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ABSTRACT:

Change detection in remote sensing images aims to accurately determine any significant land surface changes based on acquired
multi-temporal image data, being a pivotal task of remote sensing image processing. Over the past few years, owing to its powerful
learning and expression ability, deep learning has been widely applied in the general field of image processing and has demonstrated
remarkable potentials in performing change detection in images. However, a majority of the existing deep learning-based change
detection mechanisms are modified from single-image semantic segmentation algorithms, without considering the temporal information
contained within the images, thereby not always appropriate for real-world change detection. This paper proposes a High-Resolution
Triplet Network (HRTNet) framework, including a dynamic inception module, to tackle such shortcomings in change detection. First, a
novel triplet input network is introduced, which is capable of learning bi-temporal image features, extracting the temporal information
reflecting the difference between images over time. Then, a network is employed to extract high-resolution image features, ensuring
the learned features preserving high-resolution characteristics with minimal reduction of information. The paper also proposes a novel
dynamic inception module, which helps improve the feature expression ability of HRTNet, enriching the multi-scale information of the
features extracted. Finally, the distances between feature pairs are measured to generate a high-precision change map. The effectiveness
and robustness of HRTNet are verified on three popular high-resolution remote sensing image datasets. Systematic experimental results
show that the proposed approach outperforms state-of-the-art change detection methods.

1. INTRODUCTION

Change detection (CD) in remote sensing images is a technology
that relies on the analysis of the spectral information provided
by remote sensing data to detect and extract the information of
land surface changes (Singh, 1989). While remote sensing has
been utilized as a major method for obtaining information in var-
ious applied fields, CD forms an important underlying task of
processing remote sensed images. Indeed, remote sensing im-
age CD has been widely applied to resolving various problems,
including: disaster assessment, land management, resource man-
agement and urban expansion research (Jin et al., 2013, Mundia
and Aniya, 2005, Brunner et al., 2010, Wang and Xu, 2010).
Of course, generally speaking, different applications require the
identification of different types of changing target. For exam-
ple, land management needs to identify changes in land use and
cover, resource management needs to identify changes in forests
and vegetation, and urban expansion research needs to identify
changes in buildings.

With the development of satellite imaging technology, the reso-
lution of remote sensing images is becoming higher and higher.
Particularly, the surface information in high-resolution images
becomes more abundant and diverse. Therefore, high-resolution
remote sensing images form a useful data for CD (Bruzzone and
Bovolo, 2012). One current research issue on CD is how to effec-
tively learn the rich feature representation in remote sensing im-
ages, while reducing the interference of pseudo-changes caused
by atmospheric characteristics, sunshine, seasons, etc., in order
to obtain a robust high-resolution satellite image CD method.
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Traditional CD techniques tend to use clustering or threshold seg-
mentation (Hussain et al., 2013, Wu et al., 2017, Celik, 2009) to
process image differences to determine any changed regions or
unchanged regions. Such methods mainly rely on handcrafted
features, which are inefficient and are generally of poor robust-
ness (El Amin et al., 2017). In recent years, having recognized
the excellent ability of deep learning models such as convolu-
tional neural networks (CNNs) for capturing and expressing in-
formative image features, they have been widely used in various
tasks of computer vision and image processing (Voulodimos et
al., 2018, Li et al., 2018, Li et al., 2017, Zhang et al., 2019). As a
classic semantic segmentation CNN, for instance, the fully con-
volutional network (FCN) (Long et al., 2015) has been applied
to performing the CD task of remote sensing images. In sharp
contrast with traditional CD techniques, FCN-based CD exploits
spatial context information and does not require manually de-
signed features, thereby offering stronger generalization capac-
ity and better robustness (Alcantarilla et al., 2018, Zhan et al.,
2017, Lei et al., 2019) However, existing CD methods, including
deep learning based ones, still have the following shortcomings:
1) As the resolution of remote sensing images becomes higher
and higher, they do not make full use of the rich information con-
tained in high-resolution images. This leads to the CD methods
being unable to sensitively distinguish pseudo-changes such as
angle, climate, and sunshine. 2) The information on the edges
within a change map of high-resolution remote sensing images
learned by a CNN is often not ideal. Unlike low-resolution re-
mote sensing images, the changing regions of high-resolution im-
ages usually contain significantly more information on the edges,
which should be exploited. 3) Temporal information contained
within bi-temporal remote sensing images is not utilized, which
if used would benefit the CD performance.

In order to address the aforementioned limitations, a High-Resolution



Triplet Network (HRTNet) framework for CD is proposed, act-
ing upon high-resolution remote sensing images. It is a three-
branch network with its input consisting of bi-temporal remote
sensing images as well as the difference images generated by di-
rectly comparing pixel and textual values between bi-temporal
images. This differs from the previous CD approaches based on
traditional FCN (Alcantarilla et al., 2018, Daudt et al., 2018, Peng
et al., 2019) whose input involves the difference image (DI) or
the concatenate image of bi-temporal images based on channel
dimension only, thereby reducing information loss at the earliest
stage possible. Also, the proposed method is different from the
existing change detection approach based on the use of a Siamese
network (Chen et al., 2020, Liu et al., 2020b, Chen et al., 2021).
The latter only has two bi-temporal images as input, while an
additional DI is taken as part of the input to achieve the pur-
pose of learning the change information. Furthermore, a high-
resolution network is employed to reduce the loss of information
during the process of down-sampling feature learning. In HRT-
Net, a dynamic inception module is utilized to enhance the ability
of representing multi-scale features, making the overall model
more sensitive to change regions of different sizes. Finally, the
temporal features contained within the DI are exploited to ensure
the model paying more attention in surface changes, reinforcing
its robustness for the recognition of pseudo-changes. Based on
the evaluation over three popular high-resolution remote sensing
image datasets, HRTNet is shown to be able to achieve better
performance than other algorithms for remote sensing image CD
(Daudt et al., 2018, Peng et al., 2019, Chen et al., 2021, Zhang
et al., 2020, Chen and Shi, 2020). The objective of this proposed
framework is to identify the change information of interest in a
specified application and to filter out irrelevant change informa-
tion as interference factors. It can be applied for change detec-
tion with different purposes, as illustrated with the different tasks
performed in the experimental investigations. The major contri-
butions of this paper are as follows:

1. In view of the lack of full use of temporal information in
existing CD methods, a triplet input network is proposed
to learn and exploit temporal information. The robustness
of the model in detecting pseudo-change and avoiding the
effect of the noise in bi-temporal images is improved.

2. A high-resolution triplet network architecture is devised to
capture and represent high-resolution remote sensing image
features. The information loss of an input image is reduced
using this three-branch network structure. High-resolution
feature extraction also enables the network to reduce the loss
of information when down-sampling high-resolution remote
sensing images, generating a wealth of useful image fea-
tures.

3. A dynamic inception module (DIM) is presented to enhance
the comprehensiveness and expressiveness of the resulting
model, making it capable of recognizing change regions of
different scales. This in turn, helps detect objects of a dif-
ferent scale successfully.

The rest of this article is structured as follows: Section 2 presents
an overview of related work. Section 3 describes the proposed
approach. Section 4 evaluates the effectiveness of the proposed
algorithm through systematic experiments. Section 5 summarizes
the main work of this paper and briefly discusses important fur-
ther research.

2. RELATE WORK

2.1 Change detection

In this section, existing CD methods are introduced with respect
to two types of distinct approach: traditional CD and deep learn-
ing based CD.

Traditional CD algorithms can be divided into two groups: pixel-
based and object-based (Hussain et al., 2013). A pixel-based
CD method uses mechanisms such as clustering or threshold seg-
mentation to segment difference images to determine the changed
area and the unchanged area (Gil-Yepes et al., 2016, Cao et al.,
2014, Cao et al., 2016).However, such a method only compares
single pixels themselves individually without considering the cor-
relation information between pixels. In addition, it is difficult to
decide on the required change threshold and the resulting change
map often contains a large amount of “salt and pepper” noise
(Peng et al., 2019). In response to this problem, object-based CD
methods make use of specific information concerning the differ-
ent objects in an image as the analysis unit upon which to cap-
ture effective change information (Zhang et al., 2017, Qin et al.,
2013, Ma et al., 2016). Essentially, they divide an remote sensing
image into multiple homogeneous regions according to its under-
lying spectral and spatial characteristics. With an integrated use
of both spectral and spatial information, the segmentation images
at two different temporal moments are subtracted to obtain the
change map, minimizing the effect of noise. Importantly, both
aforementioned groups of traditional CD methods work by re-
sorting to artificially designed features, which are generally not
only complicated but also poor in robustness. As the amount of
remote sensing image data continues to increase, traditional CD
methods can work at the expense of consuming a great deal of
effort for any meaningful practical applications.

Recently, CNN based on deep learning has been rapidly devel-
oped. Due to its outstanding generalization ability for feature
capturing and expression, it has been applied to performing re-
mote sensing image CD tasks (Zhang et al., 2016, Khelifi and
Mignotte, 2020). In particular, FCN has been introduced as an
effective CD method. In 2015, (Long et al., 2015) firstly pro-
posed FCN, as a landmark model for image segmentation. FCN
replaces a fully connected layer within the traditional CNN model
with a convolutional layer, which can adapt to inputs of any size.
Also, the deconvolution layer is used for up-sampling in an effort
to achieve pixel-level classification.

In terms of how a CD algorithm based on deep learning man-
ages bi-temporal images, such methods can be classified into two
complementary categories: early-fusion methods and late-fusion
methods. The former refers to the use of concatenate or differen-
tial images of two bi-temporal images as an input to the network.
For instance, (Alcantarilla et al., 2018) fed two bi-temporal im-
ages concatenating six channels into an FCN composed of stack
contraction and expansion blocks, to achieve binary classification
of pixels. (Peng et al., 2019) used an image composed of two
bi-temporal images as the input to a modified U-Net++ network
(Zhou et al., 2018), for the purpose of detecting any underlying
changed area. Similarly, (Liu et al., 2020a) proposed a modi-
fied U-Net model with depth-wise separable convolution, whose
input is an image stacked the bi-temporal images along the chan-
nel. The latter, namely the late-fusion CD algorithms, refer to the
approach where two bi-temporal images are taken as indepen-
dent input images. In this category of approaches, features are
extracted through two independent pipelines of the network and
subsequently, the resulting two sets of features are fused to gener-
ate a change map.For example, (Daudt et al., 2018) proposed two



models, Fully Convolutional Siamese-Concatenation (FC-Siam-
conc) and Fully Convolutional Siamese-Difference (FC-Siam-diff),
to implement the late-fusion approach. The encoder part of the U-
Net network is used to extract features at each temporal moment
and then, the decoder part is used for feature fusion to generate
the change map required. Compared with an early-fusion CD
method (e.g., Fully Convolutional Early Fusion (FC-EF) (Daudt
et al., 2018) ), FC-Siam-diff and FC-Siam-conc as late-fusion
methods can produce better results Another example for late-
fusion is the deeply supervised image fusion network (IFN), pro-
posed by (Zhang et al., 2020), which fused deep features ex-
tracted in parallel through a fully convolutional two-stream ar-
chitecture and fed into the difference discrimination network for
change detection. (Lei et al., 2020) used a Siamese convolu-
tional neural network to extract features and explored the fusion
of channel pairs at multiple feature levels. (Jiang et al., 2020)
constructed a Siamese network with an encoder-decoder struc-
ture, where the bi-temporal images are utilized as two inputs in
the encoder, and then the change residual module is used to fuse
the features of the bi-temporal images as the input of the decoder.
(Xu et al., 2020) employed a pseudo-Siamese capsule network
to extract features of the bi-temporal images, and the extracted
features are directly concatenated to calculate change probability
map. Additionally, there is another CD method based on deep
learning that does not fuse any two bi-temporal images. Instead,
FCN is exploited to extract features from the bi-temporal im-
ages T1 image and T2 image, and changes are subsequently de-
tected by measuring the distance between feature pairs. Further-
more, (Chen et al., 2021) proposed a dual attentive fully convo-
lutional Siamese network (DASNet) to extract features over im-
age pairs, with the resulting features adopted to modify contrast
loss, thereby improving the performance of the model.(Zhang et
al., 2018) introduced a deep Siamese semantic network with a
triplet loss function to improve change detection performance.
(Wang et al., 2020a) presented a supervised change detection
method based on the Siamese CNN, which is exploited to detect
changes through the difference of extracted features. To generate
more discriminating features, (Chen and Shi, 2020) proposed the
spatial-temporal attention neural network (STANet), which uses a
Siamese FCN to extract the bi-temporal image feature maps with
a self-attention module.

Experimental results available in the literature have so far, con-
vincingly shown that the CD methods based on deep learning can
produce a change map that is superior to what is attainable using a
traditional CD method. However, important issues remain in the
existing deep learning-based approaches, such as insufficient uti-
lization of information embedded in high-resolution remote sens-
ing images and lack of temporal information of dual-time images.
Inspired by this observation, this paper proposes HRTNet that can
help effectively alleviate these issues.

2.2 Attention mechanism

The attention mechanism employed in a CNN-based model orig-
inates from the study of human vision (Mnih et al., 2014).Hu-
man beings can expeditiously select high-value informative con-
tent from a large amount of information with inhibitory control of
attention. Recent research has demonstrated that mimicking the
idea of visual attention mechanism can significantly improve the
efficiency and accuracy of automated visual information process-
ing (Hu et al., 2018, Woo et al., 2018).

According to the different domains of attention, there are three
attention mechanisms: spatial domain attention, channel domain
attention and mixed domain attention. (Jaderberg et al., 2015)
proposed a spatial transformer module, which transforms spatial

information in an image to implement the intention of noticing
spatial domain information. (Hu et al., 2018) enhanced channel
information by introducing a Squeeze-and-Excitation (SE) mod-
ule to exploit the relationship between channels. (Wang et al.,
2020b)developed a technique to reduce loss of information due to
dimension compression, presenting an Efficient Channel Atten-
tion (ECA) module that pays more attention to useful information
in the channel domain. Mixed domain attention refers to the ap-
plication of attention in both channel and spatial domains. (Woo
et al., 2018) employed a Convolutional Block Attention Module
(CBAM) to infer the attention weight along the spatial and chan-
nel dimensions in turn, adaptively adjusting the original feature
map. In the study of CD for remote sensing images, the attention
mechanism can also be exploited to help identify any change re-
gions. Particularly, (Chen et al., 2021) proposed DASNet using
dual attention(Fu et al., 2019) to establish associations between
extracted features, obtaining global context information. (Zhang
et al., 2020) presented the IFN model using CBAM (Woo et al.,
2018) to fuse information from different domains. Nonetheless,
all these CD approaches work without considering any temporal
information embedded within the original images. In sharp con-
trast, HRTNet is herein proposed as a CD model with attention
mechanism that exploits temporal information that reflects what
surfaces have changed over time. This is described below.

3. PROPOSED METHOD

In this section, the overall HRTNet framework is introduced first,
which is followed by a description of the high-resolution feature
extract network and that of the dynamic inception module, in-
cluding its role within the framework.

3.1 Network architecture

HRTNet is an end-to-end deep network, using a bi-temporal im-
age pair and a DI as input, and it produces a change map as the
output. The main structure of the model is shown in Figure 1,
where the T1 and T2 images and the DI between them are used
as the parallel inputs to the model, for the extraction of the deep
features of their corresponding original image, as shown in Fig-
ure 1(a). Then, the dynamic inception module, as shown in Fig-
ure 1(b), is adopted to learn the multi-scale temporal features of
the input images, again respectively in response to their originals,
making the model potentially more sensitive to any changes of a
different scale. Next, the features of the DI are fused with the
temporal features of the T1 image and those of the T2 image, re-
spectively. Finally, the change map is obtained by computing the
distances between each pair of such fused features.

In order to take advantage of the temporal information contained
within the bi-temporal images, such a triplet network model is de-
vised to learn high-resolution features from the given T1, T2 and
DI. Here, DI is defined to be the result of subtracting the corre-
sponding pixel values of two given images, in an effort to weaken
any similar part of the images while highlighting any changing
part between them. It is computed from bi-temporal inputs as
follows (Negri et al., 2020):

DI = |T1− T2| (1)

Note that many deep learning-based change detection methods
use difference images as the only input to the network in order
to directly detect any change areas(Negri et al., 2020, Gong et
al., 2017, Geng et al., 2019), as DI contains critical information
for change detection, especially the information on land surface



Figure 1: Architecture of high-resolution triplet network (HRTNet) with dynamic inception module, where (a) illustrates the high-
resolution feature extraction backbone and (b) represents the dynamic inception module (DIM).

change over a given period. As DI is the result of subtracting
the corresponding pixel values of two given images T1 and T2, it
may include pseudo-changes caused by seasons, sunshine, atmo-
spheric characteristic, shooting angle, etc. Of course, DI loses
certain image details contained within the original T1 and T2
images. Therefore, complementing all three input images effec-
tively improves the performance of the resultant model while re-
taining the sensitivity over pseudo-changes. There is little redun-
dant information generated during the compution process as the
three inputs (T1, T2 and DI) generally reflect different image fea-
tures. They enable HRTNet not only to extract image details and
features of the bi-temporal images, but also to learn the change
information.

Let Ft1, Ft2 and Fdi denote the three features produced by three
parallel computing steams that share network parameters. In par-
ticular, Fdi is used to weight the features of Ft1 and Ft2 using
Equation 2, and assign temporal information on to the images at
the time of T1 and T2. The use of weighted features makes those
regional features that change over the given time period more dis-
tinct, while restraining those that do not change in the period. In
so doing, it effectively improves the network to focus the atten-
tion on the region changed over time.

F1 = Ft1 × Fdi + Ft1

F2 = Ft2 × Fdi + Ft2

(2)

In order to extract useful features regarding the changing regions
at different scales, the inception module (Szegedy et al., 2015)
is applied to perform convolution and re-aggregation on multi-
ple scales of the feature map. The resulting richer features help
to improve the final classification, raising the classification accu-
racy. In order to increase the coverage, or the comprehensiveness,
of the model, dynamic convolution is applied to implementing a
dynamic inception module. Dynamic convolution automatically
learns the essence of different convolution kernels involved, lead-

ing to a stronger expressive power than that traditional convolu-
tion offers.

Note that existing CD algorithms commonly fuse the features
extracted from the T1 and T2 images directly, and then use up-
sampling or deconvolution to restore the features to having a size
of the original image. From there, they utilize the sigmoid func-
tion to implement pixel-level classification in an effort to achieve
the detection of changed area. Different from this approach, in
HRTNet, the distances between the bi-temporal features returned
by DIM are measured. Given feature maps F1 and F2, each fea-
ture map is firstly resized to be of the same size as the input bitem-
poral images by bilinear interpolation. Then, the euclidean dis-
tance between the resized feature maps pixel-wise is calculated to
generate the distance map D ∈ RH×W , where H and W are the
height and width of the input images respectively. In the training
phase, a contrastive loss (as per Equation 3 ) is used to learn the
parameters of the network, in an effort to decrease the pixel pair
distance of the unchanged area while increasing the pixel pair
distance of the changed area:

Contrastive loss =
∑
i,j

1

2
[(1− yi,j) d2i,j

+ yi,j max (margin−di,j , 0)2]
(3)

where di,j denotes the distance between the corresponding pixels
of the feature maps F1 and F2 at coordinates (i, j); the margin
is a set threshold, enforcing the changed feature pairs; and yi,j
represents the label of a pixel. Particularly, when yi,j = 0, it
means that the feature pairs are unchanged and the loss function
is
∑

i,j
1
2
d2i,j . For unchanged feature pairs, if the distance in the

feature space is large, it indicates that the current model is not
good and so, the loss is increased. When yi,j = 1, it means that
the feature pairs are changed and the loss function is∑

i,j
1
2
max (margin−di,j , 0)2. When the feature pairs are changed,

while the distance within the feature space is small, the loss is in-



Figure 2: The architecture of high-resolution feature extract network (HRNet).

creased in response, correctly reflecting the design intuition un-
derlying the approach.

In the testing phase, however, the change map M is obtained by
a simple threshold segmentation:

Mi,j =

{
1 Di,j > θ
0 else (4)

where the subscripts i and j (1 ≤ i ≤ H, 1 ≤ j ≤ W ) de-
note the indices of the height and width respectively; and θ is a
fixed threshold to separate the change areas. In implementing the
present work, θ is empirically assigned to 1.

3.2 High-resolution feature extract network

As indicated previously, with the development of remote sensing
technology, the resolution of remote sensing images obtained is
getting higher and higher, and the information contained in the
images is becoming more and more abundant. However, tradi-
tional feature extraction networks are generally encoded using
multiple convolutional layers to obtain a low-resolution feature
map. As such, the mainstream network structure does not take
advantage of the high-resolution characteristics of the remotely
sensed images.

In this work, a high-resolution network (HRNet) is proposed, as
shown in Figure 2, to act as the high-resolution feature extrac-
tion network. In so doing, the high-resolution feature map is al-
ways maintained during the entire learn process of the backbone,
whilst low-resolution information is simultaneously added during
the process of encoding in parallel. In conclusion, when HRNet
is utilized to extract high-resolution image features, the seman-
tic information contained in the original image can be learned,
and the potential loss of pixel-level information is devised to be
minimal.

It can be seen from Figure 2 that, in depth, HRNet is composed
of four stages. The first stage consists of four residual units, each
of which is formed by a bottleneck with a width of 64, and is
followed by one convolutional layer with a kernel of size 3 × 3
changing the width of feature maps to C. The second, third, and
fourth stages contain one, four, and three modularized blocks, re-
spectively. In implementing the multi-resolution parallel convo-
lution of the modularized block, each branch contains four resid-
ual units, with each involving two 3 × 3 convolutions per reso-
lution, followed by batch normalization and non-linear activation

function ReLu. From the perspective of width, each stage of HR-
Net has a different width. Stage 1 has only one branch, whilst
stage 2 comprises a high-resolution branch and a branch whose
resolution is doubled. At the end of these two branches, the out-
put feature maps of the two resolutions are combined with each
other to form the input for the next stage, and the feature maps
of different resolutions are connected as illustrated in Figure 3.
The structure of stage 3 and that of stage 4 are both similar to the
structure of stage 2. Finally, the numbers of the output channels
of the four branches at stage 4 are C, 2C, 4C and 8C respectively.
Up-sampling is carried out to restore the low-resolution feature
map to one that is of the highest resolution feature map size, and
then the four resolution feature maps are concatenated along the
channel dimension, serving as the required high-resolution fea-
ture map.

Figure 3: Feature map fusion with different resolutions. Stride
3 × 3 refers to convolution layer whose stride is 2 with a ker-
nel of size 3 × 3, where Upsample 1 × 1 indicates the bilinear
upsampling followed by a 1× 1 convolution.

3.3 Dynamic inception module

The concept of inception module was originally introduced by
(Szegedy et al., 2015), in order to make more efficient use of
computing resources and to extract more informative features un-
der the same amount of calculation, so as to improve the training
results. It uses 1 × 1 convolution to adjust the dimensions of
the feature map and simultaneous convolution re-aggregation at
multiple scales.

Instead of taking a static approach as per the original inception
module, within HRTNet, a Dynamic Inception Module is intro-
duced as illustrated in Figure 4, which uses dynamic convolution
to enable inception module having a stronger feature expression
capability. Note that the static convolution is defined as follows:



Figure 4: Structure of dynamic inception module.

y = g
(
WTx+ b

)
(5)

where W, b and g represent weights, biases, and activation func-
tions, respectively. In the present work, the dynamic convolution
is specified as follows:

y = g
(
W̃Tx+ b̃

)
W̃ =

K∑
k=1

πk(x)W̃k

b̃ =

K∑
k=1

πk(x)(̃b)k

s.t.0 ≤ πk(x) ≤ 1,

K∑
k=1

πk(x) = 1

(6)

where πk is the weight of attention. The weight of attention is
not fixed but varies with respect to the given input. Therefore,
dynamic convolution has a stronger learning ability than its static
counterpart. Figure 5 shows the structure of dynamic convolu-
tion, where the determination of the attention weight K depends
on the lightweight Squeeze-and-Excitation (SE) module (Hu et
al., 2018). SE is herein used to assign attention to the convolu-
tion kernel.

Figure 5: Structure of dynamic convolutions

4. EXPERIMENTS AND DISCUSSION

4.1 Dataset

In order to verify the effectiveness of the proposed approach, ex-
perimental studies on three popular datasets are carried out. The

first as exemplified in Figure 6(a), is released by (Lebedev et al.,
2018). The original image of this dataset consists of 11 pairs
of multi-source remote sensing images, with resolutions ranging
from 3cm to 100cm per pixel. (Ji et al., 2018) processed the orig-
inal data and generated a training set of 10,000 remote sensing
image pairs of 256 × 256 and a test set of 3,000 remote sensing
image pairs of 256× 256 .

The second dataset as exemplified in Figure 6(b), is the remote
sensing CD data set provided by the 2020 Artificial Intelligence
Remote Sensing Interpretation Competition held by SenseTime
Science and Technology (SenseTime, 2020). It consists of 2968
pairs of 512× 512 bi-temporal remote sensing images with reso-
lutions ranging from 0.5m to 3m. The training set and the test set
are divided according to the ratio of 8:2, following the common
practice in the literature.

The last dataset LEVIR-CD is released by (Chen and Shi, 2020),
which includes 637 very high-resolution Google Earth image patch
pairs, each with a resolution of 0.5m and a size of 1024× 1024.
The original images of this dataset are collected from 20 differ-
ent regions that sit in Texas of the USA, having a time span of
5 14 years. LEVIR-CD is annotated with the change informa-
tion of the building and contains a total of 31333 change build-
ings. Compared with the previous two datasets, LEVIR-CD has
labeled building changes, and most of the change areas are de-
picted in rectangles or polygons with clear edges. Due to hard-
ware limitations, the original image is cropped into 256 × 256
as experimental data, as shown in Figure 6(c) for example. Ac-
cording to the method proposed by (Chen and Shi, 2020), the
LEVIR-CD dataset is divided into a training set, a validation set
and a test set.

4.2 Evaluation metrics

The performance of the proposed model is evaluated with re-
spect to four performance metrics: Recall, Precision, F1-score
and Overall Accuracy (OA). OA is the standard accuracy metric,
measured in terms of the classification accuracy over positive and
negative samples. Recall and Precision together indicate the ef-
fect of classification accuracy. The greater the recall value, the
fewer positive samples the model misses. The higher the Preci-
sion value, the fewer false detection regarding the positive sam-
ples. Because Recall and Precision restrict each other, F1-Score
is used to comprehensively consider both of them, as the metric
of overall performance. Formally, these metrics are defined by

OA =
TP + TN

TP + TN + FP + FN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 =
2×Recall × Precision
Recall + Precision

(7)

where TP is the number of positive pixels correctly classified in
the prediction change map, TN is the number of negative pix-
els correctly classified in the prediction change map, FP is the
number of positive pixels wrongly predicted in the change map
and FN is the number of negative pixels wrongly predicted in the
change map.



Figure 6: Bi-temporal images and ground truths that are selected from three datasets: Lebedev, SenseTime and LEVIR-CD, where (a)
belongs to Lebedev, (b) is selected from SenseTime and (c) belongs to LEVIR-CD.

4.3 Implementation details

The proposed model is based on PyTorch, with the training and
testing of the network implemented on the NVIDIA TITAN Xp
GPU. All models evaluated are trained with Adam optimizer with
an initial learning rate of 1e-4 and a weight decay of 5e-5. The
same learning rate setting is also used for all models. HRNet is
pre-trained on the ImageNet dataset. The entire model is trained
for 60 epochs while other baseline methods compared are trained
for 100 epochs.

4.4 Benchmark methods

In order to verify the effectiveness of HRTNet, The experimen-
tal results of running the following six benchmark methods are
compared, on the aforementioned three datasets:

(1) FC-EF (Daudt et al., 2018)

Fully Convolution Early Fusion (FC-EF), which concatenates two-
time images before passing them through the network, treating
them as six channels images. The fused image is ”encoded-decoded”
to obtain a mapping input to the change map.

(2) FC-Sima-conc (Daudt et al., 2018)

Fully Convolutional Siamese – Concatenation (FC-Siam-conc),
which is the Siamese extension of FE-EF, changing the input of
the network into two equal streams with shared weights. Each
image is given to one of these equal streams. In the decoding
step, concatenate is used to connect the features of the two-time
images.

(3) FC-Sima-diff (Daudt et al., 2018)

The difference between Fully Convolution Siamese-Difference
(FC-Siam-diff) and FC-Sima-conc only rests in the decoding step.
The absolute value of the difference between the two-time image
features is connected, instead of directly concatenating the fea-
ture pairs.

(4) Unet++MSOF (Peng et al., 2019)

Peng et al. proposed an end-to-end architecture inspired by UNet++
(Zhou et al., 2018), which connects two-time images as the input
of the network, and uses UNet++ to learn visual feature repre-
sentation. At the same time, it uses the technique of multiple
side-output fusion (MSOF) to further improve the spatial details.

(5) IFN (Zhang et al., 2020)

Zhang et al. introduced the deeply supervised image fusion net-
work (IFN), which uses a fully convolutional dual-stream archi-
tecture to learn representative deep features in dual-time images,
with the resulting features input into a deep differential recogni-
tion network for CD. Meanwhile, the attention module is used to
reconstruct the change map and to refine the CD results.

(6) DASNet (Chen et al., 2021)

Chen et al. proposed a dual attentive fully convolutional Siamese
network (DASNet) for CD, capable of learning bi-temporal im-
age features, with weighted double margin contrastive loss to
improve the performance of change detection. Note that on the
Lebedev dataset, DASNet represents the performance of state-of-
the-art (SOTA).

(7) STANet (Chen and Shi, 2020)

Chen et al. put forward the spatial-temporal attention neural net-
work (STANet) for CD, which uses Siamese FCN to extract the
bi-temporal image feature maps with a self-attention module to
generate more discriminative features. A metric module is also
employed to obtain the change map. As with DASNet, on the
LEVIR-CD dataset, STANet can also reach the SOTA perfor-
mance.

4.5 Performance Comparison

The proposed HRTNet is compared with the existing start-of-the-
art approaches on three datasets in terms of their performance.

On Lebedev dataset: Table 1 shows the experimental results
on the Lebedev dataset, with the best performance highlighted in
bold.



Table 1: Quantitative results of HRTNet and seven benchmark
methods on Lebedev.

Method Precision(%) Recall(%) F1(%) OA(%)
FC-EF 81.56 76.13 77.11 94.13
FC-Sima-conc 84.41 82.50 82.50 95.72
FC-Sima-diff 85.78 83.64 83.73 95.75
UNet++MSOF 89.54 87.11 87.56 96.73
IFN 94.96 86.08 90.30 97.71
DASNet 91.45 92.52 91.93 98.07
STANet 88.24 93.43 90.75 97.84
HRTNet 93.34 94.09 93.71 98.41

It can be seen from Table 1 that the overall performance of HRT-
Net is the best, with Recall (94.09%), F1-Score (93.71%) and
OA (98.41%) all being the highest. This is because the high-
resolution deep features learned by the proposed method are more
representative, with abundant feature information obtained using
dynamic inception module. Particularly, the Recall of HRTNet
is much higher than other methods (and the Precision also ranks
second), which implies that HRTNet is far more robust to pseudo-
change and noise than other benchmark methods. Whilst IFN has
the highest precision but it has a relatively lower recall rate, in-
dicating that it causes more false detection. Note that HRTNet is
slightly inferior to IFN in Precision. One possible reason is that
the number of changed pixels and that of unchanged are rather
uneven. IFN alleviates the sample imbalance problem using its
weighted loss function. Qualitatively, the CD results of different
methods on Lebedev dataset are shown in Figure 7.

The change maps predicted by HRTNet are also presented on the
Lebedev dataset under different conditions in Figure 8. From
the first column of these experimental results, it can be seen that
HRTNet is able to detect scattered small area changes well. The
results given in the second and third column jointly reflect that the
proposed approach is capable of detecting changes in both small
and large areas when the land is covered by heavy snow due to
seasonal changes, while the land surfaces are almost completely
changed. The fourth column shows that HRTNet can recognize
pseudo-changes such as tree shadows. Note that the T2 image in
the last column has a large area of noise.

The above results demonstrate that the proposed algorithm has
excellent robustness and has a strong ability to counter against
noise. That is, HRTNet can identify change areas of different
scales while at the same time, reducing the impact of pseudo-
changes and noise. These observations are further confirmed by
the experimental outcomes regarding the other two datasets, as
presented below.

On SenseTime dataset: From a quantitative point of view, as
reflected by Table 2, the overall performance of HRTNet is best
with the highest Recall (71.38%), F1-score (67.90%), and OA
(86.63%). FC-EF has the worst overall performance with the low-
est Precision (46.73%), Recall (63.30%), F1-score (53.77%), and
OA (74.86%). FC-Sima-conc shows improved performance over
FC-EF, especially regarding Recall and F1-score. This is because
FC-sima-conc is based on the late fusion approach, which pro-
vides deep characteristics of a single image by skip-connection
to help rebuild the original image, keeping the boundary of the
change map continuous, whilst FC-EF is an early fusion method.
FC-sima-diff explores the difference information contained within
the bi-temporal features, thereby achieving better results than FC-
sima-conc. UNet++ MSOF, which is also an early fusion method,
fuses the change maps at different semantic levels and obtains the
change maps with each evaluation index superior to FC-EF. IFN
has the highest precision because it fuses deep features and dif-
ference features to improve the accuracy by the use of an atten-

tion module. However, the algorithm is insensitive to noise and
pseudo-changes on dual-time images, therefore its recall rate is
low. The CD results of different methods on SenseTime dataset
are qualitatively shown in Figure 9.

Table 2: Quantitative results of HRTNet and seven benchmark
methods on SenseTime.

Method Precision(%) Recall(%) F1(%) OA(%)
FC-EF 46.73 63.30 53.77 74.86
FC-Sima-conc 47.45 69.79 56.49 76.89
FC-Sima-diff 55.19 68.57 61.16 81.74
UNet++MSOF 54.95 68.88 61.13 81.64
IFN 72.89 57.67 64.39 85.85
DASNet 59.73 68.38 63.77 83.71
SATNet 62.97 69.17 65.93 85.87
HRTNet 64.74 71.38 67.90 86.63

On LEVIR-CD dataset:The results of the comparison between
HRTNet and other benchmark methods on this dataset are listed
in Table 3. The performance of HRTNet is the best with the high-
est Precision (85.43%), Recall (91.77%), F1-score (88.48%), and
OA (98.79%). STANet and HRTNet, both of which are based on
metric learning, achieve better CD outcomes than the other meth-
ods. Figure 10 shows the examples of CD results using different
methods on the LEVIR-CD dataset, qualitatively. It can be seen
that HRTNet is better at predicting the edge information of the
buildings.

Table 3: Quantitative results of HRTNet and other benchmark
methods on LEVIR-CD.

Method Precision(%) Recall(%) F1(%) OA(%)
FC-EF 48.90 85.90 62.32 93.83
FC-Sima-conc 60.40 76.63 68.21 96.30
FC-Sima-diff 54.21 73.18 63.09 95.95
UNet++MSOF 79.00 84.14 81.49 98.05
IFN 79.55 87.99 83.57 98.20
DASNet 77.41 89.87 82.83 98.06
STANet 83.81 91.04 87.34 98.33
HRTNet 85.43 91.77 88.48 98.79

4.6 Ablation study

In this experimental study, the impact of the proposed Triplet
structure and Dynamic Inception Module on model performance
is examined, making quantitative comparisons on the Lebedev
dataset.

Triplet structure:HRTNet takes difference images as a parallel
stream input, in addition to the T1 and T2 images, to learn the
temporal information of bi-temporal images. In order to eval-
uate the effect of extracted temporal features, a high-resolution
Simaese network (HRSNet) is constructed as a model without
introducing such temporal information, to compare against the
standard HRTNet. The input of HRSNet involves only two in-
puts, namely, the T1 and T2 images. The parameter settings
of the two networks are devised to be the same during train-
ing. The quantitative comparative results on the Lebedev dataset
are shown in Table 4. It can be seen from this table that com-
pared with HRSNet, HRTNet has a 0.82% increase on Recall and
0.42% increase on F1-score, while the Precision and OA values
are also improved. This demonstrates that HRTNet reinforces the
performance of HRSNet through the introduction of the temporal
information. More importantly, by learning the characteristics of
such information, the robustness of the model to pseudo-change
and noise of images at bi-temporal images is strengthened also,
with the recall rate significantly increased. Qualitative, Figure 11
contrasts the change maps predicted by the two models.



Figure 7: Qualitative performance comparison between HRTNet and other benchmark algorithms on Lebedev. (a) T1 image. (b) T2
image. (c) Ground truth map. Change maps predicted by means of (d) FC-Siam-diff, (e) UNet++MSOF, (f) IFN, (g) DASNet, (h)
STANet, (i) HRTNet. The first and second rows illustrate the detection of small change areas. Compared with other SOTA methods,
HRTNet can detect more changes in small areas. In addition, it can accurately separate the boundaries of independent small change
areas. The land surface of bi-temporal images in the third and fourth rows is shown to have greatly changed due to seasonal variation.
HRTNet can detect more details than other benchmark methods, and it is also more sensitive to areas involving multi-scale changes.

Figure 8: Under different conditions change detection results on the Lebedev dataset. (a) T1 images. (b) T2 images. (c) Ground truth
maps. (d) Change detection maps predicted by HRTNet.



Figure 9: Qualitative comparison between HRTNet and benchmark SOTA algorithms on SenseTime. (a) T1 image. (b)T2 image. (c)
Ground truth map. Change maps predicted by means of (d) FC-Siam-diff, (e) UNet++MSOF, (f) IFN, (g) DASNet, (h) STANet, (i)
HRTNet. The first and second rows are the results of detecting small change areas. Compared with SOTA methods, HRTNet can detect
more changes in small areas with more change details. In addition, it has fewer falsely detected pixels. The third and fourth rows show
the detection of big change areas. Again, HRTNet can detect more details than other methods, with accurately detected boundaries of
big change areas.

Figure 10: Qualitative comparison between HRTNet and other SOTA algorithms on LEVIR-CD. (a) T1 image. (b)T2 image. (c)
Ground truth map. Change maps predicted by means of (d) FC-Siam-diff, (e) UNet++MSOF, (f) IFN, (g) DASNet, (h) STANet, (i)
HRTNet. The first row shows the detection outcome of sparse change areas. Compared with SOTA methods, HRTNet has fewer falsely
detected pixels. The remaining three rows are the CD outcomes of change areas of different scales, demonstrating that change maps
predicted by HRTNet can detect more details and fewer conglutinations between buildings than the other methods.



Figure 11: Qualitative comparison of HRTNet and HRSNet on Lebedev. (a) T1 image. (b)T2 image. (c) Ground truth. Change maps
predicted by means of (d) HRSNet, (e) HRTNet. The illustrations involve two moment images of pseudo-changes caused by seasonal
changes in weather or plantation, HRTNet is shown to be more sensitive to such pseudo-changes.

Table 4: Quantitative results of HRTNet and HRSNet on Lebedev
Method Precision(%) Recall(%) F1(%) OA(%)
HRSNet 93.28 93.27 93.29 98.31
HRTNet 93.34 94.09 93.71 98.41

Table 5: Parameters and inference time of HRSNet and HRTNet
on Lebedev

Method Parameters Inference time(s) F1(%)
HRSNet 66.89M 0.110 93.29
HRTNet 66.89M 0.134 93.71

The speed of HRTNet and that of HRSNet are compared in Table
5. It can be seen from this table that given the same parameters
of HRTNet and HRSNet, (since the feature extraction network is
shared between these models for learning the image features), for
a pair of bi-temporal images, of a size 256 × 256, HRTNet re-
quires slightly more time to run (0.134s) than HRSNet (0.110s).
This is because it needs to learn the features of DI. However, the
F1-score of HRTNet is higher than that of HRSNet. Trading the
improved performance with the rather slight increase in compu-
tation costs is therefore worthwhile.

To reinforce the conceptual distinction between the use of corre-
lation and that of difference, experimental investigation on abla-
tion learning has been extended. In particular, T1, T2 and correla-
tion images are chosen as the inputs of HRTNet, with the correla-
tion image being T1 and T2 images stacked along the channel di-
mension (over six channels). Table 6 contrasts the performances
of the two models.

As can be seen from Table 6, HRTNet with correlation underper-
forms in comparison to HRTNet with difference. This is likely

Table 6: Quantitative results of different inputs on Lebedev
Method Precision(%) Recall(%) F1(%) OA(%)
HRTNet with
correlation 92.90 90.69 91.78 97.96

HRTNet with
difference 93.34 94.09 93.71 98.41

attributed to the fact that a difference image explicitly guides the
network to learn the differences between the bi-temporal images.
In addition, a correlation image is a 6-channel image, which can-
not share parameters completely with T1 and T2, and its compu-
tation is obviously more costly

Dynamic inception module: The proposed HRTNet structure
applies DIM to enrich the representation of feature information,
extracting multi-scale temporal features. In order to evaluate the
impact of introducing DIM, both HRSNet and HRTNet models
with DIM included are compared to their counterparts without
DIM. The parameter settings of the four networks are the same
during the training process. The results of quantitative compari-
son on their working with the Lebedev dataset are shown in Ta-
ble 7. It can be seen that compared to the models without DIM,
HRSNet and HRTNet including DIM improve Precision, F1 and
OA significantly, although the Recall value decreases slightly.
One possible reason for this observation is that DIM introduces
more feature information. While improved the precision value,
the employment of DIM also introduces a small amount of re-
dundant feature information, which may lead to false prediction
of the change maps, causing the recall value to decrease. Figure
12 shows the example change maps predicted by the four mod-
els. It can be seen that the effect on detecting the boundaries for



Figure 12: Qualitative comparison of different backbones on Lebedev. (a) T1 image. (b)T2 image. (c) Ground truth. Change maps
predicted by means of (d) HRSNet without DIM, (e) HRSNet, (f) HRTNet without DIM, and (g) HRTNet.

objects of different scales is improved thanks to the introduction
of multi-scale information. From the third and fourth rows of the
images in this figure , it is observed that the models with DIM
can learn the features of the objects better, with reduced incor-
rect detection while avoiding the phenomenon of ”hollow” in the
detection areas.

Table 7: Quantitative results of using different backbones on
Lebedev.

Method Precision(%) Recall(%) F1(%) OA(%)
HRSNet

without DIM 89.77 95.03 92.33 98.02

HRSNet 93.28 93.27 93.29 98.31
HRTNet

without DIM 91.61 94.25 92.91 98.19

HRTNet 93.34 94.09 93.71 98.41

5. CONCLUSION

This paper has proposed a High-Resolution Triplet Network (HRT-
Net) for change detection in remote sensing images. Different
from existing methods HRTNet pays particular attention to the
temporal information contained within the dual-time images. It
learns the respective features of bi-temporal images and time in-
formation through three parallel streams. Targeting at high-resolution
images, HRNet is used as the backbone of feature extraction to
reduce the loss of image information during the learning pro-
cess. A dynamic inception module is introduced to help cope
with change regions of different scales, enhancing the expression
ability of the model while exploiting multi-scale image features.
Compared with state-of-the-art methods, the proposed HRTNet
performs well on three popular datasets, showing good learn-
ing ability for change areas of different scales while being able
to detect pseudo-changes and counter against noise. Systematic

experimental results have demonstrated the effectiveness and ro-
bustness of the proposed method.

Whilst very promising, the proposed approach has two key lim-
itations as follows (which are shared in general with most deep
learning-based approaches): 1) The model can only be trained
and tested under the same scenario concerned; it remains a signif-
icant challenge for it to be able to perform cross-domain change
detection. 2) The method is based on supervised learning, which
requires a large amount of annotated data to train the model in
order to obtain a superior performance model. Thus, for future
research, it would be very interesting to study how to use a rela-
tively smaller number of training samples to achieve the same or
even better detection performance. It would also be potentially
beneficial to investigate how to use transfer learning to improve
the model’s ability of performing cross-domain change detection
tasks.
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