320 research outputs found

    Bridging Sensor Gaps via Single-Direction Tuning for Hyperspectral Image Classification

    Full text link
    Recently, some researchers started exploring the use of ViTs in tackling HSI classification and achieved remarkable results. However, the training of ViT models requires a considerable number of training samples, while hyperspectral data, due to its high annotation costs, typically has a relatively small number of training samples. This contradiction has not been effectively addressed. In this paper, aiming to solve this problem, we propose the single-direction tuning (SDT) strategy, which serves as a bridge, allowing us to leverage existing labeled HSI datasets even RGB datasets to enhance the performance on new HSI datasets with limited samples. The proposed SDT inherits the idea of prompt tuning, aiming to reuse pre-trained models with minimal modifications for adaptation to new tasks. But unlike prompt tuning, SDT is custom-designed to accommodate the characteristics of HSIs. The proposed SDT utilizes a parallel architecture, an asynchronous cold-hot gradient update strategy, and unidirectional interaction. It aims to fully harness the potent representation learning capabilities derived from training on heterologous, even cross-modal datasets. In addition, we also introduce a novel Triplet-structured transformer (Tri-Former), where spectral attention and spatial attention modules are merged in parallel to construct the token mixing component for reducing computation cost and a 3D convolution-based channel mixer module is integrated to enhance stability and keep structure information. Comparison experiments conducted on three representative HSI datasets captured by different sensors demonstrate the proposed Tri-Former achieves better performance compared to several state-of-the-art methods. Homologous, heterologous and cross-modal tuning experiments verified the effectiveness of the proposed SDT

    Unlocking the capabilities of explainable fewshot learning in remote sensing

    Full text link
    Recent advancements have significantly improved the efficiency and effectiveness of deep learning methods for imagebased remote sensing tasks. However, the requirement for large amounts of labeled data can limit the applicability of deep neural networks to existing remote sensing datasets. To overcome this challenge, fewshot learning has emerged as a valuable approach for enabling learning with limited data. While previous research has evaluated the effectiveness of fewshot learning methods on satellite based datasets, little attention has been paid to exploring the applications of these methods to datasets obtained from UAVs, which are increasingly used in remote sensing studies. In this review, we provide an up to date overview of both existing and newly proposed fewshot classification techniques, along with appropriate datasets that are used for both satellite based and UAV based data. Our systematic approach demonstrates that fewshot learning can effectively adapt to the broader and more diverse perspectives that UAVbased platforms can provide. We also evaluate some SOTA fewshot approaches on a UAV disaster scene classification dataset, yielding promising results. We emphasize the importance of integrating XAI techniques like attention maps and prototype analysis to increase the transparency, accountability, and trustworthiness of fewshot models for remote sensing. Key challenges and future research directions are identified, including tailored fewshot methods for UAVs, extending to unseen tasks like segmentation, and developing optimized XAI techniques suited for fewshot remote sensing problems. This review aims to provide researchers and practitioners with an improved understanding of fewshot learnings capabilities and limitations in remote sensing, while highlighting open problems to guide future progress in efficient, reliable, and interpretable fewshot methods.Comment: Under review, once the paper is accepted, the copyright will be transferred to the corresponding journa

    Deep Unsupervised Embedding for Remotely Sensed Images Based on Spatially Augmented Momentum Contrast

    Get PDF
    Convolutional neural networks (CNNs) have achieved great success when characterizing remote sensing (RS) images. However, the lack of sufficient annotated data (together with the high complexity of the RS image domain) often makes supervised and transfer learning schemes limited from an operational perspective. Despite the fact that unsupervised methods can potentially relieve these limitations, they are frequently unable to effectively exploit relevant prior knowledge about the RS domain, which may eventually constrain their final performance. In order to address these challenges, this article presents a new unsupervised deep metric learning model, called spatially augmented momentum contrast (SauMoCo), which has been specially designed to characterize unlabeled RS scenes. Based on the first law of geography, the proposed approach defines spatial augmentation criteria to uncover semantic relationships among land cover tiles. Then, a queue of deep embeddings is constructed to enhance the semantic variety of RS tiles within the considered contrastive learning process, where an auxiliary CNN model serves as an updating mechanism. Our experimental comparison, including different state-of-the-art techniques and benchmark RS image archives, reveals that the proposed approach obtains remarkable performance gains when characterizing unlabeled scenes since it is able to substantially enhance the discrimination ability among complex land cover categories. The source codes of this article will be made available to the RS community for reproducible research

    Image Quality Is Not All You Want: Task-Driven Lens Design for Image Classification

    Full text link
    In computer vision, it has long been taken for granted that high-quality images obtained through well-designed camera lenses would lead to superior results. However, we find that this common perception is not a "one-size-fits-all" solution for diverse computer vision tasks. We demonstrate that task-driven and deep-learned simple optics can actually deliver better visual task performance. The Task-Driven lens design approach, which relies solely on a well-trained network model for supervision, is proven to be capable of designing lenses from scratch. Experimental results demonstrate the designed image classification lens (``TaskLens'') exhibits higher accuracy compared to conventional imaging-driven lenses, even with fewer lens elements. Furthermore, we show that our TaskLens is compatible with various network models while maintaining enhanced classification accuracy. We propose that TaskLens holds significant potential, particularly when physical dimensions and cost are severely constrained.Comment: Use an image classification network to supervise the lens design from scratch. The final designs can achieve higher accuracy with fewer optical element

    Attention mechanism in deep neural networks for computer vision tasks

    Get PDF
    “Attention mechanism, which is one of the most important algorithms in the deep Learning community, was initially designed in the natural language processing for enhancing the feature representation of key sentence fragments over the context. In recent years, the attention mechanism has been widely adopted in solving computer vision tasks by guiding deep neural networks (DNNs) to focus on specific image features for better understanding the semantic information of the image. However, the attention mechanism is not only capable of helping DNNs understand semantics, but also useful for the feature fusion, visual cue discovering, and temporal information selection, which are seldom researched. In this study, we take the classic attention mechanism a step further by proposing the Semantic Attention Guidance Unit (SAGU) for multi-level feature fusion to tackle the challenging Biomedical Image Segmentation task. Furthermore, we propose a novel framework that consists of (1) Semantic Attention Unit (SAU), which is an advanced version of SAGU for adaptively bringing high-level semantics to mid-level features, (2) Two-level Spatial Attention Module (TSPAM) for discovering multiple visual cues within the image, and (3) Temporal Attention Module (TAM) for temporal information selection to solve the Videobased Person Re-identification task. To validate our newly proposed attention mechanisms, extensive experiments are conducted on challenging datasets. Our methods obtain competitive performance and outperform state-of-the-art methods. Selective publications are also presented in the Appendix”--Abstract, page iii

    Deep learning methods for modelling forest biomass and structures from hyperspectral imagery

    Get PDF
    Forests affect the environment and ecosystems in multiple ways. Hence, understanding the forest processes and vegetation characteristics help us protect the environment better, reserve the biodiversity, and mitigate the hazardous impacts of climate change. There are studies in hyperspectral remote sensing that employ both empirical and artificial intelligence (AI) methods to analyze and predict the vegetation parameters. However, these methods have weaknesses. First, the empirical methods are inefficient because they cannot fully utilize a large amount of hyperspectral data. Secondly, even though the existing AI-based methods can achieve remarkable results, they are only validated on small-scale datasets that have simple forest structures. Thus, a robust technique that can effectively model complex forest structures on large-scale datasets is an open challenge. This thesis directly addresses the challenge by proposing a novel deep learning architecture that can jointly learn and model four discrete and twelve continuous forest parameters. The final model is comprised of three 3D convolution layers, a 3D multi-scale convolution block, a shared fully-connected layer, and two fully-connected layers for each learning task. The model uses a loss, namely focal loss, to address class imbalance problem and the gradient normalization for multi-task learning. Then, we record and compare the results of our comprehensive experiments. Overall, the proposed model reaches 78.32% class-balanced accuracy for the four classification tasks. For the regression tasks, the model achieves a notably low average mean absolute error (0.052) and high Pearson correlation coefficient (0.9) between predicted and target labels. In the end, the shortcomings of the thesis work are discussed and potential research areas for future work are suggested

    Knowledge Distillation and Continual Learning for Optimized Deep Neural Networks

    Get PDF
    Over the past few years, deep learning (DL) has been achieving state-of-theart performance on various human tasks such as speech generation, language translation, image segmentation, and object detection. While traditional machine learning models require hand-crafted features, deep learning algorithms can automatically extract discriminative features and learn complex knowledge from large datasets. This powerful learning ability makes deep learning models attractive to both academia and big corporations. Despite their popularity, deep learning methods still have two main limitations: large memory consumption and catastrophic knowledge forgetting. First, DL algorithms use very deep neural networks (DNNs) with many billion parameters, which have a big model size and a slow inference speed. This restricts the application of DNNs in resource-constraint devices such as mobile phones and autonomous vehicles. Second, DNNs are known to suffer from catastrophic forgetting. When incrementally learning new tasks, the model performance on old tasks significantly drops. The ability to accommodate new knowledge while retaining previously learned knowledge is called continual learning. Since the realworld environments in which the model operates are always evolving, a robust neural network needs to have this continual learning ability for adapting to new changes
    • …
    corecore