13 research outputs found

    Unsolvability Certificates for Classical Planning

    Get PDF
    The plans that planning systems generate for solvable planning tasks are routinely verified by independent validation tools. For unsolvable planning tasks, no such validation capabilities currently exist. We describe a family of certificates of unsolvability for classical planning tasks that can be efficiently verified and are sufficiently general for a wide range of planning approaches including heuristic search with delete relaxation, critical-path, pattern database and linear merge-and-shrink heuristics, symbolic search with binary decision diagrams, and the Trapper algorithm for detecting dead ends. We also augmented a classical planning system with the ability to emit certificates of unsolvability and implemented a planner-independent certificate validation tool. Experiments show that the overhead for producing such certificates is tolerable and that their validation is practically feasible

    Inductive Certificates of Unsolvability for Domain-Independent Planning

    Get PDF
    If a planning system outputs a solution for a given problem, it is simple to verify that the solution is valid. However, if a planner claims that a task is unsolvable, we currently have no choice but to trust the planner blindly. We propose a sound and complete class of certificates of unsolvability, which can be verified efficiently by an independent program. To highlight their practical use, we show how these certificates can be generated for a wide range of state-of-the-art planning techniques with only polynomial overhead for the planner

    Landmark-based approaches for goal recognition as planning

    Get PDF
    This article is a revised and extended version of two papers published at AAAI 2017 (Pereira et al., 2017b) and ECAI 2016 (Pereira and Meneguzzi, 2016). We thank the anonymous reviewers that helped improve the research in this article. The authors thank Shirin Sohrabi for discussing the way in which the algorithms of Sohrabi et al. (2016) should be configured, and Yolanda Escudero-Martın for providing code for the approach of E-Martın et al. (2015) and engaging with us. We also thank Miquel Ramırez and Mor Vered for various discussions, and Andre Grahl Pereira for a discussion of properties of our algorithm. Felipe thanks CNPq for partial financial support under its PQ fellowship, grant number 305969/2016-1.Peer reviewedPostprin

    Characterizing and Computing All Delete-Relaxed Dead-ends

    Get PDF
    Dead-end detection is a key challenge in automated planning, and it is rapidly growing in popularity. Effective dead-end detection techniques can have a large impact on the strength of a planner, and so the effective computation of dead-ends is central to many planning approaches. One of the better understood techniques for detecting dead-ends is to focus on the delete relaxation of a planning problem, where dead-end detection is a polynomial-time operation. In this work, we provide a logical characterization for not just a single dead-end, but for every delete-relaxed dead-end in a planning problem. With a logical representation in hand, one could compile the representation into a form amenable to effective reasoning. We lay the ground-work for this larger vision and provide a preliminary evaluation to this en

    Towards Certified Unsolvability in Classical Planning

    Get PDF
    While it is easy to verify that an action sequence is a solution for a classical planning task, there is no such verification capability if a task is reported unsolvable. We are therefore interested in certifi- cates that allow an independent verification of the absence of solutions. We identify promising concepts for certificates that can be generated by a wide range of planning approaches. We present a first proposal of unsolvability certificates and sketch ideas how the underlying concepts can be used as part of a more flexible unsolvability proof system

    Theoretical Foundations for Structural Symmetries of Lifted PDDL Tasks

    Get PDF
    We transfer the notion of structural symmetries to lifted planning task representations, based on abstract structures which we define to model planning tasks. We show that symmetries are preserved by common grounding methods and we shed some light on the relation to previous symmetry concepts used in planning. Using a suitable graph representation of lifted tasks, our experimental analysis of common planning benchmarks reveals that symmetries occur in the lifted representation of many domains. Our work establishes the theoretical ground for exploiting symmetries beyond their previous scope, such as for faster grounding and mutex generation, as well as for state space transformations and reduction

    Certifying planning systems : witnesses for unsolvability

    Get PDF
    Classical planning tackles the problem of finding a sequence of actions that leads from an initial state to a goal. Over the last decades, planning systems have become significantly better at answering the question whether such a sequence exists by applying a variety of techniques which have become more and more complex. As a result, it has become nearly impossible to formally analyze whether a planning system is actually correct in its answers, and we need to rely on experimental evidence. One way to increase trust is the concept of certifying algorithms, which provide a witness which justifies their answer and can be verified independently. When a planning system finds a solution to a problem, the solution itself is a witness, and we can verify it by simply applying it. But what if the planning system claims the task is unsolvable? So far there was no principled way of verifying this claim. This thesis contributes two approaches to create witnesses for unsolvable planning tasks. Inductive certificates are based on the idea of invariants. They argue that the initial state is part of a set of states that we cannot leave and that contains no goal state. In our second approach, we define a proof system that proves in an incremental fashion that certain states cannot be part of a solution until it has proven that either the initial state or all goal states are such states. Both approaches are complete in the sense that a witness exists for every unsolvable planning task, and can be verified efficiently (in respect to the size of the witness) by an independent verifier if certain criteria are met. To show their applicability to state-of-the-art planning techniques, we provide an extensive overview how these approaches can cover several search algorithms, heuristics and other techniques. Finally, we show with an experimental study that generating and verifying these explanations is not only theoretically possible but also practically feasible, thus making a first step towards fully certifying planning systems

    Search behavior of greedy best-first search

    Get PDF
    Greedy best-first search (GBFS) is a sibling of A* in the family of best-first state-space search algorithms. While A* is guaranteed to find optimal solutions of search problems, GBFS does not provide any guarantees but typically finds satisficing solutions more quickly than A*. A classical result of optimal best-first search shows that A* with an admissible and consistent heuristic expands every state whose f-value is below the optimal solution cost and no state whose f-value is above the optimal solution cost. Theoretical results of this kind are useful for the analysis of heuristics in different search domains and for the improvement of algorithms. For satisficing algorithms, a similarly clear understanding is currently lacking. We examine the search behavior of GBFS in order to make progress towards such an understanding. We introduce the concept of high-water mark benches, which separate the search space into areas that are searched by GBFS in sequence. High-water mark benches allow us to exactly determine the set of states that GBFS expands under at least one tie-breaking strategy. We show that benches contain craters. Once GBFS enters a crater, it has to expand every state in the crater before being able to escape. Benches and craters allow us to characterize the best-case and worst-case behavior of GBFS in given search instances. We show that computing the best-case or worst-case behavior of GBFS is NP-complete in general but can be computed in polynomial time for undirected state spaces. We present algorithms for extracting the set of states that GBFS potentially expands and for computing the best-case and worst-case behavior. We use the algorithms to analyze GBFS on benchmark tasks from planning competitions under a state-of-the-art heuristic. Experimental results reveal interesting characteristics of the heuristic on the given tasks and demonstrate the importance of tie-breaking in GBFS

    Conflict-driven learning in AI planning state-space search

    Get PDF
    Many combinatorial computation problems in computer science can be cast as a reachability problem in an implicitly described, potentially huge, graph: the state space. State-space search is a versatile and widespread method to solve such reachability problems, but it requires some form of guidance to prevent exploring that combinatorial space exhaustively. Conflict-driven learning is an indispensable search ingredient for solving constraint satisfaction problems (most prominently, Boolean satisfiability). It guides search towards solutions by identifying conflicts during the search, i.e., search branches not leading to any solution, learning from them knowledge to avoid similar conflicts in the remainder of the search. This thesis adapts the conflict-driven learning methodology to more general classes of reachability problems. Specifically, our work is placed in AI planning. We consider goal-reachability objectives in classical planning and in planning under uncertainty. The canonical form of "conflicts" in this context are dead-end states, i.e., states from which the desired goal property cannot be reached. We pioneer methods for learning sound and generalizable dead-end knowledge from conflicts encountered during forward state-space search. This embraces the following core contributions: When acting under uncertainty, the presence of dead-end states may make it impossible to satisfy the goal property with absolute certainty. The natural planning objective then is MaxProb, maximizing the probability of reaching the goal. However, algorithms for MaxProb probabilistic planning are severely underexplored. We close this gap by developing a large design space of probabilistic state-space search methods, contributing new search algorithms, admissible state-space reduction techniques, and goal-probability bounds suitable for heuristic state-space search. We systematically explore this design space through an extensive empirical evaluation. The key to our conflict-driven learning algorithm adaptation are unsolvability detectors, i.e., goal-reachability overapproximations. We design three complementary families of such unsolvability detectors, building upon known techniques: critical-path heuristics, linear-programming-based heuristics, and dead-end traps. We develop search methods to identify conflicts in deterministic and probabilistic state spaces, and we develop suitable refinement methods for the different unsolvability detectors so to recognize these states. Arranged in a depth-first search, our techniques approach the elegance of conflict-driven learning in constraint satisfaction, featuring the ability to learn to refute search subtrees, and intelligent backjumping to the root cause of a conflict. We provide a comprehensive experimental evaluation, demonstrating that the proposed techniques yield state-of-the-art performance for finding plans for solvable classical planning tasks, proving classical planning tasks unsolvable, and solving MaxProb in probabilistic planning, on benchmarks where dead-end states abound.Viele kombinatorisch komplexe Berechnungsprobleme in der Informatik lassen sich als Erreichbarkeitsprobleme in einem implizit dargestellten, potenziell riesigen, Graphen - dem Zustandsraum - verstehen. Die Zustandsraumsuche ist eine weit verbreitete Methode, um solche Erreichbarkeitsprobleme zu lösen. Die Effizienz dieser Methode hĂ€ngt aber maßgeblich von der Verwendung strikter Suchkontrollmechanismen ab. Das konfliktgesteuerte Lernen ist eine essenzielle Suchkomponente fĂŒr das Lösen von Constraint-Satisfaction-Problemen (wie dem ErfĂŒllbarkeitsproblem der Aussagenlogik), welches von Konflikten, also Fehlern in der Suche, neue Kontrollregeln lernt, die Ă€hnliche Konflikte zukĂŒnftig vermeiden. In dieser Arbeit erweitern wir die zugrundeliegende Methodik auf Zielerreichbarkeitsfragen, wie sie im klassischen und probabilistischen Planen, einem Teilbereich der KĂŒnstlichen Intelligenz, auftauchen. Die kanonische Form von „Konflikten“ in diesem Kontext sind sog. Sackgassen, ZustĂ€nde, von denen aus die Zielbedingung nicht erreicht werden kann. Wir prĂ€sentieren Methoden, die es ermöglichen, wĂ€hrend der Zustandsraumsuche von solchen Konflikten korrektes und verallgemeinerbares Wissen ĂŒber Sackgassen zu erlernen. Unsere Arbeit umfasst folgende BeitrĂ€ge: Wenn der Effekt des Handelns mit Unsicherheiten behaftet ist, dann kann die Existenz von Sackgassen dazu fĂŒhren, dass die Zielbedingung nicht unter allen UmstĂ€nden erfĂŒllt werden kann. Die naheliegendste Planungsbedingung in diesem Fall ist MaxProb, das Maximieren der Wahrscheinlichkeit, dass die Zielbedingung erreicht wird. Planungsalgorithmen fĂŒr MaxProb sind jedoch wenig erforscht. Um diese LĂŒcke zu schließen, erstellen wir einen umfangreichen Bausatz fĂŒr Suchmethoden in probabilistischen ZustandsrĂ€umen, und entwickeln dabei neue Suchalgorithmen, Zustandsraumreduktionsmethoden, und AbschĂ€tzungen der Zielerreichbarkeitswahrscheinlichkeit, wie sie fĂŒr heuristische Suchalgorithmen gebraucht werden. Wir explorieren den resultierenden Gestaltungsraum systematisch in einer breit angelegten empirischen Studie. Die Grundlage unserer Adaption des konfliktgesteuerten Lernens bilden Unerreichbarkeitsdetektoren. Wir konzipieren drei Familien solcher Detektoren basierend auf bereits bekannten Techniken: Kritische-Pfad Heuristiken, Heuristiken basierend auf linearer Optimierung, und Sackgassen-Fallen. Wir entwickeln Suchmethoden, um Konflikte in deterministischen und probabilistischen ZustandsrĂ€umen zu erkennen, sowie Methoden, um die verschiedenen Unerreichbarkeitsdetektoren basierend auf den erkannten Konflikten zu verfeinern. Instanziiert als Tiefensuche weisen unsere Techniken Ă€hnliche Eigenschaften auf wie das konfliktgesteuerte Lernen fĂŒr Constraint-Satisfaction-Problemen. Wir evaluieren die entwickelten Methoden empirisch, und zeigen dabei, dass das konfliktgesteuerte Lernen unter gewissen Voraussetzungen zu signifikanten Suchreduktionen beim Finden von PlĂ€nen in lösbaren klassischen Planungsproblemen, Beweisen der Unlösbarkeit von klassischen Planungsproblemen, und Lösen von MaxProb im probabilistischen Planen, fĂŒhren kann

    New perspectives on cost partitioning for optimal classical planning

    Get PDF
    Admissible heuristics are the main ingredient when solving classical planning tasks optimally with heuristic search. There are many such heuristics, and each has its own strengths and weaknesses. As higher admissible heuristic values are more accurate, the maximum over several admissible heuristics dominates each individual one. Operator cost partitioning is a well-known technique to combine admissible heuristics in a way that dominates their maximum and remains admissible. But are there better options to combine the heuristics? We make three main contributions towards this question: Extensions to the cost partitioning framework can produce higher estimates from the same set of heuristics. Cost partitioning traditionally uses non-negative cost functions. We prove that this restriction is not necessary, and that allowing negative values as well makes the framework more powerful: the resulting heuristic values can be exponentially higher, and unsolvability can be detected even if all component heuristics have a finite value. We also generalize operator cost partitioning to transition cost partitioning, which can differentiate between different contexts in which an operator is used. Operator-counting heuristics reason about the number of times each operator is used in a plan. Many existing heuristics can be expressed in this framework, which gives new theoretical insight into their relationship. Different operator-counting heuristics can be easily combined within the framework in a way that dominates their maximum. Potential heuristics compute a heuristic value as a weighted sum over state features and are a fast alternative to operator-counting heuristics. Admissible and consistent potential heuristics for certain feature sets can be described in a compact way which means that the best heuristic from this class can be extracted in polynomial time. Both operator-counting and potential heuristics are closely related to cost partitioning. They offer a new look on cost-partitioned heuristics and already sparked research beyond their use as classical planning heuristics
    corecore