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Abstract
In this paper we handle the problem of filling the hole in the graphic of a surface by means of
a patch that joins the original surface with C1-smoothness and fulfills an additional non-linear
geometrical constraint regarding its area or its mean curvature at some points. Furthermore,
we develop a technique to estimate the optimum area that the filling patch is expected to
have that will allow us to determine optimum filling patches by means of a system of linear
and quadratic equations. We present several numerical and graphical examples showing the
effectiveness of the proposed method.

Keywords Filling holes · Surface reconstruction · Area constraint · Curvature constraint ·
Energy functional

Mathematics Subject Classification 65D10 · 41A15 · 49M37

1 Introduction

There exists a wide range of fields in which problems involving the fitting of datasets
including regions with missing or poor-quality information -or the more general of image
reconstruction- arise. Among these fields we can mention, for example, engineering prob-
lems (Hu et al. 2012; Wang and Hu 2013), 3D scanning with applications to archaeology,
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CAGD, Earth Sciences or image reconstruction (Li and Li 2010; Ju 2009; Wang and Hung
2012), physics (Yang et al. 2017; Dong and Cao 2015), computer vision in robotics (Carr
et al. 2001; Caselles et al. 2008), etc.

A particular case of the above-referred research field is the one of filling the hole of
a given surface, i.e., of determining a patch reconstructing a piece of a surface that for
some reason is unknown or not properly defined. Several works regarding this specific topic
define the filling patch to join the surface to be filled with some smoothness conditions and
minimizing some quantity related to the geometrical shape or to a physical feature of the
patch to, somehow, obtain a simple and fair filling [see e.g. (Caselles et al. 2008; Fortes et al.
2011; Zhong et al. 2021] and references therein). Nevertheless, these approaches based on
the minimization of some quantity often lead to ‘flat’ patches, unable to retrieve complex
shapes or even be faithful to the shape of the original surface to be filled. A simple example
is the one of filling the hole on the top of a semisphere or a cone: depending on which
the role of the filling patch is meant to be, we may want it to be somehow minimal, or
we may want it to be faithful to the holed surface, or even more generally, to adapt to
some specific prescribed shape or geometrical feature. Some papers in the literature develop
techniques to overcome the problem of the flatness of the filling patches that some methods
provide, like biharmonic optimization (Smurygin and Zhurbin 2015); transfinite interpolation
(Dyken and Floater 2009); algorithms to handle weakly defined control points by means
of B-spline surfaces (Weiss et al. 2002); or functionals involving some geometric features
required for the filling patch, like Fortes et al. (2015) or Fortes and Medina (2022), where
the patch is forced to somehow ‘inherit’ the shape of the surface to be filled, or Fortes et al.
(2017), where a volume condition over the filling patch is imposed. Most of the additional
geometrical constraints imposedwith the aim that the filling patches be faithful to a prescribed
shape or pattern are linear, in the sense that the associated problems lead to determinate
linear systems. Nevertheless, filling patches fulfilling non-linear constraints are also useful
in several researching fields like image processing, where curvature constraints are used
to develop some models [see e.g. (Ambrosio and Masnou 2003; Goldluecke and Cremers
2011; Schoenemann et al. 2009) and references therein], or biological problems, where area
constraints are considered in the frame of biological cell membranes [see e.g. (Colli and
Laurençot 2012) and references therein].

In this paper, we consider the problem of defining fair filling patches under the two specific
non-linear constraints pointed out above: having a prescribed area and having prescribed
values of the mean curvature at some points. In both cases, we consider the filling patches to
be quadratic Powell-Sabin splines, which allows us not only to join both the patch and the
original holed surface with C1-smoothness, but also to simplify the expressions of the area
and of the mean curvature of the filling patches insofar as both geometrical features can be
expressed in terms of the coefficients of the expansion of the quadratic Powell-Sabin splines
in the basis of the corresponding vectorial space. Another reason to consider quadratic splines
is related to the fact that increasing the degree or the smoothness of the fitting splines implies
handlingmuch larger linear systems that areworse conditioned, adding further to the difficulty
of solving them numerically. Besides, in the case of the area constraint, we consider Bézier
techniques that will allow us to approximate the quadratic Powell-Sabin splines by means
of triangular patches, leading to simpler expressions of the area. Moreover, we develop an
ad-hoc algorithm to determine an optimum value of the area that the filling patch is expected
to have when there is no prescribed value of the area. The joint implementation of both,
Bézier approximation and determination of the optimum area, allows us to translate the
filling problem with area constraint into a system of linear and quadratic equations, that have
been already highly explored in the literature. Therefore, not only dowe fill under an arbitrary
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Fig. 1 �1-triangulation (left) and associated Powell-Sabin sub-triangulation (right)

area constraint, but we also lean on results in quadratic equations to obtain area-constrained
‘optimum’ filling patches.

It is worth tomention that the systems of equations associated to the constraints considered
in this paper are non-linear, infinite filling patches fulfilling such constraints can be found,
but of course not all of them are fair enough. To get proper filling patches we will look for the
ones minimizing a relative error balancing the bending energy of the filling patch -in order
to get surfaces with no roughness or irregularities- and the non-linear constraint considered.

The outline of the paper is as follows: In Sect. 2 we give a brief description of all the
preliminaries and basic concepts that will be used throughout the work and we describe the
general frame of the problem to be considered. In Sect. 3 we introduce the main tools used
to handle the non-linear systems arisen. In Sects. 4 and 5 we consider the non-linear area
and mean curvature constraints, respectively. In both cases, we give numerical and graphical
results and we include an analysis of the numerical methods leading to the best results.
In Sect. 4 we also include the method to determine an optimum value of the area of the
filling patch when there is no particular value to impose. Finally, we end by presenting some
concluding remarks.

2 Preliminaries

2.1 The Powell-Sabin triangulation

Let D ⊂ R
2 be a polygonal domain (an open, non-empty, connected set) in such a way that

D admits a �1-type triangulation (see Fig. 1 left), defined as the ones induced by integer
translates of x = 0, y = 0 and x + y = 0 [see e.g. (Davydov et al. 1998)]. Given a �1-
triangulation T of D,wewill consider the associated Powell-Sabin triangulation T6 of T [see
e.g. (Laghchim-Lahlou and Sablonnière 1996)], which is obtained by joining an appropriate
interior point �T of each T ∈ T to the vertices of T and to the interior points �T ′ of the
neighbouring triangles T ′ ∈ T of T . When T has a side lying on the boundary of D, the point
�T is joined to the mid-point of this side, to the vertices of T and to the interior points �T ′
of the neighbouring triangles T ′ ∈ T of T . Hence, the six micro-triangles inside any T ∈ T
have the point�T as a common vertex. There are several ways to consider appropriates points
�T (Powell and Sabin 1977), nevertheless, a good choice (Sablonnière 1987) is considering
�T to be the incenter of T , for all T ∈ T (see Fig. 1).

It is well known (Powell and Sabin 1977) that given the values of a function f (defined
on D) and the ones of its first partial derivatives at all the knots of T , there exists a unique S
in the spline space

S1
2 (D, T6) = {

S ∈ C1(D) : S|T ′ ∈ P2(T
′) ∀ T ′ ∈ T6

}
,
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where P2 stands for the space of bivariate polynomials of total degree at most two, such that
the values of S and the ones of its first partial derivatives coincide with those of f at all the
knots of T .

2.2 The hole-filling problem

To later present the techniques developed to fill holes by means of non-linear constraints, we
first introduce the general notation that will be considered throughout the paper.

Let H (the hole) be a connected and nonempty subset of D (see Fig. 2, left) such that
∂D ∩ ∂H = ∅, where ∂X stands for the boundary of the set X . If H was not connected, the
techniques developed to fill one connected hole would be applied to each of the connected
components of H . Let T be a �1-type triangulation of D, with associated Powell-Sabin
triangulation T6, and consider

H∗ =
⋃

T∈{T∈T :T∩H �=∅}
T .

H∗ is a polygonal domain surrounding H (see Fig. 2, middle). The reason to extend the origi-
nal hole H to the polygonal one H∗ is because the filling patches to be considered are splines
defined over triangulations. Of course, H∗ tends to H as the triangulation T becomes finer,
which, furthermore, must be fine enough to have ∂D∩∂H∗ = ∅.Let us consider the�1-type
triangulation

TD−H∗ = {T ∈ T : T ⊂ D − H∗} of D−
◦
H∗, with associated Powell-Sabin sub-

triangulation (TD−H∗)6 = {T ∈ T6 : T ⊂ D − H∗}, and, analogously, let us consider
the �1-type triangulation TH∗ = {T ∈ T : T ⊂ H∗} of H∗ with associated Powell-Sabin
subtriangulation (TH∗)6 = {T ∈ T6 : T ⊂ H∗}. Let

S1
2

(
D − H∗) ≡ S1

2

(
D − H∗, (TD−H∗)6

) = {
v|D−H∗ : v ∈ S1

2 (D, T6)
}

and

S1
2

(
H∗) ≡ S1

2

(
H∗, (TH∗)6

) = {
v|H∗ : v ∈ S1

2 (D, T6)
}

be the spaces of the Powell-Sabin splines of D−
◦
H∗ and H∗ associated to the triangulations

TD−H∗ and TH∗ , respectively.
The problem we are going to consider in this work is:

Problem Let f : D − H −→ R be a function. We want to fill the hole in the graphic of f
over H∗ by means of a C1-function

f̃ : D −→ R

x �→
{
s f if x ∈ D − H∗
σs f if x ∈ H∗

(1)

in such a way that:

i) f̃ = s f be as close as possible to f over D − H∗;
ii) f̃ = σs f fills the hole of f over H

∗ with some desired geometric non-linear properties.

Function s f over D − H∗ is the only one [see (Barrera et al. 2008a), Proposition 1]
minimizing the ‘energy functional’ defined on S1

2 (D, T6) by

J1(v) =< ρ(v − f ) >2
q +τ1|v|21,D−H∗ + τ2|v|22,D−H∗ , (2)
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Fig. 2 Hole H , surrounding polygonal hole H∗ and boundary knots of H∗

where |v|m,D−H∗ =
(∑

|β|=m

∫
D−H∗ ∂βu(x)2dx

)1/2
; ρ is the evaluation operator ρ(v) =

(v(p1), . . . , v(pq));P = {p1, . . . , pq} is a subset of points in D − H∗; τ1 ≥ 0 and τ2 > 0.
The first term of J1 measures how well v approximates the dataset { f (pi )}qi=1 (in the least
squares sense), while the second and the third ones represent the ‘minimal energy condition’.
In Barrera et al. (2008a) it is shown that s f can be expressed as s f = ∑	

i=1 βiγi , where
{γ1, . . . , γ	} is a basis of S1

2 (D − H∗), and β = (βi )
	
i=1 is the unique solution of the linear

system AX = b, where

A =
(

< ρ(γi ), ρ(γ j ) >q +
2∑

m=1

τm(γi , γ j )m

)	

i, j=1

and b = (
< ρ( f ), ρ(γi ) >q

)	
i=1 .

On the other hand, the filling patch σs f over H
∗ will be defined to fulfill three conditions:

First, it must join s f with class C1. To this end, σs f must belong to the set S1
2 (H

∗
s f ) = {v ∈

S1
2 (H

∗) : ϕ(v) = ϕ(s f )}, where ϕ(v) = (ϕi (v))3si=1, with

ϕi (v) = v(ti ), ϕs+i (v) = ∂v

∂x
(ti ), ϕ2s+i (v) = ∂v

∂ y
(ti ), for i = 1, . . . , s,

and {t1, . . . , ts} are the knots of T laying on the boundary of H∗ (see Fig. 2, right).
Secondly, σs f is required to minimize the functional J2 : S1

2 (H
∗
s f ) → R defined by

J2(v) = λ0|v|21,H∗ + |v|22,H∗ , (3)

where |v|m,H∗ =
(∑

|β|=m

∫
H∗ ∂βu(x)2dx

)1/2
and λ0 ≥ 0, i.e., we want to control the

bending energy ofσs f in such away that its graphics does not have roughness or irregularities.
In Theorem 1 of (Fortes et al. 2011) it is shown that there exists a unique σs f ∈ S1

2 (H
∗
s f )

minimizing J2 which has the expression

σs f =
3s∑

i=1

ϕi (s f )w
0
i +

n∑

j=1

α jw j , (4)

where B∂H∗ = {w0
i }3si=1 are the functions of the usual Hermite basis of S1

2 (H
∗) associated

to the boundary knots {ti }si=1, i.e., the ones verifying

ϕ(w0
i ) = (0, . . . , 0,

i th )
1 , 0, . . . , 0) for i ∈ {1, . . . , 3s};
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{w0
1, . . . , w

0
3s, w1, . . . , wn} is the extension of B∂H∗ to the usual Hermite basis of S1

2 (H
∗)

and the vector α = (α j )
n
j=1 is the solution of the system of linear equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(α) =
n∑

j=1

b(1)
j α j = d1

...

fn(α) =
n∑

j=1

b(n)
j α j = dn

, (5)

where
⎧
⎪⎪⎨

⎪⎪⎩

b(t)
j = λ0(w j , wt )1,H∗ + (w j , wt )2,H∗ ,

dt = −
3s∑

i=1

ϕi (s f )
(
λ0(w

0
i , wt )1,H∗ + (w0

i , wt )2,H∗
)
,

for t = 1, . . . , n. For the sake of simplicity, we will also consider the matrix form of (5):

Mnα = bn, (6)

where

Mn =
(
b(i)
j

)n

i, j=1
and bn = (d1, . . . , dn)

T ,

and T denotes the transposition operation.
Finally, we will impose σs f to fulfill N additional geometrical constraints, which will lead

to the N additional non-linear equations

fn+i (α) = dn+i , i = 1, . . . , N . (7)

To obtain the filling patch σs f , we will handle simultaneously the equation systems (6)–(7).
In Sects. 4 and 5 we consider particular cases for fn+i .

3 Solving non-linear equations systems with optimization techniques

The solution of a system of non-linear equations has close connections with non-linear
optimization problems. In fact, it is well known that the solution of

gi (x) = 0, i = 1, . . . ,m

is the global minimum of ‖g(x)‖, with g(x) = (g1(x), . . . , gm(x)).
With this motivation, to carry out the experiments reported in Sects. 4 and 5, we have

considered different reformulations of the original non-linear system of equations as an
optimization problem. In all cases, gi (α) = fi (α) − di for all i = 1, . . . , n + N , and
μ ∈ (0, 1).

• Reformulation O1:
The most natural way of addressing the non-linear systems of equations is by solving it
directly:

(μg1(α), . . . , μgn(α), (1 − μ)gn+1(α), . . . , (1 − μ)gn+N (α)) = 0. (8)
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Variants can consider the absolute value of components,

(μ|g1(α)|, . . . , μ|gn(α)|, (1 − μ)|gn+1(α)|, . . . , (1 − μ)|gn+N (α)|) = 0, (9)

or penalize componentwise errors,
(
μg21(α), . . . , μg2n(α), (1 − μ)g2n+1(α), . . . , (1 − μ)g2n+N (α)

) = 0. (10)

The parameter μ allows to allocate different weights to the linear and to the nonlin-
ear constraints. For solving these systems of non-linear equations, we considered the
functions lsqnonlin and fsolve, from the Optimization toolbox of Matlab Matlab
(2022), and knitro_nlneqs and knitro_nlnlsq, from Knitro Knitro (2022).

• Reformulation O2:
Inspired by the above-mentioned relation between the solution of systems of equations
and optimization problems, the different equations can be scalarized into a single function
that needs to be minimized:

μ

n∑

i=1

|gi (α)| + (1 − μ)

N∑

j=1

|gn+ j (α)|.

Penalizing deviations by squaring them also removes the non smoothness associated with
the previous function, promoting the success of derivative-based solvers in addressing
the problem:

μ

n∑

i=1

g2i (α) + (1 − μ)

N∑

j=1

g2n+ j (α).

In this case, function knitro_nlp from Knitro Knitro (2022), GlobalSearch
from the Global Optimization toolbox of Matlab Matlab (2022), and the solvers
SID-PSMCustódio and Vicente (2007); Custódio et al. (2010) and GLODSCustódio and
Madeira (2015) were considered. The last two are derivative-free optimization solvers,
thus more likely to succeed in the formulation using the absolute value. Additionally,
GLODS and GlobalSearch are global optimization solvers, allowing a more thorough
exploration of the variable space.

• Reformulation O3:
The solution of the system of nonlinear equations can also be regarded as amultiobjective
optimization problem:

min
{|gi (α)|, |gn+ j (α)|}ni=1

N

j=1
.

However, considering that n and N can be large, the linear and the nonlinear constraints
were independently aggregated, thus generating the biobjective problem:

min

⎛

⎝
n∑

i=1

|gi (α)|,
N∑

j=1

|gN+ j (α)|
⎞

⎠ .

A simple variant penalizes the errors, by squaring each one of the components:

min

⎛

⎝
n∑

i=1

g2i (α),

N∑

j=1

g2N+ j (α)

⎞

⎠ .
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There are not toomany solvers available to address biobjective optimization problems.We
considered BoostDMSBrás and Custódio (2020),MultiGLODSCustódio andMadeira
(2018), and paretosearch Matlab (2022), the last from the Global Optimization
toolbox of Matlab. In general, rather than a single point, the solution of a multiobjective
optimization problem is a set of points, which constitutes the Pareto front of the problem.
If the solution of the non-linear system of equations is unique, then the Pareto front will
be a singleton. Usually, that will not happen and a solution needs to be selected from the
final approximation to the Pareto front. The parameter μ can be used for scalarization of
the Pareto points, as in reformulation O2, allowing the selection of a single solution.

• Reformulation O4:
Finally, a Chebyshev formulation can be considered by minimizing the worst component
of the system of non-linear equations:

minmax
{
μ |gi (α)| , (1 − μ)

∣∣gn+ j (α)
∣∣}n

i=1
N

j=1
.

As usual, deviations can be penalized:

minmax
{
μg2i (α), (1 − μ)g2n+ j (α)

}n

i=1

N

j=1
.

In this case, solvers SID-PSM Custódio and Vicente (2007); Custódio et al. (2010),
GLODSCustódio andMadeira (2015), functionsGlobalSearch and fminimax from
Matlab Matlab (2022), and knitro_nlp from Knitro Knitro (2022) were attempted
to solve the problem.

Observe that,with exceptionof themultiobjective solvers (paretosearch,BoostDMS,
and MultiGLODS), with the aim of solving the non-linear system (6)–(7), all solvers were

provided with an initialization vector α̂ = (α̂1, . . . , α̂n). To this end, let {ξi }
n
3
i=1 be the

set of knots of T laying in the interior of H∗ and let {w3(i−1)+t }3t=1 be the usual Her-
mite basis functions of S1

2 (H
∗) associated to the knot ξi , for i = 1, . . . , n

3 . Then, any

σ = ∑3 s
i=1 ϕi (s f )w0

i +∑n
j=1 α jw j ∈ S1

2 (H
∗
s f ) verifies

⎧
⎨

⎩

α3(i−1)+1 = σ(ξi )

α3(i−1)+2 = ∂σ
∂x (ξi )

α3(i−1)+3 = ∂σ
∂ y (ξi )

for i = 1, . . . ,
n

3
.

On this basis, we have considered the initialization vector α̂ to be
⎧
⎪⎨

⎪⎩

α̂3(i−1)+1 = ĥ(ξi )

α̂3(i−1)+2 = ∂ ĥ
∂x (ξi )

α̂3(i−1)+3 = ∂ ĥ
∂ y (ξi )

for i = 1, . . . ,
n

3
,

where ĥ is the filling function of the test function h when considering the C1-basic filling
method developed in Fortes et al. (2011), i.e., somehow we lean on the ‘basic’ C1-filling
ĥ = ∑3s

i=1 ϕi (s f )w0
i + ∑n

j=1 α̂ jw j to obtain filling patches fulfilling the additional non-
linear constraints.

4 Filling patches satisfying an area constraint

In this section, we consider the particular case of determining minimal energy-filling patches
fulfilling the additional non-linear constraint of having a prescribed area, i.e., we want the
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graphic of the filling σs f defined in (1) to have a given area A over H∗. The expression of
the area Area(σ ) of the graphic of a function σ ∈ S1

2 (H
∗
s f ) is not easy to handle as it implies

to consider a great number of integrals of square roots of quadratic functions over triangles.
Hence, we will consider the unique non-linear fn+1 in (7) to be a suitable approximation of
Area(σ ) and dn+1 to be the prescribed areaA. The values { fi (α)−di }ni=1 in (5) and dn+1 in
(7) are strongly dependent insofar as high prescribed area valuesAwill of course increase the
bending energy of σ , moving the values { fi (α)}ni=1 away from being the ‘minimal’ {di }ni=1.
Anyway, fixed the prescribed areaA, we are still interested in minimizing the bending energy
of σ , i.e. in minimizing { fi (α) − di }ni=1, in order to obtain a filling patch σs f as smooth as
possible, without roughness or irregularities. In this frame, the role of the parameter μ

appearing in the objective functions Oi introduced in Sect. 3, balancing the weight given to
the linear part {gi (α)}ni=1 and to the non-linear one gn+1(α) is quite trascendental as it should
lead to a proper balanced pair bending energy-area.

For the sake of clarity, we will divide this section into several subsections: the first three
handle the questions of estimating suitable values of μ, fn+1 and prescribedA, respectively.
In the two final sections, we present the general setting under which the experiments have
been carried out and the numerical results, respectively.

4.1 Estimation of the optimum parameter�

To be able to estimate ‘optimal’ values of μ, we have considered 1600 functions σ =∑3 s
i=1 ϕi (s f )w0

i +∑n
j=1 α jw j ∈ S1

2 (H
∗
s f ), where each α j has been randomly chosen in the

interval [−2.5, 2.5]. For each one of these functions σ we have computed its bending energy
J2(σ ) (3) and its area, and we have considered the point (Area(σ ),J2(σ )). To shorten this
procedure, the bending energyJ2(σ ) has been computed bymeans of a numerical integration
formula, exact for splines of order two, that evaluates in three points. In Fig. 3 we show the
cloud of points obtained for the triangulation T and the polygonal H∗ shown in Fig. 2 right.
These provide an insight of how the balance of the bending energy-area is. Next, given a
prescribed value of the areaA,we compute an estimation E(A) of which the bending energy
associated with this area is expected to be by means of a quadratic regression function E
(in red in Fig. 3). Then, the value of the parameter μ considered to be optimum is the one
verifying μ E(A) = (1 − μ)A in order that the linear part {gi (α)}ni=1 in (5), regarding the
bending energy, and the non-linear one gn+1(α), regarding the area constraint, have the same
weight in the objective functions Oi considered, i.e.

μopt = A
A + E(A)

.

In Tables 1, 2, 3, 4, 5 and 6 we give the values of the optimum parameters associated
with the different experiments carried out. It can be observed that the higher the value of the
prescribed area is, the less the optimum value of the parameterμ is. This is reasonable insofar
as the bending energy of a function σ ∈ S1

2 (H
∗
s f ) grows faster than its area and, therefore,

higher values of A require lower weights of the bending energy to achieve an equilibrium
between them.

4.2 Approximation fn+1 of the area expression

To obtain a suitable approximation fn+1 of the area Area(σ ) of a filling patch σ ∈ S1
2 (H

∗
s f ),

we will use the concept of the Bézier control net and its elevations of a bivariate polynomial.
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Fig. 3 Quadratic regression for the cloud of points (Area(σ ),J2(σ ))

Fig. 4 Bézier triangle points of orders 2, 3 and 4, and control net of p ∈ P2(T )

A thorough development of the control nets and of the properties that we will use in this
work can be found in Farin (1986). For completeness, we briefly describe its construction.
Given a triangle T , it is well-known that the Bernstein polynomials of degree m ≥ 1 over T ,
defined as

Bm
λ (τ ) = m!

λ1!λ2!λ3!τ
λ1
1 τ

λ2
2 τ

λ3
3 , τ ∈ [0, 1]3, λ ≥ 0,

where τ = (τ1, τ2, τ3) are baricentric coordinates with respect to T (the multi-index notation
λ = (λ1, λ2, λ3) ∈ Z

3 is used, |λ| = λ1 + λ2 + λ3 = m, and λ ≥ 0 indicates that λi ≥ 0 for
i = 1, 2, 3), form a partition of the unity over T and constitute a basis for Pm(T ). For any
p ∈ Pm(T ), the unique representation

p =
∑

|λ|=m,λ≥0

bλB
m
λ ,

is called the Bernstein-Bézier representation of p with respect toT . The coefficients bλ are
called theBézier ordinates of p. The points {(ξmλ , bλ)}|λ|=m

λ≥0
,where ξmλ are theBézier triangle

points of order m of T , defined as the ones having barycentric coordinates
(

λ1
m , λ2

m , λ3
m

)
(see

Fig. 4), are called the Bézier control points of p, and the linear interpolant B of the Bézier
control points is called the Bézier control net of p (see Fig. 4 right). The values of the Bézier
control net coincide with the ones of p at the vertices of T and, moreover, the control net is
tangent to the graphic of p at these points (see Fig. 4 right).

If p ∈ P2, then p ∈ P2+i for all i ≥ 1, and hence it can be written as

p =
∑

|λ|=2,λ≥0

bλB
2
λ =

∑

|μ|=2+i,μ≥0

b(i)
μ B2+i

μ ,
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where

b(i)
μ =

∑

|λ|=2,λ≥0

(
μ1

λ1

)(
μ2

λ2

)(
μ3

λ3

)

(
2 + i
2

) bλ. (11)

The i th-elevationB(i) of the Bézier control net of p, defined as the linear interpolant of the
control points {(ξ (2+i)

μ , b(i)
μ )}|μ|=2+i

|μ|≥0
, lies in the convex hull of B(k) for all k = 0, . . . , i − 1

(we adopt the convention B(0) ≡ B), is tangent to p at the vertices of T , and verifies
limi→+∞ B(i) = p.

Now, with the aim to obtain a filling patch over the polygonal hole H∗ whose graphic
has a prescribed area A, we will consider the next process. Given a generic function σ =∑3 s

i=1 ϕi (s f )w0
i + ∑n

j=1 α jw j ∈ S1
2 (H

∗
s f ), let us consider the control net BσT ≡ B(0)

σT of

each of the quadratic polynomials σT ≡ σ |T , for T ∈ (TH∗)6; let B
(i)
σT be the i th-elevation of

BσT for i ≥ 1; and let B(i)
σ be the C0-surface obtained by joining all the B(i)

σT , for T ∈ (TH∗)6,
in such a way that

Area(B(i)
σ ) =

∑

T∈(TH∗)6

Area
(
B(i)

σT

)
.

Since limi→+∞ B(i)
σT = σT , we have

Area(σ ) =
∑

T∈(TH∗)6

Area (σT ) =
∑

T∈(TH∗)6

Area

(
lim

i→+∞B(i)
σT

)
=

∑

T∈(TH∗ )6

lim
i→+∞ Area

(
B(i)

σT

)
= lim

i→+∞
∑

T∈(TH∗)6

Area
(
B(i)

σT

)
= lim

i→+∞ Area(B(i)
σ ).

If for any elevation level k we consider a function σ k ∈ S1
2 (H

∗
s f ) verifying Area(B(k)

σ k ) =
A, then Area(limk→+∞ σ k) = A. Therefore, for any elevation level k, we will consider

fn+1(α) = Area(B(k)
σ k ), (12)

i.e., σ k will be a function whose kth-elevation of its control net has area A.
It is worthmentioning that theBézier ordinates of a polynomial p ∈ P2(T ) can be obtained

by means of the expressions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bλ = p(ξ2λ ), for λ ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2)},
b110 = 1

2

(
4p(ξ2110) − b200 − b020

)
,

b101 = 1
2

(
4p(ξ2101) − b200 − b002

)
,

b011 = 1
2

(
4p(ξ2011) − b020 − b002

)
.

This fact, together with (11), allows us to obtain the expression of the vertices of any of the
triangular patches of B(k)

σ k in terms of the unknowns α. As a consequence, if we express the
area of each triangular patch in terms of the coordinates of their vertices, we get that fn+1

123



72 Page 12 of 25 A. L. Custódio ert al.

Fig. 5 Subtriangulations N (2)
D−H∗ andN (2)

H∗ for T 5 and H∗ with its centroid C

has an expression of the form

fn+1(α) =
	∑

t=1

√√√√c(t)
00 +

n∑

i=1

c(t)
0i αi +

n∑

i, j=1

c(t)
i j αiα j , (13)

where 	 ≡ 	(k) is the number of triangular patches in B(k)
σ k .

4.3 Estimation of optimum area

All non-linear systems (6)–(7) associated to the experiments presented in this section have
been carried out by means of the different formulations and solvers presented in Sect. 3. We
have also considered different values of the prescribed area A to be set equal to dn+1 in
(7). Nevertheless, we have found it appropriate to include a numerical procedure in order to
estimate an optimum value of A when there is no particular value to impose.

This numerical procedure consists of estimating the optimum value of the area that each of
the triangles of the k-elevation of the control net of the filling patch σs f must have by means
of an extrapolation based on the values of the areas of the triangles of the k-elevation of the
control net of s f over D−H∗, i.e., we use known values of area of pieces of s f over D−H∗

to estimate values of area of pieces of σs f over H
∗. More precisely, let us denote byN (k)

D−H∗

(resp. N (k)
H∗ ) the subtriangulation of (TD−H∗)6 (resp. (TH∗)6) given by the Bézier triangles

points of order k of all the triangles of (TD−H∗)6 (resp. (TH∗)6). In Fig. 5 left and middle we
show the subtriangulations N (2)

D−H∗ and N (2)
H∗ for the triangulation T 5. The procedure is as

follows:

(i) Let C be the centroid of the polygonal hole H∗ (in Fig. 5 right we show H∗ and its
centroid for the hole defined in (17) and shown in Fig. 2).
(i i) For any triangle T ∈ N (k)

D−H∗ , we consider a point pT = (xT , yT ), where xT is the
distance from the incenter CT of T to C and yT is the area of s f over T .
(i i i) With the cloud of points given in the previous step, we estimate the value of the
optimum area Aopt

T of the filling patch σs f over each T ∈ N (k)
H∗ by evaluating the least

squares regression of the cloud of points on the distance from the incenter of each of the
triangles of the triangulation N (k)

H∗ to C .

In Fig. 6 we show, for k = 2 and for both test functions h1 and h2, the cloud of points
defined in i i) above (blue dots), and the points (‖CT −C‖2,Aopt

T ) (red dots) for each triangle

T ∈ N (2)
H∗ , where ‖ · ‖2 stands for the usual Euclidean norm in R

2. The optimum value Aopt
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Fig. 6 Estimation of optimum areas for Franke’s (left) and semisphere (right) functions

of the prescribed area to consider is then the sum of the estimated areas of σs f over all the

triangles in N (k)
H∗ , i.e.

Aopt =
∑

T∈N (k)
H∗

Aopt
T . (14)

In Tables 1 and 4 we give the values of Aopt for each one of the experiments considered.
One important advantage of considering optimum values of the area over each one of the
triangles ofN (k)

H∗ is that Equation (13) becomes separable and quadratic, i.e., imposing σs f to

have aprescribedvalue d̂t of the area over eachoneof the trianglesTt ofN (k)
H∗ , for t = 1, . . . , 	,

instead of a global value of the area all over H∗, leads to 	 independent quadratic equations

c(t)
00 +

n∑

i=1

c(t)
0i αi +

n∑

i, j=1

c(t)
i j αiα j = d̂ 2

t , t = 1, . . . , 	, (15)

which can be equivalently written as

c(t)
00 + c(t)

0 · α + αT C (t)α = d̂ 2
t ,

where c(t)
0 =

(
c(t)
01 , . . . , c(t)

0n

)
; the (i, j)-element of C (t) is

c(t)
i j
2 if i �= j and c(t)

i i if i = j .

Problem (6)–(15) can now be restated as finding α that satifies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mnα − bn = 0

c(1)
00 + c(1)

0 · α + αT C (1)α − d̂ 2
1 = 0

c(2)
00 + c(2)

0 · α + αT C (2)α − d̂ 2
2 = 0

...

c	
00 + c(	)

0 · α + αTC (	)α − d̂ 2
	 = 0.

(16)

This new explicit reformulation has theoretical and practical implications. On one hand, it
allows for a better understanding of the underlying geometry since it describes the arrange-
ment of intersecting lines and ellipses. More importantly, it sheds light on the nonconvexity
of the problem due to the presence of these equality quadratic constraints. Also, given that
the problem is inherently infeasible, solving (16) has to be thought in terms of minimizing an
infeasibility measure of the constraints. Having a geometrical interpretation can help choos-
ing an appropiate merit function that measures infeasibility and the best optimization solver
to use. On the other hand, a nice property of explicit quadratic constrains is that solvers
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Fig. 7 Franke’s function (left) and semisphere (right)

have access to first- and second-order derivatives practically at no computational cost, If
q(x) = 1/2 xT Qx + cT x − d = 0 is a quadratic constraint, then ∇x q(x) = Qx + c
and ∇2

xx q(x) = Q are the first- and second-order derivatives respectively. Thus, dedicated
quadratically-constrained solvers by design exploit the explicitly revealed structure in (16),
as we will see in the experimental part.

4.4 Numerical and graphical examples settings

All examples of filling patches under area constraints presented in this section, except the
last one, have been carried out over the domain D = (0, 1)× (0, 1); with the hole H defined
implicitly by

H =
{

(x, y) ∈ R
2 : (x − 0.5)2

0.2252
+ (y − 0.5)2

0.2252
≤ 1

}

, (17)

shown in Fig. 2 left, and with the �1-type triangulations T m of D defined as the ones asso-
ciated to uniform partitions of [0, 1] into m subintervals, for m = 5, 9 (T 5 is shown in
Fig. 2). The smoothing parameters in the functional (2) have been chosen to be τ1 = 10−4

and τ2 = 10−5. These values have been checked to lead to proper fitting functions s f over
D − H∗—a deep study on how to choose these parameters values was undertaken in Bar-
rera et al. (2008b)—, while the smoothing parameter in functional (3) has been taken to be
λ0 = 10 in order to give the same weight to the semi norms | · |1 and | · |2 over D − H∗ and
over H∗ in the functionals (2) and (3), respectively. We have considered two test functions,
whose graphics are shown in Fig. 7:

· Franke’s function:

h1(x, y) = 0.75e− (9x−2)2+(9y−2)2

4 + 0.75e− (9x+1)
10 − (9y+1)2

49 +
0.5e− (9y−7)2+(9x−3)2

4 − 0.2e−(9y−4)2−(9x−7)2 ;

· Semisphere function:

h2(x, y) =
{√( 1

2

)2 − (
x − 1

2

)2 − (
y − 1

2

)2
if
(
x − 1

2

)2 + (
y − 1

2

)2 ≤ ( 1
2

)2

0 otherwise
.
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4.5 Numerical results

To check the feasibility of the proposed method, we will consider, for both test functions,
three different values of the prescribed area: the optimal oneAopt , obtained with the method
previously developed (14), and another two values A+ and A++, greater than Aopt . All
experiments have been carried out over the triangulations T 5 and T 9 and with the elevations
k = 0, 4, 7 of the control net. We will denote by

σ
(k)
hi ,A =

3s∑

i=1

ϕi (s f )w
0
i +

n∑

j=1

α̂ jw j ∈ S1
2 (H

∗
s f )

the best solution of (6)–(7) when handling the test function hi with prescribed area A and
for the non-linear fn+1 as in (12), where the ‘best solution’ α̂ = (α̂1, . . . , α̂n) has been
considered to be the one minimizing the relative error

Er (α) =
(
J2

(∑3s
i=1 ϕi (s f )w0

i +∑n
j=1 α jw j

)
− J2(σs f )

)2

J2(σs f )
2 + ( fn+1(α) − A)2

A2 , (18)

where σs f ∈ S1
2 (H

∗
s f ), defined in (4), is the unique spline in S1

2 (H
∗
s f ) minimizing the

bending energy J2, i.e., σs f is the C1-‘minimum’ filling patch of s f , in such a way that
the first summand of (18) gives a measure of the relative bending energy of the spline∑3s

i=1 ϕi (s f )w0
i +∑n

j=1 α jw j with respect to the minimum one, while the second summand
is a measure of the relative error associated with the area constraint. Therefore, somehow we
define the best solution to be the one exhibiting an equilibrium between a relative minimal
bending energy and a relative minimal error with respect to the area A to be achieved. Of
course, as expected, we obtain very bad results for values of A lower than a certain quantity
(in fact,A cannot be less than the area of the polygonal H∗, these experiments result in very

high values of ( fn+1(α)−A)2

A2 ). In Tables 1, 2 and 3, we show results for Franke’s function h1,
while in Tables 4, 5 and 6, we show results for semisphere’s function h2. In all cases, we give
the area A(σ

(k)
hi ,A) of the best solution σ

(k)
hi ,A. In Tables 1 and 4 we also include an estimation

of the relative error

E =
∑1500

s=1

(
hi (as) − σ

(k)
hi ,Aopt (as)

)2

∑1500
s=1 hi (as)2

,

where {a1, . . . , a1500} are random points in H∗, when filling both test functions with the
‘optimum’ splines σ

(k)
hi ,Aopt obtained with the optimal area constraint Aopt , as well as the

exact area of the test function A(hi ) over H∗.
It is well known that the higher the elevation level of the control net of a bivariate quadratic

polynomial is, the better its area approximates the area of the polynomial. All our experiments
showcase this behaviour and can be observed that the relative error E decreases and the area
constraint is better satisfied as the elevation level k increases.

We can also observe that the results obtained from triangulation T 9 are better than the ones
associated to T 5. Of course, this is also reasonable since disposing of a higher dimensional
spline space where to look for filling patches must lead to better results. Although, of course,
raising dimensions turns into higher computational costs.

In the case A = Aopt, the best results, reported in Tables 1 and 4 and in Figs. 8 and 9 left,
have been obtained when considering the non-linear system of separable equations (6)–(15).
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Table 1 Numerical results for Franke’s test function for A = Aopt

k = 0 k = 4 k = 7

T 5

μopt = 1.44 · 10−3

A(h1) = 0.5832

⎧
⎪⎨

⎪⎩

Aopt = 0.5971

A(σ
(0)
h1,Aopt ) = 0.5785

E = 7.01 · 10−3

⎧
⎪⎨

⎪⎩

Aopt = 0.5934

A(σ
(4)
h1,Aopt ) = 0.5818

E = 3.14 · 10−3

⎧
⎪⎨

⎪⎩

Aopt = 0.5890

A(σ
(7)
h1,Aopt ) = 0.5845

E = 1.17 · 10−3

T 9

μopt = 3.09 · 10−4

A(h1) = 0.4260

⎧
⎪⎨

⎪⎩

Aopt = 0.4358

A(σ
(0)
h1,Aopt ) = 0.4181

E = 7.71 · 10−4

⎧
⎪⎨

⎪⎩

Aopt = 0.4329

A(σ
(4)
h1,Aopt ) = 0.4217

E = 5.21 · 10−4

⎧
⎪⎨

⎪⎩

Aopt = 0.4291

A(σ
(7)
h1,Aopt ) = 0.4251

E = 2.12 · 10−4

Table 2 Numerical results for Franke’s test function for A = A+ = 0.8

k = 0 k = 4 k = 7

T 5

μopt = 5.87 · 10−4 A(σ
(0)
h1,0.8

) = 0.697 A(σ
(4)
h1,0.8

) = 0.755 A(σ
(7)
h1,0.8

) = 0.792

T 9

μopt = 1.26 · 10−4 A(σ
(0)
h1,0.8

) = 0.713 A(σ
(4)
h1,0.8

) = 0.762 A(σ
(7)
h1,0.8

) = 0.798

Table 3 Numerical results for Franke’s test function for A = A++ = 1.8

k = 0 k = 4 k = 7

T 5

μopt = 2.1 · 10−4 A(σ
(0)
h1,1.8

) = 1.711 A(σ
(4)
h1,1.8

) = 1.742 A(σ
(7)
h1,1.8

) = 1.781

T 9

μopt = 4.52 · 10−5 A(σ
(0)
h1,1.8

) = 1.723 A(σ
(4)
h1,1.8

) = 1.764 A(σ
(7)
h1,1.8

) = 1.787

Table 4 Numerical results for semisphere’s test function for A = Aopt

k = 0 k = 4 k = 7

T 5

μopt = 2.14 · 10−2

A(h2) = 0.3656

⎧
⎪⎨

⎪⎩

Aopt = 0.3741

A(σ
(0)
h2,Aopt ) = 0.3626

E = 4.13 · 10−3

⎧
⎪⎨

⎪⎩

Aopt = 0.3718

A(σ
(4)
h2,Aopt ) = 0.3645

E = 1.08 · 10−3

⎧
⎪⎨

⎪⎩

Aopt = 0.3694

A(σ
(7)
h2,Aopt ) = 0.3668

E = 8.89 · 10−4

T 9

μopt = 3.55 · 10−3

A(h2) = 0.2562

⎧
⎪⎨

⎪⎩

Aopt = 0.2624

A(σ
(0)
h2,Aopt ) = 0.2541

E = 3.73 · 10−4

⎧
⎪⎨

⎪⎩

Aopt = 0.2604

A(σ
(4)
h2,Aopt ) = 0.2559

E = 2.38 · 10−4

⎧
⎪⎨

⎪⎩

Aopt = 0.2581

A(σ
(7)
h2,Aopt ) = 0.2567

E = 9.87 · 10−5

Table 5 Numerical results for semisphere’s test function for A = A+ = 0.7

k = 0 k = 4 k = 7

T 5

μopt = 7.9 · 10−4 A(σ
(0)
h2,0.7

) = 0.649 A(σ
(4)
h2,0.7

) = 0.656 A(σ
(7)
h2,0.7

) = 0.679

T 9

μopt = 1.71 · 10−4 A(σ
(0)
h2,0.7

) = 0.666 A(σ
(4)
h2,0.7

) = 0.671 A(σ
(7)
h2,0.7

) = 0.689
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Table 6 Numerical results for semisphere’s test function for A = A++ = 1.3

k = 0 k = 4 k = 7

T 5

μopt = 2.94 · 10−4 A(σ
(0)
h2,1.3

) = 1.262 A(σ
(4)
h2,1.3

) = 1.271 A(σ
(7)
h2,1.3

) = 1.289

T 9

μopt = 6.38 · 10−5 A(σ
(0)
h2,1.3

) = 1.276 A(σ
(4)
h2,1.3

) = 1.281 A(σ
(7)
h2,1.3

) = 1.294

In practical terms, Problem (16) can be numerically solved using interior point (or barrier)
methods (IPM) (Wächter and Biegler 2006; Byrd et al. 2000, 1997; Conn et al. 2000; Gould
et al. 2001). IPM define a family of iterative methods that can solve convex or nonconvex
nonlinear programming problems of the form

min
α∈Rn

f (α), subject to c(α) = 0, (19)

where f (α) : R
n → R is the objective function and c(α) : R

n → R
m describes a set of

m ≥ 0 constraints. The algorithm consists of outer and inner loops. Given that (19) has no
inequalities nor bound constraints, in the outer loop a sequence of (unconstrained) problems
similar to

min
α∈Rn

φ(α) := f (α) − λT c(α)

are solved where λ is a Lagrange multiplier vector. These problems are generally solved
using Newton’s method and thus require to solve a linear system of equations involving the
Hessian of the Lagrangian of (19) to find a suitable descent direction. For our case and since
we are interested in finding a feasible point, there is no objective function and the constraints
function c(α) = 0 is described in (16). Only linear and quadratic constraints are involved
and the Hessian of the Lagrangian contains a block of constant elements. Quadratically
constrained IPM methods exploit this fact and can keep a factorization of this block without
the need to refactorize at each outer iteration. The inner loop consists of a line search using
e.g. exact penalty functions or filter methods (Wächter and Biegler 2006).

State-of-the-art IPM solvers such as NAG’s e04st [40] or IpOpt Wächter and Biegler
(2006) solve problem (16) byfinding a feasible point. In this case, the inner iteration linesearch
minimizes a merit function, fI(α), defined as a metric that measures infeasibility. Many
metrics have been proposed, each with its own advantage. Sparsity-preserving 	1-norm,
Euclidean 	2-norm or weighted variants of the previous two are all quite commonplace. We
use an 	1-norm and the merit function chosen is fI(α) = ∑	

i=1 |ci (α)|. This choice for fI(α)

matches with the implemented one in the solvers e04st and IpOpt Wächter and Biegler
(2006), with the former one used in the experimentation. It is worth mentioning that both
implemententations achieve the best performance by making use of the first- and second-
order derivatives. Tables 1 and 4 report results for the numerical experimentation using the
e04st solver.

On the other hand, regarding the caseA �= Aopt, formulationsO1, which directly attempt
to solve the system of non-linear equations, are the most successful ones, when solved by
fsolve, from Matlab, or knitro_nlneqs, from Knitro. It is worthy to mention that for
high values of the prescribed area A, the minimal bending energy condition is much harder
to fulfill, since the unique solution of the linear system (6) is naturally associated to a low
value of A. From this point of view, we find it reasonable that the best results in the case
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Fig. 8 Franke’s filling patches with prescribed areas in T 9 for k = 7

A = A++ are obtained by considering the minimization of {( fi (x) − di )2}ni=1 rather than
the one of { fi (x) − di }ni=1 or {| fi (x) − di |}ni=1, as it happens in the case A = A+. In fact,
the results obtained for A = A+ by means of the solution of the system

min
{
(μopt)2( fi (α) − di )

2, (1 − μopt)2( fn+1(α) − A+)2
}n
i=1 = 0

areworse than the ones obtainedwith (8) and (9). Similarly, the results obtained forA = A++
by solving the system
(√

μopt ( f1(α) − d1) , . . . ,
√

μopt ( fn(α) − dn) ,
√
1 − μopt

(
fn+1(α) − A++)) = 0

or
(√

μopt | f1(α) − d1| , . . . ,
√

μopt | fn(α) − dn | ,
√
1 − μopt

∣∣ fn+1(α) − A++∣∣
)

= 0

are worse than the ones obtained with 10. These facts show that obtaining good results
depends not only on the value of μopt but also on the formulation considered.

In Fig. 8 above we show the graphics of the filling patches σ
(7)
h1,A of Franke’s function

obtained for triangulation T 9 and for the three different prescribed values ofA considered in
Tables 1, 2 and3, respectively. InFig. 8 belowwe show thegraphics of the global reconstructed
functions (1) all over D. Figure9 follows the same pattern for the semisphere’s function.
In the case of the semisphere, due to the symmetry of its graphic around the top point
(0.5, 0.5, h2(0.5, 0.5)),wehave obtained, in all experiments, two different kinds of solutions:
the ones leading to filling patches ‘above’ the graphic of the semisphere and the ones leading
to filling patches ‘below’ the graphic. Since the components {α3(i−1)+1}n/3

i=1 of any solution
α of (6)–(7) are exactly the values of the filling patch σs f at the knots of the triangulation
T lying in the interior of H∗, it is easy to decide whether a solution is desirable or not. In
the examples provided in this section we have chosen the solutions leading to filling patches
‘above’ the graphic of the semisphere to somehow keep its shape. Obviously, another solution
leading to ‘sunked’ filling patches can be considered.

To end this section, we have considered an example over a hole H0 with a more complex
geometry. This hole, whose graphic is shown in Fig. 10 left, is inspired by the one considered
in Chapter XI.4 of Arcangéli et al. (2004). This last example has also been carried out over
the domain D = (0, 1)× (0, 1), for Franke’s test function, and for the smoothing parameters
τ1 = 10−4 and τ2 = 10−5 in the functional (2), and λ0 = 10 in the functional (3). In order
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Fig. 9 Semisphere’s filling patches with prescribed areas in T 9 for k = 7

Fig. 10 Hole H0, surrounding polygonal hole H∗
0 , and Franke’s filling patch in T 25 for k = 7

Table 7 Numerical results for Franke’s test function for A = Aopt, hole H0 and T 25

k = 0 k = 4 k = 7

T 25

μopt = 1.12 · 10−4

A(h1) = 0.4345

⎧
⎪⎨

⎪⎩

Aopt = 0.4447

A(σ
(0)
h1,Aopt ) = 0.04265

E = 9.15 · 10−4

⎧
⎪⎨

⎪⎩

Aopt = 0.4423

A(σ
(4)
h1,Aopt ) = 0.4318

E = 6.17 · 10−4

⎧
⎪⎨

⎪⎩

Aopt = 0.4369

A(σ
(7)
h1,Aopt ) = 0.4334

E = 4.49 · 10−4

to obtain a surrounding H∗
0 close enough to H0, we have considered the triangulation T 25 of

D. To perform this example, we have directly considered the non-linear system of separable
equations (6)–(15), which in the previous ones led to the best filling patches. Numerical
results of this experiment are reported in Table 7, while the filling patch is shown in Fig. 10
right. As in the previous examples, Table 7 shows that the relative error decreases and the
area constraint are better satisfied as the elevation level k increases.

5 Filling patches satisfying curvature constraints

In this section, we consider the problem of determining minimal energy-filling patches with
prescribed values of the mean curvature at some interior points of H∗. Let us recall that the
mean curvature of a bivariate function at a point (x, y) is defined as

K = ∂xx (1 + ∂2y ) − 2∂x∂y∂xy + ∂yy(1 + ∂2x )

2
(
1 + ∂2x + ∂2y

)3/2 ,

123



72 Page 20 of 25 A. L. Custódio ert al.

Fig. 11 Franke’s filling results with prescribed mean curvature at one point

where ∂x , ∂y, ∂xx , ∂xy and ∂yy represent the first and second orders partial derivatives oper-

ators. So, if {χq}	q=1 is a set of points in
◦
H∗ in which we want the filling patch to have

prescribed valuesK = {Kq}	q=1 of the mean curvature, we will have to handle the non-linear
system (6)–(7) where, for each q = 1, . . . , 	, the function fn+q in (7) has an expression of
the form

fn+q(α) =
∑n

i, j,k=0 D
q
i jkαiα jαk

2
(
1 +∑n

i, j=0 F
q
i jαiα j

)3/2 ,

where we adopt the convention α0 = 1, and dn+q = Kq .
Contrary to what happens in the area constraint case, since mean curvature is a local

geometrical concept, we cannot expect to obtain any regression function providing a kind
of dependence between the values { fi (α) − di }ni=1 in (5) and the prescribed {Kq}	q=1. In
fact, it is easy to define a function having zero mean curvature at one point with a very high
bending energy. Bending energy is expected to take values much higher than the prescribed
ones of the mean curvature and, therefore, the values of the parametes μ in the objective
functions considered must necessarily be low to get a properly balanced bending energy-
mean curvature.

We have carried out experiments with both test functions Franke (h1) and semisphere (h2)
and, in all cases, the best solution σhi ,K ∈ S1

2 (H
∗
s f ) associated to prescribed values of the

mean curvature K has been considered to be the one minimizing the relative error
(
J2

(∑3s
i=1 ϕi (s f )w0

i +∑n
j=1 α jw j

)
− J2(s f )

)2

J2(s f )2
+

	∑

q=1

( fn+q(α) − Kq)
2

K2
q

,

where σs f ∈ S1
2 (H

∗
s f ), defined in (4), is the unique spline in S

1
2 (H

∗
s f )minimizing the bending

energyJ2. All the experiments in this section have been performedwith the parameters values
μ = 10−1, 10−4, 10−7, being the best results in all cases the ones associated to μ = 10−4.

In Fig. 11 we present results for Franke’s function h1 over the triangulation T 5 when
imposing mean curvatureK1 = 0 at the point χ1 = (0.5, 0.5) -central point in the graphics-.
We show the graphic of σh1,K1 (left), the one of the global reconstructed function (right) and
the values of the mean curvature at χ1 of h1, of the C1-minimal filling of h1 obtained just
minimizing functional J2 (4), and of the function σh1,K1 .

In Fig. 11 we observe that, although the mean curvature of σh1,K1 at (0.5, 0.5) is closer to
the prescribedK1 = 0 than the ones of Franke’s function and of its C1-filling, it is still a little
bit far frombeing 0. This is due to the fact thatwe have considered the coarse triangulationT 5.
To improve this result, in Fig. 12 we consider Franke’s function over the finer triangulation
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Fig. 12 Franke’s filling results with prescribed mean curvature at two points

Fig. 13 Semisphere’s filling patches with prescribed mean curvature at one point

Table 8 Numerical results for
semisphere’s with prescribed
curvature at one point

Function Mean curvature at χ1

Semisphere − 2

C1-filling − 0.731

σh2,K1=0 0.119

σh2,K1=−5 − 4.778

σh2,K1=5 4.871

T 22 when imposing mean curvature K1 = 0 and K2 = 0 at the points χ1 = (0.36, 0.5) and
χ2 = (0.64, 0.5).

Following the same pattern that for Franke’s function, in Fig. 13 and in Table 8we show the
results for different prescribed valuesK1 of themean curvature for the semisphere at the point
χ1 = (0.5, 0.5), while in Fig. 14 and in Table 9 we show the results for different prescribed
values K1 and K2 of the mean curvature for the semisphere at the points χ1 = (0.36, 0.5)
and χ2 = (0.64, 0.5), respectively.

Once all experiments have been carried out, we have found that for prescribed values of
the mean curvature closest to the exact ones of the functions to be filled (semisphere with
prescribedK1 = 0,K1 = −5 andK1 = K2 = −5), the best results are obtained by means of
the solver knitro-nlneqs, using reformulation O1, which treats directly the nonlinear
system of equations, considering the absolute value of the different components (9). For
prescribed values of themean curvature farthest to the exact ones (the remaining experiments),
the best results are obtained by means of GlobalSearch, when considering reformulation
O4, again considering the absolute value of the different components.We point out that solver
GlobalSearch aims at global optimization, allowing a better exploration of the variable
space.
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Fig. 14 Semisphere’s filling results with prescribed mean curvature at two points

Table 9 Numerical results for semisphere’s with prescribed curvature at two points

Function Mean curvature at χ1 Mean curvature at χ2

Semisphere − 2 − 2

C1-filling −0.731 − 0.727

σ

h2,

{
K1 = −5
K2 = −5

− 4.619 − 4.774

σ

h2,

{
K1 = 5
K2 = 5

4.734 4.812

σ

h2,

{
K1 = 5
K2 = −5

4.561 − 4.661

6 Conclusions

We have developed a method to reconstruct holes in a given surface or, more generally, in a
given dataset. The filling patch joins the original surface with C1-smoothness and it is defined
as a spline of bivariate polynomials of total degree at most two, leading to minimum possible
computational costs insofar as no lower degree allows to obtain C1-splines. Moreover, the
filling patch is required to be a proper approximation of a non-linear system composed of two
types of equations: the first ones (linear) control the fairness of the filling patch, while the
second ones control non-linear features, as the area or themean curvature. To obtain the filling
patch, some reformulations of the original non-linear system and some solvers to address
biobjective optimization problems are considered. In the particular case of the area constraint,
we develop a method to estimate optimum values of the weight to be given to each one of
the geometric characteristic (fairness and non-linear constraint) to be handled, as well as a
method to estimate the optimal area to be imposed. The numerical and graphical examples
presented show the effectiveness of the numerical methods proposed. Regarding the area
constraint, experiments carried out show that the filling patch associated with the optimum
value of the area is better achieved when the original non-linear system is reformulated
in terms of several disaggregated equations numerically solved by means of interior point
methods. While, in the general case, reformulations directly attempting to solve the system
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of non-linear equations are the most successful ones, when solved by fsolve, fromMatlab,
or knitro_nlneqs, from Knitro. Regarding the mean curvature constraint we also found
that solvers and reformulations leading to the best results depend on the value of the mean
curvature imposed. More precisely, solver knitro-nlneqs and reformulation O1 work
better for prescribed values closer to the exact ones, while for farthest values the best results
are obtained by means of GlobalSearch, when considering reformulation O4.
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