35,779 research outputs found

    Forecasting transport mode use with support vector machines based approach

    Get PDF
    The paper explores potential to forecast what transport mode one will use for his/her next trip. The support vector machines based approach learns from individual's behavior (validated GPS tracks) to support smart city transport planning services. The overall success rate, in forecasting the transport mode, is 82 %, with lower confusion for private car, bike and walking

    Detecting changes of transportation-mode by using classification data

    Get PDF

    A Generalisable Data Fusion Framework to Infer Mode of Transport Using Mobile Phone Data

    Full text link
    Cities often lack up-to-date data analytics to evaluate and implement transport planning interventions to achieve sustainability goals, as traditional data sources are expensive, infrequent, and suffer from data latency. Mobile phone data provide an inexpensive source of geospatial information to capture human mobility at unprecedented geographic and temporal granularity. This paper proposes a method to estimate updated mode of transportation usage in a city, with novel usage of mobile phone application traces to infer previously hard to detect modes, such as bikes and ride-hailing/taxi. By using data fusion and matrix factorisation, we integrate socioeconomic and demographic attributes of the local resident population into the model. We tested the method in a case study of Santiago (Chile), and found that changes from 2012 to 2020 in mode of transportation inferred by the method are coherent with expectations from domain knowledge and the literature, such as ride-hailing trips replacing mass transport.Comment: 19 pages, 8 figure

    Comparing and modeling land use organization in cities

    Get PDF
    The advent of geolocated ICT technologies opens the possibility of exploring how people use space in cities, bringing an important new tool for urban scientists and planners, especially for regions where data is scarce or not available. Here we apply a functional network approach to determine land use patterns from mobile phone records. The versatility of the method allows us to run a systematic comparison between Spanish cities of various sizes. The method detects four major land use types that correspond to different temporal patterns. The proportion of these types, their spatial organization and scaling show a strong similarity between all cities that breaks down at a very local scale, where land use mixing is specific to each urban area. Finally, we introduce a model inspired by Schelling's segregation, able to explain and reproduce these results with simple interaction rules between different land uses.Comment: 9 pages, 6 figures + Supplementary informatio

    A universal model for mobility and migration patterns

    Get PDF
    Introduced in its contemporary form by George Kingsley Zipf in 1946, but with roots that go back to the work of Gaspard Monge in the 18th century, the gravity law is the prevailing framework to predict population movement, cargo shipping volume, inter-city phone calls, as well as bilateral trade flows between nations. Despite its widespread use, it relies on adjustable parameters that vary from region to region and suffers from known analytic inconsistencies. Here we introduce a stochastic process capturing local mobility decisions that helps us analytically derive commuting and mobility fluxes that require as input only information on the population distribution. The resulting radiation model predicts mobility patterns in good agreement with mobility and transport patterns observed in a wide range of phenomena, from long-term migration patterns to communication volume between different regions. Given its parameter-free nature, the model can be applied in areas where we lack previous mobility measurements, significantly improving the predictive accuracy of most of phenomena affected by mobility and transport processes.Comment: Main text and supplementary informatio

    Exploring universal patterns in human home-work commuting from mobile phone data

    Get PDF
    Home-work commuting has always attracted significant research attention because of its impact on human mobility. One of the key assumptions in this domain of study is the universal uniformity of commute times. However, a true comparison of commute patterns has often been hindered by the intrinsic differences in data collection methods, which make observation from different countries potentially biased and unreliable. In the present work, we approach this problem through the use of mobile phone call detail records (CDRs), which offers a consistent method for investigating mobility patterns in wholly different parts of the world. We apply our analysis to a broad range of datasets, at both the country and city scale. Additionally, we compare these results with those obtained from vehicle GPS traces in Milan. While different regions have some unique commute time characteristics, we show that the home-work time distributions and average values within a single region are indeed largely independent of commute distance or country (Portugal, Ivory Coast, and Boston)--despite substantial spatial and infrastructural differences. Furthermore, a comparative analysis demonstrates that such distance-independence holds true only if we consider multimodal commute behaviors--as consistent with previous studies. In car-only (Milan GPS traces) and car-heavy (Saudi Arabia) commute datasets, we see that commute time is indeed influenced by commute distance
    corecore