5,985 research outputs found

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    An Energy Efficient Data Collection Using Multiple UAVs in Wireless Sensor Network: A Survey Study

    Get PDF
       اليوم، مع التقدم العلمي والتكنولوجي في الروبوتات، والذكاء الاصطناعي، والسيطرة والحواسيب، المركبات البرية والجوية والبحرية قد تم الاهتمام بها. كما تم تحسين الطائرات بدون طيار (UAVs) بشكل كبير وهي مفيدة جدا للعديد من التطبيقات الهامة في الأعمال التجارية والبيئة الحضرية والعسكرية. أحد أهم استخدامات الطائرات بدون طيار في شبكات الاستشعار اللاسلكية (WSNs)  التي لديها طاقة منخفضة وقد لا تكون قادرة على الاتصال في مناطق واسعة. في هذه الحالة ، يمكن أن توفر الطائرة بدون طيار وسيلة لجمع بيانات WSN من جهاز واحد ونقلها إلى المستلم المقصود تركز هذه المقالة على مجال البحث في التطبيقات العملية للطائرات بدون طيار كجامع متنقل لشبكات الاستشعار اللاسلكية. أولا التحقيقات حول الطائرات بدون طيار المقترحة تم دراستها ومقارنة نقاط ضعفها مع بعضها البعض. وكذلك التحديات التقنية لتطبيقات الطائرات بدون طيار في شبكة الاستشعار اللاسلكية تم استكشافها.Today, with scientific and technological advances in robotics, artificial intelligence, control and computers, land, air, and sea vehicles, they have been considered. Unmanned aerial vehicles (UAVs) have also significantly improved and are very useful for many important applications in the business, urban and military environment. One of the important uses of UAVs in Wireless Sensor Networks (WSNs) is that devices with low energy and may not be able to communicate in large areas. Nevertheless, a UAV can provide a tool for collecting the data of WSN from one device and transmitting it to another device. This article focuses on the field of research on practical applications of UAVs as mobile collectors for wireless sensor networks. First, the investigations of the proposed UAV were studied and compared their weaknesses with each other. Then, the technical challenges of the applications of UAVs in the wireless sensor network were explored

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Optimal Route Planning with Mobile Nodes in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSN) are a collection of sensor nodes that sense their surroundings and relay their proximal information for further analysis. They utilize wireless communication technology to allow monitoring areas remotely. A major problem with WSNs is that the sensor nodes have a set sensing radius, which may not cover the entire field space. This issue would lead to an unreliable WSN that sometimes would not discover or report about events taking place in the field space. Researchers have focused on developing techniques for improving area coverage. These include allowing mobile sensor nodes to dynamically move towards coverage holes through the use of a path planning approach to solve issues such as maximizing area coverage. An approach is proposed in this thesis to maximize the area of network coverage by the WSN through a Mixed Integer Linear Programming (MILP) formulation which utilizes both static and mobile nodes. The mobile nodes are capable of travelling across the area of interest, to cover empty ‘holes’ (i.e. regions not covered by any of the static nodes) in a WSN. The goal is to find successive positions of the mobile node through the network, in order to maximize the network area coverage, or achieve a specified level of coverage while minimizing the number of iterations taken. Simulations of the formulation on small WSNs show promising results in terms of both objectives

    Routing UAVs to Co-Optimize Mission Effectiveness and Network Performance with Dynamic Programming

    Get PDF
    In support of the Air Force Research Laboratory\u27s (AFRL) vision of the layered sensing operations center, command and control intelligence surveillance and reconnaissance (C2ISR) more focus must be placed on architectures that support information systems, rather than just the information systems themselves. By extending the role of UAVs beyond simply intelligence, surveillance, and reconnaissance (ISR) operations and into a dual-role with networking operations we can better utilize our information assets. To achieve the goal of dual-role UAVs, a concrete approach to planning must be taken. This research defines a mathematical model and a non-trivial deterministic algorithmic approach to determining UAV placement to support ad-hoc network capability, while maintaining the valuable service of surveillance activities

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs
    corecore