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Abstract

Traveling Salesman Problem 

with a Drone Station

Sungwoo Kim

M.S. in Industrial Engineering

The Graduate School

Seoul National University

   The importance of drone delivery services is increasing. However, the 

operational aspects of drone delivery services have not been studied 

extensively. Specifically, with respect to truck-drone systems, researchers 

have not given sufficient attention to drone facilities because of the limited 

drone flight range around a distribution center. In this paper, we propose a 

truck-drone system to overcome the flight-range limitation. We define a 

drone station as the facility where drones and charging devices are stored, 

usually far away from the package distribution center. The traveling 

salesman problem with a drone station (TSP-DS) is developed based on 

mixed integer programming. Fundamental features of the TSP-DS are 

analyzed and route distortion is defined. We show that the model can be 

divided into independent traveling salesman and parallel identical machine 
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scheduling problems for which we derive two solution approaches. 

Computational experiments with randomly generated instances show the 

characteristics of the TSP-DS and suggest that our decomposition approaches 

effectively deal with TSP-DS complexity problems.

keywords : Drone delivery, Truck-drone service, Drone station, Mixed 

integer programming

Student Number : 2016-21099
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Chapter 1. Introduction

    Growing e-commerce and m-commerce increases the importance 

of efficient logistics. In 2013, Amazon announced drone technology as 

a future logistic innovation, and many companies have invested into 

drone research. For example, Amazon unveiled Amazon Prime Air, 

and Google announced Project Wing (Grothas 2016, Muoio 2016). 

Drones have many advantages over the typical truck delivery system 

(Agatz et al. 2016, Wohlsen 2014). As drones operate independently, 

they are free from operating labor costs and have relatively unlimited 

working time. Further, they move through the air and thus avoid the 

traffic congestion problems of ground transportation. These advantages 

lead to the highly energy-efficient use of drones. Moreover, the 

transportation cost per kilometer is much lower than that of other 

means. However, because of technological limitations, a drone can 

carry only one parcel of limited weight and volume, and it can 

deliver to a single customer within a short flight range. To overcome 

these limitations, drone and truck delivery services can be used such 

that the characteristics of one complement the other. To demonstrate 

the combined means of delivery, the HorseFly team at the University 

of Cincinnati developed a system in which a drone can attach to and 

launch from a truck (Wohlsen 2014).   

    The technology needs further development to overcome some 

realistic problems, and battery capacity is a main concern for drone 

utilization. As many distribution centers with drone facilities are 
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located far from central cities, relatively few customers are serviceable 

by drones. For this reason, large retail companies such as Amazon 

strive to build more distribution centers near major cities, but the 

expenses of constructing distribution centers are still a huge obstacle 

to completion. To deal with this logistical problem, a different 

concept of drone facilities is proposed. Roblin (2015) introduced 

Pylons Dronairports, which contain drone recharge and shelter 

devices. Designed by Bruni and Sardo, these compact devices can be 

easily installed any place. In addition, Amazon plans to use street 

lights and church steeples as drone docking stations (Mogg 2016). 

Another problem is that the weight and volume capacities of drones 

are not enough to accommodate commercial delivery services (Gross 

2013).

    Because many researchers and companies have tried to overcome 

these problems, some companies have been able to utilize drones for 

commercial purposes. In contrast, research on the operational aspects 

of drone delivery has been neglected, and only a handful of papers in 

drone-truck systems have been presented. One of the initial papers 

about the traveling salesman problem (TSP) in tandem with drones 

was conducted by Murray and Chu (2015), who described two 

different models. The flying sidekick TSP (FSTSP) describes the way 

a single drone is used with a truck. A drone is attached onto the 

truck, and a truck driver launches the drone and also retrieves it. The 

other model is the parallel drone scheduling TSP (PDSTSP) and is 

the key reference for this paper. Unlike the FSTSP, the PDSTSP can 
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utilize a sufficiently large number of drones. However, drones deliver 

parcels only within the flight range of the distribution center such that 

problems arise when the distribution center is far away from a 

majority of customers.

    To overcome the limitations of the PDSTSP, we developed the 

traveling salesman problem with a drone station (TSP-DS), through 

which we exploit a drone station, defined as a facility that stores 

drones and charging devices. The station is ready to launch drones 

that is, it is “activated” after a truck supplies parcels for drone 

delivery. We assume that the station can furnish a sufficiently large 

number of drones and that the location of the station does not depend 

on that of the distribution center. Specifically, the drone station is 

located near customer areas and away from the distribution center. 

The facility can deliver parcels using drones after a truck supplies the 

deliverables to the drone station, and a truck and a drone station 

operate independent of the distribution center after the truck supplies 

parcels for drone delivery. Figure 1 depicts the difference between the 

PDSTSP and TSP-DS.

    We first analyze the fundamental features of the TSP-DS. We 

define route distortion, and the number of drones to eliminate route 

distortion is presented. By applying the assumptions of a sufficient 

number of drones and by considering the distance between the 

distribution center and a drone station is far enough, we show that 

the TSP-DS can be divided into the traveling salesman problem (TSP) 

and the parallel identical machine scheduling problem (PMS). Through 
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this approach, we successfully reduce the complexity of the problem, 

and obtain the exact solution. 

Figure 1. Comparison of the PDSTSP and TSP-DS (red circle: 

drone-serviceable customer, white circle: truck-only customer, blue circle: a 

drone station).

    

The remainder of this paper is composed as follows: Section 2 

introduces previous research related to truck-drone systems. Section 3 

describes the TSP-DS. Fundamental features of the TSP-DS is 

presented in Section 4. Section 5 shows the analyses of computational 

results and discussion, and Section 6 presents conclusions.



- 5 -

2. Literature review

    The TSP-DS is one variation of the TSP and the vehicle routing 

problem. A recent review of the TSP was offered by Applegate et al. 

(2011) and a review of multiple TSP problems was written by Bektas 

(2006). Other excellent overviews of the vehicle routing problem were 

provided by Golden et al. (2008) and Toth and Vigo (2014). Our 

proposed model is also related to the PMS. Allahverdi et al. (2008), 

Ruiz and Vazquez-Rodriguez (2010), and Baker and Trietsch (2013)

summarized studies of the PMS. 

A drone station can operate drones after a truck arrives and 

supplies parcels. This characteristic is closely related to the PMS with 

precedence constraints. Tanaka and Sato (2013) studied a single 

machine scheduling problem with precedence constraints. The objective 

was to minimize total job completion time, and job idle time was not 

permitted. A successive sublimation dynamic programming method was 

applied to find the exact solution. Bilyk et al. (2014) defined a batch 

scheduling problem with precedence constraints. Identical machines 

were assumed, and ready time for each job was considered. A 

variable neighborhood search and a greedy randomized adaptive search 

procedure were applied to solve the problem. Davari et al. (2016) 

solved a single machine scheduling problem with time windows and 

precedence constraints. A branch-and-bound algorithm was proposed to 

solve the problem. Hassan et al. (2016) studied a PMS with 

precedence constraints to minimize the makespan. Three valid 
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inequalities were proposed, and their strengths were checked by 

computational experiments. Nicosia and Pacifici (2016) addressed a 

multiple machine scheduling problem with precedence constraints. A 

heuristic method related to the bin packing problem was developed, 

and a lower bound was proposed. Because traditional studies did not 

exploit drones, we concentrate on the drone-truck models in this 

study.  

    Murray and Chu (2015) offered one of the earliest studies of 

truck-drone delivery problems and introduced two fundamental models. 

First, the PDSTSP described a drone facility within a distribution 

center. To our knowledge, it is the only model in which a drone 

facility is considered in truck-drone problems. A sufficiently large 

number of drones can be utilized at the distribution center, but the 

limited flight range creates practical issues. To alleviate this problem, 

the FSTSP was developed to describe a truck driver launching and 

retrieving a drone. This model overcomes the flight range limitation 

from the distribution center of the PDSTSP, but it only applies to a 

single drone. Our research is directly related to the PDSTSP and 

serves as a complementary model applicable to a drone facility 

separated from the distribution center. To solve the PDSTSP, Murray 

and Chu (2015) developed a heuristic method based on decomposition 

of the model into the TSP and PMS. We also used the similar 

decomposition approach; however, our approach focused on the 

conditions on the decomposition which guarantees the optimal 

solution.
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    Although we take into account a drone facility problem with a 

truck TSP, a majority of research has concentrated on truck-launch 

delivery problems, which are intricately related to the FSTSP. In a 

related study, Agatz et al. (2016) assumed that drones and a truck 

share the same road network, which allowed them to find the 

worst-case approximation ratios for the heuristics. However, the 

assumption fails to take advantage of the drones’ capacity to freely 

move off truck paths and remain unaffected by road conditions. 

    Ha et al. (2015) introduced the TSP with a drone. They assumed 

that launching and retrieving a drone is impossible at the same 

customer node. The mathematical formulation and two heuristic 

algorithms were developed. Mathew et al. (2015) described the 

heterogeneous delivery problem by considering a team using a truck 

and drones with complementary capabilities based on the assumption 

that drone-serviceable customers can only receive deliveries by drones. 

The problem can be reduced to the generalized traveling problem, 

which can be solved with many heuristics methods. In addition, they 

defined the multiple warehouse delivery problem by showing a special 

case of the heterogeneous delivery problem and developing two 

heuristic approaches. Ferrandez et al. (2016) compared the overall 

travel times and energy consumption of truck-only and truck-drone 

tandem deliveries. They proposed a clustering-first and routing-second 

approach. K-means algorithm, used to find an efficient launch location 

of drones, and genetic algorithms were applied to solve a 

truck-routing problem.
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    We introduce several studies not directly related to a truck-drone 

delivery service; however, these works also showed solutions to drone 

related problems. Boone et al. (2015) introduced the multiple TSP 

(MTSP) which can be applied to the drone swarm route plan. They 

divided the MTSP into two components: clustering and TSP problems. 

The K-means clustering method was applied to divide cities into 

multiple clusters, and each drone was allocated to each cluster. A 

constructive heuristic approach, called 2-opt, was applied to solve the 

TSP in each cluster. This approach helped reduce significant 

computation time. Dorling et al. (2017) developed the vehicle routing 

problem for drone delivery services by deriving an approximated and 

linearized cost function that accounts for the energy consumption 

model of multiple drones and by developing mixed integer based 

programming for the problem. Further, Dorling et al. (2107) built a 

string-based simulated annealing heuristic. A drone system in an 

indoor environment was introduced by Khosiawan and Nielsen (2016). 

The system focused on a scheduling issue, and a system architecture 

for drone applications in an indoor environment was developed. 

Furthermore, a framework of scheduler component was presented.
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3. Truck-drone Routing Problem

    The TSP-DS is an extension of the PDSTSP with the major 

difference in the location of off-duty drones. In the TSP-DS, drones 

are stored in and launched from a drone station, not the package 

distribution center. A drone station can store and utilize a sufficiently 

large number of drones that deliver drone-fitting parcels with a 

limited flight range. A large number of drones seems to be vague, 

therefore, we presented the number of drones which guarantees the 

minimum makespan of the total delivery time in a latter section. 

After a truck arrives at the station, drone-fitting parcels are processed 

for drone delivery and the station is said to be activated. We assume 

that the location of the station is relatively far from the distribution 

center; a drone station is farther than the maximum flight distance of 

a drone launched from the distribution center. Although the decision 

where to build a drone station can be an important issue, the location 

of the drone station is assumed to be given. The reason for this 

assumption is that the location problem should be solved based on the 

long-term perspective while our topic mainly focuses on the daily 

delivery service.  

    Because of safety and weight issues, a single drone cannot carry 

multiple parcels. Therefore, a drone visits only one customer per 

sortie while a truck can visit multiple customers in one trip. In 

addition, some customers order products that exceed the volume and 

weight capacities of drones. The limited flight range is due to the 
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capacity of drone batteries. We assume that the travel time of 

vehicles are proportional to distances and drones are faster than a 

truck because the drones cross air space and the truck must follow 

ground routes. Because charged batteries are supplied from a drone 

station, battery charging times for retuned drones are not considered. 

A truck or a drone delivers an order only once to a customer. 

    Travel times between nodes are assumed to be symmetric. The 

truck departs from the distribution center and returns to it after 

packages are delivered. Likewise, drones return to the station after 

delivering parcels. The delivery service is considered ended when a 

truck returns to the distribution center and all drones return to their 

drone station. We define the last delivery time as the time to finish 

the total delivery service. The objective of the TSP-DS is to minimize 

the last delivery time. 

3.1 Notation

    We regard each customer as a single node and make a network 

with  {} as a node set of customers and ∈ as a drone 

station node index. In a customer network, we add the distribution 

center node. We define  as the index of the distribution center, and 

to avoid symmetric problems, we define   as the index of the 

distribution center node for returns. We also define origin set  

{} and destination set  {  }. Multiple drones are 

located in a drone station, and a set of drones is defined as  . 

    Customers are sorted by their package information. Weights, 
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volumes, and distances from the drone station are considered to 

distinguish drone-serviceable customers. We define  as a set of 

drone-serviceable customers, which is a subset of  . The travel time 

of a truck between a pair of nodes  ∀∈ ∈  is defined as 

 and that of the drones is defined as  
 ∀∈ ∈ . The 

binary decision variable  equals 1 if the truck travels from node 

∈ to node ∈{  ≠ }; it is 0 otherwise. Similarly, the decision 

variable  
 is defined for the route of a truck until it arrives at a 

drone station. The binary decision variable  is 1 if customer ∈

is served by drone ∈ launched from a drone station. Variable 

refers to the last possible delivery time of a truck and drones. 

indicates the position of node ∈ in the truck's path.  
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3.2 Mathematical formulation

    We can formulate the TSP-DS as follows: 

Minimize  (1)

subject to


∈
≠ 

  
∈
∈

  ∀∈ (2)


 ≤  ∀∈ ∈ (3)


∈ 

 
  

∈ 

 
 










 
i f   
i f   

 
∀∈∪{ } (4)

 ≥ 
∈

∈ 

   
 

∈

 
  

    ∈ (5)

 ≥ 
∈

∈ 
≠ 

    (6)


∈ 

    (7)


∈

    (8)


∈
≠ 

  
∈
≠ 

  ∀∈ (9)

  ≤     , ∀∈ ∈{  ≠ } (10)

≤ ≤  ∀∈ (11)

∈{}, ∀∈ ∈{  ≠ } (12)


 ∈ , ∀∈ ∈{  ≠ } (13)

 ∈{}, ∀∈ ∈ (14)

∈ (15)

    The objective function (1) minimizes the delivery time of a truck 

and drones. Constraint (2) suggests that neither a truck nor a drone 

can deliver the parcel to a customer more than once. Constraint (3) 

ensures that  
 follows the path of , and Constraint (4) restricts 
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the route of a truck until it arrives at a drone station. Constraint (5) 

imposes the criterion that  is greater than or equal to the last 

delivery time of drone ∈ launched from a drone station. Constraint 

(6) restricts that  should not less than the last delivery time of a 

truck. Constraints (7), (8), and (9) specify the flow of the truck. 

Constraint (7) means that a single truck leaves the distribution center 

and Constraint (8) denotes that the truck must return to the 

distribution center. Constraint (9) ensures that the truck leaves 

customer ∈ to deliver parcels after it arrives to customer node 

∈ from customer node ∈. Subtours of the truck are eliminated 

by Constraints (10) and (11). Constraints (12), (13), (14), and (15) 

define the decision variables.  
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4. Fundamental features of the TSP-DS

    In the TSP-DS, a loaded truck reaches a drone station, and 

activates the drone delivery process. This activation condition of a 

drone station has important features, and we demonstrate the main 

characteristics of the TSP-DS in this section. 

Proposition 1.

The activation time of a drone station is always less than or equal to 

. 

Proof

The travel time matrix of a truck is symmetric, and the total distance 

of a truck does not change when the travel direction of the truck is 

reversed on the route. For this reason, when the activation time of a 

drone station is greater than , a truck can be chosen to the same 

travel route with the reverse direction which activates the drone 

station before . □

4.1 Route distortion

    Generally, a drone station is used to maximize the use of drones, 

and a truck is used on the shortest routes. However, in some cases, a 

truck driver takes a longer route to activate a drone station earlier 

which results in the overall reduction in the objective value. Because 

the proposed model searches the optimal schedule of the global 
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truck-drone system, in which a drone station and a truck interact, we 

define this case as route distortion. In analyzing the fundamental 

features of the drone–truck system, we do not take into consideration 

two assumptions: the sufficiently large number of drones in a drone 

station and the minimum distance between the distribution center and 

the drone station. 

    There are two types of the route distortions. In one, a truck 

delivers parcels to customers who can be serviced by drones. This 

happens when the last delivery time of a drone is later than that of a 

truck. In this case, use of a truck to deliver to drone-serviceable 

customers is more efficient. In the other route distortion case, a truck 

uses long delivery routes to arrive at a drone station early. A driver 

would make this decision because drones are only able to deliver to 

customers after a truck supplies parcels to the station, and thus, an 

early activation time means an early delivery time by drones (Figure 

2).
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Figure 2. The routes of a truck can be influenced by a drone station. 

    When  is given, three factors affect route distortions. The main 

factors correspond to the number of drones in a station as well as the 

velocities and flight ranges of drones (the number of drone-serviceable 

customers) (Figure 3). When the number of drones increases, a truck 

takes the shorter routes and the last delivery time from a drone 

station is earlier than that of the shortest truck routes; further, early 

activation of a drone station is unnecessary when many drones are 

available. Likewise, faster drones affect the best route choices for a 

truck. Decreasing the flight range or the number of potential 

drone-serviceable customers also offers the same result that a drone 

station needs not to be activated in the early stage of delivery 
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service. In addition, when the flight range is decreased, one of 

customers might not be considered a drone-serviceable customer. In 

this case, the last delivery time from a drone station is earlier than 

that of a truck from a distribution center. These cases show that the 

factors related to the drone station workload affect the truck route. 

Figure 3. Three factors can affect the routes.
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4.2 Conditions for the elimination of route distortion

    Based on the assumption that a sufficient number of drones is 

available in a station, we can draw the inequality that eliminates the 

route distortion. 

Proposition 2.

Let max be the farthest drone-serviceable customer from the drone 

station  and  be the travel rate of the drone speed to the truck 

speed. If the number of drones is sufficient and the problem satisfies 

 ≥   max
 , drones can finish parcel deliveries to all 

drone-serviceable customers before the truck returns to the distribution 

center.

Proof

When the number of drones in a station is sufficient, each drone can 

deliver a parcel to a single customer. In this case, the upper bound 

for the flight time of a drone from the station () is the delivery 

time of a drone to max . As the travel time matrix of a truck is 

symmetric, max    max and  max  max  max . The 

lower bound of the truck travel time  to return to the distribution 

center after leaving a drone station  is . Therefore, if  is less 

than  , the last delivery time from a drone station  can be earlier 

than or the same as the delivery time of the truck. □

    In the real world, a sufficiently large number of drones is not 
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needed, and the number of customers is the logical upper bound for 

drone inventory. However, when many drones are needed, and 

although we cannot find the minimum number before solving the 

problem, we can find the bound that likely allows for a sufficient 

number of drones for delivery services. 

Proposition 3.

If the number of drones is ⌈  ⌊max 
  ⌋⌉ , additional drones are 

not necessary to shorten the schedule.

Proof

In Proposition 2,  is  max , and  is . Therefore, the 

lower bound of the maximum number of customers to which a drone 

can deliver before a truck returns to the distribution center is 

⌊max 
   ⌋ . The number of customers is  , and thus, the required 

number of drones is ⌈ ⌊max 
   ⌋⌉ . □

    Combining Propositions  2 and  3, we can define the following 

general condition.

Corollary 1

If the number of drones is more than ⌈ ⌊max
   ⌋⌉ and the 

problem satisfies  ≥  max, then the route distortion is 
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eliminated.

4.3 Decomposition of the TSP-DS

    For our problem, we address the situation in which the majority 

of customers are located far from the distribution center and the 

maximum flight distance of a drone from the distribution center is 

less than the distance between the drone station and the distribution 

center. It means   ≥  ( is the diameter of the flight range). As 

max does not exceed the radius of the flight range, the following 

inequality holds:  ≥ ≥   max. As the drone velocity is the same 

or exceeds the speed of a truck, our problem always satisfies 

Proposition 2. we also assume that a drone station can utilize a 

sufficiently large number of drones, and this assumption satisfies 

Proposition 3. Therefore, the our problem fulfills the elimination 

condition of route distortion (Corollary 1). 

    When the problem satisfies conditions for Corollary 1, a drone 

station can successfully initiate delivery of all drone-compatible 

parcels, and a truck does not need to deliver parcels to any customer 

serviceable by drones. Because the route distortion was eliminated, the 

model can be divided into two independent problems. The first 

problem is the TSP through which one finds the shortest truck routes 

by considering only customers who cannot be serviced by drones. The 

second problem finds the drone station schedule that minimizes the 

last delivery time using drones. Because the objective value of the 

second problem is always less than or equal to the objective value of 
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the first problem (Corollary 1), these two independent problems 

successfully solve the TSP-DS. We define these two problems as an 

independent traveling salesman and parallel machine scheduling 

problem (TSPMS). 

    However, in terms of a drone station operation, the PMS model 

can suggest an overuse of drones because the model is not designed 

to minimize them. Furtherly, it does not exploit the information from 

the solution of the TSP which provides the arrival time of a truck at 

the drone station. For this reason, a two-stage traveling salesman and 

modified parallel machine scheduling problem (TSMPMS) is developed 

to find a schedule that minimizes the number of drones used at a 

station by exploiting the solution of the TSP to set the drone station 

schedule. The first stage is the same as the ordinary TSP. After the 

TSP is solved, the activation time of a drone station  and the last 

delivery time of a truck  are known. As the problem satisfies 

Corollary 1,    and the last delivery time of a drone station can 

be earlier or the same as  . This finding means the upper bound of 

the drone flight time  is    . Reflecting this information, a 

modified PMS problem is solved to minimize the number of drones 

used under the upper bound of the flight time. The process to 

calculate  is described in Algorithm 1. 
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Algorithm 1. Calculation for 

Initialization : start_node, arrival_station,   

While{∈}

{

  While{∈}

  {

   if x_{start_node,} = 1 then

     arrival_station += _{start_node,};

     start_node = ;

     break;

   end-if

  }

  if(start_node =  ) then break;

}

if(arrival_station  ) then

   = arrival_station;

else

     arrival_station;

end-if;

    The start node (start_node) is initialized as 0 node. The 

activation time of a drone at a station (active_time) and the upper 

bound of the flight time () are set as 0. The algorithm finds the 

next node from the start node. When the next node  is found, the 

activation time and the new start node is updated. The algorithm 

repeats until the new start node is  . After the activation time is 

fully updated, the upper bound of the flight time is calculated. 

Because the problem satisfies Proposition 1,  can be always 
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greater than or equal to . 

    After  is calculated, we can find the schedule of a drone 

station that utilizes the minimum number of drones without changing 

the last delivery time. We define a new binary variable ; it is 1 if 

drone ∈ is used for the delivery and 0 otherwise. The 

mathematical formulation of the modified PMS is as follows: 

Minimize 
∈

 (16)

subject to


∈


 

    ≤ ∀∈ (17)


∈

    ∀∈ (18)

∈{} ∀∈ ∈ (19)

∈{} ∀∈ (20)

    The objective function (16) minimizes the required number of 

drones for delivery service. Constraint (17) suggests that  is 1 when 

drone  is used and the flight time of a drone so it does not exceed 

the upper bound of the flight time. Constraint (18) shows that each 

customer serviceable by drones should receive deliveries by a drone. 

Constraints (19) and (20) define decision variables. 
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5. Computational experiments

    Results of computational experiments and the insight of the 

developed model are presented in this section. The models were built 

in XPRESS-IVE 7.9 with the XPRESS-MP mathematical programming 

solver. Experiments were conducted with an Intel(R) Core(TM) 

i5-3570 CPU 3.4 GHz with 8.00 GB of RAM in Windows 10. 

    According to Murray and Chu (2015), the flight range of a 

commercial drone was approximately 16 km (≃10 miles). Therefore, 

we assumed that a circle with 16 km radius is a feasible flight 

region. To compare the PDSTSP and the TSP-DS, we set two 

different flight areas. The feasible flight area from drone station 

was defined as Region A while that from the distribution center was 

defined Region B. To avoid overlapping feasible flight regions, we 

made a gap between them. As a result, the experiments were 

conducted in a square region of 32 km × 65 km (Figure 4). 

    Due to the probabilistic nature of parcel ordering, customers were 

assigned randomly to specific locations. Furthermore, to concentrate on 

the effect of a drone station on delivery, we only considered small 

and light parcels that can be delivered by drones. For this reason, if 

customers were located in the flight-feasible region, they were 

assumed to be drone-serviceable customers. When we solved the 

TSP-DS, customers located in Region A were classified as 

drone-serviceable customers but others were considered truck-only 

customers. However, in the PDSTSP, customers in Region B could be 
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serviced by drones while those in Region A could not be serviced by 

drones. In addition to this, customer locations were restricted to 

Regions A and B.

    The number of drones in a station was calculated using the 

bound of drones needed to satisfy Proposition 3. In detail, the radius 

of Region A was 16 km and the distance between the drone station 

and the distribution center was 33 km. When the travel rate  was 

set as 2, a drone could deliver parcels to at least two customers 

before a truck at the drone station returns to the distribution center. 

Therefore, the minimum number of drones to satisfy the condition for 

Proposition 3 was no more than ⌈ ⌉ . 

Figure 4. Experimental design. 

5.1 Computation times

    Two data sets were generated to evaluate the computation times 

of the models. A small data set was used to compare the 

performance between the TSP-DS and other models. Due to the 

complexity characteristic of the TSP-DS, the number of customers was 
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increased from 7 to 11. A large data set was generated to evaluate 

the performances of the other models, and the number of customers 

was increased from 20 to 80. In each customer set, 10 random 

instances were generated. The travel rate  was fixed at 2. We 

stopped the experiment of each model when it took over 1,800 

seconds. The detailed information of the experiments and results are 

shown in Table 1. 

    Although three models gave the same objective value, the 

computation times were distinct between them. With fewer customers, 

the gaps were small. However, the computation times of the TSP-DS 

were much greater for the data set with more customers. Although 

the computation time increases were relatively small, the TSPMS and 

TSMPMS models were also not free from increased computation 

times. The computation time difference between the TSPMS and the 

TSMPMS was negligible in the small problems. However, in the large 

problems, the TSMPMS was much faster than the TSPMS. The gaps 

between the computations were increased  according to the size of the 

problem because the second-stage problem of the TSMPMS used 

bounds derived from the first-stage model while the TSPMS solved 

two problems independently.  
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Size Node TSP-DS TSPMS TSMPMS

Small

7 0.255 0.018 0.007

8 0.647 0.032 0.019

9 1.598 0.029 0.015

10 5.360 0.040 0.016

11 14.021 0.042 0.020

Large

20 - 0.220 0.083

30 - 0.592 0.397

40 - - 0.730

50 - - 0.910

60 - - 1.978

70 - - 9.046

80 - - 25.587

Table 1. Average computation times (seconds) of the TSP-DS, TSPMS, and 

TSMPMS with respect to the number of customers in the experiment.

    

   To analyse the reason why there are large differences in 

computation times between models, upper and lower bounds of the 

models were checked. Solutions of the models were analyzed in 20 

and 40 nodes instances. 4 instances were selected among which 

instances computation times were over 1,000 seconds in each node 

set. 

    Optimality gaps between upper and lower bounds and 

computation times of the two models were summarized in Table 2. In 

the case of the TSP-DS, both upper and lower bounds improved at 

the first time; however, upper bounds were not improved later. The 

optimality gaps were between 14 % to 24 % and they were not tight. 

Although the number of nodes was small, it took tremendous times to 
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Model TSP-DS (20 nodes) TSPMS (40 nodes)

Instance
optimality 
gaps (%)

Computation 
times (s)

optimality 
gaps (%)

Computation 
times (s)

1 14.59 1800.00 0.00 1080.07

2 23.71 1800.00 4.42 1800.00

3 14.16 1800.00 0.98 1800.00

4 22.06 1800.00 2.20 1800.00

Table 2. Optimality gaps between upper and lower bounds and computation 

times of the TSP-DS and TSPMS for 20 and 40 nodes, respectively.

get optimality gaps within 20 %. In the case of the TSPMS, 

optimality gaps decreased at the initial stage of solving the problem. 

However, it took a lot of time to find better bounds after the gaps 

were within 5 %. In general, the PMS part of the TSPMS was the 

bottleneck to solve the problem. Although the commercial solver 

could find optimal solutions within a short time, it took enormous 

times to prove these solutions were optimal. In other words, most of 

the times were consumed to improve lower bounds. Compared to the 

TSPMS, the TSMPSM had advantages to solve the PMS which 

resulted in better computational performances. 

5.2 Comparison between the TSP-DS and TSP

    We considered the case in which more than one-half of 

customers are near drone station  . To analyze the characteristics 

mentioned in Section 4, we conducted experiments by varying the 

number of customers in Region A, the number of drones, and travel 

rate  . The total number of customers was set at 10. In each case, 

10 experiments were conducted, and the savings between the objective 
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values of the TSP-DS (PDSTSP) and the ordinary TSP was found. 

Each saving was calculated as (the objective value of the TSP - that 

of the TSP-DS (PDSTSP)) / the objective value of the TSP. The 

detailed environment setting and results were shown in Table 3. The 

results showed that when the number of drones was increased from 1 

to 3, the delivery rates were not appreciably changed and the route 

distortions did not happen. 

Number of Number of Travel rate

customers drones 1.5 2 2.5

6

1 14.25(9.44) 15.48(10.80) 15.54(12.10)

2 15.54(12.48) 15.54(12.75) 15.54(12.75)

3 15.54(12.75) 15.54(12.75) 15.54(12.75)

7

1 15.38(7.95) 16.54(10.13) 17.25(11.17)

2 17.66(11.27) 17.83(11.66) 17.83(11.66)

3 17.83(11.65) 17.83(11.66) 17.83(11.66)

8

1 19.26(6.35) 22.43(6.71) 25.66(7.01)

2 27.13(7.01) 28.13(7.01) 28.15(7.01)

3 28.13(7.01) 28.15(7.01) 28.15(7.01)

9

1 22.85(5.43) 27.21(5.53) 29.69(5.53)

2 31.02(5.53) 32.33(5.53) 33.28(5.53)

3 32.81(5.53) 33.34(5.53) 33.34(5.53)

Table 3. Average savings (%) of the optimal value between the TSP-DS 

(PDSTSP) and the TSP with respect to the number of customers in Region 

A, the number of drones, and travel rates.

  

  

    The objective value of the TSP was much later than those of the 

TSP-DS and PDSTSP, which justifies use of the truck-drone system. 
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Moreover, the objective value of the TSP-DS was lower than that of 

the PDSTSP, and the maximum saving of the optimal value was 

increased according to the number of customers in Region A. It 

strengthens our argument that utilizing a drone station helps make the 

last delivery time earlier when the distribution center is far away 

from a majority of customers. Likewise, the increasing number of 

drones or increased travel rate  enlarged the saving because 

releasing the burden of the drone alleviated the burden created by 

inefficient truck routes. 

    When the same number of drones was used, the gap was smaller 

when few customers were in Region A. When 6 customers were in 

Region A and travel rate  was 1.5, two drones were sufficient to 

avoid route distortion. However, more than three drones were needed 

at the same travel rate to serve 9 customers to avoid route distortion. 

It can be observed that the number of drones in a station has 

significant impact on the truck route. Because the generated examples 

satisfied the distance condition of Proposition 3, increasing the number 

of drones corresponded to the shortened truck route. 

5.3 Number of drones in a drone station

    To analyze the relationship between the number of customers and 

number of drones used in the station without route distortion, we 

calculated the minimum number of drones in the TSMPMS. We 

varied the number of customers from 10 to 50 to check the trend. 

Because the ratio of the number of customers serviceable by drones  
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/ the total number of customers can affect the required number of 

drones, we varied this ratio from 0.6 to 0.9, and 10 experiments were 

performed for each ratio. Therefore, 40 experiments were conducted 

for each number of customer groups. The average and maximum 

number of drones for each customer group were derived. Moreover, 

ratio  showed the average number of drones used / total number of 

customers. Similarly,  (the maximum number of drones used / total 

number of customers) was defined. The details of the experiments and 

results are shown in Table 4. 

    The average number of drones used was much less than the 

upper bound derived from Proposition 3. The maximum number of 

drones used was also smaller than the upper bound. The maximum 

number of drones was approximately twice the average. Ratios  and 

 decreased for increasing number of customers. The decreasing rate 

of  was higher than .   

Number of 
customers Avg Max UB  

10 1.95 3 5 0.20 0.30

20 2.95 6 10 0.15 0.30

30 3.93 7 15 0.13 0.23

40 5.1 10 20 0.13 0.25

50 5.55 12 25 0.11 0.24

Table 4. Average, maximum, and upper bound for the number of drones 

used in a station, and ratios  and .
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5.4 Discussion

    We analyzed the flight range (the number of customers 

serviceable by drones), the velocity of drones, and the number of 

drones as main factors affecting the route distortion. However, in a 

realistic-world problem, the drone range and velocity are difficult to 

control because of safety issues and limited technologies. Fortunately, 

increasing the number of drones is relatively easy because the 

sufficient number of drones can be utilized at a drone station which 

leads to elimination of route distortion. 

    The other interesting point is that the required number of drones 

to eliminate route distortion is relatively small. The required number 

of drones are less than one-third of customers. Moreover, ratio  is 

negatively affected by the number of customers because increasing the 

number of customers leads drones to offer more options to deliver 

parcels to customers in the drone-service area. Therefore, drones 

deliver more parcels in a given time period if the number of 

customers increases. 
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6. Conclusions

    We defined a new drone and truck-drone TSP by exploring use 

of a drone station with three features; 1) It can utilize many drones; 

2) it is located far away from the distribution center; and 3) it is 

activated for delivery after a truck arrives with parcels. The TSP-DS 

was formulated based on the mixed integer programming and we 

analyzed characteristics of the TSP-DS. We proved that the 

mathematical model can be divided into two different mathematical 

models, and derived the TSPMS and the TSMPMS to give the exact 

solution of the TSP-DS. Computational experiments showed that the 

fundamental characteristics of the TSP-DS and the TSMPMS could 

effectively reduce the complexity problem. Another experiments 

revealed that the TSP-DS is more effective than the PDSTSP when a 

majority of customers are located far from the distribution center. We 

also showed that route distortion can be eliminated with relatively 

small number of drones. We expect our model can be used as a 

means to overcome the limits of drone facility problems, and it can 

be used to establish drone-truck delivery systems in the near future. 

    In this problem, we assumed that the locations of customers, a 

drone station, and the distribution center are given, and the results 

show that the distance between a drone station and the distribution 

center is an important factor. Therefore, the location problem of a 

drone station is an extended topic of our problem. Consideration of 

multiple drone stations may also inform future research. When some 
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of the flight ranges of each drone station overlap, drones could freely 

move to each station, which would improve the utilization rates of 

drones. 
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초 록

드론을 활용한 서비스의 수요는 계속해서 증가하고 있다. 그러나 드론을

활용한 택배 서비스에서 운용적인 측면에 대한 연구는 제한적으로만

이루어지고 있다. 그중 트럭과 드론을 동시에 이용하는 트럭-드론 배송

시스템의 경우, 드론의 제한적인 가용 범위로 인해 드론 관련 시설을

이용한 운용 방법론에 대한 연구는 더욱 등한시 되고 있다. 본

연구에서는 기존 드론 가용 범위의 한계를 극복하기 위한 새로운

트럭-드론 시스템을 제안한다. 이를 위해 물류 센터와 독립적으로

운용되고 드론 저장 및 드론 충전 설비를 갖춘 시설을 드론 정거장으로

정의한다. 본 연구는 드론 정거장을 활용한 외판원 문제 (TSP-DS)를

제시하고 본질적인 특성을 분석한다. 그리고 TSP-DS가 독립적인 외판원

문제와 평행 머신 스케줄링으로 분해가 가능한 것을 보인다. 실험 결과

및 분석을 통해 TSP-DS의 특징을 재확인할 수 있고, 본 연구에서

제안하는 분해 방법이 효과적으로 TSP-DS의 문제 복잡도를 낮출 수

있음을 보인다.
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