179 research outputs found

    The Construction of Optimized High-Order Surface Meshes by Energy-Minimization

    Get PDF
    Despite the increasing popularity of high-order methods in computational fluid dynamics, their application to practical problems still remains challenging. In order to exploit the advantages of high-order methods with geometrically complex computational domains, coarse curved meshes are necessary, i.e. high-order representations of the geometry. This dissertation presents a strategy for the generation of curved high-order surface meshes. The mesh generation method combines least-squares fitting with energy functionals, which approximate physical bending and stretching energies, in an incremental energy-minimizing fitting strategy. Since the energy weighting is reduced in each increment, the resulting surface representation features high accuracy. Nevertheless, the beneficial influence of the energy-minimization is retained. The presented method aims at enabling the utilization of the superior convergence properties of high-order methods by facilitating the construction of coarser meshes, while ensuring accuracy by allowing an arbitrary choice of geometric approximation order. Results show surface meshes of remarkable quality, even for very coarse meshes representing complex domains, e.g. blood vessels

    Filling holes under non-linear constraints

    Get PDF
    Publisher Copyright: © 2023, The Author(s).In this paper we handle the problem of filling the hole in the graphic of a surface by means of a patch that joins the original surface with C1-smoothness and fulfills an additional non-linear geometrical constraint regarding its area or its mean curvature at some points. Furthermore, we develop a technique to estimate the optimum area that the filling patch is expected to have that will allow us to determine optimum filling patches by means of a system of linear and quadratic equations. We present several numerical and graphical examples showing the effectiveness of the proposed method.publishersversionpublishe

    De Casteljau's algorithm in geometric data analysis: Theory and application

    Get PDF
    For decades, de Casteljau's algorithm has been used as a fundamental building block in curve and surface design and has found a wide range of applications in fields such as scientific computing and discrete geometry, to name but a few. With increasing interest in nonlinear data science, its constructive approach has been shown to provide a principled way to generalize parametric smooth curves to manifolds. These curves have found remarkable new applications in the analysis of parameter-dependent, geometric data. This article provides a survey of the recent theoretical developments in this exciting area as well as its applications in fields such as geometric morphometrics and longitudinal data analysis in medicine, archaeology, and meteorology

    Filling holes under non-linear constraints

    Get PDF
    In this paper we handle the problem of filling the hole in the graphic of a surface by means of a patch that joins the original surface with C1-smoothness and fulfills an additional non-linear geometrical constraint regarding its area or its mean curvature at some points. Furthermore, we develop a technique to estimate the optimum area that the filling patch is expected to have that will allow us to determine optimum filling patches by means of a system of linear and quadratic equations. We present several numerical and graphical examples showing the effectiveness of the proposed method.Funding for open access publishing: Universidad de Granada/CBUANational funds through the FCT - Fundação para a Ciência e a TecnologiaProjects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications

    Algorithms for curve design and accurate computations with totally positive matrices

    Get PDF
    Esta tesis doctoral se enmarca dentro de la teoría de la Positividad Total. Las matrices totalmente positivas han aparecido en aplicaciones de campos tan diversos como la Teoría de la Aproximación, la Biología, la Economía, la Combinatoria, la Estadística, las Ecuaciones Diferenciales, la Mecánica, el Diseño Geométrico Asistido por Ordenador o el Álgebra Numérica Lineal. En esta tesis nos centraremos en dos de los campos que están relacionados con matrices totalmente positivas.This doctoral thesis is framed within the theory of Total Positivity. Totally positive matrices have appeared in applications from fields as diverse as Approximation Theory, Biology, Economics, Combinatorics, Statistics, Differential Equations, Mechanics, Computer Aided Geometric Design or Linear Numerical Algebra. In this thesis, we will focus on two of the fields that are related to totally positive matrices.<br /

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    IST Austria Thesis

    Get PDF
    Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at the same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented. In architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly nontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick and high precision estimation of glass panel shape and stress while handling the shape multimodality. Fabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information into the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible. Both of these methods include inverse design tools keeping the user in the design loop
    corecore