17,993 research outputs found

    Efficient Customizable Middleware

    Get PDF
    The rather large feature set of current Distributed Object Computing (DOC) middleware can be a liability for certain applications which have a need for only a certain subset of these features but have to suļ¬€er performance degradation and code bloat due to all the present features. To address this concern, a unique approach to building fully customizable middleware was undertaken in FACET, a CORBA event channel written using AspectJ. FACET consists of a small, essential core that represents the basic structure and functionality of an event channel into which additional features are woven using aspects so that the resulting event channel supports all of the features needed by a given embedded application. However, the use of CORBA as the underlying transport mechanism may make FACET unsuitable for use in small-scale embedded systems because of the considerable footprint of many ORBs. In this thesis, we describe how the use of CORBA in the event channel can be made an optional feature in building highly eļ¬ƒcient middle-ware. We look at the challenges that arise in abstracting the method invocation layer, document design patterns discovered and present quantitative footprint, throughput performance data and analysis. We also examine the problem of integrating FACET, written in Java, into the Boeing Open Experimental Platform (OEP), written in C++, in order to serve as a replacement for the TAO Real-Time Event Channel (RTEC). We evaluate the available alternatives in building such an implementation for eļ¬ƒciency, describe our use of a native-code compiler for Java, gcj, and present data on the eļ¬ƒcacy of this approach. Finally, we take preliminary look into the problem of eļ¬ƒciently testing middleware with a large number of highly granular features. Since the number of possible combinations grow exponentially, building and testing all possible combinations quickly becomes impractical. To address this, we examine the conditions under which features are non-interfering. Non-interfering features will only need to be tested in isolation removing the need to test features in combination thus reducing the intractability of the problem

    Safe abstractions of data encodings in formal security protocol models

    Get PDF
    When using formal methods, security protocols are usually modeled at a high level of abstraction. In particular, data encoding and decoding transformations are often abstracted away. However, if no assumptions at all are made on the behavior of such transformations, they could trivially lead to security faults, for example leaking secrets or breaking freshness by collapsing nonces into constants. In order to address this issue, this paper formally states sufficient conditions, checkable on sequential code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model, which takes into account a wide class of possible implementations of the encoding/decoding operations, is implied to be secure too under the same adversary model. The paper also indicates possible exploitations of this result in the context of methods based on formal model extraction from implementation code and of methods based on automated code generation from formally verified model

    PROPOSED MIDDLEWARE SOLUTION FOR RESOURCE-CONSTRAINED DISTRIBUTED EMBEDDED NETWORKS

    Get PDF
    The explosion in processing power of embedded systems has enabled distributed embedded networks to perform more complicated tasks. Middleware are sets of encapsulations of common and network/operating system-specific functionality into generic, reusable frameworks to manage such distributed networks. This thesis will survey and categorize popular middleware implementations into three adapted layers: host-infrastructure, distribution, and common services. This thesis will then apply a quantitative approach to grading and proposing a single middleware solution from all layers for two target platforms: CubeSats and autonomous unmanned aerial vehicles (UAVs). CubeSats are 10x10x10cm nanosatellites that are popular university-level space missions, and impose power and volume constraints. Autonomous UAVs are similarly-popular hobbyist-level vehicles that exhibit similar power and volume constraints. The MAVLink middleware from the host-infrastructure layer is proposed as the middleware to manage the distributed embedded networks powering these platforms in future projects. Finally, this thesis presents a performance analysis on MAVLink managing the ARM Cortex-M 32-bit processors that power the target platforms
    • ā€¦
    corecore