comprehensive objective function composed of GHG emissions, fuel and driver costs,
instead of the traditional distance-minimizing and least time path objectives of the TDQPP.

This paper makes several important contributions to the literature:

• we introduce the TDQPP-EM a variant of the minimum-cost path across time-dependent
network, where arc costs are time-dependent and are evaluated by explicitly considering
GHG emissions and fuel consumption as parts of the cost components. It takes into
account the variability of both emissions and costs considering time-varying speeds across
each arc of the underlying road network;

• we prove that, under the first-in, first-out (FIFO) property, a least cost path obtained
by ignoring traffic congestion can be no worse than an optimal path cost according to
the heaviest congestion factor applied to all arcs at each time interval;
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• we propose an efficient method to obtain tight time-dependent bounds, reducing the
computational burden, and investigate when it is important to incorporate the load
carried by the vehicle and traffic congestion factors into the lower and upper bounding
algorithms;

• we propose an effective approach for computing travel cost and GHG emissions in time-
dependent networks under the FIFO dynamic. This ensures that our solution methods
account for the impact of speed variations on the optimization of a chosen path;

• finally, we adapt Dijkstra’s time-dependent label-setting algorithm to solve the TDQPP-
EM.

The remainder of the paper is organized as follows. Section 4.2 provides a literature review of
the TDQPP and closely related problems. In Section 3.3, we provide a formal description of
TDQPP-EM, and present some properties of the TDQPP-EM. Section 3.4 describes the pro-
posed lower and upper bounds on the cost. Section 3.5 is devoted to extending the dynamic Di-
jkstra’s label-setting algorithm, incorporating our lower and upper bounds on that algorithm.
In Section 4.5, we give details on the benchmarks created from the Québec metropolitan area
and validate the performance of our algorithms providing a detailed experimental evaluation.
Our conclusions are presented in Section 4.6.

3.2 Literature review

The TDQPP-EM is a problem in the field of green road freight transportation (Demir, Bek-
taş, and Laporte 2014b), and more specifically close to the pollution-routing problem (PRP)
(Bektaş and Laporte 2011). A number of recent contributions on the PRP have addressed
both operational and GHG emissions-related objectives (Demir, Bektaş, and Laporte 2014a,
Franceschetti et al. 2017b).

Most of these contributions consider the shortest path between each pair of customers as
fixed. Time-dependent shortest path problems (TDSPPs) have been studied in most cases
in the context of other objectives, such as determining Quickest Path (QP) (Delling and
Nannicini 2012, Calogiuri, Ghiani, and Guerriero 2015), least emissions path (LEP) (Ehmke,
Campbell, and Thomas 2016a,b) and least cost path (LCP) (Di Bartolomeo et al. 2017). The
TDQPP-EM is an extension of the TDQPP considering a time-dependent travel cost and can
be seen as a variant of the minimum-cost path problem (MCPP) over time-dependent networks,
which is NP-hard as stated in Orda and Rom (1991) and Dean (2004b) and demonstrated by
Di Bartolomeo et al. (2017). Since the TDQPP-EM is a special case of the MCP which aims
to find the least travel cost path over time-dependent networks considering a cost function
encompassing GHG emissions and driver costs, then it is also NP-hard. Polynomial-time
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algorithms for the TDQPP can be adapted to solve MCP (Dean 2004b, Brodal and Jacob
2004, Dehne, Omran, and Sack 2012).

In what follows, we review contributions on the TDQPP in Section 3.2.1 and on the time-
dependent emissions-minimizing path problem in Section 3.2.2.

3.2.1 The time-dependent quickest path problem

A large part of the literature dealing with shortest paths on time-dependent networks aims at
finding a path with the least travel time, also known as the TDQPP. This problem has been
first introduced by Cooke and Halsey (1966). The classical Dijkstra’s label-setting algorithm
can be used to determine quickest paths in time-dependent networks, in which the FIFO
property was implicitly considered as it is consistent with the requirements imposed by real
transportation networks. Under FIFO dynamics the TDQPP can be solved optimally and
efficiently in polynomial time by adapting any label-setting shortest path algorithm (Dean
2004a).

Moreover, many existing works have not explicitly considered whether the FIFO assumption
holds (Miller-Hooks and Yang 2005, Ehmke, Campbell, and Thomas 2016a), making shortest
path algorithms very unstable. Sherali, Hobeika, and Kangwalklai (2003) show that a network
with a single non-FIFO arc yields a TDQPP algorithm which can no longer be solved in
polynomial time.

With the aim of ensuring that the time-dependent network is consistent with the FIFO dy-
namics, Sung et al. (2000) proposed the flow speed model (FSM) in which the flow speed of
each arc depends on the time period. They developed a solution method based on Dijkstra’s
label-setting algorithm and showed that the computation of an optimal solution using the
FSM is easier than the one based on the link travel time model (LTM). In fact, the LTM
does not guarantee the FIFO rule as the arc travel time changes as the period changes. The
determination of quickest paths with LTM requires some additional steps to ensure the FIFO
dynamics by eliminating potential cycles if waiting at nodes is not allowed (Miller-Hooks and
Yang 2005) and deriving a travel time function satisfying the non-passing consistency (Fleis-
chmann, Gietz, and Gnutzmann 2004). Recently, Yang and Zhou (2014) proposed a branch
and bound method to solve the TDQPP in a space-time network by defining time-dependent
nodes based on the departure and arrival times at each physical node.

Ichoua, Gendreau, and Potvin (2003) proposed a time-dependent speed model that respects
the FIFO dynamics. The main point of their model is that the speed of each arc depends
on the period. Hence, the speed across each arc changes when the boundary between two
consecutive time intervals is crossed. Later, Van Woensel et al. (2008) proposed a queuing
approach to capture traffic congestion and model travel times. A study by Kok, Hans, and
Schutten (2012) proposed a speed model that satisfies the FIFO property to reflect traffic
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congestion in real road networks.

A best-first search heuristic for the fast computation of quickest path in a time-dependent
network is the A* goal-directed search algorithm (Hart, Nilsson, and Raphael 1968). A* can
be seen as an efficient adaptation of Dijkstra’s algorithm that determines a quickest path on
time-dependent networks using time-to-destination lower bounds satisfying the FIFO property.

Ghiani and Guerriero (2014a) proposed an effective lower bound for the quickest path problem,
which was embedded into an A* algorithm. Calogiuri, Ghiani, and Guerriero (2015) studied
the properties and bounds of TDQPP. Using the time-dependent speed model of Ichoua,
Gendreau, and Potvin (2003), they prove that under the FIFO assumption, if the congestion
factors of all links are set to the lightest congestion factor, the TDQPP can be solved as a
QPP with suitable-defined fixed travel times. We extend this development to the context of
our paper.

3.2.2 Time-dependent pollution-routing and emissions-minimized paths

Demir, Bektaş, and Laporte (2014b) provided a review of several fuel consumption mod-
els including the MEET (Methodology for Calculating Transportation Emissions and Energy
Consumption) developed by (Hickman et al. 1999) and the CMEM (Comprehensive Modal
Emissions Model) designed by Barth and Boriboonsomsin (2008) and Barth and Boriboon-
somsin (2009), among others. Note that, CMEM considers the impact of vehicle load on fuel
consumption. However, MEET uses a load correction factor to take the vehicle load into
account when computing fuel consumption.

Bektaş and Laporte (2011) introduced the pollution-routing problem. Based on the compre-
hensive modal emissions model (CMEM), they minimize GHG emissions by determining the
optimal speed with respect to the load carried by the vehicle, fuel consumption and driver
induced costs. Later, Demir, Bektaş, and Laporte (2012) extend it by applying a speed
optimization algorithm, identifying the optimal speed on each arc in order to minimize the
expected costs of fuel consumption and driver wages.

Jabali, Van Woensel, and de Kok (2012) studied the Emission Vehicle Routing Problem
(EVRP), which uses the MEET to derive the GHG emissions. However, this study ignores the
load when calculating the emissions. Focusing on the analysis of time-dependent costs as a
function of speed, load and fuel consumption, Franceschetti et al. (2013) extended the PRP to
a time-dependent setting using the time-dependent travel time model of Jabali, Van Woensel,
and de Kok (2012). Recently, Franceschetti et al. (2017b) developed a metaheuristic approach
to solve the PRP under congestion, which integrates departure time and speed optimization
procedures.

In Wen and Eglese (2015), the authors solve the vehicle routing problem (VRP) with time-
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dependent speeds, where the total cost involves fuel cost, driver cost and congestion charge.
Their model is based on MEET and the impact of vehicle load is not considered. In their
work, fixed congestion charges are applied once per day for each vehicle.

The results of the previous works show that the traditional objectives consisting of only travel
times do not necessarily imply the minimization of either fuel or driver costs, and that least cost
solutions do not imply an GHG emissions-optimal solution. Indeed, there is a gap in the PRP
research area related to the integration of GHG emissions models into TDQPP. Few papers
have addressed path flexibility and GHG emissions-minimized paths. The exceptions are the
works of Wen, Çatay, and Eglese (2014), Ehmke, Campbell, and Thomas (2016a,b), Qian
and Eglese (2016) and Huang et al. (2017). Following these works, we assume that vehicles
must travel at the speed of traffic and do not have the ability to control their speed in a way
that minimizes costs. Additionally, we consider that in time-dependent networks, congestion
patterns are variable across each segment. Our goal is to model a more comprehensive objective
function which captures and minimizes the cost of GHG emissions and fuel consumption along
with operational costs considering time-varying speeds on the underlying road network.

3.3 Formal description and problem statement

In this section, we introduce our notation, give a formal definition for the TDQPP-EM and
describe some of its properties. Let G = (V,A,Z, S) be a directed time-dependent network,
where V is the set of nodes, and A ⊆ {(i, j) ∈ V × V, i 6= j} is a set of arcs. The number of
nodes and arcs are |V| = n and |A| = m. We assume that G is strongly connected, thus, there
is a path from every node to all other nodes. The time-dependent network is considered at
a set of discrete times Z = {t0, t0 + δ ..., t0 + Hδ}, with δ > 0 being the smallest increment
of time over which a change in the congestion pattern occurs. The time horizon T is divided
into H time slots Zh = [zh, zh+1[, such that zh = t0 + hδ, where h = 0, 1, 2, ...,H − 1. Let
S = {shij} represent the set of time-dependent arc travel speeds, where for each arc (i, j) ∈ A

shij represents the travel speed value during the time slot Zh. Hence, the travel speed of each
arc is assumed to be dynamic for a particular traveler across any arc. We denote the distance
between two nodes i, j as Lij . Time-dependent travel times as well as costs vary for each
departure time t ∈ T . With each arc (i, j) are associated two time-dependent functions which
assign, respectively, travel time τij(t) and travel cost cij(t) related to the time at which a
vehicle leaves node i. Travel time functions τij(t) are piecewise linear and satisfy the FIFO
property.

The speed at which a vehicle travels on arc (i, j) is constrained by a lower bound and an upper
bound, denoted Lij and Uij , respectively, usually imposed by traffic. A unit of GHG emitted
(usually in kilograms) has an estimated cost ce.

Given a starting time t the TDQPP-EM aims to determine a path p = (o = v0, ..., vi, ..., vj , ..., vk =
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d) such that the time-dependent total cost ϕp(t) between source o ∈ V and destination d ∈ V

is minimum.

Following the FSM, when a vehicle traverses arc (i, j) of length Lij , speed may change when
the boundary between two consecutive time slots is crossed before reaching j. The arc travel
time is then obtained by summing up the travel times used for each section traversed at
different speeds. Hence, with FSM we assume that speed shij on arc (i, j) depends on time
interval:

shij = σijhuij , (3.1)

where σijh ∈ [0, 1] represents the congestion ratio of arc (i, j) in the time interval Zh, and uij
is the maximum speed of arc (i, j) ∈ A during the horizon T .

For a given arc (i, j) let lhij denote the portion of the length Lij traveled during time slot Zh.
Let ht and hγ be the indices of time slots where the start time γpi (t) at node i and the arrival
time γpj (t) at node j belong to, respectively, with ht ∈ {0, ...,H − 1} and hγ ∈ {ht, ...,H − 1}.
The travel time along an arc is the sum of three portions of time:

(i) The time associated with the first interval ht: zht+1 − γpi (t).

(ii) The duration of the (hγ − ht − 1) intermediate time intervals crossed when travelling
along arc (i, j):

∑hγ−1
h=ht+1 (zh+1 − zh), where h = ht + 1, ..., hγ − 1.

(iii) The time related to the last time slot when leaving the arc: γpj (t)− zhγ .

Therefore, we can express the travel time of each arc as follows:

τij(γ
p
i (t)) =


Lij/(σijhtuij) if hγ = ht

γpj (t)− γpi (t) if hγ = ht + 1

(zht+1 − γpi (t)) + (hγ − ht − 1) δ +
(
γpj (t)− zhγ

)
if hγ > ht + 1.

(3.2)

The arrival time γpj at node j is expressed as follows:

γpj (t) =

{
Lij/s

h−1 + γpi (t) if Lij/sh < zh − γpi (t), h = ht

(Lij − lh−1)/sh + zh if (Lij − lh−1)/sh < zh+1 − zh, h ∈ {ht + 1, ..., hγ},
(3.3)

where lht−1 = sht(zht − t) and lh = lh−1 + sh(zh+1 − zh) if h ∈ {ht + 1, ..., hγ}, and Lij =∑hγ
h=ht

lh. Note that the traversal time Γp(t) of a path p can be induced from the arrival time
at the destination node d. Therefore, it is given by:

Γp(t) = γpd(t)− t. (3.4)
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3.3.1 Time-dependent GHG emission and fuel consumption functions

Our modeling for emissions and fuel consumption follows the same approach applied in some
relevant works, namely Bektaş and Laporte (2011), Demir, Bektaş, and Laporte (2012),
Franceschetti et al. (2013, 2017b), Dabia, Demir, and Van Woensel (2017) and Huang et al.
(2017), among others. According to these works GHG emissions are directly proportional to
fuel consumption. We also use the CMEM to estimate the amount of fuel consumption and
GHG emissions. The CMEM is a microscopic model that allows the consideration of vehicle
specific parameters, such as engine speed, traffic related parameters, and environment related
factors (Barth and Boriboonsomsin 2008, 2009). According to the CMEM the fuel use rate
(liter/s) for a given time instant is a function encompassing travel speed, vehicle load and
road gradient:

er =
ζ

$ψ

(
kNeV +

1

ε

(
((w + q)(a+ g sin θ + gCr cos θ) + 0.5CdAρs

2)s

1000ηtf
+ Pacc

))
. (3.5)

All required parameters with their typical values are described in Table 3.1. Pacc is the engine
power demand for vehicle accessories in hp. We consider the default value of Pacc, which is
zero. Using α = a+ g sin θ+ gCr cos θ, β = 0.5CdAρ, ς = 1

(1000εηtf ) and λ = ζ
$ψ , and based on

the assumption associated with values of used parameters, expression (3.5) can be rewritten
as:

er = λ(kNeV + ςα(w + q)s+ ςβs3). (3.6)

Table 3.1: Parameters used in the CMEM

Notation Description Typical values
w Curb-weight (kg) 15000
q Carried load (kg) 0-10000
ζ Fuel-to-air mass ratio 1
k Engine friction factor (kJ/rev/liter) 0.25
Ne Engine speed (rev/s) 60
V Engine displacement (liter) 7
g Gravitational constant (m/s2) 9.81
ρ Air density (k/m3) 1.2041
Cd Coefficient of aerodynamic drag 0.7
A Frontal surface area (m2) 5
Cr Coefficient of rolling resistance 0.01
ηtf Vehicle drive train efficiency 0.4
η Efficiency parameter for diesel engines 0.9
cf Fuel and GHG emissions cost per liter ($CAD/liter) 1.05
cd Driver wage ($CAD/s) 0.0085
$ Heating value of a typical diesel fuel (kJ/g) 44
ψ Conversion factor (g/s to liter/s) 737
sl Lower speed limit (m/s) 11.111
su Upper speed limit (m/s) 19.444
s Average speed at a portion of segment (m/s)
a Acceleration (m/s2) 0
θ Roadway gradient (degree) 0

Using only average speeds may not capture the average GHG emissions on a particular arc.
In fact, CMEM computations taking into account only fixed speed are not often enough
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accurate to reflect GHG emissions at peak hour traffic congestion considering fluctuating
speed (Turkensteen 2017, Franceschetti et al. 2016). For example, if the travel speed on a
path often drops far below the average speed, then the actual emissions may be much higher
than if the trip occurs consistently at the average speed. Thus, to optimize GHG emissions in
an urban area, one must explicitly consider the variability of the speed at different times of
the day. Moreover, for a given arc (i, j) along a path p starting at time t (time slot Zht), the
corresponding fuel consumption can be expressed based on a combination of equations (3.6)
and (3.2):

Fij(t) = fij(t) + gij(t), (3.7)

where

fij(t) =

hγ∑
h=ht

[(
lhij

shij

)
λςα(w + q)shij

]
= λςα(w + q)

hγ∑
h=ht

lhij = λςα(w + q)Lij , (3.8)

and

gij(t) =

hγ∑
h=ht

[(
lhij

shij

)
λ(kNeV + ςβ(shij)

3)

]
= λkNeV τij(t) + λςβ

hγ∑
h=ht

lhij(s
h
ij)

2. (3.9)

For a departure time t and a path p, the total amount of fuel consumed can be calculated as
follows based on equation (3.7):

Fp(t) =
∑

(i,j)∈p

Fij(γ
p
i (t)). (3.10)

3.3.2 Time-dependent travel cost function

Given a departure time t, the driver cost incurred from path p can be calculated as the cost
of the traversal time according to (3.4):

ϕ(Γp(t)) = cdΓp(t). (3.11)

On the basis of (3.8) the cost of GHG emissions on a given arc (i, j) across a path p can be
calculated as cfFij(t). Thus, fuel consumption cost (in $) of path p is given by:

ϕ(Fp(t)) = cfFp(t). (3.12)

As we know that the path’s cost encompasses the traversal duration and fuel costs, the total
cost of a path from o to d starting at time t can be expressed by combining equations (3.11)
and (3.12) as follows:

ϕp(t) = ϕ(Γp(t)) + ϕ(Fp(t)) =
∑

(i,j)∈p

cij(γ
p
i (t)), (3.13)
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where
cij(γ

p
i (t)) = cdτij(γ

p
i (t)) + cfFij(γ

p
i (t)). (3.14)

Note that the cost cij(γ
p
i (t)) of traveling across arc (i, j) is expressed by combining equations

(3.2) and (3.7).

An optimal path from source o to destination d given the starting time t is the path p∗c with
the least travel cost, denoted by ϕp∗c (t).

A mathematical programming formulation for the TDQPP-EM is presented in the Appendix
A.

3.4 Time-dependent lower and upper bounds for the
TDQPP-EM

When dealing with the TDQPP-EM, it is useful to compute the least cost lower and upper
bounds. These bounds are useful to validate the accuracy of designed TDQPP-EM algorithms.
Additionally, they can be embedded into a time-dependent search heuristics as best-first search
that associate to each node i a label equal to the known travel cost at arrival time γpvi(t) at
the current node i plus a lower bound on the cost to the destination.

This section presents time-dependent lower and upper bounds for the TDQPP-EM that can
be computed by ignoring the network-wide traffic congestion. Let Pϕ be the set of all feasible
paths of the TDQPP-EM on G. Given a path p ∈ Pϕ, let Γ(p) be the traversal time of p
assuming (3.1) holds. We also denote by Γ(p) the traversal time of p if the congestion ratios
of all arcs are set to the lightest congestion factor σh = max

(i,j)∈A
(σijh) for each time slot Zh.

Let ∆ = min
ijh

(
shij
σhuij

) be the heaviest degradation of congestion ratio of any arc (i, j) over the

time horizon T . Finally, let Γ(p) denote the duration of p if all shij are set to the speed limit
uij . This is equivalent to assuming that all arc speeds become constant and the TDQPP
and the TDQPP-EM are reduced to the QPP and to the QPP-EM, respectively. Let p∗, p∗

and p∗ be optimal solutions of the TDQPP under the assumptions previously defined, i.e.,
p∗ = arg min

p∈Pϕ
{Γ(p)}, p∗ = arg min

p∈Pϕ
{Γ(p)}, and p∗ = arg min

p∈Pϕ
{Γ(p)}.

Given a path p ∈ Pϕ, let ϕ(p) be its traversal cost, starting at time t. We also denote ϕ(p)

the traversal cost of p if all shij are set to the speed limit uij . Let p∗c and pc
∗ be optimal

solutions of the TDQPP-EM and QPP-EM, respectively, thus, p∗c = arg min
p∈Pϕ
{ϕ(p)}, and

pc
∗ = arg min

p∈Pϕ
{ϕ(p)}.

Adopting p∗ as a heuristic solution of the TDQPP-EM under the speed variation relationship
(3.1) presents multiple advantages. Firstly, efficient algorithms designed for the QPP can be
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immediately applied to solve the TDQPP-EM. Secondly, if all arc speeds are set according to
the maximum speed uij , then p∗ is a near-optimal solution for the TDQPP-EM. Indeed, in
the following subsections we prove that ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s

∗)) ≤ ϕ(p∗c) is a lower bound
on ϕ(p∗c) and that min{ϕ(pc

∗), ϕ(p∗), ϕ(p∗), ϕ(p∗)} ≤ ϕ(p∗) is its upper bound:

ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s
∗)) ≤ ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s

∗)) ≤ ϕ(p∗c) ≤ min{ϕ(pc
∗), ϕ(p∗), ϕ(p∗), ϕ(p∗)} ≤ ϕ(p∗) ≤ 1

∆ϕ(Γ(p∗c)) + ϕ(F(p∗))

(3.15)

where q0 = 0 is used to indicate empty load and s∗ = (kNV2βς )1/3 is the optimal speed which

minimizes fuel consumption cost for any arc, which results from ∂Fij
∂sij

(s∗) = 0.

3.4.1 A lower bound on the cost ϕ(p∗c)

We now demonstrate that ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s
∗)) ≤ ϕ(p∗c) is a lower bound on ϕ(p∗c) and

that if the vehicle travels with the same load q at speed s∗ that minimizes fuel consumption
across all arcs, then p∗ is optimal for TDQPP-EM, that is, p∗ = pc

∗.

Theorem 1 Path p∗ is an optimal solution for the TDQPP-EM when the vehicle travels with
constant load, and the speed for all arcs (i, j) ∈ A is set to s∗ = (kNV2βς )1/3, minimizing fuel
consumption.

Proof. Given a solution path pc ∈ Pϕ it follows from (3.13) that:

ϕ(pc, q, s
∗) = ϕ(Γ(pc, s

∗)) + ϕ(F(pc, q, s
∗)). (3.16)

From (3.11) it results that the travel time can be expressed as (3.17) and fuel consumption
and GHG emissions cost can be defined as (3.18), based on (3.8), (3.9) and (3.13):

ϕ(Γ(pc, s
∗)) = cdΓ(pc, s

∗), (3.17)

ϕ(F(pc, q, s
∗)) = cfer(q, s

∗)Γ(pc, s
∗), (3.18)

where er(q, s∗) is constant across all arcs of path pc and represents the minimum fuel con-
sumption rate. Combining (3.17) and (3.18) results in:

ϕ(pc, q, s
∗) = [cd + cfer(q, s

∗)] Γ(pc, s
∗). (3.19)

As the vehicle travels with load q at speed s∗ across all arcs, the first part of the equation
(3.19) cd + cfer(q, s

∗) is constant. Hence, the overall cost is minimum if the total travel time
Γ(pc, s

∗) of the path pc is minimum. The minimum travel time is given by an optimal solution
for the TDQPP, i.e., p∗. Hence, an implication of (3.19) is that the optimal path p∗c = p∗,
which completes the proof of Theorem 1.
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Corollary 1.1 Given two optimal paths p∗ and p∗c (with respect to ϕ(p∗) and ϕ(p∗c), respec-
tively) for the TDQPP and the TDQPP-EM, respectively, the following relationship is satisfied:

ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s
∗)) ≤ ϕ(p∗c). (3.20)

Proof. By observing that when the congestion ratios of all arcs are set to their lightest values
σh = max

(i,j)∈A
(σijh) for each time interval Zh it follows that the traversal time of a given path

p = (o = v0, v2, ..., vk = d) starting a time t = 0 is

Γ(p) =
k∑
l=1

Lvl−1vl

uvl−1vl

=
k∑
l=1

∫ t+τvl−1vl
(t)

t
σ(γ)dγ =

∫ Γ(p)

t0

σ(γ)dγ (3.21)

where σ(γ) = σh. Furthermore, if we consider another path p′ ∈ Pϕ, from (3.21) it follows
that:

Γ(p′) ≤ Γ(p)⇔ Γ(p′) ≤ Γ(p), (3.22)

which implies that:

Γ(p∗) = Γ(p∗). (3.23)

As p∗ = arg min
p∈Pϕ
{Γ(p)} and Γ(p∗c) ≤ Γ(p∗c), from (3.23) it results that:

Γ(p∗) ≤ Γ(p∗c). (3.24)

Hence,

ϕ(Γ(p∗)) ≤ ϕ(Γ(p∗c)). (3.25)

If we consider the case of fixed speed s∗ which minimizes the fuel consumption we may assert
that:

F(p∗, q0, s
∗) ≤ F(p∗c). (3.26)

Then the following relationship also holds:

ϕ(F(p∗, q0, s
∗)) ≤ ϕ(F(p∗c)). (3.27)
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Combining (3.26) and (3.27) yields:

ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s
∗)) ≤ ϕ(p∗c), (3.28)

which completes the proof of Corollary 1.1.

3.4.2 A worst-case analysis

In this subsection, we provide a worst case analysis on the cost ϕ(p∗).

Theorem 2 The value ϕ(pc
∗) is an upper bound not greater than 1

∆ϕ(Γ(p∗)) + ϕ(F(p∗)).

Proof. As p∗, p∗, and p∗ are optimal solutions for the TDQPP, they are also feasible solutions
for the TDQPP-EM. Additionally, pc∗ is a feasible solution for the TDQPP-EM, then:

ϕ(p∗c) ≤ ϕ(p∗) (3.29)

ϕ(p∗c) ≤ ϕ(p∗) (3.30)

ϕ(p∗c) ≤ ϕ(p∗) (3.31)

ϕ(p∗c) ≤ ϕ(pc
∗). (3.32)

By combining (3.29), (3.30), (3.31) and (3.32) we obtain the proof of the first part of the upper
bound inequality:

ϕ(p∗c) ≤ min{ϕ(pc
∗), ϕ(p∗), ϕ(p∗), ϕ(p∗)} ≤ ϕ(p∗) (3.33)

Furthermore, if the congestion ratio σijh takes a value in the interval [∆σh, σh], then it results
that for a given path p:

Γ(p) ≤ Γ(p) ≤ 1

∆
Γ(p). (3.34)

Combining (3.33) and (3.34) yields:

Γ(p∗) ≤ 1

∆
Γ(p∗) ≤ 1

∆
Γ(p∗c), (3.35)

which implies that:

ϕ(Γ(p∗)) ≤ 1

∆
ϕ(Γ(p∗)) ≤ 1

∆
ϕ(Γ(p∗c)). (3.36)

Since ϕ(p∗) = ϕ(Γ(p∗)) + ϕ(F(p∗)), it follows that:
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ϕ(Γ(p∗)) + ϕ(F(p∗)) ≤ 1

∆
ϕ(Γ(p∗c)) + ϕ(F(p∗)). (3.37)

An implication of (3.37) is that ϕ(p∗)) ≤ 1
∆ϕ(Γ(p∗c)) + ϕ(F(p∗)), which completes the proof

of Theorem 2.

3.5 Design of efficient TDQPP-EM algorithms

In this section, we propose several heuristic algorithms that will be applied to efficiently solve
the TDQPP-EM in polynomial time based on the FSM and the LTM. First, we present the
algorithms used to compute arrival times, travel times and travel costs. Second, we present
the time-dependent Dijkstra algorithm. Lastly, we describe speed-up methods for the fast
computation of lower and upper bounds on path traversal costs.

3.5.1 Time-dependent arrival time and travel time computation

In the case of the FSM, during each time period Zh the flow speed on each arc (i, j) is assumed
to be constant. Given the set of speeds and a starting time γpi (t) at node i, both arrival time
and travel time across arc (i, j) can be computed through Algorithm 3.1.

Algorithm 3.1 Computing the travel time τij(γ
p
i (t)) across a given arc (i, j) based on the

FSM
1: function Travel_Time_FSM(γpi (t), (i, j),Z, S)
2: h|γpi (t) ∈ Zh = [zh, zh+1[
3: k ← h
4: d← Lij −

[
skij(zk+1 − γpi (t))

]
5: while d > 0 do
6: k ← k + 1
7: d← d−

[
skij(zk+1 − zk)

]
8: end while
9: γpj (t)← zk+1 + d/skij

10: τij(γ
p
i (t))← γpj (t)− γpi (t)

return τij(γ
p
i (t))

11: end function

In the case of the LTM the travel time of arc (i, j) is specified when departing from node
i at given time period Zh and is assumed to be constant until exiting at the node j. The
calculation of arrival and travel times across arc (i, j) are summarized in Algorithm 3.2.

3.5.2 Time-dependent fuel consumption and travel cost computation

Given a starting time γpi (t) at node i, the fuel consumption, GHG emissions and travel costs
across arc (i, j) are computed using the FSM and the LTM models based on Algorithms 3.3
and 3.4, respectively.
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Algorithm 3.2 Computing the travel time τij(γ
p
i (t)) across a given arc (i, j) based on the

LTM
1: function Travel_Time_LTM(γpi (t), (i, j),Z, S)
2: h|γpi (t) ∈ Zh = [zh, zh+1[
3: τij(γ

p
i (t))← Lij/s

h
ij

return τij(γ
p
i (t))

4: end function

In Algorithm 3.3, we identify all speed changes according to the time periods crossed when
traversing arc (i, j) and consider the associated portions of distance covered. Hence, at every
iteration the time-dependent travel cost and energy consumption are induced, including the
amount of GHG emissions and fuel consumption computed using CMEM. The algorithm stops
when node j is reached.

Algorithm 3.3 Computing the travel cost cij(γ
p
i (t)) across a given arc (i, j) based on the

FSM
1: function Travel_Cost_FSM(γpi (t), (i, j),Z, S)
2: h|γpi (t) ∈ Zh = [zh, zh+1[
3: k ← h
4: l← skij(zk+1 − γpi (t))
5: d← Lij − l

6: g ← λkNeV

(
l
skij

)
+ lλςβ(skij)

2

7: while d > 0 do
8: k ← k + 1
9: l← skij(zk+1 − zk)

10: g ← g + λkNeV

(
l
skij

)
+ lλςβ(skij)

2

11: d← d−
[
skij(zk+1 − zk)

]
12: end while
13: γpj (t)← zk+1 + d/skij
14: if k > h then
15: l← skij(γ

p
j (t)− zk)

16: g ← g + λkNeV

(
l
skij

)
+ lλςβ(skij)

2

17: else
18: g ← λkNeV

(
Lij
shij

)
+ Lijλςβ(shij)

2

19: end if
20: τij(γ

p
i (t))← γpj (t)− γpi (t)

21: Fij(γ
p
i (t))← λςα(w + q)Lij + g

22: cij(γ
p
i (t))← cdτij(γ

p
i (t)) + cfFij(γ

p
i (t)

return cij(γ
p
i (t))

23: end function
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Algorithm 3.4 Computing the travel cost cij(γ
p
i (t)) across a given arc (i, j) based on the

LTM
1: function Travel_Cost_LTM(γpi (t), (i, j),Z, S)
2: h|γpi (t) ∈ Zh = [zh, zh+1[
3: τij(γ

p
i (t))← shij/Lij

4: γpj (t) = γpi (t) + τij(γ
p
i (t))

5: Fij(γ
p
i (t))← λ(kNeV + ςα(w + q)shij + ςβ(shij)

3)
Lij
shij

6: cij(γ
p
i (t))← cdτij(γ

p
i (t)) + cfFij(γ

p
i (t))

return cij(γ
p
i (t))

7: end function

3.5.3 Time-dependent Dijkstra algorithms

In this section we propose new solution methods based on two adaptations of Dijkstra’s label-
setting algorithm. The travel cost across each arc is computed according to the set of flow
speeds obtained at the time of traversing the arc. Therefore, FSM and LTM models for the
computation of time-dependent arc arrival time and travel costs are integrated at every itera-
tion of the main label-setting algorithm when choosing the next connecting node. We call these
modified versions the time-dependent Dijkstra’s (TD-Dijkstra) FSM and LTM algorithms.

The TD-Dijkstra-FSM and TD-Dijkstra-LTM algorithms work by examining all temporarily
labeled nodes in the network starting with the source node o. At the beginning, the priority
queue N contains all nodes and their status are initialized to unlabeled except the source
o. Hence, co is set to 0 and for each unlabeled node i the cost ci is set to ∞. At each
iteration of node expansion, the algorithm selects a labeled but not examined node i with the
least labeled time-dependent cost from the set of temporarily labeled nodes E+(i), updates
its cost label, and puts the node into a set of examined and permanently labeled nodes E,
and each arc leaving from it is evaluated. If the labeled cost of node i plus the cost of arc
(i, j) is smaller than the labeled cost of node j, then the cost from the source node to node
j is updated with a value equal to the sum of the labeled cost of node i plus the cost of
arc (i, j). Then, the algorithm continues the node examination process and takes the next
node to be examined. The algorithm terminates when the destination node d is reached or
when the priority queue becomes empty. In the node-examination process, a tree connecting all
examined nodes is created, and the permanently labeled time-dependent travel cost associated
with each examined node represents the least cost path from the origin node to that one.

Let Travel_Cost_ ∗ () be the method that computes the travel cost at node j when starting
from node i at time γpi (t), where the symbol ∗ represents the appropriate model for time-
dependent networks (FSM or LTM). Let o denote the origin node and predecessor(i) be the
predecessor of node i. Therefore, the TD-Dijkstra-* label-setting algorithms are designed as
in Algorithm 3.5.
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Algorithm 3.5 Determination of a near-optimal least cost path by adapting Dijkstra label-
setting algorithm (TD-Dijkstra-*)
1: function TD_Dijkstra(o, d,G)
2: E ← ∅
3: N ← V

4: ci ←∞, ∀i ∈ V
5: co ← 0 and predecessor(o)← o
6: while |E| < n do
7: let i ∈ N be a node for which ci ← min{cj : j ∈ N}
8: E ← E ∪ {i}
9: N ← N\{i}

10: if i = d then
11: Stop
12: end if
13: for each (i, j) ∈ E+(i) do
14: if cj > Travel_Cost_ ∗ (γpi (t), (i, j),Z, S) then
15: cj ← ci + Travel_Cost_ ∗ (γpi (t), (i, j),Z, S))
16: predecessor(j)← i
17: end if
18: end for
19: end while
20: end function

The original Dijkstra’s algorithm has a computational complexity of O(m log(n)). However,
the TD-Dijkstra-LTM has a computational complexity of O(m log(n) + n), where n and m

are the number of nodes and arcs in the time-dependent network, respectively. For every arc
and departure time at node i the arc travel cost is computed in O(1). As each node label
remembers the index of the time period, we reduce the scanning time from O(m) to O(n).
Similarly, the TD-Dijkstra-FSM algorithm solves the TDQPP-EM with O(m log(n) + nK)

time complexity, where K denotes the maximum number of time periods scanned by the
function Travel_Cost_FSM.

3.5.4 Dijkstra-SL and fast computation of time-dependent least cost
upper and lower bounds

We now propose an effective speed-up technique to ensure the fast computation of time-
dependent lower and upper bounds for the TDQPP-EM. First, we run the classical Dijkstra
to solve the TDQPP-EM to optimality where the network-wide traffic congestion is ignored
and travel speeds become constant. We call this version the Dijkstra algorithm with speed
limits (Dijkstra-SL). In this case, all arc travel speeds shij are set according to the speed limit
uij . Second, we compute the lower bound by applying Algorithms 3.6 and 3.7 in order to
obtain travel cost across each arc of the QPP-EM optimal solution considering time-varying
speeds. Algorithm 3.6 computes driver costs considering the heaviest congestion ratio for all
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arcs over time interval Zh. Algorithm 3.7 computes fuel cost considering optimal speeds (see
Section 3.4). Next, we compute upper bounds by evaluating the travel cost across each arc
using Algorithm 3.3.

Algorithm 3.6 Computing the driver cost across a given arc (i, j) according to the heaviest
congestion ratios
1: function Driver_Cost_Heaviest(γpi (t), (i, j),Z, S, σh)
2: h|γpi (t) ∈ Zh = [zh, zh+1[
3: τij(γ

p
i (t))← (σhuij)/Lij

return cdτij(γ
p
i (t))

4: end function

Algorithm 3.7 Computing the fuel cost across a given arc (i, j) based on optimal speeds
1: function Fuel_Cost_Optimal_Speed(γpi (t),

(i, j),Z, S, s∗)
2: h|γpi (t) ∈ Zh = [zh, zh+1[
3: τij(γ

p
i (t))← Lij/s

∗

4: Fij(γ
p
i (t))← λ(kNeV + ςα(w + q)s∗ + ςβ(s∗)3)τij(γ

p
i (t))

return cfFij(γ
p
i (t))

5: end function

3.6 Computational experiments

In this section, the experimental design and methodology for generating networks with their arc
information are provided. Then, detailed computational results of our TDQPP-EM algorithms
are presented and analyzed.

3.6.1 Benchmarks set

Our experiments are conducted on a real large road network generated from the geographical
information of Québec City. The obtained network contains 50,367 arcs and 17,431 nodes,
and is composed by a set of physical nodes, and a set of arcs of different types, such as arterial
streets, ramps and highway segments. Figure 3.1 shows a portion of the geographical area.
We have considered 60 time periods of 15 minutes from 6h00 to 21h00, which covers a typical
workday. For each arc and each time period the time-dependent flow speeds are computed
based on a large set of real-world data including more than 24 million of GPS observations
provided by the city administration and logistic partners (Belhassine et al. 2018). Relevant
speed observations were extracted, consolidated and stored to obtain historical congestion
patterns in this network.

As shown in Table 3.2 we have designed 80 test instances divided into four sets:

1. large networks considering a fixed departure time,
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2. medium networks considering a fixed departure time,

3. small networks considering a fixed departure time,

4. and large networks with different departure times.

For each instance we generate a pair of source and destination which corresponds to real
historical shipment data provided by one of our logistic partners. Further, each instance is
solved with different carried loads: empty (15 – tons), less-than-truck load (LTL – 17.5, 20,
and 22.5 tons) and full truck load (TL – 25 tons).

Figure 3.1: Portion of the geographical area

3.6.2 Experimental design

Table 3.3 summarizes our experimental design. All the instances were solved using three
different optimization objectives, namely travel time, fuel consumption, and travel cost. We
observe that minimizing fuel consumption is equivalent to minimizing GHG emissions as one
liter of diesel generates 0.00279 t CO2 e (Ministère de l’Énergie et des Ressources Naturelles
2014). For each set of instances and objective functions, we apply the developed algorithms
by adjusting their objective function accordingly, namely classical Dijkstra with speed limits
(Dijkstra-SL), TD-Dijkstra-LTM, TD-Dijkstra-FSM, LB and UB. Then, the exact value of
each solution is recalculated with Algorithms 3.1 and 3.3 according to FSM and CMEM to
reflect the key elements of real road network considering time-varying speeds.
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Table 3.2: Test instances

Instances Networks Number of nodes Number of arcs Speed observations Departure time Carried load
L1-L20 Large 17431 50367 613485

08h15

LT/LTL/Empty

M1-M20 Medium 3859 5388 266280
S1-S20 Small 1612 2810 78709
D1

Large 17431 50367 613485

07h30
D2 08h00
D3 08h30
D4 09h00
D5 09h30
D6 10h00
D7 10h30
D8 11h00
D9 11h30
D10 12h00
D11 12h30
D12 13h00
D13 13h30
D14 14h00
D15 14h30
D16 15h00
D17 15h30
D18 16h00
D19 16h30
D20 17h00

All algorithms are implemented in C++ 17 using Jetbrains CLion C++ 2017 release 2 with
cmake C++ compiler and were run on a ThinkCenter professional workstation with 32-
gigabyte RAM and Intel core i7 vPro, running Ubuntu Linux 16.05 LTS x86 operating system.

Table 3.3: Overview of experimental design

Optimization
criteria

Related Routing
problems Algorithms Solution evaluation

criteria

Travel time
Fuel (GHG emission)
Cost

TDQPP
TDLEPP
TDQPP-EM

Dijkstra-SL
TD-Dijkstra-LTM
TD-Dijkstra-FSM
LB/UB

Distance (m)
Travel time (s)
Fuel consumption (liter)
Cost ($)

3.6.3 Computational results and analysis

In this section we assess the effectiveness and robustness of the proposed algorithms. Table
3.4 shows the average results of the proposed algorithms for each of the three optimization
criteria over the four sets of instances. For each combination we present the average distance
in meters (Dist), the travel time in seconds (TT), the fuel consumption in liters (Fuel), the
total cost in dollars (Cost) and the required computing time in seconds (Sec). For these results
we assume the case of full truck load (25 t).

As shown in Table 3.4, the results indicate that the proposed algorithms run quickly even for
very large size instances. Such fast solution is critical for providing real-time routing to drivers.
When looking at the cost optimization criterion, the average computation time of Dijkstra-
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SL, TD-Dijkstra-LTM and TD-Dijkstra-FSM is 0.15, 0.43 and 0.33 seconds, respectively. Note
that the computation time of the proposed algorithms is less than one second for all instances.
To further assess the performance and the scalability of the algorithms various experiments
have been made with road networks provided by the 9th DIMACS challenge for the classical
SPP. The average computation time for each core instance and over 1000 random node pairs
were collected. As an example, the full USA road network instance includes 23.947 million
nodes and 58.333 million arcs. The average runtime of TD-Dijkstra-FSM algorithm is 4.8
seconds for 20 DIMACS instances with the full USA road network.

Regarding the quality of the obtained solutions, we first observe that the TD-Dijkstra-FSM
generates the best solutions for each optimization criterion. More specifically, when we min-
imize the travel time TD-Dijkstra-FSM yields an optimal solution for each instance under
FIFO networks using time-varying speeds. For the travel time optimization criterion, we can
see from Table 3.4 that over our 80 instances TD-Dijkstra-FSM produces an average travel
time of 1,338.59 seconds, which is 0.9% lower than TD-Dijkstra-LTM (1,350.79 seconds) and
6.67% lower than Dijkstra-SL (1,434.25 seconds). This exposes the error margin associated
with using the LTM or the speed limit instead of using exact calculations with the FMS. The
fuel consumption reported by the TD-Dijkstra-FSM (under the travel time objective) is 9.9
liters of fuel for a distance of 20.82 km which corresponds to 47.54 liters per 100 km. This
value is remarkably close to the annual average consumption of 46.9 reported by Transports
Canada (2017) in their annual statistical report.

When looking at the Fuel Consumption optimization criterion, the TD-Dijkstra-FSM algo-
rithm minimizes the travel time and the fuel consumption, as expected. When Fuel Consump-
tion is minimized instead of Travel Time, for TD-Dijkstra-FSM, the distance decreases, on
average, by 10.69% from 20.82 to 18.60 km yielding a reduced amount of emissions of 5.68%
for all instances. More specifically, for all D* instances the distance decreases, on average, by
13.13% to create 7.80% savings in emissions. The distance decreases by 8.69% to create 3.98%
savings in emissions for medium network instances M*, and the distance decreases by 11.86%
to create 4.36% savings in emissions for small network instances S*. These results clearly show
that for TD-Dijkstra-FMS, minimizing the travel time does not minimize the fuel consump-
tion. In fact, even if the travel time increased globally by 7.08% (from 1338 to 1440 seconds),
the consumption decreases 5.68% (from 9.89 to 9.34 liters). The same observation holds for
TD-Dijkstra-LTM and Dijkstra-LS. We can conclude that when minimizing fuel consumption,
our algorithms successfully manage the traffic congestion to find better paths.

The third part of Table 3.4 considers the cost-minimizing objective. Again, the TD-Dijkstra-
FMS produces the best results with an average path cost of 22.45$ compared to 22.50$ and
24.08$ with TD-Dijkstra-LTM and Dijkstra-SL. Minimizing the cost implies a compromise
between the travel time (cost) of the drivers and the fuel cost. As the driver costs are the
largest component of the total cost, the TD-Dijkstra-FMS solution obtained under the cost
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minimization criteria uses less travel time that when minimizing the fuel (1356.01 instead of
1440.63 seconds) but a little more fuel (9.50 instead of 9.34 liters). Therefore, our savings
in travel time are up to 5.87% combined with a small increase in fuel consumption of up to
1.74%, leading to a reduction in the overall cost, on average, by 2.31% from 22.98 to 22.45
dollars. Further, we see from Table 3.4 that our TD-Dijkstra-FSM yields a global saving on
GHG emissions and overall costs of 1.36% (22.45 versus 22.76 dollars) and 4.01% (9.50 versus
9.90 liters), respectively, between cost-minimizing and travel time minimizing paths.

We note that both TD-Dijkstra-LTM and TD-Dijkstra-FSM produce coherent results with
respect to the optimization criterion used. Thus, when the travel time criterion is used,
the TT is effectively lower with respects to its value under the other optimization criteria.
This pattern is not respected by the Dijkstra-SL as the minimum cost (23.93) is obtained
under the travel time optimization criterion. Finally, it is remarkable that our TD-Dijkstra-
FSM algorithm provides the best solutions for all optimization criteria: 1,338.59 seconds for
travel time, 9.34 liters for fuel consumption, and 22.45 dollars for costs. Finally, Table 3.4
clearly shows that in the presence of traffic congestion, using a time-dependent algorithm
(TD-Dijkstra-LTM or TD-Dijkstra-FMS) significantly enhances the quality of solutions with
respect to a time-independent one (Dijkstra-SL).

Additional experiments were conducted to assess the variations of cost and GHG emissions
incurred as a consequence of traffic congestion during rush hours, such as at 16h00. Table 3.5
presents additional experiments conducted to assess the impact of traffic congestion on the
travel time, fuel consumption and total cost. To this end, we now used the average results
over the 60 instances L*, M* and S* with departure times ranging from 07h30 to 08h30, before
the morning congestion, and between 15h30 and 16h30 during the afternoon traffic. In the
following, results of the time-independent Dijkstra-SL are not reported as it uses a fixed speed
which is incoherent with this analysis.

If we look at the TD-Dijkstra-FSM with fuel consumption as the optimization criterion, we see
that it increases from 6.37 to 6.81 liters (6.91%) when the path departure times are changed
from 7h30 to 16h30. Similarly, the travel time increased, on average, by 14.66% induced by
changes from 983.13 to 1,127.30 seconds. We observe the same pattern for the overall costs,
which is increased, on average, by 11.10% induced by changes from 15.68 to 17.42 dollars.
Overall, all algorithms produced expected results with respect to traffic conditions.

Figure 3.2 analyses in more details the impact of departure time on average path travel time
and total cost for instances D1 to D20 (see Table 3.4). In Figure 3.2, the results of the TD-
Dijkstra-FMS replicate the traffic pattern of Québec City with a moderate morning congestion
between 7h30 and 9h00; low traffic between 10h00 and 14h30 results in lower travel times and
costs. Then, as expected, congestion rapidly increases between 15h00 and 15h30 to reach a
peak between 16h00 and 17h30. Interestingly, allowing delayed or flexible departures can lead
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Table 3.5: Impacts of departure time

Departure Time Optimization
criteria

TD-Dijkstra-LTM TD-Dijkstra-FSM
Avg Dist Avg TT Avg Fuel Avg Cost Avg Dist Avg TT Avg Fuel Avg Cost

07h30
Travel Time 13695.50 938.67 6.57 15.45 13663.22 935.43 6.55 15.48
Fuel consumption 12754.75 989.78 6.38 15.75 12762.90 983.13 6.37 15.68
Cost 13449.36 943.28 6.50 15.49 13410.70 939.78 6.47 15.43

07h45
Travel Time 14343.47 1005.68 6.9648 16.51 14314.26 996.77 6.93 16.44
Fuel consumption 12931.19 1028.83 6.54 16.26 12955.70 1022.32 6.53 16.20
Cost 13316.18 1003.78 6.60 16.13 13307.89 997.72 6.59 16.05

08h00
Travel Time 13816.95 991.14 6.74 16.13 13776.51 986.06 6.72 16.15
Fuel consumption 13074.91 1058.21 6.68 16.68 13083.87 1044.64 6.65 16.52
Cost 13667.57 1012.77 6.76 16.38 13769.62 1004.20 6.77 16.32

08h15
Travel Time 14213.93 1044.37 7.04 16.95 14231.70 1030.20 7.00 16.81
Fuel consumption 13029.15 1096.05 6.77 17.10 13041.42 1083.88 6.74 16.96
Cost 13762.31 1042.22 6.89 16.78 13757.83 1037.08 6.87 16.72

08h30
Travel Time 14139.83 983.61 6.83 16.17 14155.14 977.76 6.82 16.15
Fuel consumption 13071.85 1035.03 6.60 16.39 13079.92 1031.15 6.59 16.34
Cost 13653.33 994.92 6.69 16.15 13713.31 988.58 6.70 16.10

15h30
Travel Time 14296.88 1024.13 6.99 16.56 14205.08 1005.31 6.91 16.49
Fuel consumption 13116.88 1058.94 6.70 16.70 13233.37 1038.92 6.67 16.51
Cost 13595.96 1029.03 6.78 16.54 13541.31 1022 6.73 16.42

15h45
Travel Time 14355.48 1042.26 7.04 16.94 14302.52 1032.83 7.00 16.83
Fuel consumption 13107.03 1093.23 6.78 17.09 13126.18 1088.15 6.77 17.03
Cost 13706.53 1052.32 6.86 16.83 13824.59 1044.07 6.88 16.78

16h00
Travel Time 14387.18 1063.75 7.10 17.11 14501.99 1054.90 7.11 17.14
Fuel consumption 13135.97 1122.06 6.84 17.40 13133.05 1107.13 6.81 17.24
Cost 13666.95 1075.03 6.89 17.06 13720.86 1068.59 6.88 16.99

16h15
Travel Time 14425.41 1073.80 7.14 17.37 14320.00 1061.42 7.07 17.16
Fuel consumption 13168.82 1128.38 6.87 17.50 13208.30 1117.80 6.85 17.38
Cost 13878.132 1073.02 6.97 17.14 13926.41 1067.25 6.97 17.09

16h30
Travel Time 14529.90 1072.42 7.18 17.34 14374.23 1067.22 7.11 17.25
Fuel consumption 12987.398 1141.72 6.85 17.58 13055.88 1127.30 6.81 17.42
Cost 13879.06 1070.81 6.96 17.11 13924.58 1065.17 6.97 17.07

to better alternative paths yielding significant reduction of both GHG emissions and overall
costs.

The results shown in Table 3.6 further presents average results when the cost minimization
objective is used for the TD Lower Bound, TD Upper Bound, Dijkstra-SL, TD-Dijkstra-LTM
and TD-Dijkstra-FSM algorithms. It shows that both TD-Dijkstra algorithms consistently
provide average solution costs bounded by the lower and upper bounds. Indeed, for the TD-
Dijkstra-FSM the average gap between the lower bound value and the cost minimizing paths
ranges from 3.77 to 7.07%, which are lower than those of the Dijkstra-SL ranging from 9.65 to
24.25%. For example, when the departure time is 08h00 the results of the time-independent
Dijkstra-SL for L* (29.68), M* (15.15) and S* (10.06) always exceed the corresponding upper
bounds of 29.22, 14.72 and 9.61 dollars. These results clearly show that the effectiveness
of paths strongly increase if we consider time-varying speeds using TD-Dijkstra algorithms
compared to those generated with Dijkstra-SL algorithm that uses fixed speeds.
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Figure 3.2: Impact of departure time

The final set of experiments presented in Table 3.7 aims at providing some insight on the
impact of carried loads over our four performance measures. Results are obtained under the
total cost minimization criteria and are averages over all instances. As expected, as the load
increases, fuel consumption, and thus the cost, increase for both the TD-Dijkstra-LTM and the
TD-Dijkstra-LTM. We can see that for both algorithms the paths are updated (as Distance and
Travel Time change) when the load increases from 15 to 20 tons. However, the paths remain
the same when the load increases from 20 to 25 tons in the case of the TD-Dijkstra-LTM. For
the TD-Dijkstra-FSM, the fuel consumption increases from 7.87 to 8.28 liters (5.21%) from
15 to 17.5 tons and from 8.28 to 8.68 liters (4.83%) from 17.5 to 20 tons. This behavior is
coherent with the fact that, proportionally, fuel consumption increases at a slowest rate with
respect to the total load.

Table 3.7: Impact of carried load on performance measures

Algorithms Performance measures Carried Load
Empty Load (15 t) LTL (17.5 t) LTL (20 t) LTL (22.5 t) TL (25 t)

TD-Dijkstra-LTM

Avg Dist 19657.96 19573.35 19610.46 19610.46 19610.46
Avg TT 1356.21 1353.25 1358.04 1358.04 1358.04
Avg Fuel 7.89 8.27 8.71 9.12 9.53
Avg Cost 20.60 21.02 21.56 22.03 22.50

TD-Dijkstra-FSM

Avg Dist 19642.50 19595.47 19566.88 19550.52 19549.86
Avg TT 1353.80 1354.66 1356.09 1356.09 1356.09
Avg Fuel 7.87 8.28 8.68 9.09 9.50
Avg Cost 20.56 21.04 21.51 21.98 22.45
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3.7 Conclusions

The TDQPP-EM extends the TDQPP by considering fuel consumption/GHG emissions min-
imization. This extension is of high practical relevance since traffic congestion is an important
issue for logistics providers. Time-dependent least cost lower and upper bounds were derived
based on QPP-EM properties. A fast and effective time-dependent Dijkstra label-setting algo-
rithm and a lower bounding method have been implemented for eighty benchmark instances
based on a large road network in Québec City including more than 17000 nodes and 24 million
speed observations. The designed algorithms combine pre-existing CMEM and FSM models
to compute GHG emissions and costs using time-varying speeds. Our algorithms are highly
effective in finding good-quality solutions for benchmark instances of all size.

The extensive computational experiments demonstrated the benefit of choosing alternative
paths in congested urban areas that leads to substantial fuel consumption/GHG emissions
reduction and cost savings. We clearly demonstrate that using time-dependent algorithms lead
to better results with respect to the ones which use constant speeds. Moreover, the required
increase in computing time is negligible. An interesting insight derived from this research is
that avoiding traffic congestion during peak hours yields substantial GHG emissions reductions
and cost savings. Our time-dependent models reproduce expected behavior with respect to
optimization criteria, time of the day (level of congestion), carried loads and selected paths.
We have also shown that carried loads affect slightly the chosen path, particularly as the
vehicle load becomes larger, the potential savings in fuel consumption and GHG emissions
increase.

Further research should consider how to embed TDQPP-EM algorithms and our lower bound-
ing method into local search heuristics to efficiently solve real-world time-dependent distri-
bution problems considering emissions minimization based on time-varying speeds. Adding
time-dependent quickest path optimization may enhance the resulting route plans that are
selected based on dynamic paths to avoid traffic congestion across real road networks.
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Appendix A

An integer linear programming
formulation for the TDQPP-EM

Let xij be a binary variable equal to 1 if and only if arc (i, j) is selected, and 0 otherwise,
and yijt be a binary variable equal to 1 if and only if arc (i, j) appears in the solution at
entering time t, and 0 otherwise. The formulation is given in a time-dependent network
GT = (VT ,AT ), which is expanded from the original (physical) time-dependent network G
and time-varying travel time and cost. Specifically, VT = {it|i ∈ V, t ∈ T} represents the
set of time-dependent nodes, in which each node it ∈ VT corresponding to a node-time pair
indicates the state of node i and the arrival time t. The set of time-dependent arcs is denoted
by AT = {(it, jt′)|(i, j) ∈ A, t0 ≤ t ≤ t0 + Hδ}, in which time-dependent arc (it, jt′) exists
when the arc originates at a given physical node i at time t and terminates at a physical arc’s
terminal node j at the time t′. Thus, t′ = γpj (t), such that t0 ≤ t ≤ t′ ≤ t0 + Hδ. For the
same starting time in a time-expanded network, there are multiple time-dependent paths with
different arrival times and travel costs. In order to define a standard flow balance constraint,
a super-sink node d′t0+Hδ is introduced to the time-expanded network. It represents the
end of the planning horizon, where all incoming arc travel times and costs have null values.
For each physical node i, let its successors set be E+(i) = {j : (i, j) ∈ A}. Similarly,
E−(i) = {j : (j, i) ∈ A} denote the set of predecessors of node i. Furthermore, for each time-
depedent node it, its successor node set is denoted by E+

T (it) = {jt′ : (it, jt′) ∈ AT , t ≤ t′}.
Similarly, let E−T (it) = {jt′ : (jt′ , it) ∈ AT , t

′ ≤ t} denote the set of predecessor nodes of the
time-dependent node it. The following integer programming formulation of the TDQPP-EM
is then proposed:

min
∑

(i,j)∈A

∑
t∈T

cij(t)yijt (A.1)
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subject to ∑
j∈E+(i)

xij −
∑

j∈E−(i)

xji =


1 if i = o

−1 if i = d

0 otherwise
(A.2)

∑
j:(i,j)∈A

xij ≤ 1, i ∈ V (A.3)

∑
j:(it,jt′ )∈E

+
T (it)

yijt −
∑

j:(jt′ ,it)∈E
−
T (it)

yjit′ =


1 if i = o, t = t0

−1 if i = d′, t = t0 +Hδ

0 otherwise
(A.4)

∑
t∈T

yijt = xij , (i, j) ∈ A (A.5)

xij , yijt ∈ {0, 1}, (i, j) ∈ A, t ∈ T. (A.6)

The objective function (A.1) minimizes the overall travel cost in time-expanded network as
in (3.13). Constraints (A.2) and (A.3) are defined to ensure the feasibility of an elementary
path from origin o to destination d. Hence, constraints (A.2) correspond to the physical
network flow balance. Constraints (A.3) guarantee that the selected physical arcs constitute
a feasible path from the origin to the destination. Constraints (A.4) and (A.5) construct
a corresponding time-dependent path in the time-expanded network based on the physical
network. Additionally, space-time arc-to-link constraints (A.5) define the mapping between
the physical and time-expanded networks. Finally constraints (A.6) define the domain and
nature of the variables.
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Chapter 4

Time-dependent Vehicle Routing
Problem with Emission and Cost
Minimization considering Dynamic
Paths

Résumé

Le problème de tournées de véhicules dépendant du temps avec minimisation des émissions et
des coûts en considérant les chemins dynamiques consiste à acheminer une flotte de véhicules
pour desservir un ensemble de clients sur un réseau dépendant du temps modélisé comme
étant un multigraphe dans lequel la vitesse de déplacement de chaque arc varie avec le temps.
Le problème consiste à déterminer des tournées en fonction du temps tout en minimisant le
temps de parcours, les émissions de gaz à effet de serre ou les coûts pour rendre visite à tous
les clients en tenant compte de la vitesse instantanée imposée par le trafic sur chaque segment
routier du réseau sous-jacent. Pour résoudre le problème, nous proposons une heuristique
efficace d’amélioration et de recherche du plus proche voisin qui incorpore une méthode de
recherche du chemin le plus rapide dépendante du temps. La méthode proposée fait le calcul
de trajets dépendant du temps de façon rapide tout en considérant différentes mesures telles
que le temps, la consommation de carburant ou le coût sur un multigraphe représentant de
grands réseaux routiers utilisant un algorithme Dijkstra dépendant du temps. Basées sur
de nouvelles instances qui représentent de manière réaliste les opérations de distribution de
marchandises et capturent les périodes congestionnées en utilisant des réseaux routiers réels et
de grands ensembles de données d’observations de vitesse, des expérimentations numériques
approfondies ont été menées selon trois critères d’optimisation, notamment minimisation du
temps de voyage, des émissions et des coûts totaux. Nous avons effectué également une analyse
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de sensibilité pour évaluer les effets du choix du moment de départ, des décisions d’évitement
de la congestion et des demandes des clients sur les plans de routage. Notre méthode surpasse
significativement les résultats obtenus avec une heuristique classique basée sur les limites de
vitesse sans tenir en compte de la congestion du trafic.

Chapter information A research paper based on this chapter, named Time-dependent Ve-
hicle Routing Problem with Emission and Cost Minimization considering Dynamic Paths, has
been submitted to the journal Transportation Research Part B: Methodological in February
2018 by Heni H., Renaud J., and Coelho L. C. in February 2018.

Abstract

The Time-dependent Vehicle Routing Problem with Emission and Cost Minimization consid-
ering Dynamic Paths consists of routing a fleet of vehicles to serve a set of customers across
a time-dependent network modeled as a multigraph in which the traveling speed of each arc
changes over time. The problem involves determining time-dependent paths minimizing travel
time, greenhouse gas emissions, or costs to visit all customers taking into account the instan-
taneous speed imposed by traffic on each road segment of the underlying network. To solve
the problem we propose an efficient nearest neighbor improvement heuristic that incorporates
a time-dependent quickest path method. The proposed method involves the fast computation
of time-dependent point-to-point paths based on different measures such as time, fuel con-
sumption, or cost on a multigraph representing large road networks using a time-dependent
label-setting algorithm. Based on new large-scale benchmark instances that realistically repre-
sent typical freight distribution operations and capture congested periods using real-life road
networks and large data sets of speed observations, extensive computational experiments are
conducted under three optimization criteria, namely minimizing travel time, emissions and
total costs. We also carry out sensitivity analysis to assess the effects of departure time
choice, congestion avoidance decisions and customer demands on the resulting routing plans.
Our method significantly outperforms the results obtained with a classical heuristic based on
speed limits without regard to traffic congestion.

Keywords: time-dependent vehicle routing; greenhouse gas emissions; traffic congestion;
time-dependent quickest path; multigraph.
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4.1 Introduction

In most countries freight transportation in urban areas is among the largest sources of green-
house gas (GHG) emissions (Demir, Bektaş, and Laporte 2014b). With increasing road trans-
portation activity and the expected growth of freight flows at a fast rate, GHG emissions are
expected to continue to increase at a similar pace (Transports Canada 2017). In Canada, the
transportation sector (including passenger, freight and off-road emissions) is the second-largest
source of GHG, reaching 24% of the country’s GHG emissions (Transports Canada 2017).

Large urban areas continue to face congestion due to increased flow of trucks. It is widely
recognized that in urban areas, vehicles must often travel at the speed imposed by traffic,
which affects travel times at certain periods of the day. The variability of traveling speed has
a significant impact on the performance of road freight transportation operations, GHG emis-
sions and fuel consumption (Bektaş and Laporte 2011). Third-party logistics (3PL) providers
are nowadays in position to acquire the speed of traffic on the road. Considering time-varying
speeds and alternative paths between customers in route planning may lead to effective routes
and schedules that avoid congestion, minimize GHG emissions and yield cost savings more
than the traditional vehicle routing problem (VRP).

A feature largely overseen in VRPs is that between any pair of customer nodes (see Figure
4.1) there are many links (road segments) connecting them through the underlying physical
road network (Figure 4.2), corresponding to multiple time-dependent paths of different travel
times, costs and emissions according to time-varying speeds. Hence, routing decisions involve
not only sequencing the customers but also path choices depending on departure times, cus-
tomer demands and the optimization criteria. The main objective is to minimize the sum
of operational and environmental costs while respecting capacity constraints. Travel cost is
defined with respect to fuel consumption costs and driver wages. Moreover, when a vehicle
travels across an arc it emits a certain amount of GHG which is directly proportional to the
amount of fuel consumed (Franceschetti et al. 2013). The fuel consumption depends on several
factors, such as carried load, speed, road characteristics, among others. The corresponding
problem is a Time-dependent Vehicle Routing Problem with Emission and Cost Minimization
considering Dynamic Paths (TDVRP-ECMDP) on time-dependent networks where the flow
speed of each road link depends on the time. Vehicles must travel at the speed imposed by
traffic, which is determined by congestion.

Path selection in time-dependent VRPs (TDVRP) has been considered by few works. Ehmke,
Campbell, and Thomas (2016b) and Qian and Eglese (2016) solved the TDVRP considering
emissions-minimized paths using a tabu search and their instances was limited to 30 and 60
customers, respectively as the search space increases drastically. Huang et al. (2017) considered
path flexibility in the TDVRP with a multigraph through the integration of path selection
decision according to departure time and congestion levels. A multigraph model was first
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Figure 4.1: Illustration of a classical simplified network

Figure 4.2: Illustration of a subset of customers and segment nodes of the road network of Quebec
City
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introduced by Garaix et al. (2010) to consider alternative paths between all pairs of key-
locations. Letchford, Nasiri, and Oukil (2014), Lai, Demirag, and Leung (2016) and Ticha et al.
(2017) used the multigraph representation to solve different VRPs. Their results indicate that
the multigraph structure significantly increases computing times. We follow these studies by
applying speed-up techniques to efficiently find appropriate time-dependent paths connecting
the clients without computing them in advance for very large instances (up to 500 customers),
road network (50376 arcs) and number of time slots (buckets of 15 minutes). We compute time-
dependent quickest and least emission paths, and use the TD least costly path to investigate the
insights related to different optimization objectives. To solve the TDVRP-ECMDP we develop
efficient heuristics which are successfully applied to large road networks using a realistic set
of large scale benchmark instances from 24 millions speed observations collected by furniture
and appliance stores in Quebec City. We conduct sensitivity analysis to shed light on the
trade-offs between multiple performance indicators, including driving time, GHG emissions
and generalized costs pertaining to fuel consumption, traffic congestion, and drivers costs.
Our detailed experimental analysis also quantifies the effects of flexible departure times from
the depot and carried load according to customer demands. The scientific contributions of
this research are fourfold:

(i) we model the underlying road network using a multigraph, which involves not only the
best sequences of nodes across routes but also the fast computation of TD point-to-point
quickest paths (TDQP), least emission paths (TDLEP) and least costly paths (TDLCP);

(ii) we create a new large sized benchmark set of instances reflecting real road freight dis-
tribution operations and congested areas of the road network from a large data set of
speed observations;

(iii) we propose an efficient TD nearest neighbor method adapted to the multigraph represen-
tation to solve the TDVRP-ECMDP taking into account the effects of path choice and
congestion avoidance decisions on GHG emissions as well as on traveling cost. Signifi-
cant saving are obtained by integrating TDLCPs into routing decisions, which captures
and minimizes fuel consumption along with operational costs;

(iv) we conduct sensitivity analysis to demonstrate that significant saving in terms of emis-
sions and cost is achieved with regard to departure times.

The remainder of this paper is organized as follows. Section 4.2 summarizes the relevant
literature. Section 4.3 formally describes the TDVRP-ECMDP. In Section 4.4, a detailed
description of the designed TDVRP-ECMDP heuristics is provided. Section 4.5 presents
extensive computational experiments and their numerical results. Finally, conclusions are
stated in Section 4.6.
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4.2 Literature review

In this section, we review the existing contributions on green logistics that consider the impact
of GHG emissions in addition to operational issues on vehicle routing models in Section 4.2.1.
Then, we look at existing studies on TD routing in Section 4.2.2.

4.2.1 Green logistics problems

Figliozzi (2011) studied a variant of the VRP in which GHG emissions minimization is pursued.
He shows the effects of travel time optimization and the location of the depot in reducing emis-
sion levels considering scenarios with and without congestion. Likewise, Jabali, Van Woensel,
and de Kok (2012) presented a variant of the problem with time-varying traffic. The planning
horizon is divided into two periods, the first one is a congested period, whereas the second
one considers free-flow.

Moreover, some have considered speed optimization decisions when dealing with emission
minimization, as introduced by Bektaş and Laporte (2011). Their model computes the travel
cost through a function encompassing fuel consumption, GHG emissions and driver costs.
Later, Demir, Bektaş, and Laporte (2014a) introduced the bi-objective PRP in order to analyze
trade-offs between fuel consumption and travel time. The authors developed a solution method
based on the Adaptive Large Neighborhood Search and the speed optimization algorithm
proposed by Demir, Bektaş, and Laporte (2012). They show that there is no need to greatly
compromise on driving time in order to achieve a significant reduction in fuel consumption and
GHG emissions. In a subsequent work, Kramer et al. (2015b) propose a solution method for
the PRP combining a local search with an integer programming approach over a set covering
formulation and a recursive speed optimization algorithm. This work was extended by Kramer
et al. (2015a) to account for the effects of flexible departure times from the depot.

In their studies, Franceschetti et al. (2013) extend the PRP by capturing traffic congestion in
the network. The authors consider three time periods: one congested, a transient one, and a
free-flow period. They define conditions under which it is optimal to wait at certain nodes of
the network in order to avoid congestion and to reduce GHG emissions. Later, Franceschetti
et al. (2017a) developed a metaheuristic to solve the PRP with time-varying traffic congestion,
which uses a departure time and speed optimization procedure designed by Franceschetti et al.
(2013). In a related study, Xiao and Konak (2016) extend the PRP with time-varying traffic
congestion by considering a heterogeneous vehicle fleet. In order to avoid traffic congestion
and reduce emissions they designed an algorithm that allows waiting at customers and on
the road. Otherwise, Dabia, Demir, and Van Woensel (2017) developed an exact method
based on branch-and-price to solve a variant of the PRP in which the speed decision is taken
at the route level and is assumed to be the constant along a route. Recently, Behnke and
Kirschstein (2017) investigate the effects of path selection on a real world network. They show
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that considering emission-minimizing paths between customers can lead to additional emission
savings.

4.2.2 Time-dependent routing

Most of the literature in this field relies on the speed model of Ichoua, Gendreau, and Potvin
(2003), where they do not assume a constant speed over the entire length of an arc. Thus,
the speed on each arc may change when the boundary between two consecutive time intervals
is crossed. In this way, this model guarantees the first-in, first-out (FIFO) property (Ghiani
and Guerriero 2014b). Another contribution in the context of FIFO dynamics is due to
Van Woensel et al. (2008) who proposed a queueing approach to model traffic congestion by
tacking into account the change on travel speeds. For a relevant literature review on the TD
routing problems, the reader is referred to Gendreau, Ghiani, and Guerriero (2015).

Another research stream has focused on the link travel time model (LTM) (Delling and Nan-
nicini 2012) in which arc travel times are specified upon entrance to an arc and are assumed
to be fixed during its traversal. In the LTM, the network does not satisfy the FIFO prop-
erty, which requires additional algorithmic steps to ensure FIFO dynamics. To model travel
times Fleischmann, Gietz, and Gnutzmann (2004) proposed a smoothed travel time function
satisfying the FIFO consistency.

Focusing on TD networks Sung et al. (2000) introduced the flow speed model (FSM) for a
TD shortest path where the flow speed of each arc depends on the time intervals. The FSM
is consistent to the FIFO property. Another recent work by Kok, Hans, and Schutten (2012)
investigated the impact of traffic congestion on the performance of vehicle route plans. The
authors evaluated multiple strategies for avoiding traffic congestion when solving shortest path
and VRPs. They designed a speed model to reflect the key elements of peak hour congestion
on urban area networks. To solve the TDVRP they applied a modified Dijkstra algorithm and
a dynamic programming heuristic.

Slightly different from the VRP, some have worked on the paths connecting two customers.
Ghiani and Guerriero (2014a) and Calogiuri, Ghiani, and Guerriero (2015) studied the TD
quickest path problem, which aims to find a least time path. They developed a TD lower bound
on the time-to-target that can be computed by ignoring congestion ratios. Many studies have
dealt with emission-minimizing paths between customers in vehicle routing (Ehmke, Camp-
bell, and Thomas 2016a, Qian and Eglese 2016, Wen, Çatay, and Eglese 2014). These applied
the Methodology for Estimating Emissions from Transport (MEET) (Hickman et al. 1999)
to calculate GHG emissions which does not explicitly take the changing weight of the carried
load into account. Ehmke, Campbell, and Thomas (2016b) proposed an emissions-minimizing
model that explicitly accounts for the path finding problem between stops. The majority of
paths between customers are pre-computed in advance using path averaging and approxima-
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tion method. However, none of these works considered the effects of flexible departure times
or waiting at depot and traffic conditions on both emissions and costs.

Finally, some related works on TD routing have focused on the optimization of routing plans by
explicitly considering path flexibility (Androutsopoulos and Zografos 2017, Ehmke, Campbell,
and Thomas 2016b, Huang et al. 2017, Qian and Eglese 2016). They also indicate that path
flexibility increases the problem size requiring efficient heuristics to solve large scale instances.
Although Ehmke, Campbell, and Thomas (2016b) and Qian and Eglese (2016) use finer speed
levels to depict the 24 hour traffic conditions, the planning horizon in their instances usually
contains only one peak hour or daily period. Even if the benefits of both GHG emissions
and cost savings in vehicle routing and scheduling are clear, there is a lack of research on
the TDVRP with cost minimization considering TDLCP computation which considers time-
varying speeds for each road segment across a road network, and not only for customer links.
The only works we are aware of that focused in finding TDLCPs are those of Wen, Çatay, and
Eglese (2014), Di Bartolomeo et al. (2017) and Heni, Coelho, and Renaud (2017). Hence, this
paper focus on solving large scale instances and deals explicitly with the trade-off between
travel time, fuel consumption and cost in TDVRP involving emission and cost optimization
considering time-varying speeds, congestion and dynamic paths on the underlying networks.

4.3 Problem description

The TDVRP-ECMDP is defined on a network GT = (VT , AT , ZT ) representing the road
network in which VT = V∪Vg ∪{0} is the set of all nodes: the depot is represented by node 0,
the set of customer nodes is V, and the set Vg represents the other nodes of the road networks.
AT = {(u, v) : u, v ∈ VT , u 6= v} is the sparse set of all road segments connecting pair of nodes
of the network. Let T = z0 +Hδ be the length of the planning horizon within which all routes
must be completed, where δ > 0 represents the smallest increment of time over which a change
in the speed happens. This planning horizon is divided into a finite number H of time intervals
Zh = [z0 +hδ, z0 + (h+ 1)δ[ considering the set ZT = {z0, z0 + δ ..., z0 +Hδ} of discrete times,
with h = 0, 1, 2, ...,H−1. With each road segment (u, v) ∈ AT is associated a time-dependent
travel speed shuv during time interval Zh. Based on the FSM we assume that the speed of each
road segment varies as the time interval changes: when a vehicle travels across a road segment
(u, v), its traveling speed is not constant over the full arc, but may change when the boundary
between two consecutive time intervals is crossed. Hence, the speed shuv on arc (u, v) at time
interval Zh can be defined as:

shuv = σhuvU
h
uv, (4.1)

where σhuv ∈ [0, 1] represents the congestion factor of arc (u, v) during the time interval Zh
and Uhuv is the speed limit imposed by traffic regulations.
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For any road segment (u, v) ∈ AT let Luv denote the distance between nodes u and v. Let
lhuv represents the portion of the length Luv covered during time interval Zh. Let γi(t) be a
function that provides the ready time at node i ∈ p when service is fulfilled given a starting
time t at the depot. Let ht and hγ be the indices of time intervals where the start time t at
node u and the arrival time γpv(t) at node v belong to, respectively, with ht ∈ {0, ...,H − 1}
and hγ ∈ {ht, ...,H − 1}. Let τuv(t), fuv(t) and cuv(t) be the travel time, amount of GHG
emissions and travel cost, respectively, related to the time t ∈ T at which a vehicle leaves node
u to node v. The travel time function is piecewise linear and satisfies the FIFO property:

τuv(t) =

hγ∑
h=ht

lhuv/s
h
uv. (4.2)

Furthermore, a homogeneous fleet of vehicles with capacity Q is available at the depot. Each
customer i ∈ V has a non-negative demand qi and a service time wi. We denote the set of
customers included in route r as V(r) ⊆ V. Let Ωij be the set of all feasible paths on GT con-
necting any pair of depot and/or customers nodes i, j through the underlying road network.
Each path pij ∈ Ωij is composed of an ordered sequence of nodes [i, 〈u0

ij , ..., u
n
ij〉, j]. Con-

sidering that the road segments attributes are time-dependent, travel time, fuel consumption
and travel cost between a pair of customers is defined by a time-dependent path that varies
according to the departure time γi(t) at node i, which is defined by the schedule of traversing
it as pij(γi(t)) = (γi(t), [i, 〈u0

ij , ..., u
n
ij〉, j]), where unij ∈ VT . Any scheduled route r must follow

an ordered sequence of nodes, and pairs of nodes are connected by time-dependent paths:

Ψr(t) = (v0, p01(γ0(t)), . . . , pk−1,k(γk−1(t)), vk), (4.3)

where vk ∈ V∪{0}, v0 = vk = 0, and k represents the number of stops on the complete route.

The aim of the TDVRP-ECMDP is to construct a set of feasible routes that meet the demand
of all customers without split delivery, starting and ending at the depot, driving at the speed
of the traffic without exceeding the vehicle capacity nor violating their workday duration, so
as to minimize a travel cost function encompassing the cost of drivers’ wage, fuel consumption,
and GHG emissions.

4.3.1 Modeling GHG emissions

Following relevant works in the literature (e.g., Ehmke, Campbell, and Thomas (2016b), Huang
et al. (2017)) we consider the comprehensive modal emissions model (CMEM) (Barth and
Boriboonsomsin 2008, 2009) to calculate fuel consumption for heavy duty vehicles. Based on
the CMEM with a given speed s, total vehicle weight Mp across a given path pij and road
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gradient θ the resulting instantaneous fuel consumption rate (in liters/second) is computed as
follows:

er = E0

(
E1 +

(
(αMp + βs2)s

E2
+ Pacc

))
, (4.4)

where E0 = ζ
$ψ , E1 = kNeV , E2 = 1

ε1000ηtf
, Mp = ω + qi, α = a + g sin θ + gCr cos θ,

β = 0.5CdAρ, and Pacc are constant parameters related to the vehicle and its engine. All
parameter values used are provided in Appendix 4.6.

Moreover, considering only the average speed one may not capture precise GHG emissions.
For example, if the travel speed on a road segment often drops far below the average speed
during a specific time slot Zh, then the actual emissions will be much higher than if the trip
occurs consistently at the average speed. Thus, to optimize GHG emissions in an urban area,
we must explicitly consider the variability of the speed at different times of the day. Hence,
for a given path pij traversed by a vehicle departing from customer i at ready time γpi (t), the
corresponding fuel consumption (in liters) can be computed as follows:

Fpij (t) =
∑

(u,v)∈pij

fuv(γ
p
u(t)), (4.5)

where

γpu(t) =


t if u = 0

γpu−1(t) + τu−1,u(γpu−1(t)) if u ∈ Vg

γpu−1(t) + τu−1,u(γpu−1(t)) + wu if u ∈ V,

(4.6)

and fuv(t) = f1
uv(t)+f2

uv(t)+f3
uv(t). The first term f1 denotes the fuel consumption related to

the vehicle weight, f2 represents the fuel consumption implied by travel time, and component
f3 measures the fuel consumption incurred by the variations in speed:

f1
uv(t) =

hγ∑
h=ht

[(
lhuv
shuv

)
αMpE0

E2
shuv

]
=
αMpE0

E2

hγ∑
h=ht

lhuv =
αMpE0

E2
Luv, (4.7)

f2
uv(t) =

hγ∑
h=ht

[(
lhuv
shuv

)
E0E1

]
= E0E1τuv(t), (4.8)

f3
uv(t) =

hγ∑
h=ht

[(
lhuv
shuv

)
βE0

E2
(shuv)

3

]
=
βE0

E2

hγ∑
h=ht

[
lhuv.(s

h
uv)

2
]
. (4.9)
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4.3.2 Modeling travel costs

In this section, we model the TD travel cost of a particular path. Given a departure time t,
the driver cost incurred from path pij can be simply computed by multiplying the sum of the
traveling time across road segments connecting customers nodes (i, j) by the driver wage cd:

C(Γpij (t)) = cd
∑

(u,v)∈pij

τuv(γ
p
u(t)). (4.10)

The cost of fuel consumption for a given route r can be computed by multiplying the fuel
consumption (4.5) by a factor ce representing the price of a liter of fuel:

C(Fpij (t)) = ce
∑

(u,v)∈pij

fuv(γ
p
u(t)). (4.11)

The path cost encompasses the path duration and fuel costs:

Cpij (t) = cd
∑

(u,v)∈pij

τuv(γ
p
u(t)) + ce

∑
(u,v)∈pij

fuv(γ
p
u(t)). (4.12)

4.4 Heuristic methods for the TDVRP-ECMDP

With respect to exact methods, solving large VRP instances using a multigraph representation
of the underlying road network increases significantly the size of the solution space as shown by
Garaix et al. (2010) and Letchford, Nasiri, and Oukil (2014) for VRPs, and Huang et al. (2017)
for TDVRP with path flexibility. Even with heuristic approaches, Ehmke, Campbell, and
Thomas (2016b) solved TDVRP with emissions minimizing paths limited to 30 customers and
one-hour time intervals due to computation time. Hence, to efficiently solve large instances of
the TDVRP-ECMDP considering time-varying speeds we propose two solution methods. The
first one only considers the speed limits on the underlying road network. The second method
takes traffic congestion into account by considering time-varying speeds of all transportation
links between each pair of customer nodes. The proposed heuristic methods are followed by a
TD neighborhood search improvement heuristic (TDNSIH) to enhance the solution by using
intra- and inter-route exchanges.

4.4.1 Static nearest neighbor heuristic

The static nearest neighbor heuristic (SNNH) does not take traffic congestion into account and
solves the TDVRP-ECMDP considering static scenarios where the paths between customers
are fixed. Thus, it works only on the customer network considering speed limits. The static
paths used by the SNNH are chosen with respect to the optimization objective by solving the
corresponding point-to-point routing problem, namely the Quickest Path Problem (QPP), the
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Least Emission Path Problem (LEPP) or the Least Cost Path Problem (LCPP). The SNNH
begins each route by determining, from the set of remaining customers, the unrouted customer
to be visited next having the least additional increase in the objective function. When the
search fails to find unrouted customers who can feasibly be embedded to the end of a route,
the heuristic starts a new one.

4.4.2 Time-dependent nearest neighbor heuristic

To solve the TDVRP-ECMDP we also propose a greedy heuristic that accounts for traffic
congestion and dynamic paths. The TD nearest neighbor heuristic (TDNNH) solves the
problem according to three variants of TD point-to-point routing problems: TDQPP, TDLEPP
and TDLCPP. The proposed heuristic considers the multigraph GT to construct the set of
routes. Table 4.1 shows the notation used to develop the TDNNH.

Table 4.1: Additional notation used by the TDNNH

Notation Description

ET Set of processed nodes
NT Set of remaining nodes
N c Set of remaining customer nodes
ET+(u) Set of successor nodes of node u
Ψr Ordered set of customers visited along a route r
ΨR Set of feasible routes

The TDNNH is briefly introduced in the following algorithmic steps (see Algorithm 4.1). The
heuristic starts a time-dependent goal-directed search from the depot. The TDNNH takes
into consideration the closeness of the customer node to be examined. The closeness is an
estimated goal cost defined based on different measures such as fuel consumption, travel time
or cost. At each iteration if the active labeled node having the smallest cost is a customer,
then we check if the customer could be added to the current route with respect to the time
window associated with the depot and the capacity of the vehicle, otherwise a new route is
started. Then, we begin again a new time-dependent goal directed search from the current
customer node. The heuristic stops when all customer nodes are processed.

The travel cost of each road link is computed according to the entering time on the arc and
to the flow speed at the time of traversing it. The physical network is used to find connecting
paths between each pair of nodes in the global network. Algorithm 4.2 is used to compute fuel
consumption, travel time and travel cost for a given road segment. Given a starting time γpu(t)

at node u, the fuel consumption, GHG emissions and travel costs across arc (u, v) are computed
using the FSM based on Algorithm 4.2. At each covered time period the time-dependent flow
speed is identified and the length of the appropriate portion of the distance Luv is calculated.
Hence, at every iteration the time-dependent travel cost and fuel consumption are calculated.

76



Algorithm 4.1 Determination of a TDVRP-ECMDP solution using the TD quickest path
method (TDNNH)

1: ΨR ← ∅, N c ← V

2: function TDNNH(ΨR, N
c,GT , t)

3: ET ← ∅, NT ← VT , r ← |ΨR|, γ ← t, co ← 0, predecessor(o) ← 0, cu ← ∞|τu ← 0,
∀u ∈ VT

4: while |ET | < |VT | or |N c| = 0 do
5: let u ∈ NT |cu ← min{cv : v ∈ NT }
6: ET ← ET ∪ {u}, NT ← NT \{u}
7: if u ∈ N c then
8: γ ← (γ + τu + wu)
9: if Ψ = ∅ then

10: Step 1:
11: Ψr ← Ψr ∪ {(u, o)}, ΨR ← ΨR ∪Ψr , N c ← N c\{u}, r ← r + 1
12: Start a new route: TDNNH(ΨR, N

c,GT , t)
13: if N c = ∅ then
14: return ΨR

15: else
16: Go to Step 2
17: end if
18: else
19: Γpuo ← TD_Dijkstra(u, o, γ,GT )
20: if u can be added to current route r then
21: Ψr ← Ψr ∪ {(u, v)}, N c ← N c\{u}
22: Go to Step 2
23: else
24: Go to Step 1
25: end if
26: end if
27: end if
28: Step 2:
29: γ ← γ + τu
30: for each (u, v) ∈ ET+(u) do
31: if cv >

[
TD_Cost_FSM(γ, (u, v),ZT )) −→ cuv(γ)

]
then

32: cv ← cu +
[
TD_Cost_FSM(γ, (u, v),ZT )) −→ cuv(γ)

]
33: τv ← τu +

[
TD_Cost_FSM(γ, (u, v),ZT )) −→ τuv(γ)

]
34: predecessor(v)← u
35: end if
36: end for
37: end while
38: end function
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The algorithm stops when node v is reached.

When performing time restriction validation, the TDNNH involves the fast computation of
point-to-point TD quickest path, least emission path or least cost path in a time-dependent
network using an efficient TD Dijkstra (TD-Dijkstra) label-setting algorithm (see Appendix
4.6) based on Brodal and Jacob (2004) and Dean (2004b). Note that, finding the TDLCP is
NP-Hard as stated by Dehne, Omran, and Sack (2012) and demonstrated by Di Bartolomeo
et al. (2017). To reduce the computational time our adaptation on the algorithm maintains a
single label for each node including travel time, fuel and cost information.

Algorithm 4.2 Computing TD travel time, fuel consumption and cost across a given road
segment (u, v) according to the FSM
2
1: function TD_Cost_FSM(γpu(t), (u, v),ZT )
2: h|γpu(t) ∈ Zh = [zh, zh+1[
3: k ← h, d← Luv − skuv(zk+1 − γpu(t))
4: l← skuv(zk+1 − γpu(t))

5: g ← kNeV
(

l
skuv

)
+ lλςβ(skuv)

2

6: while d > 0 do
7: k ← k + 1, l← δskuv, d← d− l
8: g ← g + E0E1

(
l
skuv

)
+ lβE0

E2
(skuv)

2

9: end while
10: γpv(t)← zk+1 + d/skuv
11: if k > h then
12: l← skuv(γ

p
v(t)− zk)

13: g ← g + E0E1

(
l
skuv

)
+ lβE0

E2
(skuv)

2

14: else
15: g ← E0E1

(
l
skuv

)
+ lβE0

E2
(skuv)

2

16: end if
17: τuv(γ

p
u(t))← γpv(t)− t

18: fuv(γ
p
u(t))← αME0

E2
Luv + g

19: cuv(γ
p
u(t))← cdτuv(γ

p
u(t)) + cefuv(γ

p
u(t)

return [τuv(γ
p
u(t)), fuv(γ

p
u(t)), cuv(γ

p
u(t))]

20: end function

4.4.3 Time-dependent nearest neighbor and improvement heuristic

The main components of local search heuristics are the rules applied to generate the neighbor-
ing solutions employed to carry out the exploration of the solution space and identify the best
neighbor solution. In the TDNSIH, the neighborhoods are constructed by applying efficient
implementations of arc-exchange algorithms. Exchanges are performed by replacing some arcs
by new ones and moving them within the same route. Note that any modification in a route
may need a major recalculation of the paths linking two consecutive customers, starting from
the point of modification of the route up to the return to the depot.
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The appropriate arc-exchange neighborhoods are defined successively based on six operators
commonly applied in the literature (e.g., Zachariadis and Kiranoudis (2010)):

(i) 1-0-Exchange: iteratively removes a node and reinserts it at its best position.

(ii) 1-1-Exchange: the position of customer i is exchanged with that of customer j that
yields the largest decrease in cost.

(iii) Or-Opt: sequences of one to three consecutive nodes are moved. This results in replacing
up to three arcs in the original route by three new one.

(iv) Intra-2-Opt: tries to improve each route separately by exchanging a pair of arcs. If an
improvement is possible, the two arcs that yield the largest decrease in objective value
are removed and the resulting paths are reconnected in the reverse order.

(v) Inter-2-Opt*: tries to merge two routes. The first route is simply followed by the second
one. The new route, if feasible, has one fewer arc.

(vi) Inter-CROSS-Exchange: is performed by removing two arcs for a first route as well as
two arcs from a second route. Then the customers are swapped by introducing new arcs
that yields the smallest detour (Taillard et al. 1997). Note that the orientation of both
routes is preserved.

The general structure of the designed TDNSIH is summarized in Algorithm 4.3. At each
iteration, once a potential neighboring solution is determined at the first neighborhood, it is
compared against the current solution ΨR. If the new neighboring solution is better, it becomes
the current solution, and the exploration of the current neighborhood continues. If no better
solution is found through the exploration of the first neighborhood, the TDNSIH starts the
search in the second neighborhood. If a better solution is determined, the heuristic goes
back to explore the first neighborhood. Otherwise, the TDNSIH selects the next predefined
neighborhood Neighbork and looks for further improvement of the current solution. The
TDNSIH stops if no better solution is found on the set of established neighborhoods.

A new neighbor solution is generated only if the deadline restriction is not exceeded. For
inter-route moves new routes are generated with respect to vehicle capacity constraints. The
evaluation of each neighbor solution implies the calculation of cost change and the validation of
deadline through the fast computation of point-to-point TD paths connecting the new sequence
of customers of each updated route on the underlying physical transportation network using
a TD-Dijkstra algorithm. In the case in which deadline is not exceeded, we update the cost
of each arc using the appropriate TDQP, TDLEP or TDLCP.
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Algorithm 4.3 Time-dependent neighborhood search improvement heuristic (TDNSIH)
1: function TD_NSIH(ΨR,GT )
2: nb_max_neighbors← 6, improve← 1, k ← 1
3: while improve = 1 do
4: ΨR′ ← Neighbork(ΨR), improve← 0
5: if C(ΨR′) < C(ΨR) then
6: ΨR ← ΨR′ , k ← 1, improve← 1
7: else
8: if k < nb_max_neighbors then
9: k ← k + 1, improve← 1

10: end if
11: end if
12: end while

return ΨR

13: end function

4.5 Computational experiments

In this section we provide the results of extensive computational experiments we have con-
ducted to solve the TDVRP-ECMDP and to assess the performance our heuristics. We first
explain how the benchmark instances are generated based on real traffic data from the road
network of Québec City. We then discuss the results of our experiments. Particularly, a com-
parison is made between routing strategies with and without time-varying speeds to illustrate
several insights concerning the impact of congestion avoidance, path choice decisions, optimiza-
tion objective, departure time and volume of demand. These are measured and compared in
terms of distance, travel time, fuel consumption (GHG emissions) and costs.

4.5.1 Proposed benchmark instances

Benchmark instances are designed using the geospatial road network covering the delivery
regions of our industrial partner in Québec City. Each constructed test instance contains up
to 50,376 road segments connecting 17,431 geographical nodes, the depot and customers. The
speed limit of each road segment depends on the road type, namely highways, urban roads
and primary roads. We have defined 60 time periods of 15 minutes from 6h00 to 21h00, which
covers a typical workday. Time-varying speed data was extracted and analyzed by geomatic
experts (Belhassine et al. 2018). Hence, for each road segment and each time slot the speed is
computed based on a large set of real traffic data including more than 24 million of GPS speed
observations provided by our logistic partners. We used pgRouting library 2.0 and QGIS 2.18
for the geomatic developments.

As presented in Table 4.2, we propose three classes of instances using three variants of net-
works, namely small, medium and large to take into account different shipping patterns and
number of customers randomly selected from the set of nodes:
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• small network sets (S) composed by 10 (S1), 20 (S2), 30 (S3), 40 (S4), and 50 (S5)
customers;

• medium network sets (M) composed by 100 (M1), 150 (M2), and 200 (M3) customers;

• and large network sets (L) composed by 300 (L1), 400 (L3), and 500 (L3) customers.

We use the location of the depot of our logistic partner for all instances. Additionally, for
each combination of instance classes and number of customers the load scenarios are produced
according to three demand patterns: low, medium, and high. Hence, we use three demand
distributions to assign small (100 to 500 kg), medium (500 to 2500 kg) and high demand (2500
to 5000 kg) quantities to the customers of each instance.

We also investigate the impact of departure times from the depot to capture the effects of con-
gestion avoidance and waiting at depot decisions considering four departure times associated
to each combination of instances class, number of customers, and demand patterns: 07h00,
08h00, 09h00 and 10h00. Therefore, we obtain 132 instances for the TDVRP-ECMDP to build
insights on heuristics efficiency according to several loads and departure times settings.

Table 4.2: TDVRP-ECMDP benchmark instances

Instances Time-dependent networks Number of customers Number of nodes Number of arcs Departure time Demand
S1

Small network

10

1612 2810

07h00
08h00
09h00
10h00

Low
Medium
High

S2 20
S3 30
S4 40
S5 50
M1

Medium network
100

3859 5388M2 175
M3 200
L1

Large network
300

17431 50367L3 400
L4 500

4.5.2 Experimental setting

Computational experiments are carried out by applying the solution methods to assess the
benefit of quickest path optimization considering time-varying speeds on the reduction of both
operational and environmental costs. Our algorithms were coded in C++ 17 and OpenMP for
multithreading programming using Jetbrains CLion release 2.4 and tested on a ThinkCenter
workstation with 32-gigabyte RAM and Intel i7 vPro, running Ubuntu Linux 16.05 LTS x86.

Table 4.3 provides an overview of our experimental plan. The experiments are executed con-
sidering a heavy-duty vehicle with a gross weight of 25000 kg when it is fully loaded and 15000
kg when it is empty. Each of the 132 instances is solved for three different objective functions
minimizing: (i) travel time using quickest paths, (ii) fuel/emission using least emission paths,
and (iii) costs using least costly paths. We do this twice, first without considering traffic
information using the speed limit of each arc, and then with our real-life traffic information
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using time-varying speeds. The solutions will then be compared in terms of their distances
(Dist), travel times (TT), fuel consumption, cost, number of routes (#Routes), number of late
deliveries (#LD), and number of late returns times to the depot (#LRTD), percentage gap be-
tween two solutions calculated as 100∗ (Solution−Solutionbest)/Solutionbest, and percentage
improvement between two solutions.

Table 4.3: Overview of experimental setting

Optimization criteria Accounting for
traffic congestion Heuristic Solution evaluation

measure

Travel time No (speed limits) SNNH

Distance (m)
Travel time (s)
Fuel consumption (liters)
Cost ($)
# vehicle routes
# late deliveries
# late return times to depot
Gap (%)
Improvement (%)

Fuel (GHG emissions)

Costs
Yes (time-varying speeds) TDNNH

4.5.3 Experimental results

In this section we analyze the performance of our heuristics. We will first concentrate our
analysis for departure times at 08h00 with low demand. Table 4.4 illustrates the effect of
fixed speed assumption on the accuracy of travel time, fuel consumption and cost computa-
tions, by providing the results over all benchmark instances using the classical SNNH and
TDNNH according to three optimization measures. Results are obtained as follows. When
an optimization measure is chosen, e.g., travel time, the SNNH algorithm is applied with the
corresponding point-to-point algorithm, in this example, the quickest path one. The results,
which are obtained without considering congestion, are reported in Table 4 under the columns
TT, Fuel and Cost. Then, each solution is evaluated by considering congestion on each of the
selected path leading to the results under the columns TD-TT, TD-Fuel and TD-Cost. If we
take instance S1 as an example with the travel time as optimization objective, the associated
travel time without congestion is 1900. When congestion is applied to this solution, the real
travel time increases to 3104. The relative difference between the two solutions, measured as
(3104−1900)/3104, is reported under the Gap (%) column. Table 4.4 shows that using the TD
algorithm TDNNH for this instance yields a travel time of 2472 leading to an improvement of
20.36% which demonstrates the value of considering congestion during the resolution process.

From Table 4.4 we see that solutions with respect to minimization objectives show similar
patterns: SNNH applied on real-world network generates a high gap between 20 and 36.47% for
key evaluation metrics, namely, travel time, fuel consumption, and cost under realistic traffic
congestion. For example, when applying the cost optimization objective, there is an average
gap of 36.47% on travel time (15,309.18 vs 24,096.55 seconds) and 20.66% on fuel (96.43 vs
121.54 liters), leading to a gap of 30.06% on overall cost (241.00 vs 344.59$). Additionally, with
the SNNH, on average, in 73.91% (#LRTD is 2.55 out of 3.45 routes) of cases, vehicles return
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late to the depot. However, with the TDNNH, all solutions respect the time window associated
with the depot (#LRTD is 0 for all instances). One explanation could be the underestimation
of congestion effects on delays across selected paths between customers. Hence, fixed speed
calculations are not sufficiently accurate compared to TD ones, which affects the efficiency of
route plans. Therefore, these results show that time-varying speeds have a strong impact on
fuel consumption and cost computations.

As shown in Table 4.4, compared to the SNNH we observe that the TDNNH yields the best
solutions over all instances under real-world networks considering time-varying speeds enabling
more fuel and cost savings. When looking at the cost optimization objective, we can see that
for all S*, M* and L* instances, the TDNNH produces an average travel time of 21,576.82
seconds, which is 10.46% lower than SNNH (24,096.55 seconds). Second, the fuel consumption
reported by the TDNNH (under the cost objective) is 116.24 liters for a distance of 246.55
km which corresponds to 47.15 liters/100 km, which is 4.36% lower than the SNNH (121.54
liters). The obtained value is very close to the average consumption of 46.90 reported by the
annual statistical report of Transports Canada (2017). Finally, the TDNNH generates global
savings on overall cost of 7.98% (317.08 instead of 344.59$). It is remarkable that the same
patterns hold for travel time and fuel objectives. This exposes the error margin associated
with using speed limits instead of using calculations with time-varying speeds. These results
clearly show that the quality of route plans strongly increase if we consider time-varying speeds
using TDNNH compared to those generated with SNNH that uses fixed speeds and that are
adjusted considering traffic congestion.

Table 4.5 shows that our improvement heuristic TDNSIH is able to improve solutions generated
by the TDNNH heuristics using the cost optimization criterion. Regarding the quality of the
solution, as measured by fuel consumption reduction and cost improvements when compared
to the previous solution, we see that the saving on overall costs with respect to medium
demands is of up to 7.51% combined with an overall decrease of travel time by 3.54% and
a reduction on fuel consumption by 6.89%. As expected the proposed TD exchange moves
produce alternative paths that allow congestion avoidance yielding potential reductions of
travel times, fuel consumption and costs. Note that the TDNSIH is time-consuming as it runs
multiple exchange operators to improve input solutions, which requires finding and computing
alternative paths on the multigraph.

Regarding the performance and scalability of the TDNNH, the results from Table 4.6 reported
for instance with medium demand show that in terms of computational time (CPU) our
heuristic is very effective even for large instances with 300-500 customers. As an example, for
the travel time objective, solving 100 customer instances M1 requires only 8.08–8.80 seconds.
The global average runtime over all optimization objectives vary from 17.99 to 26.38 seconds.
This is due to the fact that the TDNNH applies a goal directed search based on the fast
computation of point-to-point paths between customer nodes.
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Table 4.5: Computational results of the designed TDNSIH according to the cost optimization criterion

Demand Instances TDNSIH
Dist %Imp Dist TT %Imp TT Fuel %Imp Fuel Cost %Imp Cost #Routes CPU

Low

S1 28728.49 0.00 2472 0.00 12.67 0.00 35.59 0.00 1 39.04
S2 30638.77 1.04 2915 0.61 14.54 0.75 41.49 0.69 1 767.77
S3 35850.53 13.27 3403 9.64 17.24 11.18 48.75 10.47 1 3069.89
S4 48941.98 3.95 4578 6.95 23.34 5.51 65.75 6.38 1 10763.90
S5 55820.61 3.87 5058 3.86 26.62 3.38 73.61 3.85 1 12397.93
Average 39996.08 4.43 3685.20 4.21 18.88 4.16 53.04 4.29 1 5407.71

Medium

S1 28778.85 0.00 2470 0.00 13.09 0.00 36.05 0.00 1 74.00
S2 45679.38 0.06 4324 2.74 21.96 1.92 62.01 2.41 2 767.77
S3 48001.51 7.47 4544 8.22 23.43 7.72 65.56 8.02 2 3069.89
S4 57131.20 1.43 5717 2.26 22.66 21.75 63.76 23.20 3 1184.31
S5 72972.21 1.03 6744 4.49 34.68 3.07 97.21 3.90 3 950.06
Average 50512.63 2.00 4759.80 3.54 23.16 6.89 64.92 7.51 2.20 1209.21

High

S1 42236.93 0.00 3733 0.00 19.65 0.00 54.32 0.00 2 55.27
S2 47077.27 1.05 4486 0.04 22.72 0.39 64.26 0.14 3 767.77
S3 68510.51 2.03 6422 2.07 33.16 2.01 92.73 2.03 4 3069.89
S4 90856.53 4.73 8467 6.16 43.95 5.00 122.51 5.69 6 527.79
S5 108855.57 0.70 10347 1.15 53.23 0.95 149.16 1.07 7 715.48
Average 71507.36 1.70 6691 1.88 34.54 1.67 96.60 1.79 4.40 1027.24

To further assess the impacts of traffic congestion on travel time, fuel consumption and cost,
the results from Table 4.6 show solutions according to departure times first at 07h00 with
medium demand. Note that the results of the time-independent SNNH are not reported as
fixed speed calculations are incoherent with the following analysis. Globally, we note that in
most cases the TDNNH produces coherent results with respect to the optimization objective.
As expected, when the fuel consumption minimization criterion is applied, the obtained values
of fuel consumption (160.66, 165.06, 165.59 and 161.11 liters when starting at 07h00, 08h00,
09h00 and 10h00, respectively) is lower than the values generated by those obtained when
optimizing time. The same pattern holds for cost minimization criterion. From these results
we can conclude that minimizing the travel time does not minimize the fuel consumption in
such environments.

Regarding the cost minimization criterion, we can see from Table 4.6 that the travel cost
is effectively lower with respect to its value when compared against the other minimization
criteria, as expected. For the case of 07h00 departure, we notice that the cost minimization
objective requires less travel time that when minimizing fuel consumption (27989.27 instead
of 28806.55 seconds) but an increase in distance (349729.57 instead of 343220.52 meters),
yielding a small reduction in the overall cost by 1.64% (422.56 instead of 429.61$). The same
observation holds for the other departure times. This pattern is not observed in the other
optimization criteria.

From Table 4.6 we also see that delayed departure times can lead to higher fuel consumption.
When looking at the cost minimization criteria we observe that fuel consumption increases on
average, by 3.56% (160.57 at 07h00 versus 166.29 liters at 08h00), combined with an increase
in travel time of up to 6.34% (27989.27 at 07h00 versus 29764.09 seconds at 08h00), leading
to a global fluctuation on overall costs of 5.13% (422.56 at 07h00 versus 444.22$ at 08h00).
We observe that allowing flexible departures can lead to better route plans using alternative
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paths yielding fuel and cost savings.

Additional experiments were performed to study the impact of delayed departure time and
rush hours traffic congestion on key performance metrics. Figure 4.3 shows in more details
the impact of flexible departure times on fuel consumption and total costs for a 100 customers
instance with medium demands. In Figure 4.3, the results of the TDNNH according to 28
departure times between 06h00 and 14h00 replicate the traffic pattern of Québec City with a
moderate morning congestion between 06h00 and 07h45. Then, congestion rapidly increases
between 07h45 and 09h15. Between 09h30 and 11h00 drivers face a low traffic congestion
leading to lower fuel consumption. Hence, all customers can be served with less fuel and costs
when starting between 06h00 and 07h45 or 09h30 and 11h00 compared to other periods. In
the afternoon congestion impacts traffic between 13h00 and 13h30 leading to much higher fuel
consumption. Interestingly, we observe that even with the same number of vehicles (6 routes
for all departure times) congestion has a considerable impact on fuel consumption. These
results clearly show that allowing delayed or flexible departures may lead to better alternative
paths by avoiding traffic congestion yielding better route plans that lead to the reduction of
GHG emissions and savings on overall costs.

Figure 4.3: Effects of flexible departure times on fuel consumption and costs considering 100 customers
with medium demand

Table 4.7 reports the impact of demand size on travel time, fuel consumption and costs. In
the light of these results, instances with large demand tend to be more expensive in terms
of emission and operational costs compared to low or medium-size ones. Table 4.7 provides
some insights on the impact of carried loads over the five performance measures. Results of
the TDNNH are obtained under the three minimization criteria. As expected, the number
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routes increases when the volume of orders increases, which has a considerable impact on
the level of fuel consumption and overall costs. For the cost minimization objective, both
fuel consumption and cost doubled from 116.24 liters and 318.01$ (case of low demands) to
280 liters and 736.29$ (case of high demands). This behavior is coherent with the fact that,
proportionally, fuel consumption increases as both load and the number of routes increase, on
average, from 3.91 to 20.27. Additionally, we have noticed that fuel consumption increases by
43.06% (116.24 vs 166.29 liters) in the case of medium demand against 140.88% (116.24 vs
280 liters) for high demand one. A key finding is that combining heterogeneous loads (case of
medium demand) could be beneficial in optimizing both fuel consumption and costs.

4.6 Conclusions

In this paper we have studied the Time-dependent Vehicle Routing Problem with Emission and
Cost Minimization considering time-varying speeds and dynamic paths. In order to solve it,
we have developed an efficient method combining a goal directed search heuristic, called Time-
dependent Nearest Neighborhood heuristic (TDNNH) with a Time-dependent Neighborhood
Search Improvement heuristic (TDNSIH). An efficient adaptation of the Dijkstra label-setting
algorithm to a time-dependent setting is embedded into the solution methods to perform
the fast computation of time-dependent point-to-point paths connecting pairs of customers
nodes based on different measures, namely fuel consumption (TDLEP), time (TDQP) or cost
(TDLCP) leading to a larger search space and further opportunities of optimization in large
time-dependent road networks. The results of extensive computational experiments on real-life
benchmark instances demonstrate that taking dynamic paths into account according to time-
varying speeds yields good quality solutions in a very consistent manner using the TDNSIH,
outperforming the classical SNNH with fixed speed limits. In fact, some routes that were
evaluated as profitable can now appear as not viable candidates in the case of time-dependent
network modeled as a multigraph which reflect more realistic scenarios.

Moreover, our analyses have shown that potential reduction in GHG emissions and costs are
achievable through flexible departure times, which allows congestion avoidance considering
alternative paths between customers. Additionally, we have observed that the size of orders
affects paths choice decision yielding different route plans with higher level of fuel consump-
tion. Further research can now focus on generalizing these methods to broader distribution
problems, namely the time-dependent inventory-routing and dynamic vehicle routing prob-
lems.
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Appendix B

CMEM parameters

We set the values of the CMEM input parameters based on the specification of Barth and
Boriboonsomsin (2009) as follows: the curb-weight ω = 15000 kg, carried load q between
0-10000 kg, fuel-to-air mass ratio ζ = 1, engine friction factor k = 0.25 kJ/rev/L, engine
speed Ne = 60, engine displacement V = 7 L, gravitational constant g = 9.81 m/s2, air
density ρ = 1.2041 k/m3, coefficient of aerodynamic drag Cd = 0.7, frontal surface area
A = 3.912 m2, coefficient of rolling resistance Cr = 0.01, vehicle drive train efficiency ηtf = 0.4,
efficiency parameter for diesel engines η = 0.9, fuel and GHG emissions cost per liters cf = 1.2

$CAD/liters, driver wage cd = 0.0085 $CAD/s, heating value of a typical diesel fuel $ = 44

kJ/g, conversion factor from g/s to L/s ψ = 737, lower speed limit sl = 1.388 m/s, upper
speed limit su = 30.555 m/s, acceleration a = 0 m/s3, and roadway gradient θ = 0 degree.
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Appendix C

Time-dependent Dijkstra label-setting
algorithm

The TD-Dijkstra algorithm is applied to determine time-dependent paths by using a node-
examination process considering time-varying speeds from an origin o to a destination d. A
pseudocode is presented in Algorithm 3.1.

Algorithm 3.1 Time-dependent Dijkstra label-setting algorithm (TD-Dijkstra)
1: function TD_Dijkstra(o, d, t,GT )
2: E ← ∅, N ← VT , predecessor(o) ← o, co ← 0, cu ← ∞|τu ← 0,
∀u ∈ VT

3: while |E| < n do
4: let u ∈ N be a node for which cu ← min{cv : v ∈ N}
5: E ← E ∪ {u}, N ← N\{u}
6: if u = d then
7: Stop
8: end if
9: t← t+ τu

10: for each (u, v) ∈ ET+(u) do
11: if cv >

[
TD_Cost_FSM(t, (u, v),ZT ) −→ cuv(t)

]
then

12: cv ← cu +
[
TD_Cost_FSM(t, (u, v),ZT ) −→ cuv(t)

]
13: τv ← cu +

[
TD_Cost_FSM(t, (u, v),ZT ) −→ τuv(t)

]
14: predecessor(v)← u
15: end if
16: end for
17: end while
18: end function
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Chapter 5

Measuring emissions in vehicle
routing: new emission estimation
models using supervised learning

Résumé

Dans cet article, nous proposons et évaluons la précision de nouveaux modèles d’estimation des
émissions pour le routage des véhicules. En se basant sur des données réelles de consommation
instantanée de carburant, de vitesses variables dans le temps et des données de trafic liées
à un grand nombre de livraisons, nous proposons des méthodes efficaces d’estimation des
émissions de gaz à effet de serre (GES). En effectuant une analyse de régression non linéaire
à l’aide de méthodes d’apprentissage supervisé, à savoir les réseaux neuronaux, les machines
à vecteurs de support, les arbres d’inférence conditionnelle et la descente de gradient, nous
développons de nouveaux modèles d’émission plus précis que les modèles classiques. Nous
estimons correctement les émissions pour un déplacement de bout en bout en fonction du temps
dans des conditions réalistes en tenant compte des opérations de transport de marchandises
pendant l’heure de pointe, des schémas de conduite arrêt-départ, des états de ralenti et de la
variation des charges. Des expérimentations numériques approfondies sur un jeu de données
réelles montrent l’efficacité des modèles d’émissions basés sur l’apprentissage automatique,
dépassant nettement le modèle CMEM (Comprehensive Modal Emissions Model) et celui du
MEET (Predictive Pollution Emissions Transport) en termes de la prévision des émissions
en se référant aux mesures de l’erreur quadratique moyenne. Sur la base des indicateurs
de performance, nous montrons que le MEET sous-estime les émissions de GES réelles de
24,94% et que le CMEM conduit à une surestimation des émissions de 13,18% en fonction
de la consommation de carburant observée, alors que l’écart de précision de notre meilleur
modèle d’apprentissage (Gradient Boosting Machines) est de seulement 1,70% par rapport aux
conditions de conduite réelles. Des tests statistiques confirment l’efficacité de nos nouveaux
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modèles.

Chapter information A research paper based on this chapter, namedMeasuring emissions in
vehicle routing: new emission estimation models using supervised learning, has been submitted
to the journal Production Operations Management (POMS) by Heni H., Diop S. A., Coelho
L. C., and Renaud J. in March 2018.

Abstract

In this paper we propose and assess the accuracy of new emission models for vehicle routing.
Based on real-world data of instantaneous fuel consumption, time-varying speeds observations,
and traffic data related to a large set of shipping operations we propose effective methods to
estimate greenhouse gas (GHG) emissions. By carrying out nonlinear regression analysis using
supervised learning methods, namely Neural Networks, Support Vector Machines, Conditional
Inference Trees, and Gradient Boosting Machines, we develop new emission models that pro-
vide more prediction accuracy than classical models. We correctly estimate emissions for
time-dependent point-to-point routing under realistic conditions taking into account freight
transportation operations during peak hour traffic congestion, stop and go driving patterns,
idle vehicle states, and the variation of vehicle loads. Extensive computational experiments
under real data sets show the effectiveness of the proposed machine learning emissions models,
clearly outperforming the Comprehensive Modal Emissions Model (CMEM) and the Method-
ology for Estimating air pollutant Emissions from Transport (MEET) in the prediction of
hot running traffic emissions according to root mean square error metrics. Based on perfor-
mance indicators we show that MEET underestimates real-world GHG emissions by 24.94%
and CMEM leads to an overestimation of emissions by 13.18% according to observed fuel
consumption, while our best machine learning model (Gradient Boosting Machines) exhibited
superior estimation accuracy and is off by only 1.70% considering real-world driving conditions.
Statistical tests confirm the efficiency of our new models.

Keywords: emissions models; time-dependent routing; traffic congestion; machine learning.
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5.1 Introduction

Freight transportation is known to be an important source of greenhouse gas (GHG) emissions
(Transports Canada 2017). GHG emissions are proportional to the fuel consumption which in
turn, depends on several factors including speed, acceleration, distance, weight of the vehicle,
backhauls and roadway slope (Demir, Bektaş, and Laporte 2014b).

Accurate emissions estimation is a valuable information for transportation experts in making
effective decisions that improve routing operations. The current literature on GHG emissions
for road freight transportation offers different models for estimating emission and fuel con-
sumption, the more well-known being the Comprehensive Modal Emissions Model (CMEM)
(Barth and Boriboonsomsin 2009) and the Methodology for Estimating air pollutant Emissions
from Transport (MEET) (Hickman et al. 1999). Over the last few years, CMEM and MEET
have been integrated into various routing models, with a focus on environmental impacts in
addition to economic implications.

The CMEM is designed for heavy duty vehicles. It computes GHG emissions of route plans
considering the traveled distance, vehicle speed, carried load and roadway gradient. Relevant
studies on green vehicle routing calculating the amount of GHG emissions following CMEM are
those of Bektaş and Laporte (2011), Demir, Bektaş, and Laporte (2012), and Franceschetti
et al. (2017b) in which the objective is to minimize a function comprising emissions and
driver costs. Pathak et al. (2016) used CMEM to estimate emissions under real-world driving
patterns. Androutsopoulos and Zografos (2017) and Huang et al. (2017) integrated path
selection decision on the vehicle routing problems considering a multigraph representation
(Garaix et al. 2010, Ticha et al. 2017) for the road network that incorporates the set of
candidates paths between all pairs of key-destinations.

Figliozzi (2011), Jabali, Van Woensel, and de Kok (2012), Qian and Eglese (2016), and Ehmke,
Campbell, and Thomas (2016a) derived emissions from the MEET model, which allows the
conversion of speeds into emissions based on fuel consumption rates that have been derived
from engine test-bed measurements. MEET considers the impact of load and roadway gradient
through error-corrective parameters.

Real-time traffic congestion, the behavior of freight vehicles across road networks, timely fuel
consumption data collected by various sensors, and Global Positioning System (GPS) de-
vices are becoming more present in commercial operations (Hess et al. 2015). With such rich
amount of traffic-related data much attention is now accorded to the computation of emission-
minimizing paths on very large road networks based on time-dependent speed observations
provided by logistics companies using Intelligent Transportation System (ITS) technology
(Belhassine et al. 2018). However, different emission estimation models exist and they are
based on very distinct assumptions and yield contrasting results. Making an accurate pre-
diction of fuel consumption and emissions is an important aspect of a firm’s decision-making
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process as realized emissions and fuel price affects the profitability (Drake, Kleindorfer, and
Van Wassenhove 2016).

Demir, Bektaş, and Laporte (2011) elaborated a comparative analysis of several vehicle emis-
sion models that have been developed to compute GHG emissions associated with road freight
transportation. Emission models vary in their performance according to numerous factors
such as speed, acceleration, and vehicle types. Turkensteen (2017) evaluated the accuracy
of CMEM, indicating that we cannot take for granted that fuel consumption computations
assuming fixed speed are accurate in time-dependent routing. The author observed that fixed
average speed computations are likely to underestimate emissions. Through sensitivity analysis
he showed that much emissions is produced when speed fluctuates and vehicle load increases.

Jaikumar, Nagendra, and Sivanandan (2017) performed a modal analysis of vehicular emis-
sions under real-world driving conditions. They found out that short term events such as
acceleration and braking significantly affect emissions. Despite their findings that CMEM
underestimates emissions they have only used average speed and acceleration for distances
ranging from 1 to 10 km based on field data obtained from an on-board diagnostic tool.

It follows from previous studies that approaches based on aggregated speeds can underestimate
GHG emissions. Greater estimation accuracy relies on data that reflects real-world operations
in road networks. The last decade has seen substantial advances in building prediction models
using machine learning methods, which capture complex nonlinear relationships in the systems
under study and produce accurate estimations by learning from the available data (Choi,
Wallace, and Wang 2018, Lee 2018). There have been a few studies on the application of
machine learning methods for establishing practical emission models that can be used in
routing problems with both environmental and operational considerations. Inspired by the
need of emissions prediction Zeng, Miwa, and Morikawa (2016) proposed a new emission model
derived from the theory of vehicle dynamics. The parameters of their model were computed
with the maximum likelihood estimation (MLE), and its accuracy was validated using GPS
data collected for a light duty passenger car through a comparative analysis with the Virginia
Tech Microscopic Energy and Emission Model (VT-Micro) (Rakha, Ahn, and Trani 2004),
Support Vector Machines (SVM) model and Neural Networks (NNET) model. Liu et al.
(2016) proposed an effective emissions prediction model of a diesel engine using SVM that
can be used by diesel engine manufacturers to accurately measure emissions. Due the growing
interest of accurate emissions estimations in road freight transportation field, the current
study follows previous streams of literature by applying Gradient Boosting Machines (GBM)
method in addition to NNET, SVM and Conditional Inference Trees (CIT) machine learning
methods to predict emissions considering relevant variables derived from in-field emissions
data considering real-world driving conditions.

From a machine learning point of view a number of opportunities may exist with the availabil-
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ity of time-varying speeds observations, instantaneous fuel consumption, roadway gradient,
vehicle load, and stop-and-go traffic data related to vehicle trips of logistics and freight com-
panies across large cities. GPS and on-board real-time emission measurement devices provide
real-world observations of emissions of micro scale events under real-world traffic congestion.
In this work, we used field data collected across the entire road network of Québec City,
which contains up to 50,000 road links. The obtained GPS data set contains 58,215 instan-
taneous fuel consumption and speed observations for 1406 deliveries monitored over 97 days
between November 2016 and March 2017. In terms of prediction accuracy, families of super-
vised learning algorithms are shown to be effective in fitting artificial outputs to the real one.
Therefore, using supervised learning methods we build nonlinear emission models considering
time-varying speeds, vehicle load fluctuations, stop-and-go driving patterns, acceleration, and
breaking events. The contributions of this paper are fourfold:

(i) we propose an effective approach for the computation of GHG emissions in routing
considering time-varying speeds;

(ii) we provide several insights concerning fuel consumption through the analysis of real-
world emission data considering shipping operations under a large road network with
fluctuating traffic congestion and stop-and-go driving patterns;

(iii) we develop efficient nonlinear emission models using NNET, SVM, CIT, and GBM super-
vised learning methods, which are trained by applying the k -fold cross validation method
on real-life GHG emission data acquired by a private-sector retailer from thousands of
trips over the course of several months;

(iv) we demonstrate the effectiveness of the proposed supervised learning models at micro
scale events compared to MEET and CMEM that incorrectly predicted emissions under
realistic driving conditions.

The remainder of this paper is organized as follows. In the following section we review the
literature on emissions models for road freight transportation. Section 3 describes the data
collection procedure and provides some initial analysis of the available data. In Section 4
we describe the proposed approach for modeling GHG emissions using supervised learning
methods. In Section 5, we present results of our extensive computational experimentation and
sensitivity analysis of several existing and newly introduced emissions models. Conclusions
and directions for future research are stated in Section 6.

5.2 Existing emission estimation models

Motivated by the need to account for traffic congestion effects considering variable speeds,
this section describes the existing methods to compute emissions in time-dependent networks
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(multigraphs) using CMEM and MEET. To do so, let GT = (V,A,Z) be a multigraph, where V
is the set of nodes of the road network and A is the set of arcs or road segments connecting some
pairs of nodes in the network (see Figure 5.1). Let T = z0 +Hδ be the length of the planning
horizon, where δ > 0 represents the smallest increment of time over which a change in the
speed happens. T is divided into a finite number H time intervals Zh = [z0 + δ(h−1), z0 + δh[

considering the set Z = {z0, z0 + δ ..., z0 +Hδ} of discrete times, with h = 1, 2, ...,H.

Furthermore, let γu(t) be a function that provides the arrival time at node u given a starting
time t at the source. Any path p from an origin o to a destination d follows an ordered
sequence of nodes on the road network and is defined by the schedule of traversing it as:

pod = (γo(t), [o = v0, v1, ..., vk−1, vk = d]) (5.1)

where vk ∈ V are road nodes, and k represents the number of nodes of the complete path.

For any road segment (u, v) ∈ A let luv denote the distance between nodes u and v. Let τuv(t)
and Fuv(t) be the time-dependent travel time and the amount of GHG emissions, respectively,
related to traveling across the road segment (u, v) when the vehicle leaves node u at time
t ∈ T . The travel time function is piecewise linear and satisfies the first-in, first-out (FIFO)
rule. With each road segment (u, v) across a given path is associated a time-dependent travel
speed suv(t) when the vehicle leaves node u at time t.

5.2.1 Time-dependent emission function using CMEM

The CMEM is one of the most used emission models in green vehicle routing. It was designed
by Barth and Boriboonsomsin (2009) to estimate the amount of emissions generated by a
wide variety of vehicles. According to this model, vehicle emissions depend on many environ-
mental and traffic-related parameters, namely load, speed, roadway gradient, among others.
Considering vehicle speed s (m/s), total vehicle weight M and roadway gradient θ, CMEM
calculates the instantaneous fuel consumption rate (in liters/second) using the following poly-
nomial function:

er = E0

(
E1 +

(
(αM + βs2)s

E2
+ Pacc

))
, (5.2)

where E0 = ζ
$ψ , E1 = kNeV , E2 = 1

ε1000ηtf
, M = ω + q, α = a + g sin θ + gCr cos θ, and

β = 0.5CdAρ are constant parameters related to the vehicle and its engine such as inertia
force, rolling resistance, and other vehicle characteristics. Pacc is the engine power demand
associated with running losses of the engine and additional vehicle accessories such as air
conditioning, typically assumed to be zero. All parameter values used are shown in Table 5.1.
Those related to the vehicle specifications are provided and calibrated by the manufacturer.
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Figure 5.1: Illustration of a portion of the road network in Québec City

Table 5.1: Parameters used by CMEM for the computation of fuel consumption

Notation Description Typical values
w Curb-weight (kg) 4500
q Carried load (kg) 0-4350
ζ Fuel-to-air mass ratio 1
k Engine friction factor (kJ/rev/liter) 0.25
Ne Engine speed (rev/s) 40
V Engine displacement (liter) 5.12
g Gravitational constant (m/s2) 9.81
ρ Air density (k/m3) 1.2041
Cd Coefficient of aerodynamic drag 0.7
A Frontal surface area (m2) 4.6
Cr Coefficient of rolling resistance 0.01
ηtf Vehicle drive train efficiency 0.4
η Efficiency parameter for diesel engines 0.9
cf Fuel and GHG emissions cost per liter ($CAD/liter) 1.05
cd Driver wage ($CAD/s 0.0085
$ Heating value of a typical diesel fuel (kJ/g) 44
ψ Conversion factor (g/s to liter/s) 737
sl Lower speed limit (m/s) 5.555
su Upper speed limit (m/s) 22.222
s Average speed at a portion of segment (m/s)
a Acceleration (m/s3) [−3, 1]
θ Roadway gradient (degree) 0
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For a given path p traversed by a vehicle departing from node o at time t, the corresponding
fuel consumption (in liters) can be computed based on equation (5.3):

Fp(t) =
∑

(u,v)∈p

F1
uv(t) + F2

uv(t). (5.3)

The term F1 describes the emissions related to the vehicle weight and F2 represents the fuel
consumption unrelated to the vehicle load:

F1
uv(t) = τuv(γu(t))

αME0

E2
suv(γu(t)) =

αME0

E2
luv, (5.4)

and

F2
uv(t) = τuv(γu(t))E0

(
E1 +

β

E2
(suv(γu(t)))3

)
= E0E1τuv(γu(t)) +

βE0

E2
luv.(suv(γu(t)))2

(5.5)

5.2.2 Time-dependent emission function using MEET

The MEET emission model was developed by Hickman et al. (1999) for estimating vehicle
emissions using a variety of polynomial functions of speed and acceleration levels. It computes
GHG emissions produced by a vehicle of weights ranging from 3.5 to 32 tons according to travel
speed and a wide range of input parameters related to the type of vehicle. Given an unloaded
vehicle traveling at speed s (km/h) on a flat surface the MEET calculates the rate of emissions
(g/km) using the following function:

ηr = K + as+ bs2 + cs3 + d
1

s
+ e

1

s2
+ f

1

s3
. (5.6)

The coefficients (K, a, b, c, d, e, f) are defined based on the vehicle type and weights. For exam-
ple, if we consider the case of a vehicle weighing 3.5-7.5 tons the coefficients for the GHG emis-
sions function for this specific vehicle category are (K, a, b, c, d, e, f) = (110, 0, 0, 0.000375, 8702, 0, 0).

To consider the effect of road gradient for each vehicle category, pollutant and gradient class,
MEET proposes the following road gradient correction factor:

ηg = A0 +A1s+A2s
2 +A4s

4 +A3s
3 +A5s

4 +A6s
6. (5.7)

where (A0..A6) are coefficients for CO2 pollutant that vary according to the vehicle category
and gradient class. Moreover, to take the effect of the load into account, MEET applies the
following load correction factor:

ηl = κ+ nθ + ρθ2 + qθ3 + rs+ ys2 + zs3 +
%

s
, (5.8)
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where θ is the roadway gradient in percent and (κ, n, ρ, q, r, y, z, %) are coefficients of the load
correction function.

Based on MEET the amount of GHG emissions Epij (t) in grams produced by traversing path
p at time t (with time-varying speeds taken into account) is given by:

Epij (t) =
∑

(u,v)∈p

ηr(t)ηg(t)ηl(t)luv. (5.9)

As GHG emissions are directly proportional to fuel consumption, the amount of fuel consumed
can be derived from the amount of emissions according to the study of Coe (2005) that set
the CO2 emission from a liter of fuel to 2.66 kg/liters (10.1 kg/gallon).

5.3 Data collection and analysis of emissions

In collaboration with an important furniture, appliances and electronics retailer from Québec
City, on-road fuel consumption data collection was conducted with HINO SERIES 195 heavy-
duty vehicles across different time periods of each workday during shipping operations, which
covers rush hours times. The vehicles were monitored with a GPS on-board diagnostics and
data logging device, which can measure the instantaneous fuel consumption between GPS
points. The device incorporates a fuel analyzer sensor, an engine scanning tool, and a com-
munication port for obtaining accurate measurements.

During 97 days between November 2016 and March 2017 up to 58,215 instantaneous speed
and fuel consumption observations were collected. Real-time information includes fuel con-
sumption, travel speed, acceleration, deceleration, GPS coordinates and vehicle load. The
average travel time between two consecutive measurements is 14.54 seconds.

We now present the characteristics and analysis of real-world, on-road vehicle emissions. The
main goal is to quantify and characterize the emissions in a real-world road freight distribution
environment regarding relevant input variables. For data validation the daily observed fuel
consumption was fitted to fuel invoices showing that the consumption device yields perfect
accuracy. Yet, outliers analysis of emission data was done to ensure that there is no time lag
between instantaneous emission observations. Hence, this section describes how data analysis
were offset to cleanup any lags in the emission sample that will be used by our machine learning
algorithms.

For each observed workday the vehicle travels on average through 14 paths corresponding to
shipping trips. Translating journeys into trips involves three main steps:

• geomatics and geospacial manipulations by geomatic specialists allow us to match GPS
coordinates of each trip to the road links of Québec City. It is therefore essential to
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combine road segments that form part of a single trip but which have been divided into
individual paths according to service time at customers, refueling stops, and/or driver
breaks.

• identification of whether a break is a refueling stop or driver break, or service time at
a customer where goods are picked up or dropped off, by grouping the observations
according to when the vehicle ignition is turned on or off. For the purpose of this study,
a trip is defined as a combination of paths traveled across a given workday where the
ends are the real location of a pickup or delivery, thus grouping subsequent journeys
that include breaks at fuel stations or truck-stops.

• matching the information of GPS points, starting time and idle time with orders details
from another database to identify the vehicle load at each GPS point, which is constant
throughout the path connecting two customers.

A cleanup process is applied on the prepared data to remove observations corresponding
to idle state during breaks or delivery operations. Then, based on the obtained emission
sample composed of 46,476 observations we define five explanatory variables: travel speed,
acceleration, vehicle load, stop-and-go driving pattern, traveled distance, while the output
variable is the amount of fuel consumption produced between two GPS points.

The frequency of link-based fuel consumption observations is displayed in Figure 5.2. We see
that the number of observations is high for low fuel volumes. As shown in Figure 5.2 the mean
of fuel consumption considering all observations is 0.033 liters, respectively.

Figure 5.2: Fuel consumption histogram of real-world shipping trips in Québec City
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Figure 5.3 presents the daily variation of fuel consumption. The different consumption levels
between journeys are due to several factors including number of orders, traffic congestion and
traveled distance, among others.

Figure 5.3: Variation of daily fuel consumption of real-world shipping trips in Québec City

A subset of data composed by observations corresponding to steps of 11 seconds is presented in
Figure 5.4. We see a high level of fuel consumption variability based on speed and acceleration
levels. It also illustrates the nonlinear behavior of fuel consumption as a function of travel
speed and acceleration. When acceleration and speed levels increase, consumption tends to
increase. In deceleration, consumption values are generally low.

Figure 5.5 shows the trade-off between fuel consumption and travel speed over different times
of a typical shipping workday. It is remarkable that the fluctuation of fuel consumption is
impacted by the speed in the underlying road network. The shape of curves has two distinct
phases. In a first stage, we observe that fuel consumption increases with speed. This phase
is characterized by a regular form of speed (ascending or descending). The second phase,
marked by erratic fluctuations of speed, gives a very accidental relationship between speed
and fuel consumption. This situation corresponds to the different phases of acceleration and
deceleration. We can see that vehicular consumption during idling and cruising are generally
low compared to consumption during acceleration. We also observe that fuel consumption
depends on short term events such as rapid acceleration and braking (stop-and-go). The
majority of microscopic emission models assume a constant consumption rate when a vehicle
is decelerating.

To summarize, there is a clear need to perform an effective predictive modeling that takes
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Figure 5.4: Fuel consumption as a function of instantaneous speed and acceleration for all observations
with a travel time of 11 seconds

Figure 5.5: Instantaneous variation in fuel consumption and speed during a typical shipping day
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into account the specificity of fuel consumption/emissions data structures. Therefore, in this
study we used model-based machine learning for predicting vehicle emissions.

5.4 Emission modeling with supervised learning methods

This section shows the development of multiple nonlinear emission models using four super-
vised learning methods: Neural Networks (NNET), Support Vector Machines (SVM), Con-
ditional Inference Trees (CIT) and Gradient Boosting Machines (GBM). Each model-based
machine learning uses a set of tuning parameters. These determine the performance profile
of each model. To choose the appropriate combination of parameters values while avoiding
over-fitting we used grid search method for SVM and CIT and trial-and-error approach for
NNET and GBM. For each model we define a set of candidate values for the appropriate tun-
ing parameters according to the relevant literature, sample size and computational resources.
We then fit each model with each candidate set using the training data set on which we apply
the k -fold cross validation method (Kuhn and Johnson 2013) for estimating prediction error.
The k -fold cross validation works by splitting the training data set into k roughly equal-sized
subsamples or folds. Each supervised learning method performs k iterations and at each time
it excludes one held-out fold in turn to evaluate their prediction accuracy once the model is
estimated using the remaining k − 1 folds. There is no formal rule of defining the value of
k, and we used k=10. The prediction accuracy of each model is given by the average of k
obtained prediction error measures. For each candidate machine learning model, the optimal
setting of tuning parameters is determined according to the obtained performance metrics.
Then, we evaluate the performance of their accuracy prediction using a testing data set (see
Section 5.5).

5.4.1 Neural Networks

NNET learning methods allow the extraction of linear combinations of the inputs to produce a
nonlinear emission model. NNET is composed of a set of neurons connected together (Dreyfus
2005). It uses massive interconnections to fit nonlinear models to multidimensional data
(Haykin 1994). Figure 5.6 shows a schematic diagram of the proposed NNET used to model
GHG emissions. In the network diagram the nodes are the neurons and the arcs are the
connections. NNET is a multi-layer network composed of three layers: input layer, hidden
layer and output layer. The input layer incorporates five input variables x1, ..., x5 defined
based on the chosen parameters affecting emissions, namely speed, acceleration, vehicle load,
stop-and-go driving patterns, and distance. The hidden layer incorporates a set of hidden units
or unobserved variables used to model the outcome Kuhn and Johnson (2013). These hidden
units perform intermediate computations using linear combinations of the input variables.
The output layer is the combination of obtained hidden units to perform the prediction of
emissions.
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Figure 5.6: Schematic diagram of the NNET emission model

In this study, several NNET tasks were performed to accurately predict traffic emissions by
studying field data. We applied the quasi-Newton back propagation learning algorithm (Battiti
1990). The linear combinations of the predictors are transformed by a nonlinear activation
function (sigmoidal). To reduce over-fitting our NNET algorithm minimizes the following
function Kuhn and Johnson (2013):

G =
N∑
i=1

(yi − fi(x))2 + η

 H∑
k=1

P∑
j=0

β2
jk +

H∑
k=0

γ2
k

 , (5.10)

where N is the total number of observations, P is the number of predictors, H represents
the number of hidden units, η is the weight decay, and yi is the outcome. The coefficient βjk
represents the effect of the jth predictor on the kth hidden unit. The function f defines a
linear combination that connects the hidden units to the outcome:

f(x) = γ0 +
H∑
k=1

γkhk, (5.11)

where γk are the regression coefficients of hidden layers.

Several combinations of NNET parameter values were investigated by trial-and-error to iden-
tify the best learning performance. Four different weight decay η ∈ {15−4, 15−3, 15−2, 15−1}
were evaluated along with one hidden layer including between one and 10 hidden units. The
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convergence to the best NNET model is achieved with a maximum number of iterations equal
to 2000. The optimal NNET model used η = 15−3 and H = 9 hidden units.

5.4.2 Support Vector Machines

SVMs is a supervised learning method applied for classification and nonlinear regression (Vap-
nik 2013). SVM algorithms use a kernel function allowing this model to transform input data
to the required form of relationships. There are multiple kinds of kernel functions, such as
linear kernel, polynomial, radial basis function, and sigmoid. After several trials, we used a
linear kernel function defined as a simple sum of cross products, which have been shown to be
effective for the current study.

The SVM regression tries to minimize the following regularized function:

W = C
N∑
i=1

L(yi, F (xi)) +
P∑
j=1

β2
j , (5.12)

where xi is the input space-vector, L(.) is the loss function, β are coefficients used by the
regularization term considering P predictors, and constant C is the error penalty factor for
adjusting the complexity of the model (Kuhn and Johnson 2013). F is a prediction equation
defined as follows:

F (x) =
N∑
i=1

αiϕ(x) + β0, (5.13)

where ϕ(x) is the linear kernel function.

The tuning of regularization parameter C through grid search method produced a constant
with a value of 1.

5.4.3 Conditional Inference Trees

CIT is a machine learning method that uses unbiased tree-based models for regression and
classification (Hothorn, Hornik, and Zeileis 2006). CIT algorithm’s estimates regression rela-
tionship using a binary recursive partitioning method, which efficiently performs the exhaustive
search across the predictors according to split points. A simplified description of this method
is provided by the following steps:

1. perform the null hypothesis test of independence between each input variable and the
outcome one. The algorithm continues until the hypothesis cannot be rejected;

2. apply a binary split to the selected input variable;
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3. recursively repeat steps 1 and 2.

The p-value statistical test is applied for candidate splits by evaluating the difference between
the means of two groups. On our preliminary tests with the training data set we found that
the optimal CIT model is obtained with a value of 1− p equal to 0.821.

5.4.4 Gradient Boosting Machines

GBM is gaining a considerable interest in a wide range of data driven applications such as
travel time prediction (Zhang and Haghani 2015) and the modeling of the energy consumption
(Touzani, Granderson, and Fernandes 2018). It is a highly adaptable supervised learning
method encompassing both classification and regression in order to find an additive model
that minimizes the loss function (Friedman 2001). GBM iteratively investigates decision trees
(basic learner) to reduce the loss function and improve prediction accuracy. The GBM model
is defined as follows (Friedman 2001).

Let R̂(x) be the regression function that minimizes the expectation of loss function S(y,R)

over the joint distribution:

R̂(x) = arg min
R(x)

Ex,y[S(y,R(x))], (5.14)

where R(x) can be formulated as a function with a finite number of parameters β estimated
by selecting those values that minimize the loss function S using the training sample as shown
in equation 5.15:

R̂(x) = arg min
β

N∑
i=1

S(yi, β)). (5.15)

To optimize the GBM model we have performed the tuning of several regularization parame-
ters:

• d: the depth of decision trees that controls the maximum interaction order of the model;

• I: the number of boosting iterations, which also corresponds to the numbers of decision
trees;

• α: the learning rate that controls the contribution of each base model or decision trees
by shrinking its contribution by a factor between 0 and 1;

• δ: the subsampling rate or fraction of the training set observations, which is randomly
selected to propose the next tree in the expansion.
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After the training of the model, the depth of the decision trees d was selected in the set
{2, 5, 7, 9}, the learning rate α was chosen from 0.01 to 0.5 with a granularity of 0.02. The
number of iterations I was selected within a set spanning from 50 to 250 iterations with a
granularity of 50 iterations. The minimum number of observations in trees terminal nodes ϕ
was defined between 5 and 10. The subsampling rate δ was fixed to 0.5. The final combination
of values used for the GBM model was d = 9, I = 250, and α = 0.07.

5.5 Numerical experiments

It is not recommended to use the same set of observations for both training and testing. Hence,
in this work the assessment of predictive performance has been carried out on an independent
sample of field data in order to avoid over-fitting, which is the tendency of the models to fit
the training sample too well, at the expense of the predictive accuracy. The preprocessed field
data set composed of 46,476 fuel consumption observations (1406 paths) was split randomly
on two subsets using days as the splitting criterion:

• training sample: composed by 80% of days corresponding to 38,004 observations (1263
paths);

• testing sample: composed by 20% of days including 8,472 observations (143 paths).

Each model was trained with the same training data set with R version 3.4.3 through R-
Studio 1.0.153 using a ThinkCenter professional workstation with Intel i7 vPro (8 cores) and
32-gigabyte RAM, running Ubuntu Linux 16.04 LTS x86 operating system. The following
R machine learning packages were used to generate nonlinear emission models: nnet, e1071,
party, gbm, and caret. The evaluation process was initiated by comparing the models predic-
tion outcomes on in-field observations. More specifically, we assessed the accuracy of studied
emissions models considering realistic driving conditions that take into account several factors,
such as carried loads, speed, and stop-and-go events. The obtained models were then evalu-
ated on the testing data set. Their effectiveness was validated by computing and analyzing
the following accuracy measures:

• Root Mean Squared Error (RMSE): interpreted as the average distance between the
observed values and the model predictions. The RMSE is then computed by taking
the square root of the Mean Squared Error (MSE). The smaller the values of RMSE,
the closer the predicted values are to the observed ones. The RMSE is computed by
squaring the residuals, summing them up and dividing by the number of observations
as 1

n

∑n
i (yi− ŷi)2, where yi is the observed value, ŷ is the predicted output, and n is the

total number of observations;
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• Mean Absolute Error (MAE): is the average magnitude of the errors in a set of predic-
tions. It is computed as 1

n

∑n
i | yi − ŷi |.

• Std Error: is the standard error of the mean. It is computed as σ√
n
, where σ =√∑n

i (yi−µ)2

n−1 is the standard deviation of the mean µ.

• Mean: is the average of the corresponding predicted outcomes. It is calculated as µ =
1
n

∑n
i ŷi.

• Gap (%): reports how close the corresponding predicted outcome is to the observed
value. The percentage gap values are calculated as 100(yi − ŷi)/yi.

5.5.1 Experimental results and analysis

In this section we provide the experimental results and analysis. Table 5.2 shows the accuracy
metrics of CMEM, MEET, NNET, SVM, CIT and GBM predictions. In this table, successive
columns give for each emission model the RMSE, the MAE, the Standard Error (Std Error),
the mean value, the Gap (%) aggregated across all paths (trips) in the testing data set, and the
computational time (CPU) of training (seconds). Doing so, we estimate the fuel consumption
for each road segment, then we aggregate the obtained values for each path. The results
obtained for the RMSE metric show that the proposed nonlinear emission models, namely
GBM, NNET, CIT and SVM outperform CMEM and MEET and appear to be more accurate
in estimating instantaneous vehicle fuel consumption. In fact, we see that the average RMSE
ranges from 0.258 to 0.315 for the machine learning models, which are lower than those of the
CMEM and MEET models (0.501 and 0.850). More specifically, it can be clearly seen that
GBM model exhibited the best estimation accuracy as the fuel consumption predictions are
very consistent in trends with in-field observations, with the lowest RMSE of 0.258.

Figure 5.7 also illustrates that GBM outperforms MEET and CMEM that were found to
respectively under- and over-predict fuel consumption. Note however, that GBM algorithm
is computationally demanding as it takes over 32354.44 seconds of execution time compared
to the case of NNET (5188.85 seconds), SVM (1743.11 seconds) and CIT (404.10 seconds)
models.

Regarding the obtained percentage gap values, we observe from Table 5.2 that the machine
learning models give the best prediction results with a gap ranging from -1.930% to 6.173%
when compared against MEET underestimating fuel consumption on average by 24.942% and
CMEM overestimating fuel consumption by 13.184%. We also see that GBM and CIT yield
the lowest underestimation with a gap of -1.709% and -1.453%, respectively.

Additional experiments were performed to study the performance of the developed machine
learning models. Figure 5.8 shows scatter plots that illustrate graphically the prediction
accuracy of the studied models superimposed on the field data. On the vertical scale, the
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Table 5.2: Comparative performance of the proposed machine learning models against MEET and
CMEM regarding emission prediction aggregated by paths

Emission models RMSE MAE Std Error Mean Gap (%) CPU of training (seconds)
Real-world 0 0 0 1.539 0 -
CMEM 0.501 0.305 0.459 1.742 −13.184 -
MEET 0.850 0.404 0.760 1.155 24.942 -
SVM 0.315 0.170 0.301 1.444 6.173 1743.110
CIT 0.264 0.151 0.263 1.561 −1.453 404.100
NNET 0.271 0.155 0.270 1.569 −1.930 5188.850
GBM 0.258 0.150 0.257 1.565 −1.709 32354.440

Figure 5.7: Sample of the estimations produced by CMEM, MEET, NNET and GBM models against
real-world fuel consumption.

observed value of fuel consumption is displayed, whereas the predicted values are presented on
the horizontal scale. We observe that NNET, GBM, SVM and CIT models fit similarly as their
prediction outcomes are more concentrated and closer to the identity lines represented by red
color indicating that the observed and predicted emission values are very close. This implies
that the machine learning models yield more effective prediction of fuel consumption than
those produced by the classical CMEM and MEET. As expected, machine learning models
provide good fitting regarding observed fuel consumption as they are able to reflect differences
in vehicle emissions that result from traveling on congested areas with frequent stop-and-go
events impacting the traffic speed.

Figure 5.8 also illustrates the difference observed between the identity red line and the black
regression line, which shows the variation in prediction between each model results compared
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to observed data. Notably, this graphical trend was validated by the goodness of fit test. The
null hypothesis of this test is performed with a slope=1 and intercept=0. This test leads to
the rejection of the null hypothesis with very low p-value (<2.2e-16), lower than the threshold
0.05. Hence, these two models are not preferred candidates for predicting fuel consumption
considering estimation at points level. More specifically, the best prediction accuracy belongs
to the GBM model yielding the lowest p-value of 0.314, which is larger than the threshold 0.05.
Therefore, the null hypothesis is not rejected which indicates that the prediction outcome of
the GBM model is similar to the observed values.

In order to make further analysis on the prediction accuracy of the proposed models the
boxplots presented on Figure 5.9 illustrate numerical outcomes of the studied emission models
through their quartiles. Clearly, the median thicknesses of GBM, CIT and NNET models
(represented by the lines in the middle of the boxes) seem to be very close to the observed fuel
consumption one, exhibiting superior accuracy regarding fuel consumption. When looking at
the boxplots of CMEM and MEET, we can see a difference between the medians, indicating
that these models tend to incorrectly predict fuel consumption.

To further evaluate the performance of the proposed emission models, a sensitivity analysis
is performed to compare their prediction accuracy under multiple criteria: congested (low
speeds) and free flow (high speeds) situations, empty and loaded vehicle, stop-and-go driving
patterns, and peak and non-peak periods. In Table 5.3 the performance of emissions estimation
of CMEM and MEET is compared against the proposed models with in-field measurements
considering each criterion, which includes corresponding mean and gap for the best machine
learning model, CMEM, and MEET. Clearly, the degree of estimation varies for all criteria
according to real-world driving conditions. We have noticed that the estimation of CMEM
and MEET are deteriorated in the case of low speeds with an overestimation of 107.032% and
11.800%, respectively. The result obtained for CMEM is conform with previous literature indi-
cating that potential under prediction is due to it deterministic nature (Jaikumar, Nagendra,
and Sivanandan 2017). However, GBM provides a low overestimation of only 3.776%.

For driving pattern criterion, we see that the prediction of CMEM and MEET are affected in
the cases of acceleration and deceleration events. As an example, for acceleration observations
our experiments indicate that CMEM and MEET emission estimations are inaccurate under
fluctuating speeds as they produce a gap of -28.222% and 30.701%, respectively. As expected
the GBM model adequately handles acceleration variability when congestion occurs as it has
the smallest gap (-1.564%). Regarding loads, GBM gives the lowest gaps (-1.666% for empty
vehicles and -1.716% for loaded ones). Interestingly, NNET model shows its performance in
peak period cases during the morning between 08h00 and 09h00 providing a gap ranging from
1.107% to 2.783% compared to CMEM and MEET which have a much higher absolute gap
between 4.265% and 30.692%.
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Figure 5.8: Scatter plots of predicted outcomes by CMEM, MEET and machine learning models
against observed fuel consumption
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Figure 5.9: Boxplots of emissions models prediction performance against observed fuel consumption
aggregated by days

Based on the results presented in Table 5.3 it can be argued that GBM and NNET models
give the best results and are the most accurate for all aspects, exhibiting a gap just over
3.776%. Further, we can see that the overall performance of both models is very good not
only in normal or moderate traffic conditions, but also during traffic congestion. Compared to
CMEM and MEET, machine learning models are less sensitive to input variables and maintain
superior prediction accuracy.

To summarize, even if emissions estimation is complex and challenging, it is clearly shown
that machine learning models enhance emission prediction accuracy by taking into account the
interactions among different combinations of input variables. In all experiments presented in
this section, we conclude that the proposed machine learning models significantly outperform
CMEM and MEET. In fact, machine learning-based emission models, and in particular GBM
and NNET models are able to fit complex nonlinear relationship of vehicle emissions leading
to superior emissions prediction accuracy.

5.6 Conclusions and future research

In this paper we have proposed nonlinear emission models using supervised learning methods.
The prediction accuracy was compared to the classical MEET and CMEM methods under
real-world driving conditions with stop-and-go events, fluctuating speeds and varying road ge-
ometry. In our numerical experiments, we have observed that MEET and CMEM incorrectly
predicted emissions by 24.942% and −13.18%, respectively. Results revealed that the pro-
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posed NNET, SVM, CIT and GBM models outperform CMEM and MEET as they improve
prediction accuracy in the case of traffic congestion and stop-and-go driving patterns with
recurrent acceleration and breaking events. It was also shown that GBM produces the best
predictability which is off by only 1.70% according to real-world data. This indicates that we
cannot take for granted that existing emission models are sufficiently accurate to be used in
green vehicle routing, which requires machine learning models that update them by applying
supervised learning methods on collected real-time traffic data and on-road vehicular exhaust
emissions.

The results of this work show that using machine learning models and more specifically the
GBM and NNET models enhance the prediction accuracy of emissions prediction. A direction
of future research is to evolve machine learning emission models by investigating the effects
of weather, driver profiles and road-wide factors such as temperature, rain, snow, road main-
tenance events, etc. Another area of future work will be the integration of machine learning
emission models in routing problems and practical road freight transportation applications.
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Conclusion

In this thesis we have introduced, modeled and solved several types of time-dependent distribu-
tion problems considering dynamic paths and GHG emissions. Particularly, we have explicitly
considered the time-varying flow speed model and time-dependent FIFO network within these
problems, and have developed heuristics, time-to-target travel time and cost bounds, and op-
timization methods for their resolution. The main scientific contributions of this thesis are the
incorporation of time-dependent optimization and path flexibility on the definition, models
and solution algorithms for the Quickest Path Problem (QPP) and the Green Vehicle Routing
Problem (GVRP). These allow for more realistic and efficient solutions from a cost perspective
and from an environmental standpoint.

Research synthesis

We have proposed a comprehensive literature review in Chapter 2. On the one hand, the
history of the time-dependent shortest path problem (TDSPP), which was introduced more
than 50 years ago, was presented along with a number of variants of the problem, their
properties, models and solution methods. A systematic review of recent research on the
TDSPP and green routing problems is provided.

In Chapter 3 we have introduced the time-dependent quickest path problem with emission
minimization (TDQPP-EM), which extends the TDQPP by considering GHG emissions and
costs minimization. This extension is of high practical relevance since traffic congestion is
an important issue for logistics providers. A fast and effective time-dependent Dijkstra label-
setting algorithm and a lower bounding method have been implemented and tested using the
road network of Québec City with a large data set of speed observations. Our algorithms
are highly effective in finding good-quality solutions for benchmark instances of all sizes. Our
extensive computational experiments have demonstrated the benefits of choosing alternative
paths in congested urban areas that lead to substantial GHG emission reduction and cost
savings. We have clearly demonstrated that using time-dependent algorithms leads to solutions
with high degree of accuracy. An interesting insight derived from this research is that avoiding
traffic congestion during peak hours yields substantial GHG emissions reductions and cost
savings. Our time-dependent models reproduce the expected behavior with respect to different
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optimization criteria, time of the day (level of congestion), carried loads and selected paths.
We have also shown that carried loads affect the chosen path, particularly as the vehicle load
becomes larger, the potential savings in fuel consumption and GHG emissions increase.

We have studied in Chapter 4 the Time-dependent Vehicle Routing Problem with Emission
and Cost Minimization considering time-varying speeds and dynamic paths. In order to solve
it, we have developed an efficient method combining a goal directed search heuristic, called
Time-Dependent Nearest Neighborhood Heuristic (TDNNH) with a Time-Dependent Neigh-
borhood Search Improvement Heuristic (TDNSIH). Solving this problem requires an efficient
adaptation of the Dijkstra label-setting algorithm to a time-dependent setting to perform the
fast computation of time-dependent point-to-point paths connecting pairs of customers nodes
based on different measures, namely fuel consumption, time or cost leading to a larger solution
space and further opportunities of optimization in large scale time-dependent road networks.
The results of extensive computational experiments on real-life benchmark instances have
demonstrated that taking dynamic paths into account according to time-varying speeds yields
good quality solutions in a very consistent manner using the TDNSIH. In fact, some paths
that were evaluated as profitable in a static setting can now appear as not viable candidates
in the case of time-dependent network modeled as a multigraphs which reflects more realistic
scenarios. Moreover, we have shown that potential reductions in GHG emissions and costs
are achievable through flexible departure times, which allows congestion avoidance consid-
ering alternative paths between customers. As expected, we have observed that the size of
orders affects paths choice decision yielding different route plans with higher levels of fuel
consumption.

Finally, in Chapter 5 we have proposed nonlinear emission estimation models using super-
vised learning methods. The prediction accuracy was compared to the classical Comprehen-
sive Modal Emissions Model (CMEM) and Methodology for Estimating air pollutant Emis-
sions from Transport (MEET) methods under real-world driving conditions with stop-and-go
events, fluctuating speeds, loads, and varying road geometry. Results have revealed that the
proposed Neural Networks (NNET), Support Vector Machines (SVM), Conditional Inference
Trees (CIT) and Gradient Boosting Machines (GBM) models outperform the CMEM and the
MEET as they improve prediction accuracy in the case of traffic congestion and recurrent ac-
celeration and breaking events. It was also shown that GBM produces the best predictability
according to real-world data. Our computational analysis have demonstrated that one cannot
take for granted that existing emission models are sufficiently accurate to be used in green vehi-
cle routing, which requires machine learning models that update them by applying supervised
learning methods on collected real-time traffic data and instantaneous fuel consumption.
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Main contributions

This thesis makes a number of contributions to literature. The first one is the introduction,
modeling and resolution of two meaningful Time-dependent Distribution Problems, namely
the Time-dependent Quickest Path problem with Emission Minimization (TDQPP-EM) and
the Time-dependent Vehicle Routing Problem with Emission and Cost Minimization consider-
ing Dynamic Paths (TDVRP-ECMDP). These are variants of the minimum-cost path across
time-dependent network, where arc costs are time-dependent and are evaluated by explicitly
considering GHG emissions and fuel consumption as parts of the cost components.

The second contribution is the design of an effective approach for computing travel cost and
GHG emissions in time-dependent networks under the FIFO dynamic, ensuring that our so-
lution methods account for the impact of speed variations on the optimization of a chosen
path.

The third key contribution is the design of an efficient method to obtain tight time-dependent
bounds, reducing the computational burden, and investigate when it is important to incor-
porate the load carried by the vehicle and traffic congestion factors into the lower and upper
bounding algorithms. These bounds seem a worthwhile feature for validating the quality and
the accuracy of solutions.

This thesis also investigates the benefits of incorporating road-network and traffic information
within a time-dependent setting. The decisions to make are involving not only routing deci-
sions but also the effects of path choice and congestion avoidance decisions on GHG emissions
as well as on traveling cost. Thereby, incorporating path flexibility enlarges the problem size
leading to more realistic route plans. Doing so, we have proposed an efficient time-dependent
nearest neighbor method adapted to the multigraph representation to solve large-scale in-
stances of the TDVRP-ECMDP. Significant saving is obtained by embedding TDLCPs into
routing decisions, which captures and minimizes fuel consumption along with operational
costs.

Finally, the fifth key contribution is the development of efficient nonlinear emission mod-
els using NNET, SVM, CIT, and GBM supervised learning methods, which are trained by
applying the k -fold cross validation method on real-life GHG emission data acquired by a
private-sector retailer from thousands of trips over the course of several months. We believe
our work increases the awareness of both temporal and environmental dimensions leading to
new perspectives in the evolution of road freight transportation field.

Perspectives for further research

In spite of the strong evidence of the validity and need for road network and traffic infor-
mation in green logistics, and the solid theoretical foundations for integrating both temporal
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and environmental dimensions into the field, we do not pretend to cover all the aspects re-
lated to this subject. Throughout this thesis, we highlight the importance of time-dependent
feature and paths selection within the resolution methods and we show how to use them to
strengthen formulations and enhance routing algorithms. Further research should consider
how to embed TDQPP-EM algorithms and lower bounding methods into local search heuris-
tics to efficiently solve real-world time-dependent distribution problems considering emissions
minimization based on time-varying speeds. Adding time-dependent quickest path optimiza-
tion may enhance the resulting route plans that are selected based on dynamic paths to avoid
traffic congestion across real road networks. Another promising avenue is to enhance the
proposed bounds and algorithms.

Many research avenues stem from the introduction of new nonlinear emissions models. In this
thesis, we have primarily focused on solving two time-dependent distribution problems: the
TDQPP-EM and the TDVRP-ECMDP. Our analyses have shown that potential reduction
in GHG emissions and costs are achievable through flexible departure times, which allows
congestion avoidance considering alternative paths between customers. Developing a scientific
approach to build and study new logistic problems at even larger scales is another research
opportunity to capture more of the potential impacts of routing on economic, environmental,
and sustainability. Further research can now focus on generalizing these methods to broader
distribution problems, namely the time-dependent inventory-routing, dynamic vehicle routing,
and autonomous vehicle routing problems. Modeling these problems would require a large in-
crease in the number of variables, parameters and constraints, probably making it significantly
harder to solve. A more extensive investigation is necessary to identify whether to adapt the
same framework, to build new ones, or to construction different combinations.

Finally, from a research perspective, it is clear that there is room for meaningful work to
be done around exploiting high-frequency traffic data. An interesting extension is addressing
distribution problems from a big data and artificial intelligence standpoints which have the
potential for generating enormous contributions in operation research and more specifically to
the road transportation field. The range of options available in this context is clearly very wide.
The results of this work show that using machine learning models and more specifically the
GBM and NNET models enhance the prediction accuracy of emissions. A direction of future
research is to evolve machine learning emission models by investigating the effects of weather,
driver profiles and road-wide factors such as temperature, rain, snow, road maintenance events,
etc. Another area of future work will be the integration of machine learning emission models
in routing problems and practical road freight transportation applications. New algorithms
for constructing effective routing plans could be developed and tested. It is reasonable to
think that other forms of high-dimensional problems can be conceptualized and studied which
may result in further changes to the current visions and the ways of doing things, as well as
leading to new perspectives and potential in this exciting and challenging field.
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