2,733 research outputs found

    Fairness-enhancing deep learning for ride-hailing demand prediction

    Full text link
    Short-term demand forecasting for on-demand ride-hailing services is one of the fundamental issues in intelligent transportation systems. However, previous travel demand forecasting research predominantly focused on improving prediction accuracy, ignoring fairness issues such as systematic underestimations of travel demand in disadvantaged neighborhoods. This study investigates how to measure, evaluate, and enhance prediction fairness between disadvantaged and privileged communities in spatial-temporal demand forecasting of ride-hailing services. A two-pronged approach is taken to reduce the demand prediction bias. First, we develop a novel deep learning model architecture, named socially aware neural network (SA-Net), to integrate the socio-demographics and ridership information for fair demand prediction through an innovative socially-aware convolution operation. Second, we propose a bias-mitigation regularization method to mitigate the mean percentage prediction error gap between different groups. The experimental results, validated on the real-world Chicago Transportation Network Company (TNC) data, show that the de-biasing SA-Net can achieve better predictive performance in both prediction accuracy and fairness. Specifically, the SA-Net improves prediction accuracy for both the disadvantaged and privileged groups compared with the state-of-the-art models. When coupled with the bias mitigation regularization method, the de-biasing SA-Net effectively bridges the mean percentage prediction error gap between the disadvantaged and privileged groups, and also protects the disadvantaged regions against systematic underestimation of TNC demand. Our proposed de-biasing method can be adopted in many existing short-term travel demand estimation models, and can be utilized for various other spatial-temporal prediction tasks such as crime incidents predictions

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    LSTM-based Flight Trajectory Prediction

    Full text link
    © 2018 IEEE. Safety ranks the first in Air Traffic Management (ATM). Accurate trajectory prediction can help ATM to forecast potential dangers and effectively provide instructions for safely traveling. Most trajectory prediction algorithms work for land traffic, which rely on points of interest (POIs) and are only suitable for stationary road condition. Compared with land traffic prediction, flight trajectory prediction is very difficult because way-points are sparse and the flight envelopes are heavily affected by external factors. In this paper, we propose a flight trajectory prediction model based on a Long Short-Term Memory (LSTM) network. The four interacting layers of a repeating module in an LSTM enables it to connect the long-term dependencies to present predicting task. Applying sliding windows in LSTM maintains the continuity and avoids compromising the dynamic dependencies of adjacent states in the long-term sequences, which helps to improve accuracy of trajectory prediction. Taking time dimension into consideration, both 3-D (time stamp, latitude and longitude) and 4-D (time stamp, latitude, longitude and altitude) trajectories are predicted to prove the efficiency of our approach. The dataset we use was collected by ADS-B ground stations. We evaluate our model by widely used measurements, such as the mean absolute error (MAE), the mean relative error (MRE), the root mean square error (RMSE) and the dynamic warping time (DWT) methods. As Markov Model is the most popular in time series processing, comparisons among Markov Model (MM), weighted Markov Model (wMM) and our model are presented. Our model outperforms the existing models (MM and wMM) and provides a strong basis for abnormal detection and decision-making

    Social ski driver conditional autoregressive-based deep learning classifier for flight delay prediction

    Get PDF
    The importance of robust flight delay prediction has recently increased in the air transportation industry. This industry seeks alternative methods and technologies for more robust flight delay prediction because of its significance for all stakeholders. The most affected are airlines that suffer from monetary and passenger loyalty losses. Several studies have attempted to analysed and solve flight delay prediction problems using machine learning methods. This research proposes a novel alternative method, namely social ski driver conditional autoregressive-based (SSDCA-based) deep learning. Our proposed method combines the Social Ski Driver algorithm with Conditional Autoregressive Value at Risk by Regression Quantiles. We consider the most relevant instances from the training dataset, which are the delayed flights. We applied data transformation to stabilise the data variance using Yeo-Johnson. We then perform the training and testing of our data using deep recurrent neural network (DRNN) and SSDCA-based algorithms. The SSDCA-based optimisation algorithm helped us choose the right network architecture with better accuracy and less error than the existing literature. The results of our proposed SSDCA-based method and existing benchmark methods were compared. The efficiency and computational time of our proposed method are compared against the existing benchmark methods. The SSDCA-based DRNN provides a more accurate flight delay prediction with 0.9361 and 0.9252 accuracy rates on both dataset-1 and dataset-2, respectively. To show the reliability of our method, we compared it with other meta-heuristic approaches. The result is that the SSDCA-based DRNN outperformed all existing benchmark methods tested in our experiment

    A Survey on Graph Neural Networks in Intelligent Transportation Systems

    Full text link
    Intelligent Transportation System (ITS) is vital in improving traffic congestion, reducing traffic accidents, optimizing urban planning, etc. However, due to the complexity of the traffic network, traditional machine learning and statistical methods are relegated to the background. With the advent of the artificial intelligence era, many deep learning frameworks have made remarkable progress in various fields and are now considered effective methods in many areas. As a deep learning method, Graph Neural Networks (GNNs) have emerged as a highly competitive method in the ITS field since 2019 due to their strong ability to model graph-related problems. As a result, more and more scholars pay attention to the applications of GNNs in transportation domains, which have shown excellent performance. However, most of the research in this area is still concentrated on traffic forecasting, while other ITS domains, such as autonomous vehicles and urban planning, still require more attention. This paper aims to review the applications of GNNs in six representative and emerging ITS domains: traffic forecasting, autonomous vehicles, traffic signal control, transportation safety, demand prediction, and parking management. We have reviewed extensive graph-related studies from 2018 to 2023, summarized their methods, features, and contributions, and presented them in informative tables or lists. Finally, we have identified the challenges of applying GNNs to ITS and suggested potential future directions

    Contributions to time series data mining departing from the problem of road travel time modeling

    Get PDF
    194 p.Bidaiarientzako Informazio Sistema Aurreratuak (BISA) errepideetan sensoreenbidez bildutako datuak jaso, prozesatu eta jakitera ematen dituzte,erabiltzailei haien bidaietan lagunduz eta ibilbidea hasi baino lehen eta bideanhartu beharreko erabakiak erraztuz [5]. Helburu honetarako, BISA sistemektrafiko ereduak beharrezkoak dituzte, bidaiarientzat baliagarriak izandaitezkeen trafiko aldagaiak deskribatu, simulatu eta iragartzeko balio duelako.Zehazki, kontutan hartu daitezkeen trafiko aldagai guztietatik (fluxua,errepidearen okupazioa, abiadurak, etab.) bidai denbora da erabiltzaileentzatintuitiboena eta ulerterrazena den aldagaia eta, beraz, BISA sistemetan garrantziberezia hartzen duena [6]. Bidai denbora, aurrez zehaztutako puntubatetik bestera joateko ibilgailu batek behar duen denborari deritzo.Bidai denboren eredugintzan bi problema nagusi bereizten dira: estimazioaeta iragarpena. Nahiz eta literaturan batzuetan bi kontzeptu hauek baliokidetzatjo, berez, bi problema bereizi dira, ezaugarri eta helburu ezberdinekin,eta teknika ezberdinak eskatzen dituztenak.Alde batetik, bidai denboren estimazioaren helburua iada amaitutakobidaietan ibilgailuak bataz beste zenbat denbora igaro duten kalkulatzeada. Horretarako, ibilbidean zehar jasotako trafikoari buruzko informazioaedo/eta bestelako datuak (eguraldia, egutegiko informazioa, etab.) erabildaitezke [1]. Estimazio metodo ezberdinak eskuragarri dauden datu motaeta kantitatearen araberara sailka daitezke eta, a posteriori motako balorazioakegiteko balio dute. Bestalde, bidai denboren iragarpena, orainean edoetorkizunean hasiko diren bidaien denborak kalkulatzean datza. Honetarako,iragarpena egiten den momentuan jasotako eta iraganeko trafikoari buruzkodatuak eta testuinguruko informazioa erabiltzen da [8].Ibilgailu kopuru eta auto-ilaren ugaritzeen ondorioz, bidai denboren estimazioeta predikzio onak lortzea geroz eta beharrezkoagoa da, trafikoarenkudeaketa egokia ahalbidetzen duelako. Hau ikusirik, azken urteetan eredumota ezberdin andana proposatu eta argitaratu dira. Nolanahi ere, literaturarenberrikuspen eta analisi sakon bat egin dugu tesi honen lehenengoatalean. Bertan, ondorioztatu ahal izan dugu proposatutako eredu guztiakez direla egokiak errepide sare, trafiko egoera eta datu mota guztiekin erabiltzeko.Izan ere, atera dugun ondorio nabariena, argitaratutako eredu askokez dituztela BISA sistemen eskakizun praktikoak betetzen, da. Lehenik etabehin, eredu asko errepide zati txikietan soilik aplika daitezke, eta ez dagoargi errepide sare guztira nola hedatu daitezkeen. Bestalde, eredu gehienekdatu mota bakarra erabiltzen dute eta errealitatean ohikoa da datu mota batekinbaina gehiagorekin lan egin behar izatea. Azkenik, pilaketa ez-ohikoenaurrean malgutasun mugatua izatea ere desabantaila nabari eta ohikoa da.Hau honela, eredu konbinatu edo hibridoak proposamen hauetatik guztietatiketorkizun handiena dutenak direla dirudi, patroi ezberdinetara moldatzekogaitasuna dutelako, eta eredu eta datu mota ezberdinak nahastekoaukera ematen dutelako.Tesi honetan, bidai denborak iragartzeko eredu hibrido edo konbinatuakhartuko ditugu abiapuntutzat. Zehazki, hasieran datuak antzekotasunarenarabera multzokatzen dituenetan jarriko dugu arreta. Metodo hauek, datuakmultzokatu ondoren, multzo bakoitzari bidai denborak iragartzeko eredu ezberdinbat aplikatzen diote, zehatzagoa eta patroi espezifiko horrentzat espresukieraikia.Eredu talde honen kasu berezi bat, datuen multzokatzea denbora serieentaldekatzearen bitartez egiten duena da. Denbora serieen taldekatzea (clustering-a ingelesez) datu mehatzaritzako gainbegiratu gabeko ataza bat da, nonhelburua, denbora serie multzo, edo beste era batera esanda, denbora seriedatu base bat emanik, serie hauek talde homogeneoetan banatzea den [3]. Xedea,beraz, talde bereko serieen antzekotasuna ahalik eta handiena izatea etaaldiz, talde ezberdinetako serieak ahalik eta desberdinenak izatea da. Trafikodatuetan eta bidai denboretan, portaera ezberdinetako egunak aurkitzea osoohikoa da (adib. asteguna eta asteburuak). Hau honela, egun osoan zeharjasotako bidai denborez osatutako serie bat izanik, metodo mota honek lehenik,dagokion egun mota identifikatuko luke eta ondoren iragarpenak egunmota horretarako bereziki eraikitako eredu batekin lortuko lituzke.Denbora serieen clustering-an oinarritutako eredu mota hau ez da ia inoizerabili literaturan eta, ondorioz, bere onurak eta desabantailak ez dira ondoaztertu orain arte. Honegatik, tesi honen bigarren kapituluan, eredugintzaprozeduaren hasieran egun mota ezberdinak identifikatzea bidai denboreniragarpenak lortzeko lagungarria ote den aztertu dugu, emaitza positiboaklortuz. Hala ere, praktikan, honelako eredu konbinatuak eraikitzeak eta erabiltzeakzailtasun bat baino gehiago dakartza. Tesi honetan bi arazo nagusietanjarriko dugu arreta eta hauentzat soluzio bana proposatzea izango duguhelburu.Hasteko, denbora serieak multzokatzeko, erabaki ez tribial batzuk hartubehar dira, adibidez distantzia funtzio egoki bat aukeratzea. Literaturanbehin baino gehiagotan erakutsi da erabaki hau oso garrantzitsua dela etaasko baldintzatzen dituela lortuko diren emaitzak [7]. Trafikoko kasuan ere,hau honela dela demostratu dugu. Baina distantzia baten aukeraketa ez dabatere erraza. Azken urteotan hamaika distantzia ezberdin proposatu dituikerlari komunitateak denbora serieekin lan egiteko eta, dirudienez, datu basebakoitzaren ezaugarrien arabera, bat ala bestea izaten dela egokiena [3, 7].Guk dakigula, ez dago metodologia formalik erabiltzaileei aukeraketa hauegiten laguntzen dionik, ez batik bat denbora serieen clustering-aren testuinguruan.Metodologia ohikoena distantzia sorta bat probatzea eta lortutakoemaitzen arabera bat aukeratzea da. Zoritxarrez, distantzia batzuen kalkuluakonputazionalki oso garestia da, eta beraz, estrategia hau ez da batereeraginkorra praktikan.Ataza hau simplifikatzeko asmoarekin, tesiko hirugarren kapituluan etiketaanitzeko sailkatzaile bat (ingelesez multi-label classifier ) proposatzen dugudenbora serieen datu base bat multzokatzeko, distantzia egokiena modu automatikoanaukeratzen duena. Sailkatzaile hau eraikitzeko, hasteko, denboraserie datu base baten alderdi batzuk deskribatzeko ezaugarri sorta bat definitudugu. Besteak beste, datuetan dagoen zarata maila, autokorrelazio maila,serie atipikoen kopurua, periodizitatea eta beste hainbat ezaugarri neurtu etakuantifikatzeko metodoak proposatu ditugu. Ezaugarri hauek sailkatzaileakbehar duen input informazioa edo, bestela esanda, sailkatzailearen menpekoaldagaiak izango dira. Emaitza gisa, sailkatzaileak datu base batentzategokienak diren distantziak itzuliko dizkigu, kandidatu sorta batetik, noski.Sailkatzaile honen baliagarritasuna egiaztatzeko, esperimentu sorta zabalbat bideratu dugu, bai lan honetarako bereziki sortutako datu base sintetikoekineta bai UCR artxiboko [4] benetako datuak erabiliz. Lortutako emaitzapositiboak argi uzten dute proposatutako sailkatzaileak denbora serie batmultzokatzeko distantzia funtzio baten aukeraketa errazteko balio duela.Ekarpen hau azalduta, berriz bidai denboren iragarpenerako eredu kon-binatuetara itzuli eta bigarren problema bat identifikatzen dugu, tesiko bigarrenekarpen nagusira eramango gaituena. Gogoratu eredu konbinatu hauekhasiera batean datuak multzokatzen dituztela, clustering algoritmoak erabiliz.Talde bakoitzak patroi edo trafiko portaera ezberdin bat adieraziko du.Ondoren, talde bakoitzean iragarpenak egiteko, iragarpen eredu ezberdin bateraikiko dugu, soilik multzo horretako datu historikoak erabiliz. Gure kasuan,denbora serieen clustering-a aplikatu dugu eta beraz, egun mota ezberdinaklortuko ditugu. Ondoren, iragarpen berriak egin nahi ezkero, egun berri bathasten denean, zein multzokoa den asmatu beharko dugu, erabili behar duguneredua aukeratzeko.Ohartu, iragarpenak egiteko garaian, ez dugula egun osoko daturik izangoeskuragarri. Adibidez, goizeko hamarretan, eguerdiko hamabietan (2 ordugeroago) puntu batetik bestera joateko beharko dugun denbora iragarri nahibadugu, soilik egun horretan hamarrak arte jasotako informazioa izango dugueskuragarri, informazio historikoarekin batera, noski. Egoera honetan, egunhorretako informazio partzialarekin, seriearen lehen zatiarekin soilik, erabakibehar dugu zein multzotakoa den. Noski, ordurarte jasotako informazioa ezbada nahikoa adierazgarria, kalterako izan daiteke multzo eta eredu zehatzbat aukeratzea, eta ziurrenik hobe izango da eredu orokorrago bat erabiltzea,datu historiko guztiekin eraikia. Finean, egun berriak ahal bezain prontomultzo batera esleitu nahi ditugu, baina esleipen hauetan ahal bezain erroregutxien egin nahi dugu.Logikoa da pentsatzea esleipenak geroz eta lehenago eginez akatsak egitekoaukera handiagoa dela. Hau honela, helburua esleipenak ahal bezain azkaregitea da, baina zehaztasun maila onargarri bat bermatuz. Denbora serieenmehatzaritzan problema honi denbora serieen sailkapen goiztiarra (ingelesezearly classification of time series) deritzo [10].Denbora serieen sailkapena (ingelesez time series classification) [9, 10] datumehatzaritzako gainbegiratutako problema aski ezaguna da non, denboraserie multzo bat eta haietako bakoitzaren klasea jakinik, helburua sailkatzailebat eraikitzea den, serie berrien klaseak iragartzeko gai dena.Denbora serieen sailkapenaren azpi-problema gisa, sailkapen goiztiarra,denboran zehar iristen den datu zerrenda bat ahalik eta lasterren klase zehatzbatean sailkatzeko nahia edo beharra dagoenean agertzen da [10]. Adibide gisa,informatika medikoan, gaixoaren datu klinikoak denboran zehar monitorizatueta jasotzen dira, eta gaixotasun batzuen detekzio goiztiarra erabakigarriada pazientearen egoeran. Esaterako, arterien buxadura, fotopletismografia(PPG) serieen bidez detektatzen da errazen [2], baina diagnosian segunduhamarren baten atzerapenak, guztiz ondorio ezberdinak ekar ditzake.Honela, tesiaren 4. kapituluan, denbora serieen datu mehatzaritzari bigarrenekarpen garrantzitsu bezala, ECDIRE (Early Classification frameworkfor time series based on class DIscriminativeness and REliability ofpredictions) izeneko denbora serieen sailkatzaile goiztiarra aurkeztu dugu.Sailkatzaile hau eraikitzeko, entrenamendu fasean, metodoak klase bakoitzaanalizatzen du eta beste klaseengandik noiztik aurrera ezberdindu daitekeenkalkulatzen du, aurrez ezarritako zehaztasun maila bat mantenduz,noski. Zehaztasun maila hau erabiltzaileak finkatuko du haren interesen arabera.Entrenamentu fase honetan lortutako informazioak sailkapenak noizegin zehaztuko digu eta, beraz, serieak goizegi esleitzea saihesten lagundukodu. Bestalde, ECDIRE metodoak sailkatzaile probabilistikoak erabiltzen ditu,eta sailkatzaile mota hauengandik lortutako a-posteriori probabilitateak,lortutako sailkapenen zehaztasuna beste era batean kontrolatzen lagundukodigu.ECDIRE metodoa UCR artxiboko 45 datu baseei aplikatu diogu, literaturanorain arte lortutako emaitzak hobetuz. Bestalde, kasu erreal bateanmetodoaren aplikazioa nolakoa izango zen erakusteko, kantuen bidezko txoriendetekzio eta identifikazio problema baterako sortutako datu base batekinere burutu ditugu esperimentuak, emaitza egokiak lortuz.Azkenik, berriro ere bidai denboren iragarpenera itzuli gara eta aurrekobi ekarpenak problema honi aplikatu dizkiogu. Lortutako emaitzetatik,problema zehatz honetarako, proposatutako bi metodoetan egin beharrekomoldaketa batzuk identifikatu ditugu. Hasteko, distantzia aukeratzeaz gain,hauen parametroak ere aukeratu behar dira. Hau egiteko silhouette bezalakoindizeak erabili ditugu, baina argitzeke dago ea metodo hau ataza honetarakoonena den. Bestalde, datuen garbiketa eta aurre-prozesatze sakon bat beharrezkoadela ere ikusi dugu, serie atipikoak eta zaratak clustering soluzioetaneragin handia baitaukate. Azkenik, gure esperimentuak iragarpen eredu historikosimpleetan oinarritu ditugu. Eredu simple hauek ordu berdinean jasotakobidai denboren batez bestekoa kalkulatuz egiten dituzte iragarpenak,eta eredu konplexuagoak erabiltzea aukera interesgarria izan daiteke.Laburbilduz, tesi honetan bidai denboren eredugintzaren literaturarenanalisi batetik hasi gara eta, bertatik abiatuta, denbora serieen mehatzaritzaribi ekarpen egin dizkiogu: lehena, denbora serie multzo bat taldekatzekodistantzia automatikoki aukeratzeko metodo baten diseinua, eta bigarrena,sailkatzaile probabilistikoetan oinarritutako denbora serieen sailkatzaile goiztiarbat. Azkenik, berriro ere bidai denboren eredugintzaren problemara itzuligara eta aurreko bi ekarpenak testuinguru honetan aplikatuko ditugu, etorkizunerakoikerketa ildo berriak zabalduz
    corecore