519 research outputs found

    Unsupervised Parkinson’s Disease Assessment

    Get PDF
    Parkinson’s Disease (PD) is a progressive neurological disease that affects 6.2 million people worldwide. The most popular clinical method to measure PD tremor severity is a standardized test called the Unified Parkinson’s Disease Rating Scale (UPDRS), which is performed subjectively by a medical professional. Due to infrequent checkups and human error introduced into the process, treatment is not optimally adjusted for PD patients. According to a recent review there are two devices recommended to objectively quantify PD symptom severity. Both devices record a patient’s tremors using inertial measurement units (IMUs). One is not currently available for over the counter purchases, as they are currently undergoing clinical trials. It has also been used in studies to evaluate to UPDRS scoring in home environments using an Android application to drive the tests. The other is an accessible product used by researchers to design home monitoring systems for PD tremors at home. Unfortunately, this product includes only the sensor and requires technical expertise and resources to set up the system. In this paper, we propose a low-cost and energy-efficient hybrid system that monitors a patient’s daily actions to quantify hand and finger tremors based on relevant UPDRS tests using IMUs and surface Electromyography (sEMG). This device can operate in a home or hospital environment and reduces the cost of evaluating UPDRS scores from both patient and the clinician’s perspectives. The system consists of a wearable device that collects data and wirelessly communicates with a local server that performs data analysis. The system does not require any choreographed actions so that there is no need for the user to follow any unwieldy peripheral. In order to avoid frequent battery replacement, we employ a very low-power wireless technology and optimize the software for energy efficiency. Each collected signal is filtered for motion classification, where the system determines what analysis methods best fit with each period of signals. The corresponding UPDRS algorithms are then used to analyze the signals and give a score to the patient. We explore six different machine learning algorithms to classify a patient’s actions into appropriate UPDRS tests. To verify the platform’s usability, we conducted several tests. We measured the accuracy of our main sensors by comparing them with a medically approved industry device. The our device and the industry device show similarities in measurements with errors acceptable for the large difference in cost. We tested the lifetime of the device to be 15.16 hours minimum assuming the device is constantly on. Our filters work reliably, demonstrating a high level of similarity to the expected data. Finally, the device is run through and end-to-end sequence, where we demonstrate that the platform can collect data and produce a score estimate for the medical professionals

    Ambulatory Monitoring of Activities and Motor Symptoms in Parkinson's Disease

    Get PDF
    Ambulatory monitoring of motor symptoms in Parkinson's disease (PD) can improve our therapeutic strategies, especially in patients with motor fluctuations. Previously published monitors usually assess only one or a few basic aspects of the cardinal motor symptoms in a laboratory setting. We developed a novel ambulatory monitoring system that provides a complete motor assessment by simultaneously analyzing current motor activity of the patient (e.g., sitting, walking, etc.) and the severity of many aspects related to tremor, bradykinesia, and hypokinesia. The monitor consists of a set of four inertial sensors. Validity of our monitor was established in seven healthy controls and six PD patients treated with deep brain stimulation (DBS) of the subthalamic nucleus. The patients were tested at three different levels of DBS treatment. Subjects were monitored while performing different tasks, including motor tests of the Unified PD Rating Scale (UPDRS). Output of the monitor was compared to simultaneously recorded videos. The monitor proved very accurate in discriminating between several motor activities. Monitor output correlated well with blinded UPDRS ratings during different DBS levels. The combined analysis of motor activity and symptom severity by our PD monitor brings true ambulatory monitoring of a wide variety of motor symptoms one step close

    A Wavelet-Based Approach To Monitoring Parkinson's Disease Symptoms

    Full text link
    Parkinson's disease is a neuro-degenerative disorder affecting tens of millions of people worldwide. Lately, there has been considerable interest in systems for at-home monitoring of patients, using wearable devices which contain inertial measurement units. We present a new wavelet-based approach for analysis of data from single wrist-worn smart-watches, and show high detection performance for tremor, bradykinesia, and dyskinesia, which have been the major targets for monitoring in this context. We also discuss the implication of our controlled-experiment results for uncontrolled home monitoring of freely behaving patients.Comment: ICASSP 201

    Clinical Decision Support Systems with Game-based Environments, Monitoring Symptoms of Parkinson’s Disease with Exergames

    Get PDF
    Parkinson’s Disease (PD) is a malady caused by progressive neuronal degeneration, deriving in several physical and cognitive symptoms that worsen with time. Like many other chronic diseases, it requires constant monitoring to perform medication and therapeutic adjustments. This is due to the significant variability in PD symptomatology and progress between patients. At the moment, this monitoring requires substantial participation from caregivers and numerous clinic visits. Personal diaries and questionnaires are used as data sources for medication and therapeutic adjustments. The subjectivity in these data sources leads to suboptimal clinical decisions. Therefore, more objective data sources are required to better monitor the progress of individual PD patients. A potential contribution towards more objective monitoring of PD is clinical decision support systems. These systems employ sensors and classification techniques to provide caregivers with objective information for their decision-making. This leads to more objective assessments of patient improvement or deterioration, resulting in better adjusted medication and therapeutic plans. Hereby, the need to encourage patients to actively and regularly provide data for remote monitoring remains a significant challenge. To address this challenge, the goal of this thesis is to combine clinical decision support systems with game-based environments. More specifically, serious games in the form of exergames, active video games that involve physical exercise, shall be used to deliver objective data for PD monitoring and therapy. Exergames increase engagement while combining physical and cognitive tasks. This combination, known as dual-tasking, has been proven to improve rehabilitation outcomes in PD: recent randomized clinical trials on exergame-based rehabilitation in PD show improvements in clinical outcomes that are equal or superior to those of traditional rehabilitation. In this thesis, we present an exergame-based clinical decision support system model to monitor symptoms of PD. This model provides both objective information on PD symptoms and an engaging environment for the patients. The model is elaborated, prototypically implemented and validated in the context of two of the most prominent symptoms of PD: (1) balance and gait, as well as (2) hand tremor and slowness of movement (bradykinesia). While balance and gait affections increase the risk of falling, hand tremors and bradykinesia affect hand dexterity. We employ Wii Balance Boards and Leap Motion sensors, and digitalize aspects of current clinical standards used to assess PD symptoms. In addition, we present two dual-tasking exergames: PDDanceCity for balance and gait, and PDPuzzleTable for tremor and bradykinesia. We evaluate the capability of our system for assessing the risk of falling and the severity of tremor in comparison with clinical standards. We also explore the statistical significance and effect size of the data we collect from PD patients and healthy controls. We demonstrate that the presented approach can predict an increased risk of falling and estimate tremor severity. Also, the target population shows a good acceptance of PDDanceCity and PDPuzzleTable. In summary, our results indicate a clear feasibility to implement this system for PD. Nevertheless, long-term randomized clinical trials are required to evaluate the potential of PDDanceCity and PDPuzzleTable for physical and cognitive rehabilitation effects

    Video-Based Analyses of Parkinson's Disease Severity: A Brief Review

    Get PDF
    Remote and objective assessment of the motor symptoms of Parkinson's disease is an area of great interest particularly since the COVID-19 crisis emerged. In this paper, we focus on a) the challenges of assessing motor severity via videos and b) the use of emerging video-based Artificial Intelligence (AI)/Machine Learning techniques to quantitate human movement and its potential utility in assessing motor severity in patients with Parkinson's disease. While we conclude that video-based assessment may be an accessible and useful way of monitoring motor severity of Parkinson's disease, the potential of video-based AI to diagnose and quantify disease severity in the clinical context is dependent on research with large, diverse samples, and further validation using carefully considered performance standards

    Human Motion Analysis with Wearable Inertial Sensors

    Get PDF
    High-resolution, quantitative data obtained by a human motion capture system can be used to better understand the cause of many diseases for effective treatments. Talking about the daily care of the aging population, two issues are critical. One is to continuously track motions and position of aging people when they are at home, inside a building or in the unknown environment; the other is to monitor their health status in real time when they are in the free-living environment. Continuous monitoring of human movement in their natural living environment potentially provide more valuable feedback than these in laboratory settings. However, it has been extremely challenging to go beyond laboratory and obtain accurate measurements of human physical activity in free-living environments. Commercial motion capture systems produce excellent in-studio capture and reconstructions, but offer no comparable solution for acquisition in everyday environments. Therefore in this dissertation, a wearable human motion analysis system is developed for continuously tracking human motions, monitoring health status, positioning human location and recording the itinerary. In this dissertation, two systems are developed for seeking aforementioned two goals: tracking human body motions and positioning a human. Firstly, an inertial-based human body motion tracking system with our developed inertial measurement unit (IMU) is introduced. By arbitrarily attaching a wearable IMU to each segment, segment motions can be measured and translated into inertial data by IMUs. A human model can be reconstructed in real time based on the inertial data by applying high efficient twists and exponential maps techniques. Secondly, for validating the feasibility of developed tracking system in the practical application, model-based quantification approaches for resting tremor and lower extremity bradykinesia in Parkinson’s disease are proposed. By estimating all involved joint angles in PD symptoms based on reconstructed human model, angle characteristics with corresponding medical ratings are employed for training a HMM classifier for quantification. Besides, a pedestrian positioning system is developed for tracking user’s itinerary and positioning in the global frame. Corresponding tests have been carried out to assess the performance of each system

    Parkinson\u27s Symptoms quantification using wearable sensors

    Get PDF
    Parkinson’s disease (PD) is a common neurodegenerative disorder affecting more than one million people in the United States and seven million people worldwide. Motor symptoms such as tremor, slowness of movements, rigidity, postural instability, and gait impairment are commonly observed in PD patients. Currently, Parkinsonian symptoms are usually assessed in clinical settings, where a patient has to complete some predefined motor tasks. Then a physician assigns a score based on the United Parkinson’s Disease Rating Scale (UPDRS) after observing the motor task. However, this procedure suffers from inter subject variability. Also, patients tend to show fewer symptoms during clinical visit, which leads to false assumption of the disease severity. The objective of this study is to overcome this limitations by building a system using Inertial Measurement Unit (IMU) that can be used at clinics and in home to collect PD symptoms data and build algorithms that can quantify PD symptoms more effectively. Data was acquired from patients seen at movement disorders Clinic at Sanford Health in Fargo, ND. Subjects wore Physilog IMUs and performed tasks for tremor, bradykinesia and gait according to the protocol approved by Sanford IRB. The data was analyzed using modified algorithm that was initially developed using data from normal subjects emulating PD symptoms. For tremor measurement, the study showed that sensor signals collected from the index finger more accurately predict tremor severity compared to signals from a sensor placed on the wrist. For finger tapping, a task measuring bradykinesia, the algorithm could predict with more than 80% accuracy when a set of features were selected to train the prediction model. Regarding gait, three different analysis were done to find the effective parameters indicative of severity of PD. Gait speed measurement algorithm was first developed using treadmill as a reference. Then, it was shown that the features selected could predict PD gait with 85.5% accuracy
    corecore