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Abstract. This paper presents a model for the risk minimisation objective in the 
Stochastic Vehicle Routing Problem (SVRP). In the studied variant of SVRP, 
service times and travel times are subject to stochastic events, and a time win-
dow is constraining the start time for service task. Required skill levels and task 
priorities increase the complexity of this problem. Most previous research uses 
a chance-constrained approach to the problem and their objectives are related to 
traditional routing costs whilst a different approach was taken in this paper. The 
risk of missing a task is defined as the probability that the technician assigned 
to the task arrives at the customer site later than the time window. The problem 
studied in this paper is to generate a schedule that minimises the maximum of 
risks and sum of risks over all the tasks considering the effect of skill levels and 
task priorities. The stochastic duration of each task is supposed to follow a 
known normal distribution. However, the distribution of the start time of the 
service at a customer site will not be normally distributed due to time window 
constraints. A method is proposed and tested to approximate the start time dis-
tribution as normal. Moreover, a linear model can be obtained assuming identi-
cal variance of task durations. Additionally Simulated Annealing method was 
applied to solve the problem. Results of this work have been applied to an in-
dustrial case of SVRP where field engineering individuals drive to customer 
sites to provide time-constrained services. This original approach gives a robust 
schedule and allows organisations to pay more attention to increasing customer 
satisfaction and become more competitive in the market. 

Keywords: Vehicle Routing with Time Windows; Stochastic Service Time and 
Travel Time; Risk Minimisation. 

1 Introduction 

Increasing customer satisfaction is always an exciting topic for managers and re-
searchers in order to build a more customer-oriented business. It is in particular true 
when planning geographically distributed services on customer sites. Therefore, the 
consideration of visit time windows, the stochastic service time and travel time in the 
workforce scheduling and vehicle routing problems (VRP) becomes crucial for ser-
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vice providing organisations [1]. Specifically, in the studied application domain, a 
start-of-day planned tour of visits is created overnight, and then updated throughout 
the day as more and new information becomes available. The start-of-day schedule 
has to make certain assumptions such as technician availability, travel times, how 
long certain engineering tasks will take, whether technicians will be able to success-
fully complete work or whether they have to come back again, how much additional 
work will arrive during the day, and so on [2]. In terms of traffic networks, the travel 
time varies due to traffic congestion especially in big cities, which affects not only the 
service quality but also the air pollution [3]. 

The environment in which services need to be delivered is inherently dynamic and 
subject to disruption in the workstack estimates, in the execution of jobs by workforce 
as well as the travel conditions [4, 5]. Our research studies how elements of the risk 
can be incorporated into the scheduling approach, i.e., how the scheduling can man-
age and address the aforementioned sources of the risk to build both an optimal but 
also a robust schedule that minimises the risks and increases the likelihood of success-
ful service delivery. A better schedule can help to improve the level of customer satis-
faction as well as the work efficiency of technicians. Consequently, the company may 
get more customers and become more competitive in the market. 

This research focuses on the Stochastic Vehicle Routing Problem (SVRP), in 
which technicians drive to customer sites to provide services. In the problem, we as-
sume that service times and travel times are stochastic, and a time window is associat-
ed with the start time of the service. 

Most previous relevant researches on VRP consider time windows and stochastic 
demands, [6, 7, 8, 9, 10, 11, and 12] use a chance-constrained approach to the prob-
lem. Limited researches [1, 3, 5, and 13] investigate the routing problem with time 
windows and stochastic travel time. We note that in these approaches, the objectives 
of the problem are related to traditional routing costs. In this paper, we introduce a 
new risk model that can be incorporated into the set of objectives to be minimised 
during the optimisation process. 

In this paper, we present an application of the proposed model to a real scheduling 
problem in the field-engineering-service world. In that context, technicians offer ser-
vices to customers, associating with a time window to each visit, and services are 
subject to disturbance in delivery causing the actual service time to be inherently sto-
chastic, as well as the travel time to be uncertain. Section 2 gives a short description 
about the risk according to our previous research; while in section 3, a complicated 
estimation of risks is proposed in order to prove that the normal distribution can be 
used in the risk calculation. In section 4 a mathematical model is constructed by con-
sidering risks in the objective and can be solved by an exact method. Due to the com-
plexity of the problem, heuristic methods show advantages while solving massive size 
problems. Thus section 5 gives several a heuristic method – Simulated Annealing 
method – for this problem, followed by some results and discussions in section 6. 
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2 Risk definition 

The risk in the problem is defined as the probability that the arrival time is after the 
upper limit of the time window [14]. More specifically, as it is shown in the Fig.1, 
given a schedule, with a sequence of tasks {𝑖𝑖1,  𝑖𝑖2, 𝑖𝑖3,⋯  } allocated to techni-
cian 𝑘𝑘, 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3 … are the task duration times, 𝑑𝑑𝑘𝑘𝑖𝑖0𝑖𝑖1  is the travel time from the depot 
of technician 𝑘𝑘 to his first task, 𝑑𝑑𝑘𝑘𝑖𝑖1𝑖𝑖2 ,𝑑𝑑𝑘𝑘𝑖𝑖2𝑖𝑖3 ,𝑑𝑑𝑘𝑘𝑖𝑖3𝑖𝑖4  are the travel times between tasks 
(𝑒𝑒.𝑔𝑔. ,𝑑𝑑𝑘𝑘𝑖𝑖1𝑖𝑖2  from 1st task to 2nd task). Suppose the arrival time follows a normal dis-
tribution, then we define the risk of missing the appointment for task 𝑖𝑖 , 𝑅𝑅𝑘𝑘𝑘𝑘 , as the 
probability of the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘  being later than the upper limit of the time win-
dow 𝑏𝑏𝑖𝑖 . The stochasticity of the arrival time arises from the uncertainty of the travel 
time and task duration. Moreover, an important property is that the risk increases 
simultaneously as it propagates for each technician, it is reasonable because the uncer-
tainty aggregates as there is more uncertainty of the travel time and task time. In addi-
tion, from a previous study [14], the mathematical expression of risks can be derived 
as 
𝑅𝑅𝑘𝑘𝑖𝑖𝑛𝑛 = Ρ�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘n > 𝑏𝑏𝑖𝑖n� = 1 − ∫⋯∫ ∏ 𝑓𝑓𝑘𝑘𝑘𝑘𝑙𝑙(𝑋𝑋𝑙𝑙)

𝑛𝑛−1
𝑙𝑙=1 𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2 ⋯𝑑𝑑𝑋𝑋𝑛𝑛−1𝐷𝐷 ,            (1) 

where 𝑋𝑋1denotes the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘2 ,𝑋𝑋𝑙𝑙 = 𝛿𝛿𝑘𝑘𝑘𝑘l + 𝑑𝑑𝑘𝑘𝑘𝑘l𝑖𝑖l+1  for 𝑙𝑙 ≥ 2,, 𝑓𝑓𝑘𝑘𝑘𝑘𝑙𝑙(𝑋𝑋𝑙𝑙) repre-
sents the probability density function of 𝑋𝑋𝑙𝑙, and 𝐷𝐷 = {(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛−1): ∑ 𝑋𝑋𝑙𝑙𝑛𝑛−1

𝑙𝑙=1 ≤
𝑏𝑏𝑖𝑖𝑛𝑛 ,∑ 𝑋𝑋𝑙𝑙𝑛𝑛−1

𝑙𝑙=2 ≤ 𝑏𝑏𝑖𝑖𝑛𝑛 − 𝑎𝑎𝑖𝑖2 ,∑ 𝑋𝑋𝑙𝑙𝑛𝑛−1
𝑙𝑙=3 ≤ 𝑏𝑏𝑖𝑖𝑛𝑛 − 𝑎𝑎𝑖𝑖3 , … ,𝑋𝑋𝑛𝑛−1 ≤ 𝑏𝑏𝑖𝑖𝑛𝑛 − 𝑎𝑎𝑖𝑖𝑛𝑛−1}.  

 

3 Estimate of risks 

To begin with, by analysing 72114 task data over a 12 month period [15], according 
to the task types that have a large number of samples, we found that the distributions 
of the actual time spent on the task, for each task type mostly are normally distributed 
or follow gamma distributions. Therefore, it is reasonable for us to use a normal dis-
tribution to calculate risks. 

In the problem, due to the effect of time windows, technicians have to start work 
after the lower limit of the time window, so the distribution of the start time will be of 
the format in Fig. 3, which is not a normal distribution shape. More specifically, given 
a technician, suppose the arrival time at his/her 1st customer service spot 𝐴𝐴𝐴𝐴𝑘𝑘1 fol-

 
Fig. 1.  Description of risks 
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lows the normal distribution in Fig. 2 and the lower bound of the task time window 𝑎𝑎1 
is 9:00, then the distribution of the task start time 𝑆𝑆𝑆𝑆𝑘𝑘1 will turn out to be the distribu-
tion shown in Fig. 3, the probability at 9:00 will be the sum of the probability of that 
arrival time to be before 9:00. From the figure, it can be seen that the distribution of 
the start time 𝑆𝑆𝑆𝑆𝑘𝑘1 does not align with a normal distribution. Then combined with the 
1st task duration normally distributed as shown in Fig. 4, the arrival time at the 2nd 
customer site looks like the distribution illustrated in Fig. 5. Theoretically, it is not 
normal, but the risk is intuitively defined as the right tail of the arrival time distribu-
tion. Also, it is observed that a normal distribution may fit the arrival time well, espe-
cially regarding the right tail. Therefore, the idea of using a normal distribution to 
estimate the skewed start time distribution comes naturally.  

Furthermore, it is easy to conclude that the closer the average arrival time at the 1st 
customer site 𝜇𝜇 is to the lower limit of 1st task time window 𝑎𝑎1, the more the start time 
distribution changes. From the Fig. 6, it is easy to observe that if the time window 
𝑎𝑎1 = 𝜇𝜇 − 2𝜎𝜎, where 𝜎𝜎 is the standard deviation of the arrival time at the 1st customer 
site, the effect of the time window is small as shown in (b), compared to the original 
arrival time distribution shown in (a). In terms of the time window closer to the aver-
age arrival time, such as 𝑎𝑎1 = 𝜇𝜇 − 0.5𝜎𝜎, the effect of the time window is shown in 
Fig. 6 (c), the shape of the start time is completely different from the arrival time. As 
for the scenario where the mean of the arrival time 𝜇𝜇 is much earlier than the lower 
limit of time window 𝑎𝑎1, i.e., 𝑎𝑎1 = 𝜇𝜇 + 2𝜎𝜎, the task is likely to start at time 𝑎𝑎1 with a 
high probability so that the variance of the arrival time can be omitted.  
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Fig. 3.  Start time 
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Therefore, the estimation consists of three scenarios. To start with, if the mean  𝜇𝜇 
of the arrival time 𝐴𝐴𝐴𝐴1 is much later than 𝑎𝑎1, i.e., 𝑎𝑎1 ∈ [𝜇𝜇 − 3𝜎𝜎, 𝜇𝜇 − 𝜎𝜎), it is reasona-
ble to use the normal distribution estimation model I below for the arrival time 𝐴𝐴𝑇𝑇2 
that 

 𝜇𝜇(𝐴𝐴𝐴𝐴2) = 𝜇𝜇(𝑆𝑆𝑆𝑆1) + 𝜇𝜇(𝑇𝑇𝑇𝑇1) (2) 

 𝜎𝜎2(𝐴𝐴𝐴𝐴2) = 𝜎𝜎2(𝑆𝑆𝑆𝑆1) + 𝜎𝜎2(𝑇𝑇𝑇𝑇1), (3) 
where 𝑇𝑇𝑇𝑇1 is the operation time of the 1st task plus the travel time from the 1st task to 
the 2nd task. In this scenario, the effect of the time window is so little that can be ig-
nored. In contrast, if the mean  𝜇𝜇 of the arrival time is much earlier than 𝑎𝑎1, i.e., 𝑎𝑎1 ∈
(𝜇𝜇 + 𝜎𝜎, 𝜇𝜇 + 3𝜎𝜎], which is shown in the example of the Fig. 6 (d), the variance of the 
start time can be ignored because of the long waiting time till 𝑎𝑎1. Then the estimation 
model II for the arrival time 𝐴𝐴𝐴𝐴2 is as below 

 𝜇𝜇(𝐴𝐴𝐴𝐴2) = 𝑎𝑎1 + 𝜇𝜇(𝑇𝑇𝑇𝑇1) (4) 

 𝜎𝜎2(𝐴𝐴𝐴𝐴2) = 𝜎𝜎2(𝑇𝑇𝑇𝑇1). (5) 
Then for the complicated scenario where 𝑎𝑎1 ∈ [𝜇𝜇 − 𝜎𝜎, 𝜇𝜇 + 𝜎𝜎], the calculation may 

follow the approach from Madarajah and Kotz [15] who investigated the exact distri-
bution of the maximum and minimum of two Gaussian random variables. Suppose 
𝑋𝑋1and 𝑋𝑋2 are Gaussian random variables, then the mean and variance of 𝑋𝑋 =
max{𝑋𝑋1,𝑋𝑋2} are 
𝐸𝐸(𝑋𝑋) = 𝜇𝜇1Φ�

𝜇𝜇1 − 𝜇𝜇2
𝜃𝜃

� + 𝜇𝜇2Φ �
𝜇𝜇2 − 𝜇𝜇1

𝜃𝜃
� + 𝜃𝜃ϕ �

𝜇𝜇1 − 𝜇𝜇2
𝜃𝜃

�, (6) 

(a) Same as the arrival time when no 
time windows applied  

(b) 𝑎𝑎1 = 𝜇𝜇 − 2𝜎𝜎 

(c) 𝑎𝑎1 = 𝜇𝜇 − 0.5𝜎𝜎 (d) 𝑎𝑎1 = 𝜇𝜇 + 2𝜎𝜎 

Fig. 6. Time window effect on the start time 
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𝐸𝐸(𝑋𝑋2) = (𝜎𝜎12 + 𝜇𝜇12)Φ�
𝜇𝜇1 − 𝜇𝜇2

𝜃𝜃
� + (𝜎𝜎22 + 𝜇𝜇22)Φ�

𝜇𝜇2 − 𝜇𝜇1
𝜃𝜃

� + (𝜇𝜇1 + 𝜇𝜇2)𝜃𝜃ϕ �
𝜇𝜇1 − 𝜇𝜇2

𝜃𝜃
�,  

 (7) 
where 𝜃𝜃 = �𝜎𝜎12 + 𝜎𝜎22 − 2𝜌𝜌𝜎𝜎1𝜎𝜎2, 𝜌𝜌 is the correlation between 𝑋𝑋1and 𝑋𝑋2, Φ(∙) and ϕ(∙
) are the probability density function and the cumulative distribution function of the 
standard normal distribution respectively. Nadarajah and Kotz also state that if the 
standard deviation 𝜎𝜎1,𝜎𝜎2 of the two Gaussian random variables is identical, the 
Gaussian random variable with the mean and variance of 𝐸𝐸(𝑋𝑋) and 𝐸𝐸(𝑋𝑋2) − 𝐸𝐸2(𝑋𝑋) 
can well approximate the distribution of 𝑋𝑋 = max{𝑋𝑋1,𝑋𝑋2}. Moreover, with the higher 
difference between 𝜎𝜎1 and 𝜎𝜎2, the estimate gets worse. 

In terms of our engineering services risk model, a constant which is the lower limit 
of the time window replaces one of the Gaussian random variables and the correlation 
𝜌𝜌 is set to 0 (𝜌𝜌 = 0). Therefore the parameters of the normal distribution estimation 
for 𝑆𝑆𝑆𝑆1 = max{𝐴𝐴𝐴𝐴1, 𝑎𝑎1} are  

𝐸𝐸(𝑆𝑆𝑆𝑆1) = 𝜇𝜇1Φ �
𝜇𝜇1 − 𝑎𝑎1
𝜎𝜎1

� + 𝑎𝑎1Φ�
𝑎𝑎1 − 𝜇𝜇1
𝜎𝜎1

� + 𝜎𝜎1ϕ�
𝜇𝜇1 − 𝑎𝑎1
𝜎𝜎1

�, (8) 

𝐸𝐸(𝑆𝑆𝑆𝑆12) = (𝜎𝜎12 + 𝜇𝜇12)Φ�
𝜇𝜇1 − 𝑎𝑎1
𝜎𝜎1

� + 𝑎𝑎12Φ �
𝑎𝑎1 − 𝜇𝜇1
𝜎𝜎1

� + (𝜇𝜇1 + 𝑎𝑎1)𝜎𝜎1ϕ �
𝜇𝜇1 − 𝑎𝑎1
𝜎𝜎1

�, (9) 

where 𝜇𝜇1 and 𝜎𝜎1 are the mean and standard deviation of the arrival time 𝐴𝐴𝐴𝐴1. Then the 
estimated risk of the 2nd task is obtained via the 𝑆𝑆𝑆𝑆1 estimation and the normal distri-
bution of the mixed time 𝑇𝑇𝑇𝑇1. Thus the normal distribution estimation model III for 
the arrival time 𝐴𝐴𝐴𝐴2 is as below 

 𝜇𝜇(𝐴𝐴𝐴𝐴2) = 𝐸𝐸(𝑆𝑆𝑆𝑆1) + 𝜇𝜇(𝑇𝑇𝑇𝑇1) (10) 

 𝜎𝜎2(𝐴𝐴𝐴𝐴2) = 𝐸𝐸(𝑆𝑆𝑆𝑆12) − 𝐸𝐸2(𝑆𝑆𝑆𝑆1) + 𝜎𝜎2(𝑇𝑇𝑇𝑇1). (11) 

If we suppose that 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,  

the estimation gives relative small error terms based on a 5000-sample test, which are 
shown in Fig. 7, in which the vertical axis represents the error value according to the 
number codes of 5000 samples shown in the horizontal axis.  
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 7. Error of the estimation model 
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4 Mathematical model 

Let 𝐺𝐺 = (𝑉𝑉,𝐴𝐴) be a complete graph, where 𝑉𝑉 = 𝑉𝑉0 ∪ 𝑉𝑉𝑐𝑐, and 𝑉𝑉𝑐𝑐 = {1, … ,𝑁𝑁} is a set of 
vertices which denote customer locations and 𝐴𝐴 = {(𝑙𝑙, 𝑗𝑗): 𝑙𝑙, 𝑗𝑗 ∈ 𝑉𝑉𝑐𝑐 , 𝑙𝑙 ≠ 𝑗𝑗} is a set of 
arcs. While 𝑉𝑉0 = {𝐷𝐷1 ,𝐷𝐷2, … ,𝐷𝐷𝑘𝑘} represents the depots. Each customer 𝑗𝑗 ∈ 𝑉𝑉𝑐𝑐  has a 
time window �𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗�. If the technician arrives at customer 𝑗𝑗 before 𝑎𝑎𝑗𝑗, it is necessary 
for him/her to wait until 𝑎𝑎𝑗𝑗. In this model, we suppose the task duration time and the 
travel time follow normal distributions. The following notations are defined: 

• 𝑀𝑀 a large number; 
• 𝐾𝐾 the set of required technicians in a feasible solution 𝐾𝐾 = {1, … ,𝐾𝐾}; 
• 𝐼𝐼 the set of tasks order for each technician, 𝐼𝐼 = {1, … ,𝐶𝐶} and 𝐶𝐶 is the maxi-

mum number of customers served by each technician; 
• 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘  the travel time of technician 𝑘𝑘 between customers 𝑙𝑙 and 𝑗𝑗; 
• 𝑡𝑡𝑘𝑘𝑘𝑘 the travel time of technician 𝑘𝑘 between his/her depot to customer 𝑗𝑗; 
• 𝜇𝜇𝑘𝑘𝑘𝑘 the mean of the task duration time of technician 𝑘𝑘 spending at customer 𝑗𝑗;  
• 𝜎𝜎2 the variance of the task duration time, suppose it is identical for all tasks; 
• 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘  a binary variable equal to 1 if technician 𝑘𝑘 serves customer 𝑗𝑗 as his/her 

(𝑖𝑖)th task and 0 otherwise; 
• 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘  the arrival time of technician 𝑘𝑘 at his/her (𝑖𝑖)th task; 
• 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘  the start time of technician 𝑘𝑘 to serve his/her (𝑖𝑖)th task; 
• 𝑍𝑍𝑘𝑘𝑘𝑘 the standard score of the risk probability for technician 𝑘𝑘’s (𝑖𝑖)th task; 
• 𝑍𝑍 the lower bound of the standard score of the risk probability for all tasks. 

The objective for this model is to minimise the maximum risk in the schedule and the 
mathematical model for the problem is formulated below: 

max𝑍𝑍                (12)  

Subject to: 

∑ ∑ 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 1, ∀𝑗𝑗 ∈ 𝑉𝑉                                 (13)  

∑ 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 ≤ 1, ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑖𝑖 ∈ 𝐼𝐼                                       (14)  

∑ 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 ≤ ∑ 𝑥𝑥𝑘𝑘𝑘𝑘−1𝑗𝑗𝑗𝑗 ,   ∀𝑖𝑖 ≥ 2,∀𝑘𝑘 ∈ 𝐾𝐾                                      (15)  

𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘−1 + 𝜇𝜇𝑙𝑙𝑥𝑥𝑘𝑘𝑘𝑘−1𝑙𝑙 + 𝑡𝑡𝑙𝑙𝑙𝑙 + 𝑀𝑀�𝑥𝑥𝑘𝑘𝑘𝑘−1𝑙𝑙 + 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘 − 2� ≤ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 ,∀𝑘𝑘 ∈ 𝐾𝐾, 𝑖𝑖 ≥ 2, 𝑗𝑗 ∈ 𝑉𝑉, 𝑙𝑙 ∈ 𝑉𝑉 

  (16)  

𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 ≤ 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘 , ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑖𝑖 ∈ 𝐼𝐼                                            (17)  

∑ 𝑎𝑎𝑗𝑗𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 ≤ 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘 , ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑖𝑖 ∈ 𝐼𝐼                                       (18)  

𝐴𝐴𝐴𝐴𝑘𝑘1 ≥ 𝑆𝑆𝑆𝑆𝑘𝑘0 + ∑ 𝑡𝑡𝑘𝑘𝑘𝑘𝑥𝑥𝑘𝑘1𝑗𝑗𝑗𝑗 , ∀𝑘𝑘 ∈ 𝐾𝐾                                       (19)  

𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 ≤ ∑ 𝑏𝑏𝑗𝑗𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 , ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑖𝑖 ∈ 𝐼𝐼                                       (20)  
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√𝑖𝑖 − 1 ∙ 𝜎𝜎 ∙ 𝑍𝑍𝑘𝑘𝑘𝑘 ≤ ∑ 𝑏𝑏𝑗𝑗𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 − 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 , ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑖𝑖 ∈ 𝐼𝐼                        (21)  

𝑍𝑍 ≤ 𝑍𝑍𝑘𝑘𝑘𝑘 , ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑖𝑖 ∈ 𝐼𝐼                                             (22)  

Constraints (13) indicate that each customer is served by one technician. Con-
straints (14) and (15) make sure that the task list of each technician is consecutive. 
Constraints (16) show that for each technician the arrival time of the current task is 
the previous task start time combined with the previous task duration and the travel 
time to the current task. Constraints (17) and (18) endure that the start time is after 
both arrival time and the lower limit of the time window. Constraints (19) state that 
the arrival time of the first task for each technician is the travel time from his depot to 
the first task based on the technician start work time. Constraints (20) make sure the 
expected arrival time is before the latest time window. Constraints (21) calculate the 
z-score corresponding to the probability of the risk, the risk is defined as the probabil-
ity of the value which is greater than 𝑍𝑍𝑘𝑘𝑘𝑘 for the standard normal distribution, while 𝑍𝑍 
denotes the lower bound of 𝑍𝑍𝑘𝑘𝑘𝑘 as shown in constraints (22).    

Note that in order to obtain a linear model, the variance of the duration for different 
tasks is supposed to be equal, and the z-score is introduced to present the same trend 
of the probability for risks, instead of calculating risks which are not linear. 

5 Simulated Annealing method 

Due to the fact that the risk is defined as a probability and considered in the objective 
of the model, the exact method may solve a small size problem as shown in the previ-
ous section. However, there are some limitations such as the variance for the uncer-
tainty needs to be identical for all tasks. Also, it cannot solve the problem if the objec-
tive is to minimise the average risk in the schedule, because the average z-score is not 
the same as the average value of risks. Therefore, one of the heuristic methods, Simu-
lated Annealing (SA) is applied to solve problems of a larger size and with multiple 
objectives. Before the illustration of the SA method, two search operators that are 
used in the searching process are explained first. 

Given a specific task, the swap operator swaps the task with another task, while the 
insert operator withdraws this task and inserts it to another technician’s task list ac-
cording to the order of the lower limits of these task time windows. To be more spe-
cific, given a task 𝑚𝑚 of technician 𝑝𝑝 and task  𝑛𝑛 of technician 𝑞𝑞, the swap operator 
exchanges the task  𝑚𝑚 of p and task 𝑛𝑛 of q. The insert operator withdraws the task 𝑚𝑚 
from technician 𝑝𝑝 and assigns it to technician 𝑞𝑞. 

Simulated Annealing (SA) is a probabilistic method proposed for finding the glob-
al minimum of a cost function that may possess several local minima [16, 17]. While 
Burkard and Rendl [18] first applied SA method to solve quadratic assignment prob-
lems, computational results indicated that they could obtain the best-known solution 
with a relatively high probability. 

The Simulated Annealing algorithm was originally inspired from the process of 
annealing in metal work, a technique involving heating and controlled cooling of a 
material to increase the size of its crystals and reduce their defects. Both are attributes 
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of the material that depends on its thermodynamic free energy. While the same 
amount of cooling brings the same amount of decrease in temperature, it will bring a 
different decrease in the thermodynamic free energy depending on the rate that it 
occurs, with a slower rate producing a more prominent decrease. 

In Simulated Annealing, a temperature variable is used to simulate this heating and 
cooling process. We initially set it high and then allow it to slowly 'cool' as the algo-
rithm runs. While this temperature variable is high the algorithm will be allowed, with 
a higher probability, to accept solutions that are worse than our current solution. It 
gives the algorithm the ability to jump out of any local optima as it explores the solu-
tion space. The chance of accepting worse solutions is reduced due to the decline of 
the temperature, which allows the algorithm to gradually focus in an area of the 
search space close to the optimum solution.  

Fig. 8. Simulated annealing method 

6 Experimental results and discussions 

6.1 Basic experiments 

In our experiments, the risk is a result of the uncertain task duration and the fluctuat-
ing travel time. Besides, several factors are considered during the scheduling process. 
On the one hand, tasks have different time windows, different means and variances of 

Initial schedule 𝜔𝜔, calculate objective 𝑓𝑓(𝜔𝜔), probability 𝑃𝑃(𝜔𝜔), temperature  

△ 𝑓𝑓 = 𝑓𝑓(𝜔𝜔′) − 𝑓𝑓(𝜔𝜔) 

Randomly generate a neighbour solution, 𝑓𝑓(𝜔𝜔′),𝑃𝑃(𝜔𝜔′) 

Swap or insert operator 

Accept the solution, update 
as the best schedule 

Random  𝑛𝑛 < 𝑃𝑃(𝜔𝜔′), 
accept the solution 

 

 

 

Best schedule 

Decrease temperature 
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△ 𝑓𝑓 < 0 



10 

the estimated duration time, different necessary skill levels and different priorities. On 
the other hand, technicians have different depots and different skill ability. Moreover, 
the travel time is also treated as an uncertain factor and the variance of the travel time 
is distinct in the morning or the afternoon. In addition, the distributions of uncertain 
factors in the model are all supposed as normal distributions.  

In the basic experiment, the testbed is based on 120 tasks and 20 technicians. In 
order to see the effect of considering risks in the scheduling, as well as the effect of 
considering task priorities, we suppose that the required skill level for tasks are all 
equal and the priorities are distinguished as two levels: high and low. 

Hence there are three scheduling models: the travel time model is of a traditional 
scheduling problem that the objective is to minimise the total travel time; while the 
risk model and priority risk model aim at minimising the average risk of all tasks. 
Moreover, in the risk model, all tasks are treated as the same importance while for the 
priority risk model each task has one of the two different priorities. Fig. 9 shows the 
average risks of high and low priority tasks for the three models. From the compari-
son of the travel time model and the risk model, the average risk for all tasks in the 
case of travel time model is much higher than that obtained when minimising task and 
travel risk; it is reasonable because we did not consider risk when minimising the total 
travel time during scheduling. Meanwhile, Fig.9 shows that the average risk for the 
travel time model is not significantly high in value; this is because risks are limited by 
the time window threshold constraints in the travel time model. 

Furthermore, in the real world, tasks appear to have different importance or priority 
according to the business objectives. If a technician fails to start a high priority task in 
time, then the penalty should be higher. Therefore, the priority risk is introduced in 
the scheduling where the priority risk of a particular task is defined as the risk of the 
task multiplied by an adjusted task importance score, in order to force high priority 
tasks to possess low risks. As we can see in Fig. 9, the average risk of high priority 
tasks is smaller at the cost of the increased average risk for low priority tasks. 

 

 
Fig. 9. Risks for different models 

 
Additionally, a comparison of the average travel time is shown in Table 1. The av-

erage travel time is the total travel time spent by all technicians divided by the total 
number of tasks. As expected, the travel time model results in the smallest travel time 

travel time model task & travel risk
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among the three models; but the risk model and priority risk model also show rela-
tively short travel time. An explanation could be that by minimising the risks, there is 
a side effect of minimising the travel time simultaneously. Specifically, the risk is 
considered as the area of the distribution of the arrival time fell after the latest time of 
the time window, and the mean of the arrival time is associated with the estimated 
operation time of all previous tasks and the travel time between the depot to the 1st 
customer and between previous tasks for each technician. Therefore, during schedul-
ing, when we try to minimise risks we also minimise the travel time simultaneously.  

 
Table 1. Travel time for different models 

Model Travel time model Risk model Priority risk model 

Travel time (mins) 19.56 31.65 21.46 

6.2 Structures of the task priority 

From the definition of risks, a conclusion can be drawn that the risk increases as it 
propagates because the variance of the arrival time increases along the task list for 
each technician. The position of the task in the planned tour of visits is the essential 
information for the robustness of the plan during the day against disturbances. From 
Fig.9, we notice that the risk for high priority tasks becomes smaller in the priority 
risk model. By analysing the structure of the task priority at each position in the task 
list for every technician, we can find that high priority tasks are completed at the early 
position in the tour of visits. It models the real-world fact that technicians prefer to do 
the important task first to make sure its completion will be achievable. 

 

 
Fig. 10. High priority task position composition 

 
In our application case, the average number of tasks for each technician is 6, which 

is derived from 120 tasks divided by 20 technicians. Fig. 10 illustrates the number of 
high priority tasks as the vertical axis (figures on lines) according to each position 
number in task lists for all technicians on the horizontal axis. For instance, there are 
13 high priority tasks assigned to technicians as their 1st task in the schedule obtained 
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by priority risk model, whereas 11 tasks for the risk model and 10 tasks for the travel 
time model. In other words, there are 13 technicians scheduled by a high priority task 
as their 1st task in the priority risk model, and 11 technicians and 10 technicians pro-
cessing a high priority task in their 1st task position for the risk model and the travel 
time model respectively. We can notice that the graph shows in the case of the travel 
time model, some technicians may have more than 8 tasks which are really tense for 
them and accordingly the risks for missing them may be much high. In both risk mod-
els, technicians may have at most 7 tasks. 

Moreover, the high priority tasks at position 1 and 4 are more in the priority risk 
model than those in the risk model, which explains the high priority tasks are execut-
ed earlier both in the morning and in the afternoon. Also, there is a cost of focusing on 
high priority tasks: the low priority tasks are pushed to late positions as is shown in 
Fig. 11. In addition, we may observe that the number of tasks in the travel time model 
and risk model did not fluctuate as much as that in the priority risk model. 

 

 
Fig. 11. Low priority task position composition 

6.3 Structures of the task priority 

In order to study the technicians’ behaviour, the productivity for a technician is intro-
duced, it can be defined as 

                 technician’s productivity = number of tasks 
work hours

∙ roster hours. (23) 

First, we get the number of tasks done per hour (number of tasks / total work hours), 
then we get the maximum number of tasks achievable per day, by multiplying by the 
technician daily rostered hours. 
From the definition, the productivity states a certain task number for a technician only 
considering the work time factor. Then Fig. 12 shows the number of technicians (ver-
tical axis) according to the value of productivity (horizontal axis). For example, there 
are around 7 technicians whose productivity is around 12 tasks when building the 
start-of-day service visits plan with the priority risk model. Thus from the graph, we 
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may conclude that by introducing risks in scheduling, technicians will have even 
workload among them, which also means a robust schedule can be obtained. 

 

 
Fig. 12. Productivity distribution 

7 Conclusion 

This research aims at modelling the risks observed in field force services delivery 
operations and incorporate risks in the operational planning process from a new per-
spective. The risks, which interpret the possibility of missing appointments regarding 
time windows, arise from the stochastic service time and travel time. Moreover, the 
model also demonstrates the risk increases simultaneously as it propagates for each 
technician. In addition, this model has been applied to a real-world problem in the 
telecommunication sector. Results have shown that the schedule generated is more 
robust while minimising the risk of failure, pushing high-priority tasks earlier in the 
schedule to avoid failure of these tasks. 

In a risk assessment tool or a risk-based scheduling engine under a dynamic envi-
ronment, the calculation needs to be fast enough but also realistic. In the first step, we 
proposed an addition method to estimate risk distributions and test the accuracy. Then 
a linear model is built for this problem by limiting some factors and can be solved by 
exact methods. Concerning the application area, the Simulated Annealing method is 
utilised in the scheduling process to obtain a good solution in an acceptable time. 

As for the future work, the task duration which follows a gamma distribution will 
be considered; even the combination of gamma and normal distributions will be taken 
into consideration. Furthermore, it is worthwhile to work on a simulation which mim-
ics a real-time task process in one day to demonstrate the advantage of considering 
risk in the scheduler. Additionally, in the simulation we may study how to re-schedule 
at specified time points based on the information from completed tasks, in order to 
obtain the pros and cons that rescheduling or updating technician task lists several 
times in a day.  
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