347 research outputs found

    Learning Ground Traversability from Simulations

    Full text link
    Mobile ground robots operating on unstructured terrain must predict which areas of the environment they are able to pass in order to plan feasible paths. We address traversability estimation as a heightmap classification problem: we build a convolutional neural network that, given an image representing the heightmap of a terrain patch, predicts whether the robot will be able to traverse such patch from left to right. The classifier is trained for a specific robot model (wheeled, tracked, legged, snake-like) using simulation data on procedurally generated training terrains; the trained classifier can be applied to unseen large heightmaps to yield oriented traversability maps, and then plan traversable paths. We extensively evaluate the approach in simulation on six real-world elevation datasets, and run a real-robot validation in one indoor and one outdoor environment.Comment: Webpage: http://romarcg.xyz/traversability_estimation

    A generative traversability model for monocular robot self-guidance

    Get PDF
    The research work disclosed in this publication is partially funded by the Strategic Educational Pathways Scholarship (Malta). The scholarship is part-financed by the European Union - European Social Fund (ESF) under the Operational Programme II - Cohesion Policy 2007-2013, Empowering People for More Jobs and a Better Quality of Life.In order for robots to be integrated into human active spaces and perform useful tasks, they must be capable of discriminating between traversable surfaces and obstacle regions in their surrounding environment. In this work, a principled semi-supervised (EM) framework is presented for the detection of traversable image regions for use on a low-cost monocular mobile robot. We propose a novel generative model for the occurrence of traversability cues, which are a measure of dissimilarity between safe-window and image superpixel features. Our classification results on both indoor and outdoor images sequences demonstrate its generality and adaptability to multiple environments through the online learning of an exponential mixture model. We show that this appearance-based vision framework is robust and can quickly and accurately estimate the probabilistic traversability of an image using no temporal information. Moreover, the reduction in safe-window size as compared to the state-of-the-art enables a self-guided monocular robot to roam in closer proximity of obstacles.peer-reviewe

    Unevenness Point Descriptor for Terrain Analysis in Mobile Robot Applications

    Get PDF
    In recent years, the use of imaging sensors that produce a three-dimensional representation of the environment has become an efficient solution to increase the degree of perception of autonomous mobile robots. Accurate and dense 3D point clouds can be generated from traditional stereo systems and laser scanners or from the new generation of RGB-D cameras, representing a versatile, reliable and cost-effective solution that is rapidly gaining interest within the robotics community. For autonomous mobile robots, it is critical to assess the traversability of the surrounding environment, especially when driving across natural terrain. In this paper, a novel approach to detect traversable and non-traversable regions of the environment from a depth image is presented that could enhance mobility and safety through integration with localization, control and planning methods. The proposed algorithm is based on the analysis of the normal vector of a surface obtained through Principal Component Analysis and it leads to the definition of a novel, so defined, Unevenness Point Descriptor. Experimental results, obtained with vehicles operating in indoor and outdoor environments, are presented to validate this approach

    GrASPE: Graph based Multimodal Fusion for Robot Navigation in Unstructured Outdoor Environments

    Full text link
    We present a novel trajectory traversability estimation and planning algorithm for robot navigation in complex outdoor environments. We incorporate multimodal sensory inputs from an RGB camera, 3D LiDAR, and robot's odometry sensor to train a prediction model to estimate candidate trajectories' success probabilities based on partially reliable multi-modal sensor observations. We encode high-dimensional multi-modal sensory inputs to low-dimensional feature vectors using encoder networks and represent them as a connected graph to train an attention-based Graph Neural Network (GNN) model to predict trajectory success probabilities. We further analyze the image and point cloud data separately to quantify sensor reliability to augment the weights of the feature graph representation used in our GNN. During runtime, our model utilizes multi-sensor inputs to predict the success probabilities of the trajectories generated by a local planner to avoid potential collisions and failures. Our algorithm demonstrates robust predictions when one or more sensor modalities are unreliable or unavailable in complex outdoor environments. We evaluate our algorithm's navigation performance using a Spot robot in real-world outdoor environments

    3D mapping and path planning from range data

    Get PDF
    This thesis reports research on mapping, terrain classification and path planning. These are classical problems in robotics, typically studied independently, and here we link such problems by framing them within a common proprioceptive modality, that of three-dimensional laser range scanning. The ultimate goal is to deliver navigation paths for challenging mobile robotics scenarios. For this reason we also deliver safe traversable regions from a previously computed globally consistent map. We first examine the problem of registering dense point clouds acquired at different instances in time. We contribute with a novel range registration mechanism for pairs of 3D range scans using point-to-point and point-to-line correspondences in a hierarchical correspondence search strategy. For the minimization we adopt a metric that takes into account not only the distance between corresponding points, but also the orientation of their relative reference frames. We also propose FaMSA, a fast technique for multi-scan point cloud alignment that takes advantage of the asserted point correspondences during sequential scan matching, using the point match history to speed up the computation of new scan matches. To properly propagate the model of the sensor noise and the scan matching, we employ first order error propagation, and to correct the error accumulation from local data alignment, we consider the probabilistic alignment of 3D point clouds using a delayed-state Extended Information Filter (EIF). In this thesis we adapt the Pose SLAM algorithm to the case of 3D range mapping, Pose SLAM is the variant of SLAM where only the robot trajectory is estimated and where sensor data is solely used to produce relative constraints between robot poses. These dense mapping techniques are tested in several scenarios acquired with our 3D sensors, producing impressively rich 3D environment models. The computed maps are then processed to identify traversable regions and to plan navigation sequences. In this thesis we present a pair of methods to attain high-level off-line classification of traversable areas, in which training data is acquired automatically from navigation sequences. Traversable features came from the robot footprint samples during manual robot motion, allowing us to capture terrain constrains not easy to model. Using only some of the traversed areas as positive training samples, our algorithms are tested in real scenarios to find the rest of the traversable terrain, and are compared with a naive parametric and some variants of the Support Vector Machine. Later, we contribute with a path planner that guarantees reachability at a desired robot pose with significantly lower computation time than competing alternatives. To search for the best path, our planner incrementally builds a tree using the A* algorithm, it includes a hybrid cost policy to efficiently expand the search tree, combining random sampling from the continuous space of kinematically feasible motion commands with a cost to goal metric that also takes into account the vehicle nonholonomic constraints. The planer also allows for node rewiring, and to speed up node search, our method includes heuristics that penalize node expansion near obstacles, and that limit the number of explored nodes. The method book-keeps visited cells in the configuration space, and disallows node expansion at those configurations in the first full iteration of the algorithm. We validate the proposed methods with experiments in extensive real scenarios from different very complex 3D outdoors environments, and compare it with other techniques such as the A*, RRT and RRT* algorithms.Esta tesis reporta investigación sobre el mapeo, clasificación de terreno y planificación de trayectorias. Estos son problemas clásicos en robótica los cuales generalmente se estudian de forma independiente, aquí se vinculan enmarcandolos con una modalidad propioceptiva común: un láser de rango 3D. El objetivo final es ofrecer trayectorias de navegación para escenarios complejos en el marco de la robótica móvil. Por esta razón también entregamos regiones transitables en un mapa global consistente calculado previamente. Primero examinamos el problema de registro de nubes de puntos adquiridas en diferentes instancias de tiempo. Contribuimos con un novedoso mecanismo de registro de pares de imagenes de rango 3D usando correspondencias punto a punto y punto a línea, en una estrategia de búsqueda de correspondencias jerárquica. Para la minimización optamos por una metrica que considera no sólo la distancia entre puntos, sino también la orientación de los marcos de referencia relativos. También proponemos FAMSA, una técnica para el registro rápido simultaneo de multiples nubes de puntos, la cual aprovecha las correspondencias de puntos obtenidas durante el registro secuencial, usando inicialmente la historia de correspondencias para acelerar el cálculo de las correspondecias en los nuevos registros de imagenes. Para propagar adecuadamente el modelo del ruido del sensor y del registro de imagenes, empleamos la propagación de error de primer orden, y para corregir el error acumulado del registro local, consideramos la alineación probabilística de nubes de puntos 3D utilizando un Filtro Extendido de Información de estados retrasados. En esta tesis adaptamos el algóritmo Pose SLAM para el caso de mapas con imagenes de rango 3D, Pose SLAM es la variante de SLAM donde solamente se estima la trayectoria del robot, usando los datos del sensor como restricciones relativas entre las poses robot. Estas técnicas de mapeo se prueban en varios escenarios adquiridos con nuestros sensores 3D produciendo modelos 3D impresionantes. Los mapas obtenidos se procesan para identificar regiones navegables y para planificar secuencias de navegación. Presentamos un par de métodos para lograr la clasificación de zonas transitables fuera de línea. Los datos de entrenamiento se adquieren de forma automática usando secuencias de navegación obtenidas manualmente. Las características transitables se captan de las huella de la trayectoria del robot, lo cual permite capturar restricciones del terreno difíciles de modelar. Con sólo algunas de las zonas transitables como muestras de entrenamiento positivo, nuestros algoritmos se prueban en escenarios reales para encontrar el resto del terreno transitable. Los algoritmos se comparan con algunas variantes de la máquina de soporte de vectores (SVM) y una parametrizacion ingenua. También, contribuimos con un planificador de trayectorias que garantiza llegar a una posicion deseada del robot en significante menor tiempo de cálculo a otras alternativas. Para buscar el mejor camino, nuestro planificador emplea un arbol de busqueda incremental basado en el algoritmo A*. Incluimos una póliza de coste híbrido para crecer de manera eficiente el árbol, combinando el muestro aleatorio del espacio continuo de comandos cinemáticos del robot con una métrica de coste al objetivo que también concidera las cinemática del robot. El planificador además permite reconectado de nodos, y, para acelerar la búsqueda de nodos, se incluye una heurística que penaliza la expansión de nodos cerca de los obstáculos, que limita el número de nodos explorados. El método conoce las céldas que ha visitado del espacio de configuraciones, evitando la expansión de nodos en configuraciones que han sido vistadas en la primera iteración completa del algoritmo. Los métodos propuestos se validán con amplios experimentos con escenarios reales en diferentes entornos exteriores, asi como su comparación con otras técnicas como los algoritmos A*, RRT y RRT*.Postprint (published version

    Watch Your Step! Terrain Traversability for Robot Control

    Get PDF
    Watch your step! Or perhaps, watch your wheels. Whatever the robot is, if it puts its feet, tracks, or wheels in the wrong place, it might get hurt; and as robots are quickly going from structured and completely known environments towards uncertain and unknown terrain, the surface assessment becomes an essential requirement. As a result, future mobile robots cannot neglect the evaluation of terrain’s structure, according to their driving capabilities. With the objective of filling this gap, the focus of this study was laid on terrain analysis methods, which can be used for robot control with particular reference to autonomous vehicles and mobile robots. Giving an overview of theory related to this topic, the investigation not only covers hardware, such as visual sensors or laser scanners, but also space descriptions, such as digital elevation models and point descriptors, introducing new aspects and characterization of terrain assessment. During the discussion, a wide number of examples and methodologies are exposed according to different tools and sensors, including the description of a recent method of terrain assessment using normal vectors analysis. Indeed, normal vectors has demonstrated great potentialities in the field of terrain irregularity assessment in both on‐road and off‐road environments
    corecore