22 research outputs found

    Traveling Salesman Problem with a Drone Station

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2018. 2. ๋ฌธ์ผ๊ฒฝ.The importance of drone delivery services is increasing. However, the operational aspects of drone delivery services have not been studied extensively. Specifically, with respect to truck-drone systems, researchers have not given sufficient attention to drone facilities because of the limited drone flight range around a distribution center. In this paper, we propose a truck-drone system to overcome the flight-range limitation. We define a drone station as the facility where drones and charging devices are stored, usually far away from the package distribution center. The traveling salesman problem with a drone station (TSP-DS) is developed based on mixed integer programming. Fundamental features of the TSP-DS are analyzed and route distortion is defined. We show that the model can be divided into independent traveling salesman and parallel identical machine scheduling problems for which we derive two solution approaches. Computational experiments with randomly generated instances show the characteristics of the TSP-DS and suggest that our decomposition approaches effectively deal with TSP-DS complexity problems.Chapter 1. Introduction 1 Chapter 2. Literature Review 5 Chapter 3. Truck-drone routing Problem 9 3.1 Notation 10 3.2 Mathematical formulation 12 Chapter 4. Fundamental Features of the TSP-DS 14 4.1 Route distortion 14 4.2 Condition for the elimination of route distortion 18 4.3 Decomposition of the TSP-DS 20 Chapter 5. Computational Experiments 24 5.1 Computation times 25 5.2 Comparison between the TSP-DS and TSP 28 5.3 Number of drones in a drone station 30 5.4 Discussion 32 Chapter 6. Conclusions 33 References 35 ์ดˆ๋ก 40Maste

    A Game-Theoretic Drone-as-a-Service Composition for Delivery

    Full text link
    We propose a novel game-theoretic approach for drone service composition considering recharging constraints. We design a non-cooperative game model for drone services. We propose a non-cooperative game algorithm for the selection and composition of optimal drone services. We conduct several experiments on a real drone dataset to demonstrate the efficiency of our proposed approach.Comment: 5 pages, 3 figures. This is an accepted paper and it is going to appear in the Proceedings of the 2020 IEEE International Conference on Web Services (IEEE ICWS 2020) affiliated with the 2020 IEEE World Congress on Services (IEEE SERVICES 2020), Beijing, Chin

    Energy-Efficient UAV-Assisted IoT Data Collection via TSP-Based Solution Space Reduction

    Full text link
    This paper presents a wireless data collection framework that employs an unmanned aerial vehicle (UAV) to efficiently gather data from distributed IoT sensors deployed in a large area. Our approach takes into account the non-zero communication ranges of the sensors to optimize the flight path of the UAV, resulting in a variation of the Traveling Salesman Problem (TSP). We prove mathematically that the optimal waypoints for this TSP-variant problem are restricted to the boundaries of the sensor communication ranges, greatly reducing the solution space. Building on this finding, we develop a low-complexity UAV-assisted sensor data collection algorithm, and demonstrate its effectiveness in a selected use case where we minimize the total energy consumption of the UAV and sensors by jointly optimizing the UAV's travel distance and the sensors' communication ranges

    The Application of Drones in City Logistics Concepts

    Get PDF
    With the rise of city logistics (CL) problems in the last three decades, various methods, approaches, solutions, and initiatives were analyzed and proposed for making logistics in urban areas more sustainable. The most analyzed and promising solutions are those that take into account cooperation among logistics providers and consolidation of the flow of goods. Furthermore, technological innovations enable the implementation of modern vehicles/equipment in order to make CL solutions sustainable. For several years, drone-based delivery has attracted lots of attention in scientific research, but there is a serious gap in the literature regarding the application of drones in CL concepts. The goal of this paper is to analyze four CL concepts that differ in consolidation type, transformation degree of flow of goods (direct and indirect, multi-echelon flows), and the role of drones. Two of the analyzed concepts are novel, which is the main contribution of the paper. The performances of the analyzed concepts are compared to the performances of the traditional delivery model โ€“ using only trucks without prior flow consolidation. The results indicate that CL concepts which combine different consolidation models and drones in the last phase of the delivery could stand out as a sustainable CL solution

    Penentuan Rute Pengiriman Barang Dengan Metode Nearest Neighbor

    Get PDF
    Semakin cepat barang sampai ke konsumen maka menjadi lebih mudah untuk mendapatkan barang dan keuntungan perusahaan semakin bertambah. Pada pendistribusian membentuk salah satu pemecahan masalah untuk mencari rute dengan meminimumkan jarak dari lokasi gudang ke toko dan memiliki jumlah permintaan barang yang berbeda-beda. Menggunakan metode nearest neighbor untuk menyelesaikan penentuan rute distribusi barang dari gudang ke toko, dengan tujuan mengurangi total jarak pengiriman, waktu dan beban biaya yang dibebani perusahaan. Hasil pencarian rute menggunakan metode nearest neighbor menghasilkan jumlah rute paling sedikit dibandingkan dengan sebelum menggunakan metode dan pada total jarak dengan menggunakan metode 98610 meter atau 98,61 km sedangkan jika pada rute sebelum mengunakan metode 124198 meter atau 124,198 km terjadi pengurangan jarak 25588 atau 25,588 atau sebesar 20.6026 %

    Metaheuristic for Solving the Delivery Man Problem with Drone

    Get PDF
    Delivery Man Problem with Drone (DMPD) is a variant of Delivery Man Problem (DMP). The objective of DMP is to minimize the sum of customers' waiting times. In DMP, there is only a truck to deliver materials to customers while the delivery is completed by collaboration between truck and drone in DMPD. Using a drone is useful when a truck cannot reach some customers in particular circumstances such as narrow roads or natural disasters. For NP-hard problems, metaheuristic is a natural approach to solve medium to large-sized instances. In this paper, a metaheuristic algorithm is proposed. Initially, a solution without drone is created. Then, it is an input of split procedure to convert DMP-solution into DMPD-solution. After that, it is improved by the combination of Variable Neighborhood Search (VNS) and Tabu Search (TS). To explore a new solution space, diversification is applied. The proposed algorithm balances diversification and intensification to prevent the search from local optima. The experimental simulations show that the proposed algorithm reaches good solutions fast, even for large instances

    An Assessment of Shortest Prioritized Path-Based Bidirectional Wireless Charging Approach Toward Smart Agriculture

    Get PDF
    The agriculture sector has witnessed a transformation with the advent of smart sensing devices, leading to improved crop yield and quality. However, the management of data collection from numerous sensors across vast agricultural areas, as well as the associated charging requirements, presents significant challenges. This paper addresses the major research problem by proposing an innovative solution for charging agricultural sensors. The introduction of an energy-constrained device (ECD) enables wireless charging and transmission of soil data to a centralized server. The proposed ECDs will enable enhanced data collection, precision agriculture, optimized resource allocation, timely decision-making, and remote monitoring and control. A bidirectional wireless charging drone is employed to efficiently charge the ECDs. To optimize energy usage, a prioritized Dijkstra algorithm determines the ECDs to be charged and plans the shortest route for the drone. The wireless charging drone landing-charging station achieves an efficiency of 91.3%, delivering 72 W of power within a 5 mm range. Furthermore, the ECD possesses a data transmission range of 100 m and incorporates deep sleep functionality, allowing for a remarkable 30-day battery life.publishedVersio

    ํŠธ๋Ÿญ์„ ์ด๋™ํ˜• ๋“œ๋ก  ๊ธฐ์ง€๋กœ ์‚ฌ์šฉํ•˜๋Š” ํ•œ์ •์šฉ๋Ÿ‰ ํŠธ๋Ÿญ-๋“œ๋ก  ๊ฒฝ๋กœ ๋ฐฐ์ • ๋ฌธ์ œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2022.2. ๊น€๋™๊ทœ.Drones initially received attention for military purposes as a collective term for unmanned aerial vehicles (UAVs), but recently, efforts to use them in logistics have been actively underway. If drones are put into places where low-weight and high-value items are currently difficult to deliver by existing delivery means, it will have the effect of greatly reducing costs. However, the disadvantages of drones in delivery are also clear. In order to improve the delivery capacity of drones, the size of drones must increase when drones are equipped with large-capacity batteries. This thesis introduced two methods and presented algorithms for each method among VRP-D. First of all, CVP-D is a method in which carriers such as trucks and ships with large capacity and slow speed carry robots and drones with small capacity. Next, in the CVRP-D, the vehicle and the drone move different paths simultaneously, and the drone can visit multiple nodes during one sortie. The two problems are problems in which restrictions are added to the vehicle route problem (VRP), known as the NP-hard problem. The algorithm presented in this study derived drone-truck routes for two problems within a reasonable time. In addition, sensitivity analysis was conducted to observe changes in the appropriate network structure for the introduction of drone delivery and the main parameters of the drone. In addition, the validity of the proposed algorithm was verified through comparison with the data used as a benchmark in previous studies. These research results will contribute to the creation of delivery routes quickly, considering the specification of a drone.๋“œ๋ก ์€ ๋ฌด์ธํ•ญ๊ณต๊ธฐ(UAV)์˜ ํ†ต์นญ์œผ๋กœ ์ดˆ๊ธฐ์—๋Š” ๊ตฐ์‚ฌ์  ๋ชฉ์ ์œผ๋กœ ์ฃผ๋ชฉ์„ ๋ฐ›์•˜์œผ๋‚˜ ์ตœ๊ทผ ๋ฌผ๋ฅ˜์—์„œ ์‚ฌ์šฉํ•˜๋ ค๋Š” ๋…ธ๋ ฅ์ด ์ ๊ทน์ ์œผ๋กœ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋“œ๋ก ์ด ์ €์ค‘๋Ÿ‰-๊ณ ๊ฐ€์น˜ ๋ฌผํ’ˆ์„ ๋ฐฐ์†ก์—์„œ ํ˜„์žฌ ๊ธฐ์กด ๋ฐฐ์†ก์ˆ˜๋‹จ์— ์˜ํ•ด ๋ฐฐ์†ก์ด ์–ด๋ ค์šด ๊ณณ์— ํˆฌ์ž…์ด ๋œ๋‹ค๋ฉด ํฐ ๋น„์šฉ์ ˆ๊ฐ์˜ ํšจ๊ณผ๊ฐ€ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ํ•˜์ง€๋งŒ ๋ฐฐ์†ก์— ์žˆ์–ด์„œ ๋“œ๋ก ์˜ ๋‹จ์ ๋„ ๋ช…ํ™•ํ•˜๋‹ค. ๋“œ๋ก ์˜ ๋ฐฐ์†ก๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋“œ๋ก ์ด ๋Œ€์šฉ๋Ÿ‰ ๋ฐฐํ„ฐ๋ฆฌ๋ฅผ ํƒ‘์žฌํ•˜๋ฉด ๋“œ๋ก  ํฌ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋“œ๋ก ๊ณผ ํŠธ๋Ÿญ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์šด์˜ํ•˜๋Š” ๋ฐฉ์‹์ด ์—ฐ๊ตฌ๋˜์–ด์™”๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹ ์ค‘ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ๋ฐฉ์‹์„ ์†Œ๊ฐœํ•˜๊ณ , ๊ฐ๊ฐ์˜ ๋ฐฉ์‹์— ๋Œ€ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋จผ์ €, CVP-D๋Š” ์šฉ๋Ÿ‰์ด ํฌ๊ณ  ์†๋„๊ฐ€ ๋Š๋ฆฐ ํŠธ๋Ÿญ์ด๋‚˜ ๋ฐฐ ๋“ฑ์˜ ์บ๋ฆฌ์–ด๊ฐ€ ์šฉ๋Ÿ‰์ด ์ž‘์€ ๋กœ๋ด‡, ๋“œ๋ก  ๋“ฑ์„ ์‹ฃ๊ณ  ๋‹ค๋‹ˆ๋ฉด์„œ ๋ฐฐ์†ก์„ ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋‹ค์Œ์œผ๋กœ, CVRP-D๋Š” ์ฐจ๋Ÿ‰๊ณผ ๋“œ๋ก ์ด ๋™์‹œ์— ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๊ฒฝ๋กœ๋ฅผ ์ด๋™ํ•˜๋ฉฐ, ๋“œ๋ก ์€ 1ํšŒ ๋น„ํ–‰(sortie)์‹œ ๋‹ค์ˆ˜์˜ ๋…ธ๋“œ๋ฅผ ๋ฐฉ๋ฌธํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋‘ ๋ฌธ์ œ๋Š” ์ฐจ๋Ÿ‰๊ฒฝ๋กœ๋ฌธ์ œ(VRP)์— ์ œ์•ฝ์ด ๋”ํ•ด์ง„ ๋ฌธ์ œ์ด๋‹ค. VRP๋Š” ๋Œ€ํ‘œ์ ์ธ NP-hard ๋ฌธ์ œ๋กœ ํ•ด๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ ํœด๋ฆฌ์Šคํ‹ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์š”๊ตฌ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ•ฉ๋ฆฌ์ ์ธ ์‹œ๊ฐ„ ๋‚ด ๋‘๋ฌธ์ œ์˜ ๋“œ๋ก -ํŠธ๋Ÿญ ๊ฒฝ๋กœ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ฏผ๊ฐ๋„ ๋ถ„์„์„ ์‹ค์‹œํ•˜์—ฌ ๋“œ๋ก  ๋ฐฐ์†ก ๋„์ž…์„ ์œ„ํ•œ ์ ์ ˆํ•œ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ๋ฐ ๋“œ๋ก ์˜ ์ฃผ์š” ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์ด๋Š” ์ฐจํ›„ ๋“œ๋ก ์˜ ์„ฑ๋Šฅ์— ๊ด€ํ•œ ์˜์‚ฌ๊ฒฐ์ • ์‹œ ๊ณ ๋ คํ•ด์•ผ ํ•  ์š”์†Œ๋“ค์— ๋Œ€ํ•œ ๊ธฐ์ค€์ด ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋˜ํ•œ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ๋ฒค์น˜๋งˆํฌ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐ์ดํ„ฐ์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋“œ๋ก  ๋„์ž…์ด ๋ฐฐ์†ก์‹œ๊ฐ„์„ ๊ฐ์†Œ์‹œํ‚ค๋ฉฐ, ์šด์˜๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ์„œ ๋ฐฐ์†ก์‹œ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•จ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ์„ฑ๊ณผ๋Š” ๋“œ๋ก  ๋ฐฐ์†ก ์‹œ ํ™˜๊ฒฝ๊ณผ ๊ธฐ๊ณ„์  ์„ฑ๋Šฅ์„ ๊ณ ๋ คํ•œ ๋ฐฐ์†ก ๊ฒฝ๋กœ๋ฅผ ๋‹จ์‹œ๊ฐ„๋‚ด ์ƒ์„ฑํ•˜์—ฌ ์ƒ์—…์ ์œผ๋กœ ์ด์šฉ๊ฐ€๋Šฅ ํ•  ๊ฒƒ์ด๋‹ค.Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Research Purpose 3 1.3 Contribution of Research 4 Chapter 2. Literature review 5 2.1 Vehicle Routing Problems with Drone 5 2.2 Carrier Vehicle Problem with Drone(CVP-D) 10 2.3 Capacitated VRP with Drone(CVRP-D) 12 Chapter 3. Mathematical Formulation 14 3.1 Terminology 14 3.2 CVP-D Formulation 15 3.3 CVRP-D Formulation 19 Chapter 4. Proposed Algorithms 23 4.1 Heuristic Algorithm 23 4.1.1 Knapsack Problem 23 4.1.2 Parallel Machine Scheduling (PMS) 25 4.1.3 Set Covering Location Problem (SCLP) 27 4.1.4 Guided Local Search (GLS) Algorithm 28 4.1.5 Genetic Algorithm (GA) 29 4.2 Proposed Heuristic Algorithm : GA-CVPD 30 4.3 Proposed Heuristic Algorithm : GA-CVRPD 33 Chapter 5. Numerical Analysis 36 5.1 Data Description 36 5.2 Numerical experiment 37 5.3 Sensitivity analysis 39 5.3.1 Analysis on GA-CVPD 39 5.3.2 Analysis on GA-CVRPD 42 5.3.3 Result on different Instances 45 Chapter 6. Conclusion 48 Bibliography 50 Abstract in Korean 53 4.1.5 Genetic Algorithm (GA) 29 4.2 Proposed Heuristic Algorithm : GA-CVPD 30 4.3 Proposed Heuristic Algorithm : GA-CVRPD 33 Chapter 5. Numerical Analysis 36 5.1 Data Description 36 5.2 Numerical experiment 37 5.3 Sensitivity analysis 42 5.3.1 Analysis on GA-CVPD 39 5.3.2 Analysis on GA-CVRPD 42 5.3.3 Result on different Instances 45 Chapter 6. Conclusion 48 Bibliography 50 Abstract in Korean 53์„
    corecore