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ABSTRACT OF THESIS 

 

PROPOSED MIDDLEWARE SOLUTION FOR RESOURCE-CONSTRAINTED 
DISTRIBUTED EMBEDDED NETWORKS 

 

The explosion in processing power of embedded systems has enabled distributed embedded 

networks to perform more complicated tasks. Middleware are sets of encapsulations of common 

and network/operating system-specific functionality into generic, reusable frameworks to manage 

such distributed networks. This thesis will survey and categorize popular middleware 

implementations into three adapted layers: host-infrastructure, distribution, and common services. 

This thesis will then apply a quantitative approach to grading and proposing a single middleware 

solution from all layers for two target platforms: CubeSats and autonomous unmanned aerial 

vehicles (UAVs). CubeSats are 10x10x10cm nanosatellites that are popular university-level space 

missions, and impose power and volume constraints. Autonomous UAVs are similarly-popular 

hobbyist-level vehicles that exhibit similar power and volume constraints. The MAVLink 

middleware from the host-infrastructure layer is proposed as the middleware to manage the 

distributed embedded networks powering these platforms in future projects. Finally, this thesis 

presents a performance analysis on MAVLink managing the ARM Cortex-M 32-bit processors 

that power the target platforms. 

 

KEYWORDS: Middleware, CubeSat, Distributed Computing, UAV, MAVLink 
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1 Introduction 
 In this chapter, a target set of distributed embedded systems is defined, a taxonomy for 

the comparison of middleware for managing these distributed embedded systems is presented, 

and the proposed set of layers for classifying these middleware is defined. Finally, the problem 

statement for this thesis is defined. 

1.1 Distributed Embedded Systems 

 Embedded systems are systems managed by embedded computational units with 

specialized functions. Mirroring the parallelization trend in home- and enterprise- computing, 

distributed embedded systems split tasks between multiple processing units for more efficient 

processing with less power consumption. This thesis will overview middleware techniques that 

manage such distributed embedded networks, and will adopt a classification hierarchy in order to 

categorize and compare these middleware. Finally, this thesis will suggest and will suggest a 

recommended middleware technique targeted toward application in two popular embedded 

systems: CubeSats and autonomous unmanned aerial vehicles (UAVs).  

1.1.1 CubeSats 

 CubeSats are target systems for the middleware reviewed and recommended by this 

thesis. CubeSats are nanosatellite-class satellites that measure 10 cm x 10 cm x 10 cm and weigh 

1.33kg per unit [1]. This form-factor creates a volume and cost savings that is ideal for university 

and small-scale research, with over 80 CubeSats launched to date and nearly 1,000 forecast in the 

next decade [2] [3]. As autonomous, intelligent systems, CubeSats contain many of the same 

systems as their larger satellite cousins, including a command and data handling (C&DH) system, 

an electrical power system (EPS), a communications system, and typically a science or 

technology demonstration payload.  

 As processing units become cheaper, more powerful, and less power-hungry, such small 

satellites can support missions of increasing complexity. Powerful microcontrollers can manage 

satellite systems, support complex scientific measurement, and account for the harsh space 

environment through advanced fault-tolerance schemes. Distributed networks of microcontrollers 

have been demonstrated on several CubeSat missions, parallelizing processing tasks and dividing 

the satellite management workload between multiple discrete processing units, further extending 

the capabilities of CubeSats [4] [5]. The middleware methods of managing such distributed 

embedded networks are the subject of this thesis. 
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1.1.2 Unmanned Aerial Vehicles 

Autonomous UAVs, particularly quadcopters, are target systems for the middleware 

reviewed and recommended by this thesis. Stretching further back into history than man-made 

satellites, UAVs have recently experienced a resurgence thanks to the cell-phone industry. The 

miniaturization in form-factor and power consumption, along with the parallel explosion in 

processing power, of processing units and sensors for cell phones have translated to UAVs. 

Autonomous autopilots and complex vision systems are feasible on small-scale quadcopter 

UAVs, prompting a dramatic rise of hobbyist and research quadcopters. These systems, with their 

restricted power budgets and small form-factors, form a terrestrial analog to CubeSats and can be 

serviced by many of the same distributed embedded networks. The middleware methods of 

managing these quadcopter systems are also the subject of this thesis.  

1.2 Survey Taxonomy 

The goal of this thesis is to recommend a distributed computing middleware for low 

power distributed computing platforms; this middleware will be based upon a survey on the 

current state of distributed computing frameworks and middleware currently employed or 

theorized for the target systems. 

There are four widely accepted categories that describe how middleware handles 

distributed interaction: transactional, message-oriented, procedural, and object/component [6]. 

These classifications are detailed in Chapter 2. Due to the goal of supporting a system with 

generic subsystem interfaces and plug-and-play capabilities in a resource-constrained and strict 

application environment, this thesis targets the object/component classification of middleware.  

 In order to organize the survey of distributed computing frameworks, an established 

taxonomy within the object/component classification will be adapted for classification and 

comparison of these frameworks. This taxonomy defines middleware as the encapsulation of 

common and network/operating system-specific functionality into generic, reusable frameworks 

for software modules (SMs) running on processing elements (PEs). Due to the range and scale of 

abstraction that different middleware provide, they can be separated and categorized into layers: 

host-infrastructure middleware, distribution middleware, common middleware services, and 

domain-specific middleware services [7]. The specifics of these layers are defined in Chapter 2, 

and are targeted toward distributed object computing (DOC) systems. A goal of this thesis is to 

refine and adapt the taxonomy used to describe DOC systems in order to create a middleware 
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taxonomy for low-power, distributed embedded systems, specifically those found in CubeSats 

and small-scale UAVs. 

 The taxonomy to be introduced adopts Schmidt’s definition of middleware for DOC 

systems: middleware is the reusable set of abstractions and services that encapsulate lower level 

and error-prone functionality by providing a generic application programming interface (API) for 

end-SM developers [8]. This new taxonomy, while targeted toward CubeSats and UAVs as end 

systems, applies in general to low-power, distributed embedded systems. The end goal of this 

thesis is to score the middleware in each category of this taxonomy and choose the best 

middleware for the target distributed embedded systems. The choice of middleware is not based 

on the layer that the middleware is categorized in; rather, the layering exists to classify similar 

middleware and allow them to be compared.  

1.2.1 Host-Infrastructure Layer Middleware 

 Chapter 3 surveys the lowest layer of object/component middleware: the host-

infrastructure layer. Historically, this layer is immediately above the operating system and 

protocols for transferring data. However, in order to update this taxonomy to better classify 

middleware within the target system range and to account for more middleware complexity closer 

to the hardware level, this category has been extended and categorized into two levels: hardware 

and network. 

1.2.1.1 Host-Infrastructure (HI)-Hardware 

 The HI-hardware layer of host-infrastructure middleware includes the hardware protocols 

used to transfer bytes over physical media in a distributed system. Middleware at this layer is not 

concerned with the meaning or ordering of bytes to be transferred; rather, it provides 

encapsulated sending and receiving functions. This layer is akin to the physical and data link 

layers in the Open Systems Interconnection (OSI) network model [9]. The hardware layer blends 

these two network layers in that it encompasses protocols that transmit bits over physical media 

and provide some form of synchronization or error detection; however, it is concerned only with 

the transmission of bits from a physical hardware PE, rather than the meaning of the bits. 

Examples of middleware in this sub-layer are serial communications drivers, such as Inter-

integrated Circuit (I2C) or controller area network (CAN) drivers. 

1.2.1.2 Host Infrastructure (HI)-Network Middleware 

 The HI-network middleware layer is above the hardware layer; middleware in this layer 

actively routes messages. This is akin to the network layer in the OSI model [9], and uses the 
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functions provided by the HI-hardware layer to transmit streams of bits called packets to the 

desired recipient(s). While the OSI model network layer assumes some form of addressing to 

route packets, the HI-network layer encompasses middleware that both uses literal addressing in 

the packet and addressing on the client side of a broadcast/multicast topology. Examples of 

middleware in this sub-layer are Micro-Aerial Vehicle-Link (MAVLink) and Space Plug-and-

play Avionics-1 Lite (SPA-1L). 

1.2.2 Distribution Layer Middleware 

Chapter 4 surveys the layer immediately above host-infrastructure middleware in 

object/component middleware: the distribution layer.  Middleware in this layer is responsible for 

extending the encapsulations provided by the host-infrastructure layer. This layer allows for 

standalone applications that harness the networking APIs that mask object locations, addresses, 

hardware, etc. While the host infrastructure layer is not concerned with the meaning of bytes, 

distribution layer middleware is. 

1.2.2.1 Distribution (D)-Transport Middleware 

 The D-transport layer of distribution middleware extends the encapsulations provided by 

the host infrastructure layer to remove node location and implementation dependence, and 

provides fault-tolerance and message transportation functionality not found in the host 

infrastructure layer. The D-transport layer includes middleware that actively routes messages 

transparently to end SMs, but does not follow the publish/subscribe model.  

1.2.2.2 Presentation, Encoding, Protocol, transport (PEPt) Middleware  

Presentation, Encoding, Protocol and transport (PEPt) is a framework that describes 

service-oriented architectures (SOAs), which can specifically be remote procedure call (RPC) and 

object/component middleware. SOAs offer abstracted descriptions of applications and 

components, adopting a direct object-oriented model that hides the programming models 

(presentation), encodings of data, protocols used to frame messages, and the transport 

mechanisms to deliver/route the frames [10]. The middleware reviewed in this layer follows the 

publish/subscribe model and represents applications and components on the distributed network 

as services with object-oriented syntax.  Examples of such middleware include Common Object 

Request Broker Architecture (CORBA) and micro-object request broker (uORB).    

1.2.3 Common Services Layer Middleware 

 Chapter 5 surveys middleware in the layer immediately above distribution layer 

middleware: the common services layer. Middleware in this layer extend the APIs present in 
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distribution and host-infrastructure layers to provide reusable components that are common in the 

computational environment. These can include security, threading, transactions, and logging, as 

well as many more. This allows application developers to focus more on the logic of their specific 

SM, instead of needing to write these common and reused components. Examples of middleware 

in this layer include Spacecraft Onboard Interface Services (SOIS) and Core Flight System 

(CFS).  

 Each of the above layers contains middleware that must address five key requirements of 

middleware. These requirements are network communication, which defines how the middleware 

manages different hosts communicating with each other and defines node-oriented versus 

message-oriented messaging as a comparison metric; coordination, which defines how the 

middleware manages synchronizes communicating PEs and defines synchronous or asynchronous 

communications as a comparison metric; reliability, which defines what guarantees the 

middleware makes about the integrity of inter-PE communication and uses at-most-once, at-least-

once, and exactly-once as comparison metrics; scalability, which defines the extent to which the 

middleware can accommodate the addition or subtraction of hosts and defines transparency levels 

as a comparison metric; and heterogeneity, which defines the differences in architectures, 

programming languages, operating systems, and network mechanics that the middleware can 

handle between PEs, and defines hardware heterogeneity, network heterogeneity, and software 

heterogeneity as comparison metrics. 

1.3 Problem Statement 

This thesis categorizes a set of middleware that are candidates for or already in use to 

manage distributed embedded networks on the target platforms of CubeSats and UAVs. These 

middleware approaches are each detailed for functionality and analyzed for how they address the 

set of middleware requirements: network communication, coordination, reliability, scalability, 

and heterogeneity. Based upon this analysis and comparison, MAVLink from the HI-Network 

layer is proposed for managing future CubeSat and UAV projects. Through a performance 

analysis testing the throughput, latency, and central processing unit (CPU) cycle usage on a 

demonstration Advanced RISC Machines (ARM) Cortex-M microcontroller, it will be shown that 

MAVLink offers the performance and handling of the above set of middleware requirements for 

these target platforms. 
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2 Background 
This chapter discusses the history of the UAV and CubeSat target embedded systems, as 

well as the current trends being experienced in the processing units that support them. This 

chapter also introduces and defines the terminology used to characterize the middleware reviewed 

in later sections, as well as the classifications of such middleware. Finally, a history of the Space 

Systems Laboratory is given, where much of this work originated. 

2.1 Unmanned Aerial Vehicles 

UAVs have a history beginning well before the demonstration of the first functional 

piloted aircraft. One of the earliest recorded uses of UAVs was on 22 August, 1849, when an 

Austrian army besieging Venice launched balloons against the city defenders. Despite conflicting 

reports as to whether there were two or 200 such balloons, whether the balloons dropped bombs 

or exploded in shrapnel, and whether the devices were timed or actuated via a trailing copper wire 

to the ground, the fact remains that while no great material damage was done, pilotless aerial 

platforms had made their debut [11] [12]. Similar unmanned platform patents followed in 1862 

[13] and 1863 [14], though no apparent demonstrations or constructions of these patents exist. In 

1898, Nikola Tesla demonstrated wireless control of a vehicle at an exhibition in Madison Square 

Garden in New York City, using radio signals to guide and flash lights aboard a small iron boat. 

Tesla foresaw the practical application of such a capability, envisioning “mechanical men which 

will do the laborious work of the human race” [15] [16].  

The 20th century, often dubbed the “Age of Flight”, saw the glamorous and dramatic rise 

of piloted aircraft, beloved by militaries, stuntmen, and world travelers alike. UAVs have seen a 

similarly dramatic yet less glamorous rise. The United States Navy experimented with UAVs 

during World War I by developing a flying torpedo, conducting over 100 tests showing range and 

radio control. The Army followed suit and was assisted by Orville Wright in building the 

Kettering Bug, an unmanned flying bomb. Despite only eight successful flights out of 36, a total 

of 25 Bugs were ordered. The war ended, however, before either of these systems could be 

further improved and deployed [17]. The British Royal Navy invested in both pilotless and radio-

controlled (RC) technology to develop the Queen Bee in the 1930s [18]. The Queen Bee was a 

reusable RC aircraft used for aerial target practice for naval pilots; similar land versions were 

developed for target practice for antiaircraft gunners. On the eve of World War II, the U.S. Navy 

routinely used pilotless drones as target practice for naval warship gunners, proving effective in 

training operations and unmasking air defense weaknesses [17]. These weaknesses led to greater 

emphasis on developing wartime attack drones, culminating in converted (obsolete) Devastator 
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torpedo bombers, controlled by following aircraft, sinking a beached Japanese merchantman in 

July 1944 [17]. Development on such systems stalled, however, as Navy leadership canceled 

these programs as the tide of the Pacific War turned and enough piloted aircraft and aircraft 

carriers were available. 

Further developments to present-day UAVs followed two paths: military and hobbyist. 

The Cold War saw UAVs mature into reliable pilotless reconnaissance platforms, due to political 

and military fallout from shot-down piloted U-2 aircraft over the Soviet Union and during the 

Cuban Missile Crisis; the venerable Teledyne-Ryan AQM-34 drones resulted from these pre-

Vietnam events. During the Vietnam War, over 3000 UAV operations were flown, leading to 

further expansion of offensive capabilities. These capabilities were realized during the 1973 Yom 

Kippur War and the 1990-1991 Persian Gulf War, with further UAV-borne offensive operations 

in Bosnia, Haiti, Somalia, and in the Second Persian Gulf war [17].  

Hobbyist UAV development started with personal RC aircraft, historically perceived as 

toys. The 2000’s, however, marked the beginning of the “personal drone movement”. In large 

part, this movement has been driven by the mobile computing industry, spearheaded by 

smartphones. These devices see increasing computing power, more precise Global Positioning 

System (GPS) units, and more powerful environmental sensors, all under tight power and 

physical volume constraints; the microcontrollers, sensors, and antennas that make such trends 

possible have been ideally suited to similarly increase the capabilities of UAVs, particularly in 

autonomous flight. For autonomous flight control, UAVs use autopilots, which are systems that 

utilize knowledge about the vehicle’s environment, capabilities, and preprogrammed goals to 

control the vehicle without intervention from a human. These range in complexity, from the first 

gyroscope-stabilized flights in 1913 [17] to autonomous passenger aircraft utilizing hundreds of 

sensors. While there are many commercial autopilots available, these can be prohibitively 

expensive for hobbyists (the Piccolo autopilot, for example, costs over $1,000).  Utilizing the 

high-performance, low-power, small form-factor microprocessors, GPS chips, and environmental 

sensors running today’s smartphones, online communities and companies sprung up to service the 

hobbyist community, all at much lower prices. One such company, 3D Robotics, estimates that it 

alone has shipped over 10,000 autopilots and assorted drone components, totaling more than the 

entire U.S. military operates [19]. There are many open-source autopilots available, including 

ArduPilotMega, pxIMU Autopilot, Santa Cruz Low-cost UAV Guidance Navigation Control 

(GNC) System (SLUGS) Autopilot, SmartAP Autopilot, and AutoQuad 6. These autopilots 

service a range of platforms, from familiar fixed-wing aircraft to tri-, quad-, and hexa-copters. 
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The Federal Aviation Administration (FAA) has recognized the rapid rise of hobbyist 

UAVs, incorporating control and provision for such platforms into regulations. Current 

regulations specify that hobbyist UAVs always fly within line-of-sight of the operator at launch, 

maintain altitudes below 400 feet, maintain a five-mile distance away from airports, and avoid 

commercial uses; however, many practical applications of these regulations fall into gray areas 

[20]. The FAA plans to further revise these and other regulations by 2015, allowing expanded use 

and further integration of government, commercial, and hobbyist UAVs in the United States [21]. 

Online shopping giants such as Amazon are investing in autonomous UAV technology in 

preparation for the relaxing of regulations, proposing Amazon Prime Air to deliver five pound 

packages to consumers in a matter of minutes using quad- and hexa-copter platforms [22]. 

Google acquired Titan Aerospace, maker of jet-sized, solar-powered UAVs built to fly for years, 

for Earth-imaging and Internet-delivery [23]. Facebook’s Connectivity Lab was created to build 

747-sized drones that deliver internet to the billions still without [24].  As mentioned, such 

systems require advanced and complex computing platforms.  

2.2 CubeSats 

Despite academic descriptions of geosynchronous satellites by German physicists in the 

1920’s [25] [26], Arthur C. Clarke first popularized the concept of telecommunications satellites 

in his 1945 paper, “Extra-Terrestrial Relays: Can Rocket Stations Give World-wide Radio 

Coverage?” In this paper, Clarke suggests stations in orbit that exhibit an orbital period of exactly 

24 hours, servicing a very large area for radio and television signals, and requiring only three 

such stations for global coverage [27]. Clarke’s early drawing is shown in Figure 1. 
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Figure 1: Clarke's illustration of a telecommunications satellite [27]  

With the souring of U.S.-Soviet relations at the end of World War II and the beginning of 

the atomic age, the launch of Sputnik-1 in 1957 began the so-called “space race”, ushering in a 

period of rapid development and launch of a variety of space systems. The year 1958 saw the 

launch of six satellites; in 1962, 72 satellites were launched, and over 7,000 have been launched 

since then [28]. Those satellites have varied widely in function and size, and fulfill roles from 

communications, navigation, and remote sensing to scientific research, weather, and education. 

The first man orbited the Earth in 1961, men walked on the moon in 1969, and in 2014 an 

orbiting space station holds six humans and has been continuously occupied for fourteen years 

[29]. Access to space, despite the number of space-capable launch vehicles and volume of 

launches per year, is still exorbitantly expensive. Currently estimated as costing around $10,000 

per pound to get to orbit for a launch vehicle, access to space has historically been reserved for 

and granted by governments with the resources to fund such ventures [30]. While progress is 

being made to lower this cost, both by private companies – SpaceX claims the Falcon Heavy will 

drive the cost down to under $1000 per pound [31] – and through NASA’s Advanced Space 

Transportation Program, which targets next-generation technologies to lower the cost to under 

$100 per pound in the coming decades [32], launch access to space is still a high-cost activity. 

Building the actual payloads is also expensive. A 2008 NASA study of historical missions 

categorized these costs by mission type: through 33 surveyed unscrewed Earth orbit satellites, the 

average cost was $100 million per mission; through 16 surveyed unscrewed planetary satellites, 

the average cost was $370 million per mission; and through nine crewed missions, the average 

cost was $4.6 billion per mission [33]. The cost in terms of money is high, but the cost in terms of 
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time is also high, with an early-2000’s average of 30 months required to construct a commercial 

satellite, with the time typically longer for NASA missions [34].  

While large commercial spacecraft and launches present challenges to cash-strapped 

groups wanting cheaper access to space, satellite miniaturization has somewhat alleviated the 

above obstacles. Several classes of small satellites exist, categorized by their mass ranges: small 

satellites describe the 100-500kg range, microsatellites describe the 10-100kg range, 

nanosatellites describe the 1-10kg range, picosatellites describe the 100g-1kg range, and 

femtosatellites describe the 10-100g range [3].  

 

Figure 2: KySat-2, a CubeSat launched in November 2013 [5] 

Various standards exist for each class, but perhaps the most visible class over the last 

decade is the nanosatellite, particularly the CubeSat. Developed by Dr. Jordi Puig-Sauri at 

California Polytechnic State University (Cal Poly) at San Luis Obispo and Professor Bob Twiggs 

at Stanford University in 1999, the CubeSat is a 1.33 kg, 10 cm cube. This 10 cm cube is the one-

unit (“1U”) version, but can be extended to 2U, 3U, etc. for more volume. KySat-2, pictured in 

Figure 2 and built by University of Kentucky and Morehead State University students, is a 1U 

stowed and 2U deployed CubeSat.  
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In addition to the CubeSat concept and specification, Dr. Puig-Sauri and Professor 

Twiggs also created the Poly Picosatellite Orbital Deployer (P-POD), which is a CubeSat 

deployment system. While the CubeSat addresses the issues of the money- and time-cost of 

satellite construction, the P-POD attempts to address the issue of launch cost per pound by 

serving as an add-on interface to existing launch vehicles. The standard P-POD holds 3U-worth 

of CubeSats, and operates as a “jack-in-the-box”, with a spring back plate forcing the satellites 

out into orbit once the door opens. By adhering to the P-POD and CubeSat design specifications 

and requirements, CubeSats can safely “piggyback” on existing flights to space, dramatically 

reducing the money-cost of getting satellites to space. Furthermore, NASA’s Educational Launch 

of Nanosatellites (ELaNa) program partners with universities to provide the cost of the actual 

launch, leaving only the construction and environmental testing costs for the satellite builders. 

The CubeSat standard has enjoyed worldwide success in getting to space, with nearly 100 

launched between 2003 and 2012; 2013 alone was a banner year for CubeSats, with over 80 

launched [2]; market projections indicate that over 2,000 nanosatellite- and microsatellite-class 

spacecraft will need launch opportunities between 2014 and 2020 [3].  

With the popularity of CubeSats, the technology powering them has also advanced. 

CubeSats are comprised of many of the same subsystems as their larger cousin spacecraft, 

typically including: a radio communications system, an EPS, an attitude determination and 

control system (ADCS), a science or technology payload, and a C&DH. While each of these 

subsystems have undergone significant maturation and are the subjects of extensive academic 

research and commercial development, the C&DH will be studied in more detail. The mobile 

computing industry has had a significant impact on the computational capabilities of satellite 

C&DHs, in fact much the same as with UAVs. The miniaturization of sensor and processing 

components, along with the reduction in power requirements despite an upward trend in 

computational power, have both made the C&DH capable of enhancing CubeSats far beyond 

their Sputnik-like origins. The ELaNa IV launch in November 2013 from Wallops Flight Facility 

carried 11 university- and high school-constructed satellites; these satellites performed a variety 

of complex missions, ranging from technology demonstration (stellar gyroscope, pyramidal 

control moment gyroscopes, open-source satellite bus architectures, and Android-powered 

spacecraft) and educational outreach to space science (radiation dissipation during auroras and 

infrared Earth imaging) [35].   
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2.3 Distributed Processing 

 From the abacus and Napier’s bones to modern billion-transistor processors, the power of 

computing hardware has experienced an exponential growth, particularly during the last 60 years. 

Charles Babbage’s Turing-complete Analytical Engine was designed in 1834 [36], table-sized 

punched card machines processed Social Security records in the 1930’s [37], and exponentially 

miniaturizing transistor sizes and power consumption have enabled powerful computational units 

to proliferate every modern industry.  

2.3.1 8051 

 In 1980, Intel released the venerable MCS-51 “8051” microcontroller series. A 

microcontroller is a similar computational unit to a microprocessor, but contains the processor, 

memory, and input/output peripherals on the chip for standalone use in embedded environments. 

The 8-bit 8051 implements a Harvard architecture, meaning the instruction and data memories are 

independent, and is typically implemented with universal asynchronous receiver/transmitter 

(UART), I2C, serial peripheral interface (SPI), and other peripheral modules. The 8051 is a 

popular microcontroller that sees adoption in many industries, including aerospace, automotive, 

home appliances, and even the music industry due to its small size, low power consumption, and 

standardized architecture [38]. Though Intel no longer produces the 8051, many companies still 

develop and sell 8051-architecture chips, including Atmel, NXP, Silicon Labs, and Texas 

Instruments. The 8051 is a target architecture for the distributed embedded middleware 

recommended by this thesis. 

2.3.2 ARM 

 Until the late 2000’s, 8-bit microcontroller families such as the 8051 filled the low-power 

embedded niche. However, the Advanced Reduced Instruction Set Computer (RISC) Machine 

(ARM) core has achieved low enough power consumption to begin to fill this niche, with over 98 

percent of smartphones sold per year containing at least one ARM-core processor [39]. Similar to 

the rise in intelligent hobbyist UAVs, the smartphone revolution has driven the power 

consumption and processing power of ARM core processors, specifically the ARM Cortex-M 

family, to the point where they can be integrated into low power systems [40]. The ARM Cortex-

M is a target architecture for the distributed embedded middleware recommended by this thesis. 
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2.4 Distributed Middleware  

2.4.1 Terminology 

 In order to present the survey and classification of middleware for distributed, low-power 

embedded systems, the terminology must be reviewed. Embedded systems are standalone 

computers with very specific functions, and are often integrated into larger systems. These larger 

systems are growing to encompass nearly every industry, and notably include automotive 

systems, such as braking systems and engine control; consumer appliances, such as microwaves, 

refrigerators, and washer/dryers; and aerospace, including flight avionics [41]. This thesis 

specifically surveys the middleware available to flight avionics. 

2.4.1.1 Distributed Embedded Systems 

The first major distinction involves that between distributed and centralized embedded 

systems. Embedded systems are essentially standalone computers with very specific functions, 

and they are often integrated into larger systems. Centralized embedded systems integrate all 

processing functionality onto a single processing element. An advantage of this is a shared 

memory space for all functionality, requiring no lossy network communication between processes 

or services; however, a centralized architecture requires more resources from the processing 

element, necessitating more processing power and power consumption of the processing element. 

Distributed embedded systems, however, split processing functionality onto multiple discrete 

processing elements. The advantage is that less processing power and power consumption are 

required from any single processing element, and individual processing elements can be less 

complex. However, a distributed embedded network requires an additional layer of physical 

communications, formed over lossy connections and introducing latency between communicating 

processes. This thesis examines middleware intended for distributed embedded systems, and 

ignores centralized architectures. 

2.4.1.2 Fault-Tolerance 

Within distributed embedded systems, another major distinction is in the system’s level 

of fault-tolerance, which is a system’s behavior in response to a fault. Two general terms 

enumerate the state of a system: safe, which means the system preserves state and system data, 

and causes no harm to itself or environment; and live, which means the system is running and is 

not in a stopped or shutdown state. Using these definitions for a system, a system can be in one of 

four possible fault-tolerant states: fault masking, where the system preserves system liveness and 

safety and is most desirable; fail safe, where the system preserves system safety at the cost of 
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liveness; non-masking, where the system preserves liveness at the cost of safety, and none, where 

the system guarantees neither system liveness nor safety, and is least desirable [42]. Table 1 

summarizes these states. 

Table 1: Matrix of System States 

 Live Not live 

Safe Fault Masking Fail Safe 

Not safe Non-masking None 

 

 Two phases are required to handle faults: detection and correction. Fault detection begins 

at the system design level, where predictable faults are grouped into fault classes that may be 

handled differently [43]. Once fault classes are created, there are four broad categories of fault 

detection once the system is deployed: n-version redundancy and voting, state estimation and 

monitoring, system feedback monitoring, and software wrapping and monitoring. Fault detection 

essentially addresses the system safety aspect of fault tolerance. Once the fault has been detected, 

the most essential fault correction method is redundancy, the forms of which can be categorized 

into three approaches: n-version redundancy with voting, redundant estimation, and redundant 

resource allocation. Fault correction essentially addresses the system liveness aspect of fault 

tolerance [42] [44]. All middleware surveyed in this thesis incorporate some level of fault-

tolerance; those that do not are not considered. 

2.4.1.3 Real-Time Embedded Systems  

Within fault-tolerant, distributed embedded systems, a further distinction can be made 

about the timeliness required of the system. A real-time embedded system is one that must meet 

timing requirements, else severe consequences for the system will result. These real-time systems 

can be further subdivided into two categories: hard real-time, where specific timing requirements 

absolutely must be met, and soft real-time, where the tasks running just need to be performed as 

quickly as possible [41]. Hard real-time embedded systems typically require a real-time operating 

system (RTOS), which is outside the scope of this thesis; the middleware surveyed in this thesis 

call all be described as soft real-time. 

2.4.1.4 ISO/OSI Network Stack 

 This thesis is studying distributed embedded system middleware, and the classifications 

will be described by their OSI network layer equivalents. The purpose for the OSI model is to 
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provide a standardized layering where each layer successively encapsulates lower layers while 

contributing its own value. Each layer is independent of the layer above and below, and scales 

appropriately with the complexity of the host system [45]. The OSI model is classically divided 

into seven layers: physical, data link, network, transport, session, presentation, and SM. While 

popularly restricted to networking for personal computers, the OSI model also describes network 

interactions between the components of distributed embedded systems. A summary of these 

layers is pictured in Table 2, and the roles of each layer are detailed below [45] [9]. 

Table 2: Summary of OSI Model Layers [45] [9] 

Layer Data Function 

SM Data SM interface for networking 

Presentation Data Data representation 

Session Data Host-to-host connection 

Transport Segment End-to-end data transportation 

Network Packet Routing and logical addressing 

Data Link Frame Physical addressing and error detection  

Physical Bit Signal transmission and hardware protocol 

 

2.4.1.4.1 Physical 

 The physical layer is the lowest layer in the OSI model, and is the base layer for 

distributed SMs. This layer encompasses the electrical protocols and specifications used to wire 

the components of the distributed system together. This can include Institute of Electrical and 

Electronics Engineers (IEEE) 802.11 (wireless), Universal Serial Bus (USB), Bluetooth, and RS-

232 serial. This layer is by nature an unreliable physical link. 

2.4.1.4.2 Data Link 

 The data link layer is above the physical layer, and implements a reliable link between 

physically connected components. This reliability is achieved through error detection and 

correction and synchronization between components. An example of a program in this layer is the 

Point-to-Point Protocol (PPP) that splits packets from higher layers into frames for transmission 

onto the Internet.  
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2.4.1.4.3 Network 

 The network layer is above the data link layer, and implements the routing of packets for 

the distributed system. Routing is accomplished via addressing, where each node on the same 

network has a unique address. This layer does not guarantee reliability, however; packets may be 

dropped or reordered. An example of a program in this layer is the Internet Protocol (IP), which 

routes packets based on IP address. 

2.4.1.4.4 Transport 

 The transport layer is above the network layer, and provides for the end-to-end 

transportation of data from SMs. The purpose of this layer is to provide an encapsulation of all 

network transportation to higher layers. An example of a program in this layer is Transmission 

Control Protocol (TCP), which provides a guarantee of packet delivery by establishing a 

connection between distributed components and retransmitting any dropped or corrupted packets. 

2.4.1.4.5 Session 

 The session layer is above the transport layer, and provides connection setup and closing 

between distributed components. This layer binds the transportation of data between distributed 

components into a logical relationship. An example of a program in this layer is Net-Basic 

Input/Output System (BIOS), which establishes connections and provides an API for exchanging 

data between connected systems. 

2.4.1.4.6 Presentation 

 The presentation layer is above the session layer, and provides translation between 

application formats and the network format required to transport data. This layer both formats 

data from applications on the transmitting node to be sent over the network, and translates 

received data to be consumed by applications on the receiving node. An example of a program in 

this layer is Multipurpose Internal Mail Extensions (MIME), which is used to format hypertext-

transfer protocol (HTTP) into its required email-like format for transmission. 

2.4.1.4.7 Application 

 The application layer is above the presentation layer, and is the final layer that is directly 

called by applications in systems implementing the full OSI model. An example of a program in 

this layer is Network File System (NFS), which implements a distributed file system across a 

network. 
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 Not all distributed components implement all layers of the OSI model, nor are they 

required to. Some systems, particularly distributed embedded systems, are less complex than 

general-purpose computers, such as personal computers (PCs). These less complex systems, with 

fewer computational resources and applications that are closer to the system’s hardware layer, 

typically only implement the physical, data link, network, and transport layers. 

2.4.1.5 Middleware 

Middleware is a software layer between applications and an underlying network that 

provides generic abstractions and services applications [6]. The motivations for such middleware 

are several fold: they provide layers of abstraction between application developers and low-level 

details that are often tedious and prone to errors; they reduce development time by providing 

previously-tested and reusable code; and the abstractions they provide can mimic network- and 

object-oriented strategies that are closer to application-level programming [46]. This thesis will 

explore a host of middleware implementations, and a common lexicon is needed for comparisons 

between them. Since this thesis is restricted to middleware for distributed systems, software will 

be running on multiple physical computational units. Adopting the naming convention of the D-

Transport middleware Automatically Reconfigurable Distributed Embedded Architecture (Ardea) 

[47], a middleware that is investigated in Chapter 4, these physical computational units will be 

henceforth referred to as processing elements (PEs); the software running on them will be 

henceforth referred to as software modules (SMs). Multiple SMs can run on one PE. 

While middleware can be simply defined as an abstraction layer between the tedious 

details of a distributed network and SMs, Emmerich defines a set of five requirements that 

middleware must in some way address. These requirements allow for middleware to be classified 

and evaluated, and are: network communication, coordination, reliability, scalability, and 

heterogeneity [6].  

A distributed network is a set of PEs with some combination of SMs running on them. 

There are two kinds of architectures that govern when messages will be exchanged between these 

PEs: event-triggered architecture and time-triggered architecture. 

2.4.1.6 Event-Triggered Architecture 

  An event-triggered architecture (ETP) describes a distributed network where messages 

are only generated and exchanged between PEs when they are needed. Messages are based on 

events, and the network is idle if no event requiring such transactions is occurring. There are 

several strengths and weaknesses of ETP. ETP allows for more dynamic topologies by only 
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requiring connection to the physical bus, instead of complex and predetermined messaging 

schedules and algorithms. Additionally, ETP may be more efficient in certain scenarios, such as 

systems where messaging is sparse or where the data exchanged is large. However, ETP relies on 

events to trigger communication. The occurrence of multiple events simultaneous or during 

another event-induced transaction could cause bus contention, potentially starving PEs or 

rendering the data stale. The failure of any PE disables whatever data exchange that PE normally 

initiates. Also, message latency is not constant since there is no temporal limit or restriction to the 

occurrence of events. An example of an ETP is Ethernet, where packets are only exchanged when 

a PE wants to supply or request data from another PE [48].  

2.4.1.7 Time-Triggered Architecture 

 A time-triggered architecture (TTP) describes a distributed network where each PE can 

only transmit data during a predetermined, specified time interval. This time interval is based on a 

global time base, and each PE is allocated a finite slot during which it can transmit or request 

information. Responding PEs would then use their allocated slots to respond. Each PE is given its 

slot, and the process is repeated, yielding a predictable, periodic communication time for each PE. 

The global time base can either be sourced from a master PE, providing a clock synchronization 

message to each PE, or a combination of PE clock sources to form a “masterless” network, where 

the failure of any single PE doesn’t destroy the global time base.  

There are several strengths and weaknesses of TTP. TTP offer constant and known 

message latency, since each PE is given a predetermined period of time to transmit. TTP also 

offers known and optimizable bus loading, since the periodicity and sequencing of messages from 

PEs is precisely known. Finally, there is no bus contention, since each PE can only transmit 

during its specified interval. This helps ensure hard real-time compliance of the network. 

However, TTP require heavy upfront design and a static network, allowing the addition of no new 

PEs without changing the messaging schedule. With TTP, large data needs to be segmented into 

chunks that are transmitted when the sending PE’s time arrives, inducing latency and delaying 

delivery of the file. This could be unacceptable for the system, such as one that delivers video. 

Likewise, PEs with no new data leads to wasted slots, introducing unnecessary latency for other 

PEs needing to transmit [48].  

2.4.1.8 Network Communication  

Distributed middleware must facilitate components on different hosts communicating 

with each other. Classically this relies on the ISO/OSI reference model, where the physical layer, 
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data link layer, network layer, and transport layer are all handled by a network operating system 

and the session and presentation layers are handled by the middleware. However, the lower power 

consumption and computational power of embedded systems are bringing middleware closer to 

the hardware; this thesis allows the network communication requirement to extend down to the 

data link layer. In satisfaction of this requirement, the network communication of middleware 

will be classified as node-oriented, where each node in the network is addressed uniquely, or 

message-oriented, where the messages themselves are addressed and nodes on the network must 

know whether to process the message. 

2.4.1.9 Coordination  

 Distributed middleware must be cognizant of the many points of control in a distributed 

system. With different hosts responding to requests and running a heterogeneous mixture of 

components, some form of synchronization is required. This can include blocking while waiting 

for a requested service to execute, polling while waiting for executing services to complete, or 

server-client asynchronous requests. Additionally, the coordination requirement implies that 

middleware must reflect the necessities of a large number of hosts. At any given point, different 

numbers and combinations of hosts may disappear from the network. In satisfaction of this 

requirement, the coordination of middleware will be classified as synchronous, where 

transmitting nodes must wait for receiving nodes to acknowledge the message, or asynchronous, 

where the transmitting node sends the message and continues execution without waiting for the 

receiver. 

2.4.1.10 Reliability 

 Middleware used in safety-critical SMs must offer some level of reliability in 

communication between distributed PEs; and middleware in non-safety critical SMs should offer 

a level of reliability. This reliability is measured in terms of successful message delivery and 

message duplication, and can be categorized as: at-most-once, at-least-once, and exactly-once. 

At-most-once means that the message will not be duplicated, but still may not be successfully 

delivered. At-least-once means that the message will be successfully delivered, but will possibly 

be duplicated. Finally, exactly-once is a combination of the previous two, meaning that the 

message will be successfully delivered and will not be duplicated [6] [49]. These results are 

summarized in Table 3. 
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Table 3: Comparison of reliability measures 

 Delivery Duplication 

At-most-once Not guaranteed Guaranteed 

At-least-once Guaranteed Not guaranteed 

Exactly-once Guaranteed Guaranteed 

 

2.4.1.11 Scalability 

 Middleware for distributed systems must be able to accommodate the addition or 

subtraction of hosts without changing the architecture or code. In order to accomplish this, 

various levels of transparency must be provided by the middleware. These transparency levels are 

defined by the ISO Open Distributed Processing (ODP) Reference Model; only the subset defined 

by Emmerich [6] will be used here; these are summarized in Table 4. Access transparency means 

that SMs have no knowledge whether services it uses are local or remote; location transparency 

means that SMs have no knowledge of the physical location of other services; migration 

transparency means that services or components can be transferred between hosts for load 

balancing or fault tolerance with no knowledge to SMs; and replication transparency means that 

multiple copies of a service can exist on many hosts, again for load balancing or fault tolerance, 

with no knowledge to the SM. It is these transparency services that middleware should provide. 

Table 4: Comparison of scalability measures 

Transparency 

Access Components do not know if services are local or remote 

Location Components do not know physical location of services 

Migration Components do not know if service has been migrated  

Replication Components do not know which redundant copy service is using 

 

2.4.1.12 Heterogeneity 

 Distributed systems are composed of multiple discrete processing elements, and these 

processing elements are not necessarily homogeneous. Distributed middleware should handle 

differences in programming languages, operating systems, and hardware implementations 

between hosts in a distributed network. This can also include the different ways that 

heterogeneous hosts encode data: Unicode vs. American Standard Code for Information 
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Interchange (ASCII) vs. Extended Binary Coded Decimal Interchange Code (EBCDIC), 8-bit vs. 

16-bit numbers, and little-endian vs. big-endian representation. Such heterogeneity is measured 

by what levels of abstraction of middleware are required at each PE: hardware heterogeneity, 

where the instruction set and data representation architectures can differ between PEs; network 

heterogeneity, where transmission media, signaling, and protocols can differ between PEs; and 

software heterogeneity, where the operating systems, programming languages, and SMs can 

differ between PEs . These are summarized in Table 5. 

Table 5: Comparison of heterogeneity measures 

Heterogeneity 

Hardware Different computer architectures 

Network Different signaling and protocols 

Software Different operating systems, programming languages, and SMs 

 

2.4.2 Classifications 

Middleware has been in the computing lexicon since the 1980’s [8], and has grown to 

support a wide range of distributed systems with varying degrees of complexity and deployment. 

Two early reasons for the packaging of explicit middleware stand out: first, the consolidation of 

the information technology (IT) industry and merging of companies brought together disparate 

systems and services that would have required too much time and effort to build from the ground 

up. As a result, these services were integrated and combined using middleware to deliver IT 

computing services as quickly as possible to customers. Secondly, the exponential growth of the 

Internet in the 1990’s and 2000’s made scalability a requirement for web services to survive; 

utilizing distributed systems and the middleware that knit them together allowed for websites and 

service providers to keep pace with growing demand. With the minimization of embedded 

systems in both size and power requirements, the use of distributed computing has continued to 

drive middleware development and deployment. In the time since these early days of middleware, 

distributed systems have grown into ubiquitous elements of technological infrastructure.  

The distributed methodology, of dividing the typical resources available in a central 

computer (memory, processing power, power consumption, etc.), offers many advantages over a 

centralized methodology. Distributed systems can integrate legacy devices and components, can 

incorporate component and service redundancy and fault tolerance, and are more scalable than 

centralized systems [6]. This classification restricts middleware to distributed systems. 
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Middleware encompasses the software services and “plumbing” that powers distributed systems. 

After several decades of formal middleware creation and consolidation, the methodologies used 

to create middleware can be classified. Emmerich’s [6] widely accepted [46] [8] classification 

scheme first explores five middleware requirements, because the way different middleware 

schemes handle these requirements allow them to be classified: network communication, 

coordination, reliability, scalability, and heterogeneity. Using the methods that middleware use to 

address these requirements, distributed middleware can be classified into four different groups: 

transactional, message-oriented, procedural, and object/component.  

2.4.2.1 Transactional 

 Transactional middleware connects distributed hosts using a two-phase commit protocol. 

In this middleware architecture, hosts are coordinators, participants, or non-participants. The 

coordinator is typically the host process that needs to communicate with a distributed resource 

manager and coordinates the transaction. This transaction is shown in Figure 3. Participants are 

the resource managers that host resources desired by the coordinator. Non-participants are 

resource managers not participating in the transaction. The coordinator queries all desired 

participants through a prepare message. The participants reply to the prepare message, voting 

either to abort the transaction or commit their requested resources. If the participants all vote to 

commit, the coordinator issues a commit message and the transaction proceeds [50] [51].  

 

Figure 3: Basic Two-phase Commit Protocol [51] 
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This process is based on hundreds-year-old contract law, where transactions between 

parties obey three properties: consistency, where the transaction follows an established protocol; 

atomicity, where the transaction binds either all participants or none; and durability, where 

commitment to the transaction is final and cannot be violated [52]. The Open Group has adopted 

the Distributed Transaction Processing (DTP) model and XA specification to incorporate an 

implementation of this two-phase commit protocol. An example implementation of this 

middleware architecture is International Business Machine Corporation’s (IBM) Customer 

Information Control System (CICS) family of online transaction management servers and clients. 

2.4.2.2 Message-Oriented 

 Message-oriented middleware (MOM) uses message exchange to connect distributed 

hosts. A client sends a message to a message queue, which is a temporary, persistent storage 

location for messages. Server components check the message queue and retrieve any pertinent 

messages, execute the request, then place messages back in the queue for the client. This 

messaging is asynchronous, meaning the client continues execution of other tasks after the 

message is given to the middleware. Additionally, if the server component or client experience a 

failure, the messages remains in the queue and can be retrieve once the component has restarted. 

The advantage of this architecture is that the distributed hosts can be running at different times 

and speeds; messages are placed in the queues and retrieved from the queues, requiring no logical 

link or synchronization between hosts, further separating SMs from the distributed network. An 

example implementation of this architecture is IBM’s MQSeries product line, which implements 

a MOM architecture and provides an API for SMs to utilize it in distributed systems [53]. 

2.4.2.3 Procedural 

 Procedural middleware relies on remote procedure calls (RPCs) to connect distributed 

hosts. Each host has a set of available programs that are visible as server components to clients. A 

client “calls” the procedure by passing the call to the middleware, which marshals the call into a 

network message using an automatically-generated client stub, and transmits the message. The 

server unmarshals the message, using an automatically-generated server stub, and executes the 

program. Acknowledgement and any other data transfer is accomplished via similar 

marshalling/unmarshalling of messages.  

 The key advantage of this style of middleware is in the interface definitions, which are by 

necessity explicitly defined for every available RPC. However, these systems are not scalable, as 

newly available RPCs still need to be programmed or handled by SM developers, as they are not 



24 
 

handled by the middleware. RPCs are available on Microsoft Windows and Unix operating 

systems, and were first developed by Sun Microsystems for the Open Network Computing 

platform. 

2.4.2.4 Object/Component 

 Object middleware is an extension of procedural middleware, but with adoption of many 

of the object-oriented principles from C++. All available resources and hosts are objects, which 

can call other objects through references. These references are automatically marshalled and 

unmarshalled on the client and server, maintaining access and location transparency. 

Furthermore, object middleware implementations allow for both synchronous and asynchronous 

communication and transaction-based communication. While the architecture of invoking objects 

on other hosts is very similar to procedural middleware, object middleware integrates 

transactional and message-oriented principles. Middleware in this category are the subject of this 

thesis. An example of object middleware is the Common Object Request Broker Architecture 

(CORBA), which is further detailed in Chapter 4.  

2.5 Space Systems Laboratory 

The Space Systems Laboratory (SSL) at the University of Kentucky (UK) began as an 

embedded systems design lab specializing in autopilot instrumentation for autonomous UAVs. In 

2006, the SSL joined the newly-created Kentucky Space consortium to develop an aerospace 

infrastructure in the state of Kentucky. The goal of Kentucky Space was to design, build, launch, 

and operate spacecraft every 12-18 months, creating a technical infrastructure and talent pool to 

facilitate Kentucky’s permanent presence in space [54]. The flagship project for this endeavor 

was the cubesat KySat-1, a small satellite measuring 10x10x10 cm^3. KySat-1 launched in March 

2011, and was lost along with the NASA Glory mission [55]. 

While developing KySat-1, other missions were completed to test subsystems and train 

new students. These missions included development and flight of instrumentation payloads on 

three different suborbital missions, as well as one high-altitude balloon flight. In late 2009, the 

SSL designed and constructed the NanoRack platform in partnership with NanoRacks, LLC for 

use on the International Space Station (ISS). Conceived as a standardized experiment locker, the 

NanoRack provides CubeSat-sized payload volumes to ground researchers, lowering the barrier 

to entry for microgravity research. The SSL developed the CubeLab Standard and operated the 

first two NanoRack platforms, as well as the first ten CubeLabs, on the ISS from a remote 

console located at UK. In 2012, the SSL partnered with NASA Ames Research Center’s Small 



25 
 

Spacecraft Payloads Technology (SSPT) Office to create the AmesLab Bus, a NanoRack-

extension to supply additional power and commanding capabilities to NASA small satellite 

science payloads on the ISS. In 2013, the SSL extended the capabilities of the AmesLab Bus 

through a collaboration with COSMIAC at the University of New Mexico, bringing Space Plug-

and-play Avionics (SPA) compatibility to the ISS. Finally, in 2012 Kentucky Space was granted a 

launch opportunity on NASA’s ELaNa IV mission to re-fly KySat-1. Both the SSL and Morehead 

State University’s Space Science Center (SSC) worked to design and build KySat-2, which 

successfully launched in November 2013.  
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3 Host-Infrastructure Middleware 
 This chapter details host-infrastructure middleware. Host-infrastructure middleware is the 

lowest layer of object/component middleware, and is closest to the PE. While Schantz and 

Schmidt define this layer as an encapsulation of the native operating system’s network 

mechanisms, this thesis extends host-infrastructure middleware to include middleware present 

without an operating system. This layer is divided into three sub-layers to account for middleware 

closer to the hardware level of the PE: hardware, network, and operating system. Middleware in 

each of these categories only encapsulate the functionality provided by that category, and do not 

significantly enhance that functionality. Middleware in these categories also do not account for 

the meaning of the bytes being transferred. 

3.1 HI-Hardware 

 The HI-hardware sub-layer is the lowest layer of middleware. Middleware in this layer 

provides encapsulations of hardware registers to achieve communication between PEs. PEs found 

in CubeSats and UAVs typically provide hardware communications modules to implement serial 

communications protocols. Middleware in this layer can provide encapsulations for use of these 

modules. Only communications protocols that offer physical and data link layer services are 

considered. These include CAN, I2C, USB, and Ethernet. 

3.1.1 CAN  

 Controller Area Network (CAN) is a network communication protocol originally 

developed by Bosch in 1985 to answer the need for less complicated wiring harnesses in the 

automobile industry. It has since been adopted as ISO standard 11898 (1993), and is extensively 

used in the automobile, medical, manufacturing, and aerospace industries due to its low-cost, 

lightweight networking solution and fault-tolerance [56]. 
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Figure 4: CAN Bus 

 CAN specifies a two-wire interface, CANH and CANL, that is terminated with load 

resistors; this allows a CAN bus can be up to 40 meters in length. CAN uses a broadcast 

messaging style, where messages are delivered to all PEs to ensure consistent messaging. CAN is 

message-oriented as well, meaning that instead of addressing PE recipients, the PEs themselves 

decide whether to interpret the data based on message identifiers. CAN uses carrier-sense, 

multiple-access (CSMA) where each PE must wait until a certain period of inactivity has elapsed 

before attempting to transmit on the bus. CAN additionally uses collision detection and 

arbitration on message priority (CD+AMP), where message priority flags arbitrate multiple PEs 

trying to transmit at the same time. Finally, CAN includes a cyclic redundancy check (CRC) 

within all message frames, providing for fault detection; errors during transmission prompt 

retransmission, providing fault correction [57].  

3.1.2 I2C  

 Inter-integrated Circuit (I2C) is a network communication protocol developed by NXP 

Semiconductor (formerly Philips Semiconductors). I2C was originally developed to link discrete 

digital devices on small surface areas, such as PC cards. However, as data rates (increasing from 
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100 kilobytes per second to 3.4 megabits per second) and capacitive limits (extending beyond 

400pF through isolation devices and improved printed circuit board (PCB) design) increase, I2C 

has found use in servers, home electronics, and aerospace devices [58]. 

 I2C requires two wires, serial data (SDA) and serial clock (SCL); each is pulled up to the 

operating digital voltage via pull-up resistors. The network is composed of masters and slaves, 

and masters may only initiate transfers on the I2C bus. I2C messages contain a slave address, 

unique to each slave, and can either read from or write to an I2C slave.  

3.1.3 USB 

 Universal Serial Bus (USB) is a plug-and-play protocol widely used in the PC industry. 

First released in 1996, the USB standard has gained worldwide acceptance and is incorporated on 

millions of devices for its simplicity of use and device support [59]. Its plug-and-play architecture 

makes it an ideal candidate for plug-and-play spacecraft, and SPA-U is based on it.  

 There are four types of transfers in USB: control, bulk, interrupt, and isochronous. The 

purposes and features of each are summarized in Table 6. 

Table 6: Summary of USB transfer modes 

 Control Bulk Interrupt Isochronous 

Purpose Configuration Non-time-critical 

data transfers 

Time-critical 

data transfers 

Streaming, real-

time transfers 

Error Detection Yes Yes Yes Yes 

Error 

Correction 

Yes Yes Yes No 

 

 Control transfers are the only required transfer mode for all USB devices, and are used to 

enumerate a network, assign device addresses, and determine the properties and capabilities of 

newly connected devices. This is the feature most directly emulated on higher-level middleware 

such as SPA, discussed in Chapter 4. Other transfer types seek to address other data transfer 

situations, such as bulk transfers where data integrity is important but time to transfer is 

unimportant (such as print jobs); interrupt transfers where time is important (such as keyboards); 

and isochronous transfers where the rate of transfer is important but data integrity is unimportant 

(such as video or audio streaming) [59].  
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3.1.4 Ethernet 10/100 Base-T 

 IEEE 802.3 (Ethernet) is a network communication protocol developed by Robert 

Metcalfe and David Boggs at Xerox PARC in 1974. It became an IEEE standard in June 1983, 

and has continued to evolve since [60]. Ethernet has grown into a very popular standard for 

connecting personal computers and servers, typically used to support Transmission Control 

Protocol/Internet Protocol (TCP/IP). 

 Ethernet implements the bottom two layers in the OSI network model: the physical layer 

and the data link layer. On the physical layer, Ethernet encodes frames for transmission and 

decodes received frames over a variety of supported physical media, including twisted pair 

copper wire and fiber optic cable. On the data link layer, Ethernet implements Media Access 

Control (MAC) and Management Information Base (MIB). The MAC protocol is carrier-sense, 

multiple-access with collision detection (CSMA/CD), meaning a transmitting PE must detect an 

idle connection for certain period of time before transmitting; if a collision occurs, all transmitters 

that collided complete transmission to allow the collision to propagate, and then remain silent for 

a random period of time and attempt transmission again. The MAC protocol is node-oriented, 

meaning an addressing scheme is used to only address a selected recipient [60].  

 Ethernet frames are organized into octets, which are eight bits in the historical absence of 

a standard “byte”. The first seven octets are preamble octets of 0x55, which allows a receiver to 

prepare for the arrival of a frame. The next octet is a start frame delimiter (SFD), which denotes 

the beginning of the frame. The next six octets form the destination MAC address, and the next 

six after that the source MAC address. There are two octets for the length and type of data, and 

finally between 46 and 1500 octets of data. The frame concludes with four octets comprising the 

frame check sequence, consisting of a 32-bit CRC over the all frame fields excluding the 

preamble and SFD [61]. 

3.1.5 UART 

Universal Asynchronous Receiver/Transmitter (UART) is a serial communications 

protocol dating back to the 1960’s. Its most basic function is translating bytes into bits for 

transmission between, historically, Data Terminal Equipment (DTE) and Data Communications 

Equipment (DCE), though these terms have been replaced by transmitters and receivers for 

communications between embedded systems. UART subsystems are offered on most modern 

microcontrollers, particularly the target 8051 and ARM Cortex-M processors; many specific 

chips from both architectures contain multiple UART subsystems.  
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UART consists of, minimally, a two-wire interface and shared ground: a transmit line and 

a receive line. Communications between nodes using UART are asynchronous and there is no 

native addressing scheme; both nodes must, however, use the same UART clock rate in order for 

the bits to be successfully recomposed into the correct bytes after transmission. Transmission of a 

byte includes a start bit, eight data bits, an optional parity bit, and a stop bit [62].   

While there is no native support in UART for a multidrop bus, there are additional 

standalone chips that implement a nine-bit mode for supporting such a bus for network 

communications. This nine-bit mode is a master/slave network, where the master will use a ninth 

bit, usually the optional parity bit, to differentiate whether the byte being transmitted is an address 

byte or a data byte. If it is an address byte, all devices connected via UART to the master device 

must check their own address, with the correctly-addressed slave responding with a data byte to 

the master. The master then transmits normal data bytes to that slave [63]. 

3.1.6 Middleware Aspects 

 The degrees to which each HI-Hardware layer middleware address the five key 

aspects of middleware will now be compared and contrasted. The results are summarized in Table 

7. 

Table 7: Comparison of HI-Hardware Middleware 

 Network 

Communication 

Coordination Reliability Scalability Heterogeneity 

CAN Message-oriented Asynchronous At-least-once Location, 

Replication 

Hardware, 

Software 

I2C Node-oriented Synchronous At-most-once None Hardware, 

Software 

USB Node-oriented Mixture Mixture None Hardware, 

Software 

Ethernet Node-oriented Asynchronous At-most-once None Hardware, 

Software 

UART Node-oriented Asynchronous At-most-once None Hardware, 

Software 
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3.1.6.1 Network Communication 

  CAN handles network communication by specifying a message-oriented 

networking style. This means that all PEs on the network receive messages placed on the bus, but 

must each individually interpret the message to determine whether or not to handle the message. 

This implies that no addressing scheme is used to uniquely address each PE, but also implies no 

unicast messaging. CAN frames contain 11-bit message identifiers at the beginning of the frame; 

every PE on the network receives the message, but every PE must read the 11-bit identifier to 

determine if it needs to continue reading and interpreting the frame. This identifier yields 2048 

possible messages; an “extended” CAN with a 29-bit identifier yields 537 million possible 

messages. 

 I2C handles network communication by specifying a node-oriented networking style. 

This means that messages contain physical PE addresses, and only the designated PE listens to 

and handles the message.  An I2C network consists of masters and slaves, where the master (or 

sending) PE must know the address of the slaves on its network, and must specify which slave to 

send the message to. The number of slaves are inherently limited by the single byte used to 

address them, for 256 possible slaves; this can however be extended through I2C bus expanders. 

 USB handles network communication by specifying a node-oriented networking style. 

Like I2C, each PE has an address; however, unlike I2C, each PE is assigned the address during 

enumeration from the USB host controller. The USB bus is defined as a four-wire interface, with 

a 5V and ground line and two data lines, D+ and D-. These data lines use differential signaling, 

and can be in one of four possible states: single-ended 0, single-ended 1, data J, and data K. These 

states allow for low- and full-speed communication on the same bus. 

 Ethernet handles network communication by specifying a node-oriented networking 

style. Like I2C, this means that every message contains a physical PE address, called a MAC 

address, and the message is routed to that PE. Unlike I2C, any PE on the network can send a 

message. Ethernet MAC addresses use a 48-bit address, yielding 474,976,656 possible PEs [60]. 

 UART handles network communication through its nine-bit mode as a node-oriented 

networking style. In nine-bit mode, the parity bit is used as an indicator of whether the byte 

transmitted from a master is an address or a byte of data. If it is an address, all connected slaves 

must check their own addresses, with the correct slave responding and allowing data 

transmission. 
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3.1.6.2 Coordination 

 CAN handles coordination through asynchronous communication. There is no shared 

clock line on the CAN bus, and transmitting PEs do not block waiting for an acknowledgement or 

reply from receiving PEs. 

 I2C handles coordination through synchronous communication. One of the two I2C bus 

lines is a clock line, allowing the receiver to only record or supply bits during specified clock 

pulses. At the end of each byte, the receiver must acknowledge reception of the previous byte, 

forcing the transmitting PE to block while waiting for this acknowledgement. 

 USB handles coordination for control, bulk, and interrupt transfer modes with 

synchronous communication. While there is no shared clock line to synchronize USB hosts and 

receivers, a handshake sequence follows data transmission where the receiver must provide an 

acknowledgement of error-free data, causing the transmitting host to wait until that 

acknowledgement has been received.  For the isochronous transfer mode, coordination is 

asynchronous; the host transmits data at a guaranteed rate but does not correct for errors or wait 

for acknowledgements from the receiver.  

 Ethernet handles coordination through asynchronous communication. Messages are 

created and transmitted, and the transmitting PE continues execution while the message is routed 

to the intended receiver. 

 UART handles coordination through asynchronous communication. Messages are 

decomposed into individual bits and transmitted using a previous agreed-upon clock rate; 

however, no clock signal is shared between transmitter and receiver. Furthermore, mismatched 

clock rates between the transmitter and receiver will not stop communications; rather, the receiver 

will recompose the received bits incorrectly. 

3.1.6.3 Reliability 

 CAN’s reliability is at-least-once. Its specification of physical network characteristics 

specifies low-noise differential signaling for communications between PEs, meaning that the 

voltage difference between the wires yields the signal instead of an absolute voltage threshold, as 

in I2C. CAN also specifies 120 ohm resistors at either end of the network to maintain the 

differential impedance of the bus and further reject noise [57]. Beyond the physical medium, 

CAN frames include CRC checksums. The transmitting PE computes and appends the CRC 

checksum onto the frame; the receiving PE(s) computes its own CRC checksum on the received 
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frame and compares it to the transmitting CRC checksum, requesting retransmission if they do 

not match. This guarantees successful message delivery, but the message could be delivered 

multiple times. 

I2C’s reliability is at-most-once. Its specification of physical network characteristics 

specifies the maximum allowed bus capacitance and the presence of pull-up resistors to guarantee 

compliant voltage rise times on both clock and data lines [58]. Beyond the physical medium, I2C 

slaves must acknowledge each byte that is transmitted by the master, guaranteeing that the master 

will know whether the byte was received. There is no built-in checksum to verify the validity of 

the actual bits, meaning the message may not be correct but will not be retransmitted natively. 

USB’s reliability is exactly-once for control, bulk, and interrupt transfer modes. The 

handshake sequence of transfers allows for receivers to notify the host of errors in data, 

prompting the host to retransmit. A sequence number increments with every successfully 

transmitted packet, enabling receivers to tell the host which packets failed and to know which, if 

any, packets are duplicates. For the isochronous transfer mode, the reliability is at-most-once, 

where the host transmits data to the receiver at a guaranteed rate but with no error correction, with 

no guarantee of delivery but ensuring no duplicate packets as well. 

Ethernet’s reliability is at-most-once. It specifies different data transfer speeds and the 

physical interconnects required to achieve them, such as 1Mb/s: 1Base5 with two twisted 

telephone lines; 10Mb/s: 10Broad36 with one broadband cable or 10Base-F with one optical 

fiber; 100Mb/s: 100Base-TX with two twisted pairs of Category-5 (CAT5) cable; and even 

1Gb/s: 1000Base-T with four CAT5 cable pairs [61]. Ethernet frames contain a frame check 

sequence, which contains a 32-bit CRC checksum over all variable frame fields. The transmitting 

PE computes this value and includes it in the frame, and the receiving PE computes it and 

compares to the sent CRC. If they do not match, Ethernet does not natively trigger a re-request, 

and instead just discards the message; thus the message is not necessarily sent correctly, the 

receiver is aware of the fault, and no duplicates will occur. 

UART’s reliability is at-most-once. UART does offer a parity bit that can help detect the 

presence of errors, but there is no native mechanism for correcting these errors or retransmitting 

incorrect bits. It is left to the application to either check this parity bit and attempt retransmission, 

or to implement some other form of error detection and correction.  
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3.1.6.4 Scalability 

 CAN provides location and replication transparency. CAN’s message-oriented network 

style is agnostic to the number and location of other PEs on the bus, and SMs using CAN do not 

need to know any endpoint addresses. Furthermore, replicated functionality need only be added to 

the bus and know the CAN identifiers of the messages they need to handle. 

 I2C does not natively provide any transparency. Many I2C devices have built-in hardware 

addresses that are not configurable, whereas “smarter” I2C-capable devices, such as 

microcontrollers, have software-settable addresses. 

 USB does not natively provide any transparency. When new devices are connected to the 

bus, the USB host controller follows an enumeration process where the new device is assigned a 

unique device address for use in future communication. 

 Ethernet does not natively provide any transparency. 

 UART does not natively provide any transparency. 

3.1.6.5 Heterogeneity  

 CAN provides hardware and software heterogeneity. It exhibits hardware heterogeneity 

because different computer architectures can be used by PEs on the bus, as long as they can 

correctly format CAN packets. Modern microcontrollers include CAN modules in the hardware. 

Furthermore, companies provide commercial CAN transceivers that can be connected to nearly 

any systems, ranging from 8-bit to 32-bit microcontrollers and more powerful embedded 

computers. CAN exhibits software heterogeneity for the same reason; CAN transceiver solutions 

exist for a range of embedded real-time operating systems up to full personal computers, and can 

be interfaced to a number of programming languages. However, CAN does not exhibit network 

heterogeneity because the network signaling and protocols are tightly defined. 

 I2C exhibits hardware and software heterogeneity. Like CAN, I2C is available as a 

standalone module on nearly every modern microcontroller architecture, and range in availability 

from low power 8-bit to higher-power 32-bit microcontrollers. Furthermore, companies such as 

Texas Instruments, Silicon Laboratories, and NXP sell a wide variety of I2C peripherals for a 

range of computing equipment. Again like CAN, I2C can interface to different operating systems 

and programming languages as well, and is not dependent on any SMs. However, I2C does not 

exhibit network heterogeneity because the network signaling and protocols are tightly defined. 
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 USB exhibits hardware and software heterogeneity. Compared to CAN and I2C, USB is a 

much more complex serial communications protocol and hasn’t historically been included on 

low-power microcontrollers. However, as the computational capabilities increase and power 

consumption decreases on modern microcontrollers, USB is increasingly being offered in low-

power 8-bit microcontrollers, yielding a wide range of available hardware architectures. 

Furthermore, USB implementations are available on nearly every popular operating system. 

 Ethernet exhibits hardware and software heterogeneity. Like CAN and I2C, Ethernet 

modules are offered on many modern microcontroller architectures, and standalone modules can 

be purchased for integration on many systems. Ethernet exhibits more complexity and overhead 

than CAN or I2C, however, and is a bit more restricted in what systems can support it (need 

references here). Like CAN and I2C, Ethernet is not restricted to a particular operating system and 

can interface with a variety of programming languages and any SM. However, unlike CAN and 

I2C, Ethernet does exhibit partial network heterogeneity. While the signaling and protocols are 

tightly defined in CAN and I2C, the Ethernet physical layer allows for telephone wire pairs, 

broadband cable, coaxial cable, optical fibers, and wireless transmission. Full network 

heterogeneity would imply that Ethernet is unconcerned with the physical media and signaling; 

hence Ethernet’s restricted provision of supported media and signaling give it partial network 

heterogeneity.  

 UART exhibits hardware and software heterogeneity. Like the other HI-Hardware, most 

modern microcontrollers, particularly those of the target processors, offer multiple UART 

modules onboard, and many include sample software to use the modules. 

3.2 HI-Network Middleware 

 The HI-network sub-layer is above the HI-hardware sub-layer, and actively routes 

messages. It uses the HI-hardware layer’s encapsulations to transmit streams of bytes to desired 

recipients. These desired recipients can either have a network address in node-to-PE messaging, 

such as in SPA-1L, or can be programmed to respond only to certain messages in broadcast 

networks, such as in MAVLink. 

 The HI-network middleware implementations to be reviewed in this chapter are 

MAVLink, which is a header-only message marshalling library originally created for micro-UAV 

communications; SPA-1L, which is a “lite” implementation of SPA that provides 

communications between the PEs on a distributed network in the CubeSat KySat-2; Avionics 

Full-Duplex Ethernet (AFDX); and Time-Triggered CAN (TTCAN). 
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3.2.1 SpaceWire 

 SpaceWire is a middleware developed by Steve Parkes at the University of Dundee in 

2008 (check this date) specifically for spacecraft communications. It has been used on a variety of 

space missions, including the European Space Agency’s (ESA) ExoMars surface rover and 

NASA’s Swift gamma-ray burst observation satellite, Lunar Reconnaissance Orbiter (LRO), and 

the James Webb Space Telescope [64].   

Instead of specifying a particular layer’s worth of middleware, the SpaceWire standard 

specifies the physical layer through the transport layer in an attempt to control the end-to-end 

process of transporting packets. It is an ETP, point-to-point network similar to Ethernet, but with 

more functionality above the physical and data link layers implemented by Ethernet. Adopting its 

own naming convention, SpaceWire is divided into the following “levels”: physical level, signal 

level, character level, exchange level, packet level, and network level [65]. 

3.2.1.1 Physical Level 

 The physical level is the bottom level of SpaceWire, and defines the PCB tracks, cables, 

and connectors used for SpaceWire. The physical level is designed to allow for up to 10 meter-

long cables and to meet typical spacecraft electromagnetic compatibility specifications. 

SpaceWire consists of four twisted pair wires with separate shielding. These pins are: Data_In+, 

Data_In-, Strobe_In+, Strobe_In-, Data_Out+, Data_Out-, Strobe_Out+, and Strobe_Out-. The 

connector specified for SpaceWire is the 9-pin micro-miniature D-type connector.  

3.2.1.2 Signal Level 

 The signal level is above the physical level, and defines the data rates, acceptable noise 

levels, and encoding used for transmitting bits with SpaceWire. Low voltage differential signaling 

(LVDS) is used to transmit bits, relying on a small voltage swing between differential wires to 

denote bits. This provides low noise and low power consumption, as well as constant drive 

current and independence from endpoint voltage levels. For encoding, Data-Strobe (DS) encoding 

is used. The data is sent on the data line, and the clock signal is encoded as the exclusive-OR 

(XOR) of the data and strobe lines. This prevents clock skew, which is the RC delay of wire 

causing variations in clock signal arrival times. Additionally, this clock signal implies 

synchronous coordination, requiring both the transmitting and receiving PEs to suspend activity 

for the duration of the message. 
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3.2.1.3 Character Level 

 The character level is above the signal level, and defines the data and control characters 

that manage data flow. There are two types of characters in SpaceWire: data characters and 

control characters. Data characters are 10 bits, with one parity bit, one data-control flag to 

indicate that the character is a data character, and eight bits of data, transmitted least-significant 

bit first. Control characters are four bits, with one parity bit, one data-control flag to indicate that 

the character is a control character, and two control bits: a flow control token (FCT), a normal 

end of packet (EOP), an error end of packet (EEP), and an escape (ESC). These are then 

combined to form control codes. Two of these control codes are NULL, which is formed from 

ESC and FCT and indicates an idle connection, and Time-Code, which is formed from ESC and a 

data-character containing system time.  

3.2.1.4 Exchange Level 

 The exchange level is above the character level, and defines the initialization and error 

detection processes across a link. The exchange level offers a series of services to the next level, 

the packet level, to packetize and deliver data to a recipient. These services manipulate the 

control and data characters defined in the character level, and are: initialization, flow control, 

disconnect error detection, parity error detection, and link error recovery. 

3.2.1.5 Packet Level 

 The packet level is above the exchange level, and defines how data is split into packets 

for transmission across a link. A packet is composed of a destination address, the cargo or 

payload, and an end of packet marker. Destinations are address in one of two ways: path 

addressing or logical addressing. 
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Path addressing means that the destination address field is encoded as the list of output 

ports that each router must forward the packet out of to reach the destination. Each router 

forwards the packet out of the port corresponding to the first byte of the destination address field, 

then discards that byte for the next router. An example of this path addressing scheme is shown in 

Figure 5: a destination address of 323 in a three-router network would take the following path: 

router 1 would forward the packet out of port 3, router 2 would forward the packet out of port 2, 

and router 3 would forward the packet out of port 3 to the destination. This path addressing 

scheme implies explicit knowledge of the network to every PE.  

Logical addressing moves network knowledge from the PEs to the routers. With logical 

addressing, each PE in the network is assigned a logical address in the range 32 to 255. PEs 

address each other using this address, and routers maintain routing tables defining how to reach 

each PE. The cargo is the actual data payload to transfer. The end of packet marker is either the 

EOP or EEP control characters. This level is the upper level available to SMs for transmission of 

data. 

3.2.1.6 Network Level 

 The network level is above the packet level and is the top-most level of SpaceWire. This 

level defines how packets are transferred and routed between PEs, and is composed of PEs, 

routing switches, and the links between them. Routing switches in a SpaceWire network maintain 

routing tables, and parse the destination address emitting from PEs in order to replace that address 
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with the appropriate next-hop address. This is similar in structure to the routing of TCP/IP 

packets. 

3.2.2 MAVLink 

 The Micro Air Vehicle Communication Protocol (MAVLink) was developed by Lorenz 

Meier in 2009 for ground station-to-MAV communications for the PIXHAWK autopilot. As a 

message marshalling library, it also serves for data-passing between onboard components as well 

[66]. It has since been adopted as the ground station-to-MAV and internal communications 

protocol for many other commercial and open source MAV products, including ArduPilotMega, 

SmartAP, and AutoQuad 6 [67].   

 MAVLink is a header-only message marshalling library that packs C-structures over a 

serial channel. C-structures are structured objects in the C programming language, which is the 

implementation language of MAVLink. They are similar to arrays in that they are a container for 

named objects; however, the objects in arrays must be of identical type. The data types of objects 

in a structure can all be of different types, allowing more flexibility in the custom objects that 

structures can describe [68]. With only eight bytes of overhead per message and automatic 

dropped packet detection, MAVLink can be deployed on microcontrollers and over low-

bandwidth radio connections with ease due to such low overhead. Examples of serial channels 

include UART, I2C, SPI, CAN, and User Datagram Protocol (UDP). MAVLink is hardware-

independent, and the choice of serial channel does not affect the protocol or message passing.  

 Messages themselves are specified in Extensible Markup Language (XML), which 

specifies a format and syntax for electronic information publishing. XML documents contain a set 

of elements, delimited by tags [69]. The XML messaging libraries are then auto-generated into 

their corresponding, MAVLink-ready C-structures using a Python graphical user interface (GUI). 

This guarantees compliant C-structures, and allows for MAVLink version upgrades and 

expansions of functionality with no burden on end users. There are a set of preset MAVLink 

messages specifically intended for popular autopilots and their ground control systems; these 

messages do everything from basic heartbeat messages to telemetry requests, video streaming, 

and motor control. An example such heartbeat message encoded in XML is shown in Figure 6. 

This message is required for use with the popular UAV ground control software 

QGroundControl, and since MAVLink is stateless, is used to periodically poll the UAV to make 

sure it’s alive and operating. This heartbeat-style message is recommended for any SM, however, 

as it maintains knowledge of the network. 
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 A MAVLink message consists of four primary fields, as seen in Figure 6. These fields 

are: ID, name, description, and field, which is further composed of type and name. The ‘ID’ field 

gives a unique numerical identifier to the message, and is how sending and receiving MAVLink 

implementations address the message. This ID is a single byte, and ranges from 0 to 255, yielding 

256 possible messages. If MAVLink is running on a UAV using an autopilot and 

QGroundControl, IDs between 150 and 240 can be used for custom messages. The ‘name’ field 

gives a human-readable name to the message, and is not actually transmitted by MAVLink. The 

‘description’ field is similarly a human-readable description of what the message is, and is not 

transmitted by MAVLink. The ‘field’ field is composed of two fields, and encodes the value in 

the MAVLink message. It is composed of a type, which is a variable size/type that is unique to 

the system (for example, uint8_t or unsigned char), and a name, which is the name of the variable 

as it will be addressed when reading the generated C-structure. All messages must follow this 

format, and can either be placed in an existing MAVLink message definitions file, which is 

included automatically with popular autopilots and QGroundControl, or in a custom file. If placed 

in a custom file, the <mavlink> tags must be used, as well as the MAVLink <version>. This 

format is specified in the example custom message file in Figure 7. 

 Once the MAVLink messages have been translated into C-structures, MAVLink handles 

transmission of these structures by composing them into frames. A MAVLink frame consists of a 

six byte header, a maximum 255-byte payload, and two checksum bytes. Figure 8 shows the 

MAVLink frame composition. 
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Figure 6: MAVLink Heartbeat Message [67] 
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 Figure 7: MAVLink Custom MAVLink File Specification [67] 
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Figure 8: MAVLink Frame [67] 

 The header contains the following bytes: STX, which notes the beginning of a packet and 

is always 0xFE; LEN, which the length of the payload field, ranging from 0 to 255; SEQ, which 

is the sequence number and increments every message and rolls over at 255; SYS, which is the 

source ID and identifies the system sending the message; COMP, which is the component ID and 

identifies the component of the system sending the message; and MSG, which is the message ID 

from the MAVLink XML message definition. Following the header is the payload field, which 

contains the data to be transmitted. Finally, the two checksum bytes contain a 16-bit CRC 

checksum that validates the integrity of the message and checks for reordering implementation. 

With the latest MAVLink version, MAVLink reorders fields in messages according to their data 

type size to prevent word/half word memory alignment issues; this is validated in the 

CRC_EXTRA byte at the end of a MAVLink frame. 

 In order to transmit a message using MAVLink, only the send/receive functions within 

the MAVLink header need to be linked to the chosen protocol. The user must create custom 

functions containing protocol/hardware-specific communications functions, such as 

UART_send/receive, I2C_send/receive, etc. MAVLink also provides convenience functions in the 

form of adapter headers, where the functions “comm_send_ch” and “comm_receive_ch” are 

already implemented, and only need the user to place the protocol/hardware-specific function 

calls in these functions [67].  

3.2.3 SDM-Lite 

 The Satellite Data Model-Lite (SDM-Lite) strips down the functionality and thus 

computing requirements of Space Plug-and-play Avionics (SPA), in order to be better supported 

by low-power, 8-bit microcontrollers. The SDM-Lite resulted from a partnership between the UK 

SSL and the University of New Mexico’s COSMIAC. The SDM-Lite has seen flight heritage on 

the SSL’s KySat-2 CubeSat and COSMIAC’s Trailblazer CubeSat, as well as the CubeLab Bus 

International Space Station payload (ref).   

The goal of SDM-Lite is to control a plug-and-play distributed embedded network on low 

power 8-bit processors [70]. The governing architecture is SPA, and the goal of this architecture 
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is to reduce the complexity and time of completion for spacecraft avionics and integration. Since 

spacecraft avionics significantly vary in processing power and speed, four different varieties of 

SPA exist, each using a different network communication medium that reflects the relative 

capabilities and speed of the host MCUs: SPA-O (optical), SPA-S (spacewire), SPA-U (USB), 

and SPA-1 (I2C). Since all but SPA-1 require Linux or VxWorks operating systems and thus 

more power-hungry processors, the SDM-Lite focuses on creating a lighter version of SPA-1 that 

can be run in low-power 8-bit environments. Creating this lighter version involved creating a 

lighter version of the Satellite Data Model (SDM), which is the “traffic cop” that manages the 

SPA network.  

 The purpose of the SDM-Lite is to provide a discovery and join mechanism for SPA-1 

devices, while maintaining compliance with larger full-SPA networks. This allows for new 

devices to be detected and their capabilities and needs discovered by the SDM-Lite. These 

devices are either SPA-compliant by design or legacy devices that must be adapted for 

compliance with SPA. Applique Sensor Interface Module (ASIM). The ASIM acts as a bridge 

between non-SPA devices and the SPA network. The SDM-Lite discovers the capabilities of 

ASIMs through their Extended Transducer Electronic Datasheets (xTEDS), which are XML-style 

sheets that describe the capabilities of the ASIM. 

The SDM-Lite is broken into four categories of tasks: network enumeration, round robin, 

data handling, and process information. There are three primary structures for queuing and 

handling information-passing between the four tasks: the processing structure, the data structure, 

and the output queue. The processing structure is a buffer for the data and state read from each 

ASIM during the round robin task. The processing structure contains the device ID, the address, 

and the data from the ASIM, as well as a pointer to the next ASIM structure. The processing 

structure only holds one round robin’s cycle worth of data at a time. The data structure is the 

long-term storage of ASIM data from the processing structure. There is one data structure per 

ASIM, and the data handling task moves data read from ASIMs in the round robin cycle into this 

structure. Finally, the output queue is an outgoing commanding queue issued by the data handling 

task; commands to issue are placed into this queue during the process information task. These 

data structures and their contents are pictured in Figure 9. 



45 
 

 

Figure 9: SDM-Lite Structures [70] 

3.2.3.1 Network Enumeration  

The network enumeration process registers SPA devices on the network, allowing for the 

SDM-Lite to keep track of each device’s properties, addressing information, etc. This process 

brings ASIMs into the SPA network by interrogating new ASIMs for their Global Unique 

Identifier (GUID), the version of their software, their status, and their xTEDS. This enumeration 

process is repeated every 100 round robins to check for new devices on the network. This process 

implements the primary plug-and-play aspect of the SDM-Lite. 

3.2.3.2 Round Robin  

The round robin periodic process polls each possible ASIM address on the network, 

determining if any ASIMs have joined, dropped off, or changed configuration. This process 

writes to each ASIM address, then successively reads from each ASIM address to allow the 

ASIMs time to respond while avoiding system downtime or blocking loops. This process is 

shown in Figure 10. If an ASIM goes offline and comes back online, address resolution takes 

place where the ASIM temporarily becomes master of the network, sending messages to each 

available address until an empty address is found. The processing structure is used during this 

task for storing the data read from each ASIM.  
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Figure 10: Round Robin Task [71] 

3.2.3.3 Data Handling  

The data handling process involves servicing the output queue and populating each 

ASIM’s data structure. The output queue contains commands to be issued to ASIMs, and is 

populated during the process information task. The queue is organized by the device ID for each 

ASIM. This utilizes the plug-and-play aspect of the SDM-Lite, in that the device ID does not 

directly correspond with that ASIM’s network address. This allows for changes in ASIM 

addresses due to re-enumeration if any devices drop off or are added to the network, with no 

knowledge required of the process information task. Additionally, the data handling task stores 

any data read from each ASIM during the round robin task into that ASIM’s specific data 

structure.  

3.2.3.4 Process Information  

The process information task is the “SM layer” of SDM-Lite. This assumes that ASIMs 

all have SMs that perform missions on top of their SPA implementations. During that time, the 

SDM-Lite can also perform SM-level actions. This task operates on each ASIM’s data in that 

ASIM’s data structure, and places any commands that need to be issued in the output queue. The 

process information task addresses ASIMs to be commanded by their device ID, assigned during 

the network enumeration process. This allows for physical address changes without 

compromising the validity of the device ID between the process information and data handling 

tasks.  
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 In order to be SDM-Lite-compliant, all ASIMs must respond to three different phases 

when connected to the SDM-Lite: address resolution, network enumeration, and round robin. 

SM-level actions are implemented on an ASIM-by-ASIM basis. 

3.2.4 SPA-1 Lite 

 SPA-1 Lite (SPA-1L) is a hardware and software implementation of a SPA-1-style 

distributed processing network for 8-bit microcontrollers. SPA-1L was demonstrated on-orbit in 

the C&DH of the CubeSat KySat-2 [5]. SPA-1L is composed of a modified SDM-Lite and Lite 

Applique Sensor Interface Modules (LASIMs), and is described as both a hardware architecture 

and a software architecture. 

3.2.4.1 Hardware Architecture 

The KySat-2 C&DH utilizes a distributed processing design philosophy, and includes 

hardware time-keeping, mass storage, and all processors on the same physical board, pictured in 

Figure 3.  There are five total processors that make up the KySat-2 C&DH: one central processor 

and four subsystem interface processors.  The C&DH is not strictly limited to four subsystem 

interface processors, and can theoretically scale to support any number of subsystems below the 

address limit of I2C.  Practically, as the number of interface processors increases, the increase in 

bus capacitance will require larger pull-up resistors, resulting in more power consumed by the 

network.  

The naming convention for the architecture is taken from the SPA standard [4]. The 

central processor is called the Satellite Data Manager-Lite (SDM-L).  This processor handles the 

mission-specific implementation software, including ground command handling.  The SDM-L 

also implements routine health and status monitoring, file system management, and data 

exchange.  The processor chosen for KySat-2 was the Silicon Labs 8051F120, with 8kB of RAM 

and 128kB of flash memory. This processor was chosen for its low power consumption and 

peripheral options, including communications modules (I2C, SPI, UART).  The C8051 family 

from Silicon Labs also has flight heritage with prior SSL missions, including the Sub-Orbital 

CubeSat Experimental Mission (SOCEM) [72].   The subsystem interface processors are called 

LASIMs and utilize the Silicon Labs 8051F930, a smaller form-factor, lower power processor 

that includes 8kB of RAM and 64kB of flash memory.  This processor was also chosen for its low 

power consumption and similar availability of serial communications peripherals, including I2C, 

SPI, and UART. Figure 11 shows the KySat-2 C&DH SDM-L and LASIMs, and their physical 

locations.   
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Figure 11: KySat-2 C&DH processing elements [5] 

The KySat-2 C&DH includes internal subsystems. The SDM-L implements a FAT file 

system using a micro-SD card and the SPI communication protocol for reading and writing data.  

Timekeeping onboard the satellite is managed using a Real-Time Clock (RTC). The RTC serves 

as the time-base for satellite’s custom operating system, and has a resolution of one second, 

limiting the periodicity of command execution and time-keeping to one second.  Fault-tolerant 

hardware features were designed to complement the software’s fault tolerant features, and consist 

of individual MOSFET power switches on the LASIMs, controllable from the SDM-L in the 

event of LASIMs becoming unresponsive.  Finally, an external watchdog timer (WDT) maintains 

reset control over the SDM-L.  The WDT has jumper-selectable timeout intervals measuring from 

one millisecond to 60 seconds, allowing for development flexibility in timeout selection.  The 

WDT is kicked with a frequency of approximately six hertz during routine command servicing by 

the SDM-L. 

One of the goals of the CubeSat Standard is to allow for rapid construction of spacecraft, 

and the KySat-2 C&DH design supports this goal by addressing post-integration reconfiguration.  

The ability to reprogram a mission-critical processor typically becomes difficult after the satellite 

has been integrated, a problem magnified four-fold by KySat-2’s four extra processors.  As a 

result, reprogrammability was added by breaking all processor programming pins out to a 50-pin 

ribbon cable with an external interface on the –Z side of the spacecraft.  This cable connects to a 
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custom-designed programming board, allowing for each of the C&DH processors to be 

reprogrammed post-integration and post-environmental testing.  The ribbon cable also breaks out 

UART debugging lines, reset switches, and provides individual power to each processor for 

further debugging. 

3.2.4.2 Software Architecture 

The goal of the software architecture design for KySat-2 was to mimic the distributed 

nature of SPA. The SPA software architecture is managed by a middleware component called the 

SDM. The SDM provides network services that allow data producers and consumers to 

dynamically join or leave the network and be paired with appropriate resources.  When a new 

device joins the SPA network, an enumeration process begins that includes giving the device an 

address and registering its XTEDs, an XML format that describes the needs and capabilities of 

the subsystem in the form of interfaces.  The result is a plug-and-play network of devices.   

While SPA greatly reduces the amount of time required to integrate a complex system, it 

requires a system with more power and computational capabilities seen in previous CubeSat 

designs.  With an emphasis on a pure PnP methodology, a typical SPA network is primarily 

composed of a heterogeneous mixture of 32 bit processors, all running a complex RTOS such as 

VxWorks or Linux [73].  The SPA standard would dictate one of these processors act as a 

gateway for every subsystem to the SPA network greatly, increasing power consumption. Due to 

wildly varying spacecraft requirements of data transfers and power, SPA exists in four different 

interfaces: optical (SPA-O), SpaceWire (SPA-S), USB (SPA-U), and I2C (SPA-1).  While the 

SPA-1 variant allows for devices with lower processing capabilities and power requirements, we 

worked with COSMIAC at the University of New Mexico to develop a lighter I2C derivative of 

SPA intended to be used with extremely low power eight-bit processors, called SPA-1L.   

SPA-1L differs from a full SPA design in several key ways to facilitate its use in lower 

power SMs.  Among the removed features are self-describing network entrance and discovery 

and enumeration through the transfer of XTEDS. With this change, mission specific software 

must have a known network configuration and addressing scheme, therefore losing pure PnP 

operation.   This was considered to be an acceptable trade off as hardware components and 

network configuration are typically established before SM specific software development begins, 

making it possible to address the issue with configurable software. 
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SPA-1L has currently been implemented in two different SMs.  The Trailblazer CubeSat, 

built by COSMIAC and manifested on ELaNa IV, has a SPA-centered C&DH.  In addition, the 

SSL has worked to extend the CubeLab Bus adaptor for the NanoRacks platform aboard the ISS 

[74].  This technology provides a SPA-1 bus and experiment scripting capabilities for 

microgravity testing of SPA-1 devices on orbit [71]. Finally, the KySat-2 C&DH utilizes the 

SPA-1L communication layer as its communications bus protocol between processors. 

The modular architecture created for KySat-2 functions as a distributed kernel, executing 

system and SM tasks across the command network at programmable priority and frequency.  

These tasks range from mission-specific ground commands executed by a LASIM in the form of 

an RPC to network maintenance operations performed by the SDM-L.  To facilitate reuse, the 

layered design approach shown in Figure 12 was used; this will now be discussed in detail. 

 

Figure 12: KySat-2 Software Architecture [5] 
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  The abstracted software model of KySat-2 allows for rapid porting to multiple hardware 

platforms or missions due to its layered approach.  At the bottom of this hierarchy resides the 

Hardware Access Layer (HAL), which is the only layer to directly access the micro-controller-

specific subsystems.  For KySat-2, this includes the SPI, UART, and I2C for serial drivers, 

general purpose input/output (GPIO) drivers, and hardware registers for initialization 

configuration; however in general this could include any number of hardware-specific peripheral 

drivers. The HAL also provides an API to provide software access to external peripheral support 

devices through use of on-chip communications drivers.  The peripheral hardware libraries 

include the WDT library, providing a watchdog-kick function and timeout configuration; and the 

RTC library, providing both time and alarm setting and reading.  This layer is the only purely 

device-specific layer, and is the only layer that would need to be re-configured for modified 

hardware architectures.   

The next layer is the distributed kernel layer.  This layer provides many reusable 

protocols such as network status and health management, data transfer and storage, task 

scheduling, and system debugging. The kernel acts as a distributed operating system by carrying 

out tasks both locally on the SDM-L and also through the use of specific remote procedure calls 

to the LASIMs, adhering to the messaging standard in Figure 6.  Within the kernel, the mission 

task handler acts as a non-preemptive priority scheduler. Task execution timing precision is a 

function of both the RTC resolution and also the resulting latency from communication rates 

across the distributed network.  This allows the kernel to be configured for a wide range of 

requirements including sub-second task execution resolution at approximately 30Hz and 

facilitates ground command scheduling periods up to 30 days in the future in its current revision.  

Due to the non-preemptive nature of the kernel, the task scheduler maintains a requirement that 

no individual thread or task contain a critical section longer than the WDT period.  This allows 

the WDT kick subroutine to only be called by the scheduler, thus increasing the redundancy of 

the software by eliminating the ability for a potentially hung task to kick the WDT.  

One of the primary features of the kernel layer is the network monitor in Figure 13.  The 

network monitor is responsible for maintaining the status of all the LASIMs on the network and 

take corrective action if an error is encountered.  The network monitor functions by successively 

sending each LASIM a report status message.  After each network member has been sent the 

message, the SDM-L then reads the status of each LASIM and takes an appropriate action.  

LASIMs report to the SDM-L their current task status or completion, general health, or in the 

case of the Radio LASIM, a pending up-link packet to be processed.  The general API of these 



52 
 

status messages are enumerated in Figure 14.  The purpose of this round-robin style polling of 

each peripheral processor is to uniformly limit the latency during task execution.  Each 

communication transaction, each remote RPC, etc. to any LASIM rides on the network monitor 

process, ensuring each LASIM is visited periodically no matter what task is executing and no 

matter how long that task takes to execute.  

 

Figure 13: Network Monitor Process [5] 

 

Figure 14: (Blue) SDM-L Network Monitor message and (Red) LASIM response message 

[5] 



53 
 

 

To keep track of these LASIM status messages, the kernel layer also provides a general 

LASIM structure that contains parameters for each individual LASIM.  This equips network 

monitor with a configurable allowable LASIM latency before corrective action is taken in the 

event of an unresponsive subsystem.  When the SDM-L receives a corrupt packet from a LASIM, 

there are three possible conditions: 

1. The physical characteristics of the I2C network has dropped or corrupted the packet. 

2. The LASIM is executing a critical section of code, and has turned off communication 

interrupts in order to avoid data corruption. 

3. The LASIM is in a fault condition. 

 The first condition stems from the physical connection over the I2C bus, which does not 

guarantee successful delivery of data.  If I2C data is corrupt from a LASIM, the SDM-L first 

assumes the lossy connection is to blame, and immediately re-requests the data.  If the LASIM 

continues to either provide corrupt data or is unresponsive, the SDM-L proceeds to assuming the 

second condition.  This condition represents expected corruption indicating a temporary 

suspension of communications interrupts. This allows each LASIM to execute critical sections of 

remote procedure calls without disrupting network performance or management.  If a LASIM is 

unresponsive during successive network monitoring sessions, the SDM-L allows that LASIM to 

carry on until it reaches its configurable maximum latency.  If this limit is reached, the third 

condition is assumed to be the case.  The LASIM is flagged as a runaway device and is hardware 

reset.  The LASIMs themselves are required to start up in an environment-independent state, 

meaning they are able to recover from any number of hardware resets.  The ability to recover in 

known states increases the robustness of the network, but incurs additional overhead for the 

SDM-L, since the hardware reset aborts any commands being executed and requires resending the 

command.   

 One limiting factor of any communication system is its protocol-limited max transfer size 

and speed.  The kernel manages this limitation by including a data management protocol, 

depicted in Figure 15, to facilitate transporting and reconstructing large files both around the 

network and down-linked over the air. This protocol decomposes a large file into individual meta 

data-encoded packets for transfer, each transfer corresponding to the data size of a radio packet.  

This allows for seamless packetization of data, and allows for straightforward data request both 
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from the SDM-L and from the ground.  Transfer of files uses the network monitor process from 

the kernel layer, transferring only one packet at a time before polling the other LASIMs and 

checking the scheduler.  As a result, the transfer of small files is no different than the transfer of 

large files in terms of latency or impact on the system’s resources, preventing starvation of other 

LASIMs and allowing for multiple tasks to be executing. On KySat-2, this protocol is used to 

transmit both inertial measurement data and captured images to the ground for processing.   

 

Figure 15: Data Transfer Exchanges [5] 

 This data exchange process is shown in Figure 15, and is split into three phases.  The first 

is Command Execution A (CEA), which is executed when a mission profile command in the SM 

layer wishes to retrieve data from a LASIM.  This phase consists of sending the RPC command to 

gather the required data from the LASIM’s subsystem.  The SDM-L then drops into the Network 

Monitor (NM) phase, which is just the normal network monitor routine, checking the status of the 

LASIMs and executing normal health and status routines.  Once the LASIM completes its task 

and is ready for the data to be read, it notifies the SDM-L in its network monitor status response 

by giving the full packet flag, the API command ID it is responding to, and the size of the data to 

be read.  This prompts the command to be rescheduled and the Command Execution B (CEB) 

phase to execute, which sends the RPC commands to load and read the data.  Data transfer 
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proceeds in this manner until the desired file has been transferred.  This phased approach makes 

the size of the total file irrelevant to the process, which transfers one packet a time before tending 

to the health and status of the satellite.  The transfer protocol takes advantage of the introduced 

polling latency, allowing the LASIM time to gather and load the next packet of data for transfer, 

requiring no computational downtime at the master PE.  By transferring data in stages, the normal 

health and status and scheduler maintenance operations continue to function regardless of the file 

size, yielding a more responsive and fault tolerant system. 

 The highest software layer is the SM layer.  The SM layer houses the variable mission 

specific functionality such as ground command processing and LASIM RPC definitions.  Each 

LASIM contains two sets of command APIs: internal network operations and subsystem-specific 

operations.  The internal network operations are handled by the network monitor functionality in 

the kernel layer; however, the subsystem-specific operations are handled here in the SM layer.  

This includes the functionalities for operating each subsystem in order to implement the mission.  

For KySat-2, these include: powering on and off different voltage rails through the EPS LASIM, 

taking pictures with the IPU LASIM, gathering sensor data with the Sensor LASIM, and 

transmitting files through the Radio LASIM.  As mentioned previously, one of the purposes of 

the distributed C&DH approach was to allow an SM-level programmer to utilize the subsystem-

specific operations API to abstract away hardware knowledge and complexities, yielding more 

time for other SM-level programming. Furthermore, it should be noted that the subsystem-

specific operations API is specific to the general subsystem, not the implementation of the 

subsystem.  For example, the EPS LASIM does not imply the specific design or model number of 

the EPS to the SM-level programmer.  Rather, it implements the functionality of that subsystem 

and could be changed to accommodate a different kind of EPS that makes no difference to the 

mission.  

3.2.5 Avionics Full-Duplex Switched Ethernet (AFDX Ethernet) 

 Avionics Full-Duplex Switched Ethernet (AFDX) was developed by Airbus for the 

Airbus A380 passenger airliner, and is in use as well on the Boeing 787 Dreamliner [75]. It is 

used to link the processing elements and route messages and data in highly safety-critical 

systems; for example, it is the data bus that links the aircraft cockpit, cabin, utility measurement 

and management systems, and energy systems on the Airbus A380. 

 The goal of AFDX is to answer the need for a more robust and faster network to support 

next-generation Aircraft Data Networks (ADN). These ADNs must exhibit improved quality of 
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service, speed, and cost over the previous generation. In order to support these AFDX is based on 

10/100 Base-T Ethernet, giving it 10 or 100 Mbps speeds, copious commercial support for 

development and testing, and a proven data delivery infrastructure and existing suite of SMs. 

Specifically, AFDX use twisted pair copper wires and fiber optics for the physical layer, Ethernet 

framing and MAC protocols for the data link layer, Internet Protocol (IP) for the network layer, 

and UDP for the transport layer. AFDX also adds two additional features to conventional 

Ethernet: deterministic timing and redundancy management.  

Deterministic timing is provided by defining virtual links between PEs. These virtual 

links specify the maximum bandwidth, bounded latency, and frame size of those links, allowing 

configuration tables to be made routing information along the links that meet the required 

message delivery parameters for different kinds of data. Redundancy management is provided 

through a required duplicate network. Transmitting PEs send the same data onto both networks, 

and receiving PEs discard duplicates only when successful delivery occurs. This management is 

handled by separate integrity checkers in the data link layer as the data arrives, with the 

redundancy management routine eliminating the redundant frames before passing them to the 

network and transport layers above [76].   

3.2.6 Time-Triggered Controller Area Network (TTCAN) 

 Time-Triggered Controller Area Network (TTCAN) extends CAN to be time-triggered 

instead of event-triggered. This extension was completed by Bosch, the inventor of CAN, and has 

been standardized as ISO 11898-4 as an additional layer on top of CAN.   

TTCAN still allows for event-triggered transmission because it is just an additional layer 

on top of CAN’s functionality. For this aspect, TTCAN still uses carrier sense multiple access 

with collision detection and arbitration on message priority (CSMA/CD+AMP), which means 

that messages with the lowest ID are transmitted first when multiple PEs attempt to transmit 

simultaneously. For the time-triggered aspect however, a system matrix defines a messaging 

schedule, and a single PE is designated as the time master. This time master PE sends a reference 

frame periodically, kicking off the messaging schedule cycle [48] [77]. As such, TTCAN is not 

masterless, and has slower transmission speed than other architectures, at 1MB/s. TTCAN, while 

specified for the automotive industry, is used in aerospace SMs as well. 
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3.2.7 CAN-Aerospace 

 Controller Area Network-Aerospace (CAN-Aerospace) was established in 1997 by Stock 

Flight Systems, and was standardized in 2001 by NASA as the AGATE Data Bus and in 2007 by 

Aeronautical Radio, Incorporated (ARINC) as ARINC 825 [78]. 

 The goal of CAN-Aerospace is to enhance the CAN protocol for use on safety-critical 

avionics. CAN-Aerospace provides further definition and handling of CAN frames, and specifies 

timing requirements and connectors/cables. A network using CAN relies on broadcast messaging, 

meaning all PEs on the network see the message and any PE on the network can initiate a 

message. However, this can lead to extra processing time being wasted by PEs who shouldn’t be 

parsing the message to determine whether or not to respond. CAN-Aerospace provides a peer-to-

peer (PTP) mechanism to allow for individual PEs to act as clients and servers. To accomplish 

this, CAN-Aerospace implements a Logical Communication Channel (LCC) layer that groups 

messaging types and priorities. The LCCs distinguish between broadcast messages (anyone-to-

many: ATM) and PTP messages. These LCCs decompose into seven different channels with 

descending priority, enumerated in Table 8. This allows for PEs with lower computational 

capabilities and power requirements, such as those featured on avionics platforms, to avoid the 

typical CAN communication layer. 

Table 8: CAN-Aerospace LCCs [72] 

LCC CAN ID 

Range 

Communication 

Type 

Coordination 

Emergency Event Data 0-127 ATM Asynchronous 

High Priority PE Service Data 128-199 PTP Either 

High Priority User-Defined Data  200-299 ATM Synchronous 

Normal Operation Data 300-1799 ATM Either 

Low Priority User-Defined Data 1800-1899 ATM Synchronous 

Debug Service Data 1900-1999 Either Either 

Low Priority PE Service Data 2000-2031 PTP Either 

 

 In addition to the LCCs that give CAN-Aerospace a P2P mechanism, CAN-Aerospace 

also extends the CAN frame structure to be self-identifying. The standard CAN frame has an 11-

bit CAN identifier identifying the message, followed by bit flags and up to eight bytes of data 

[57]. The CAN-Aerospace frame still has the 11-bit CAN identifier and bit flags, but specifies the 



58 
 

first four bytes of the data field as the node-ID, the data type, a service code, and a message code, 

respectively. The node-ID is the software-defined address of the PE, with a “0” being broadcast 

and extending up to 255 possible individual PEs. The data type informs the receiving PE on how 

to interpret the data. The service code contains eight single-bit flags that can be used to determine 

the state of the transmitting PE and the data itself. The message code is a counter that increases 

monotonically for each message, allowing for the sequence of messages to be monitored and 

arranged if necessary. 

 Finally, CAN-Aerospace addresses timing considerations by offering deterministic 

timing through a time-triggered architecture. CAN-Aerospace allocates a finite period of time 

during which each PE may transmit messages; this time may vary from PE to PE. This is similar 

to TTCAN’s provision of a time-triggered architecture, but does not explicitly use TTCAN [78].   

3.2.8 Middleware Aspects 

The degrees to which each HI-Network layer middleware address the five key aspects of 

middleware will now be compared and contrasted. The results are summarized in Table 9. 

Table 9: Comparison of HI-Network Middleware 

 Network 

Communication 

Coordination Reliability Scalability Heterogeneity 

SpaceWire Node-oriented Synchronous At-most-once Location Hardware, 

Software 

MAVLink Message-oriented Asynchronous At-most-once Location, 

Replication 

Hardware, 

Network, 

Software 

SDM-Lite Node-oriented Asynchronous At-most-once None Hardware 

SPA-1L Node-oriented Asynchronous At-least-once Location Hardware 

AFDX Node-oriented Asynchronous Exactly-once None Hardware, 

Software 

TTCAN Message-oriented Asynchronous At-least-once Location, 

replication 

Hardware, 

Software 

CAN-Aero Both Both At-least-once Location, 

partial 

replication 

Hardware, 

Software 
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3.2.8.1 Network Communication 

SpaceWire handles network communication through a node-oriented architecture by 

specifying the exact network communication medium, link, encoding, packetization, and routing. 

PEs transmit packets containing only a destination address, leaving SpaceWire routers to 

determine the path and intermediate addresses required for the packet to reach its destination.    

MAVLink handles network communication by providing a user-implemented function 

for basic transmit/receive functionality. This function is abstracted from the MAVLink message 

marshalling implementation, and can use any serial communications protocol that allows for 

broadcast messages desired by the user. MAVLink messages are message-oriented, containing a 

message ID that is interpreted by all receivers to determine whether or not they need to process 

the message.  

The SDM-Lite handles network communication by necessitating a node-oriented 

architecture, implying an addressing scheme. The SDM-Lite targets SPA-1 simplification, 

requiring I2C from the HI-Hardware layer as the network protocol. This protocol supports a 

master-slave, addressed network. The SDM-Lite abstracts each ASIM’s physical address by 

assigning each a logical address, allowing for network reconfigurations while maintaining a static 

address to higher-level tasks. 

SPA-1L handles network communication very similarly to the SDM-Lite: an I2C master-

slave, node-oriented network with each LASIM’s physical address and location abstracted to a 

logical address. Additionally, SPA-1L provides checksums and failed response counts for each 

message and LASIM for error handling and reliability.  

 AFDX handles network communication by specifying IEEE 802.3 Ethernet for its 

physical and data link layers. Ethernet relies on twisted pair copper wire and fiber optic cables to 

transmit bits, and implements the MAC protocol for hardware addressing. AFDX frames are 

transmitted by end systems and are routed through AFDX switches to other end systems. 

 TTCAN handles network communication by adding a time master to implement a time-

triggered variant of CAN. The time master provides a periodic reference frame, kickstarting a 

predetermined allotted time for each PE to perform messaging in turn. The frames themselves are 

still purely message-oriented, with messages broadcast during the PE’s allotted time to all PEs, 

which then process the message for the CAN identifier to determine whether or not to respond 

during their upcoming time slot.  
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 CAN-Aerospace handles network communication by relying directly on CAN for ATM 

messaging and by providing a node-addressing scheme for PTP communications. This node-

addressing scheme redefines the first four bytes of CAN frames to incorporate self-identification, 

allowing for less processing power and time to be wasted by PEs not requiring the message. This 

provides a scaled-down solution for resource-constrained, safety-critical components often seen 

in avionics platforms.   

3.2.8.2 Coordination 

SpaceWire handles coordination through synchronous-only messaging. SpaceWire itself 

is not concerned with the meaning of any data characters, and thus does not contain any implicit 

mechanisms for ensuring coordination between tasks on different PEs. The SpaceWire physical 

and signal levels feature a clock signal recovered by XORing the strobe and data signals, ensuring 

that the receiving PE is ready to receive the message from the transmitting PE. As a result, both 

the transmitting and receiving PEs must block and maintain this clock signal for the duration of 

the message.  

MAVLink handles coordination by abstracting the communications protocol and leaving 

its implementation to the user. Instead of specifying this protocol, as in SpaceWire, SPA-1-, and 

CAN-variants, MAVLink performs message marshalling and packetization while assuming that 

the user will supply the HI-Hardware level communications. MAVLink’s coordination is thus 

asynchronous.  

The SDM-Lite presents an interesting situation: since it relies on an HI-Hardware layer 

middleware, I2C, it handles coordination through synchronous-only messaging. However, the 

SDM-Lite implements a pseudo-time-triggered architecture where each ASIM is allotted its 

period of time to respond to SDM-Lite requests, and the SDM-Lite doesn’t block or wait for that 

ASIM to respond. This period of time is equal to the period of time required for the SDM-Lite to 

service the other ASIMs, continuing the round robin and allows the data handling and process 

information tasks to complete. So while the SDM-Lite uses a synchronous middleware for its HI-

Hardware layer interactions to send individual messages, it is classified as an asynchronous 

middleware for how it handles HI-Network layer interactions.  

SPA-1L handles coordination in the same way as the SDM-Lite: as a pseudo-time-

triggered architecture, where each LASIM is commanded and given the length of a round robin 

cycle to execute the response. Despite its use of I2C from the HI-Hardware layer, SPA-1L as a 
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HI-Network layer middleware extends the provisions of I2C making it asynchronous for node-to-

node communications. 

AFDX handles coordination through asynchronous communication. It is based Ethernet 

and uses Ethernet’s default coordination, with no shared clock signal between PEs and messages 

requiring no acknowledgement or pause in execution from transmitting PEs. 

TTCAN handles coordination through the asynchronous messaging of CAN. Each PE 

broadcasts its message onto the CAN bus during its allotted time, and does not wait for an 

acknowledgement or response from any receivers and can continue execution. 

CAN-Aerospace handles coordination through the provision of the LCCs. These LCCs 

each offer different levels of coordination; the Emergency Event Data channel is the only 

asynchronous-only channel, and the two User-Defined Data channels are the only two 

synchronous-only channels; the remaining channels offer both asynchronous and synchronous 

coordination according to user selection.  

3.2.8.3 Reliability 

SpaceWire’s reliability is at-most-once. It handles reliability both through its end-to-end 

layer specification of packet transport and its exchange level. By specifying the end-to-end 

mechanisms for packet transport, the designers of SpaceWire can assume compliant and EMC-

tested connectors, cables, circuit board routing, and signal noises and levels. Additionally, the 

exchange level makes use of the character level control codes to offer fault detection services; 

however, SpaceWire only detects and reports these faults, leaving the decision to the user of 

whether or not to attempt to correct the error. Once detected, SpaceWire reports the error, 

reestablishes the link, and transmits the next packet to avoid duplication. Thus SpaceWire does 

not guarantee the validity of the transmission, but does guarantee that no duplicate messages will 

be sent. 

MAVLink’s reliability is at-most-once. It relies on user-provided transmit/receive 

functions, and natively only provides for fault detection through the ITU X.25 checksums and the 

sequence number natively included in MAVLink frames. It is up to the user to verify these 

checksums and re-request faulty frames. 

The SDM-Lite’s reliability is at-most-once. Since it relies on I2C, the SDM-Lite is 

limited by I2C’s inherent lack of guaranteeing reliable communication. Messages to each ASIM 

are transmitted once, but not guaranteed to reach the destination correctly. While ASIMs could 
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potentially fail to acknowledge individual bytes per the I2C specification, indicating network or 

coordination faults, there is no knowledge that the message contents arrived correctly. 

SPA-1L’s reliability is at-least-once. Similar to the SDM-Lite, it relies on I2C with its 

inherent lack of guaranteeing reliable communication. However, SPA-1L adds a software 

acknowledgement features that includes Fletcher’s checksums in packets, with mismatched 

checksums prompting notification from the slave device and triggered retransmission from the 

master device. This provides for at-least-once reliability, since the message is delivered correctly 

but may take many transmissions to do so. Additionally, SPA-1L maintains counters for the 

number of times each LASIM fails to acknowledge during the I2C acknowledgement byte, and 

resets the LASIMs that exceed their maximum allowable number of failed acknowledgements. 

This provides for fault handling on a per-round robin basis; while this sensitivity minimizes the 

amount of time a LASIM experiences the fault condition, it necessitates design-time cognizance 

of reset handling. 

AFDX’s reliability is exactly-once. It handles reliability by extending Ethernet to include 

deterministic timing and redundancy management. The deterministic timing stems from the 

definition of virtual links that define the bandwidth capabilities and latency for each link, 

allowing for traffic policing and fault containment if a switch ever fails. The redundancy 

management stems from requiring an identical redundant network, and an integrity checker that 

compares data sent over both channels to ensure reliable transport. For exactly-once reliability, 

AFDX guarantees both successful message delivery and no duplicate packets, with the integrity 

checker/redundancy management ensuring message validity and a sequence number allowing 

receivers to guard against duplicate messages. 

TTCAN’s reliability is at-least-once, mirroring CAN’s reliability from the HI-Hardware 

layer. TTCAN provides an extension onto CAN to make it a time-triggered architecture, 

providing a master time base and allocated a unit of time for every PE to control the bus and send 

messages. This does not change the reliability guarantee of CAN, but does aid to ensuring that 

every PE will gain priority access to the bus and will be able to send messages with no collisions, 

improving latency. 

CAN-Aerospace’s reliability is at-least-once, again mirroring CAN’s reliability from the 

HI-Hardware layer. While is does not increase the reliability guarantee, CAN-Aerospace provid 

ea further extension to CAN including the Message Code field of the CAN-Aerospace message 

header. This Message Code increases monotonically with each CAN-Aerospace frame, similarly 
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to a MAVLink frame’s sequence number; this message code allows for detection of missing 

frames, and determines the age of a frame if an identical frame is delievered multiple times. 

While this allows for exactly-once reliability detection by the user, CAN-Aerospace does not 

natively handle or interpret this Message Code. 

3.2.8.4 Scalability 

SpaceWire optionally implements location transparency. PEs are addressed using either 

path addressing or logical addressing. Path addressing means that the destination address of the 

intended receiving PE is encoded as the series of output ports on each router along the path that 

the message must be forwarded from; this implies strict knowledge of the location of the 

receiving PE. However, logical addressing may optionally be used, where each PE in the network 

is assigned an address 32-255, and each router maintains a routing table on how to route 

messages to each PE. This logical addressing represents the ability for SpaceWire to be location 

transparent. 

MAVLink implements location and replication transparency. As a broadcast-only 

network with no designated endpoints in messaging, the locations of receiving PEs are unknown 

and irrelevant to the SMs. Furthermore, redundant PEs need only identify the proper messages to 

respond to and be fully MAVLink-compliant, again with no knowledge from SMs. 

The SDM-Lite does not implement any form of transparency. ASIM addresses are 

hardcoded and must be directly known by SMs. By using I2C, the network itself is scalable up to 

the theoretical address limit of I2C, meaning 255 possible devices, and the practical bus 

capacitance limit from traces and the number of devices.  

SPA-1L implements location transparency. Each LASIM on the network is assigned a 

logical address, meaning that SMs do not know the hardware addresses. This is the only form of 

transparency implemented. Like the SDM-Lite, SPA-1L relies on I2C and can theoretically 

support up to 255 PEs, though practically far fewer due to bus capacitance. 

AFDX does not implement any form of transparency. AFDX adopts and extends 

Ethernet, meaning that end systems need only be Ethernet-compliant. However, the AFDX 

switches, while based on Ethernet switches, extend Ethernet and include traffic policing and 

bandwidth monitoring. Thus, the switches are restricted to AFDX switches, and the traffic will be 

subject to bandwidth restrictions that guarantee delivery and AFDX-compliant latency. 
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TTCAN implements location transparency and replication transparency due to its reliance 

on CAN. TTCAN extends CAN into a time-triggered architecture, but does not reduce or enhance 

the scalability because of CAN’s message-oriented network. New or redundant PEs can be added 

to the network with no knowledge from other PEs, since all PEs receive all messages on the bus.  

CAN-Aerospace implements location transparency and partial replication transparency 

due to its reliance on and extension of CAN features. CAN-Aerospace extends CAN into a time-

triggered architecture, similarly to TTCAN, but introduces the LCCs that offer both standard 

message-oriented networking and a new node-oriented networking. Location transparency exists 

in both the generic message-oriented (called ATM) channels and the new node-oriented (called 

PTP) channels, since all PEs receive the message in the ATM channels and all PEs are addressed 

by logical PE identifiers in the PTP channels. However, replication transparency only exists in the 

ATM channels, and not in the PTP channels, because those replicates would require their own 

unique identifier to be addressed in the PTP channels.  

3.2.8.5 Heterogeneity 

SpaceWire exhibits hardware and software heterogeneity. By completely defining the 

character encodings and exchange parameters above the physical level, SpaceWire can be run on 

multiple architectures and has hardware heterogeneity. Furthermore, SpaceWire exhibits software 

heterogeneity because it can be called from any SM to transfer data to other PEs on the network, 

supports multiple operating systems including VxWorks, Linux and Windows, and is contains C, 

C++, and Java APIs [64]. 

MAVLink exhibits hardware, network, and software heterogeneity. As a header-only 

library included at compile-time, hardware is only restricted to that hardware that can execute the 

code and has some network communication method for serial communication. This allows 

MAVLink to run on both microcontrollers, including most popular 8-bit and 32-bit architectures, 

and desktop computers for ground stations. MAVLink exhibits network heterogeneity because it 

abstracts serial communication, relying on the user to provide the implementation-specific code 

transfer MAVLink frames off-chip. Finally, MAVLink exhibits software heterogeneity because it 

is not restricted to operating systems or SMs, and its code generator allows output into a variety 

of programming languages including C, Python, and JavaScript. 

The SDM-Lite exhibits hardware heterogeneity. The goal of the SDM-Lite was to strip 

down full SPA SDM functionality so that it could run on a lower-power network, while retaining 

compatibility with normal SPA networks. Accomplishing this goal, the SDM-Lite is able to run 
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on 8-bit and 32-bit microcontrollers as long as they allow I2C communications; additionally, the 

SDM-Lite is compatible with SPA networks running on more powerful hardware, provided 

xTEDS registration and network enumeration. 

SPA-1L exhibits partial hardware heterogeneity. SPA-1L builds on the SDM-Lite, 

inheriting the SDM-Lite’s requirement of I2C communications as the only requirement between 

processors. SPA-1L is not compatible with other SPA networks on more powerful hardware, 

however, and has only been demonstrated on a network of 8-bit 8051-archtiecture 

microcontrollers. 

AFDX exhibits hardware and software heterogeneity. Since AFDX is Ethernet with 

additional reliability and fault-tolerance, it exhibits Ethernet’s heterogeneity traits. 

TTCAN exhibits hardware and software heterogeneity. Since TTCAN is CAN with a 

time-triggered architecture, it exhibits CAN’s heterogeneity traits. 

CAN-Aerospace exhibits hardware and software heterogeneity. Since CAN-Aerospace is 

CAN with a node-oriented, unicast capability in addition to normal CAN, it exhibits CAN’s 

heterogeneity traits. 
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4 Distribution Layer Middleware 
 This chapter details distribution layer middleware. Distribution layer middleware is 

above host-infrastructure middleware, and extends the encapsulations provided by the host-

infrastructure layer. These extensions enable end-to-end transport of data from SMs, and provide 

additional fault-tolerance because unlike host-infrastructure middleware, distribution middleware 

is concerned with the meaning of the bytes being transmitted, and can detect errors or anomalies 

and take corrective action. Middleware in this layer is divided into two classifications: transport 

and object request broker. 

4.1 D-Transport Layer 

 The D-transport layer describes middleware that account for transportation of data 

between SMs on a network of PEs without using object request brokers (ORBs). Whereas the HI-

network layer was concerned with transmitted bytes between PEs, the D-transport layer is 

concerned with transmitting meaningful messages between the SMs running on PEs. Since 

middleware in this layer actively knows the meaning of messages instead of simply transmitting 

the bytes, the middleware surveyed here targets fault-tolerance and distributed network 

knowledge and management. The middleware to be reviewed in this layer include Space Plug-

and-play Avionics (SPA), Message Routing Layer (MeRL), Automatically Reconfigurable 

Dependable Embedded Architecture (Ardea), MIL-STD-1553, and LonTalk.  

4.1.1 Ardea 

 The Automatically Reconfigurable Distributed Embedded Architecture (Ardea) was 

developed by the SSL at UK in 2005. It is targeted toward low-power distributed embedded 

systems, particularly those found linking the instrumentation and control surfaces of UAVs [79]. 

Its use can also be extended to small satellites. 

The primary fault-tolerant concept under study, and the driving factor in the creation of 

Ardea, is graceful degradation. This concept specifies a system that reconfigures in response to 

faults in hardware and/or software such that the system exhibits reduced quality and/or capability 

instead of total failure. Ardea addresses this concept with its central feature: software module 

dependency graphs (DGs). These graphs provide a graphical representation of the software and 

hardware dependencies, making recomputation of dependencies possible when any of the 

hardware or software components fail. Figure 16 depicts the hardware architecture of an Ardea 

system. 
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Figure 16: Ardea Architecture [79] 

The Ardea system consists of four primary elements: processing elements, the 

communication network, the system manager, and input/output (I/O) devices.  

4.1.1.1 Processing Elements 

Processing elements are computational units/resources, assumed to be homogeneous, and 

hold the software modules which produce and consume data for the system. The processing 

elements consist of local management tasks and an RTOS, as well as any unique SM software 

required to produce or consume requisite data.  

4.1.1.2 Communication Network 

The communication network allows for bidirectional data flow between processing 

elements, and with the system manager. There are two sets of messages on this network: SM data, 

which consists of data variables that are produced and consumed by processing elements, and 

management messages, which consist of messages between processing elements and the system 

manager. These management messages can be further split into two groups, depending on the 

direction of flow: messages from a processing element to the system manager consist of status 

messages and fault reporting, as well as any DG modification commands; and messages from the 

system manager to processing elements consist of state data, scheduling commands, and module 

object code if that module needs to be reconfigured in the event of faults. SM data is periodic in 

nature, being produced and consumed in orderly, routine fashions by processing elements. 

Management messages, however, have priority access to the network since they result aperiodic 

events, with the exception of heartbeat messages. 
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4.1.1.3 System Manager 

The system manager tracks the status of hardware and the availability of software 

resources to ensure that no reconfiguration is required. If faults occur, new configurations are 

computed and deployed. The system manager also handles state data and checkpointing from 

processing elements. 

4.1.1.4 I/O Devices 

I/O devices are the system’s interface with the outside world, reading inputs to measure 

aspects of the system’s interaction with the physical world and driving outputs to change the 

system’s interaction with the physical world. These can be monitored for correct operation, and 

replaced by redundant units if available. 

The above four primary elements represent the hardware in the Ardea system. These host 

the software units of the Ardea system, which are the components of the DG. These include 

software modules, data variables, dependency gates, and I/O devices.  

4.1.1.5 Software Modules 

A software module is a “quantum of executable machine code that is schedulable on a 

processing element.” The attributes associated with software modules are: unique ID, execution 

time, and output rate factor. Software modules produce and consume data variables. 

4.1.1.6 Data Variables 

Data variables are produced and consumed by software modules, and come in two forms: 

state data variables, which specify state information about the software module, are required to 

start or restart a software module in the correct state and are stored both locally by the processing 

element and globally by the system manager; and management data variables, which are the fault-

reporting and DG-modification mechanism, and are only consumed by the system manager. The 

attributes associated with both types of data variable are: ID, size, quality, and fail-safe value. 

4.1.1.7 Dependency Gates 

Dependency gates resemble digital logic gates, and specify the dependence of software 

modules on data variables. There are a total of four gates that comprise the Ardea framework: K-

out-of-n OR gates, AND gates, XOR gates, and DEMUX gates. K-out-of-n OR gates accept any 

of n inputs, as long as there are enough for k outputs. AND gates require all of the data variable 

inputs. XOR gates require exactly one of the inputs. DEMUX gates have one input and two or 

more outputs, and allows for redundant outputs of other gates. 
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4.1.1.8 I/O Devices 

I/O devices are the endpoint sources and syncs for software modules. The attributes 

associated with I/O devices are: criticality, priority, status, and rate. These attributes allow the 

system manager to ensure that required input/output rates are met, as well as prevent overloading 

processing elements or network bandwidth. 

 

 

Figure 17: Example Ardea DG [79] 

Figure 17 depicts an example dependency graph for subsystems in a UAV. The top graph 

represents an airspeed measurement system. Two different sensors are used to measure the 

airspeed: pilot_tube and Z_accel. Exactly one of these measurements are used in the pitch_cntrl 

software module, producing an elevation angle. This elevation angle is fed into both the 

servo_monitor and servo drivers. The servo_monitor requires three data variable inputs: 

n_elev_angle, elev_angle, and the prev_angle state variable to determine the servo fail state.  

The bottom graph is a telemetry recording system, accepting any (or all) of three data 

variables: temperature, UV_intense, and bus_voltage. These are fed to the telem_gather software 

module, which produces telem_strg. This telem_strng is required for the EEPROM_drv software 
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block, which stores the variable to electrically erasable programmable read only memory 

(EEPROM). 

The above example highlights several potential fault detection methods, and others are 

available. One such option is N-redundancy and voting, where several versions of the same I/O 

device drive identical software modules, with a “voter” software module choosing the reading 

that is most common between the devices. Another method is basing the selection of data based 

on quality.   

At run-time, each processing element is running three common tasks: a network interface 

task, a scheduler task, and a memory loader task, with mailboxes controlling data variable flow 

between these and software modules. The network interface task manages access to the 

communication network between processing elements. The scheduler task schedules and 

unschedules SMs, including those from local memory or those mandated and sent by the system 

manager in the event of system reconfiguration. Finally, the memory loader task handles 

reconfiguration of the processing element, as directed by the system manager. 

4.1.2 Message Routing Layer (MeRL) 

 The Message Routing Layer (MeRL) was created by the SSL at UK in 2009. 

MeRL is an implementation of the communication network component of Ardea. The goal of 

MeRL is to provide a generic interface for message-passing that abstracts the endpoint location 

from the sending SM. The approach to designing MeRL first defines the embedded distributed 

network envisioned by specifying the network style and protocol. The network styles available 

are broadcast/multicast, where messages sent over network are visible and read by all PEs, and 

are the same to all PEs; and point-to-point, where messages are only sent to specific targets. The 

broadcast/multicast scheme was chosen for this work, so that faults cannot be blamed on 

messages being delivered inconsistently to different PEs. This style also cuts down on the number 

of global messages that need to be sent. Next, the protocol format was chosen from between two 

general options: node-oriented, where messages are addressed and are only visible to PEs 

identified as receivers; and message-oriented, where receivers choose whether or not to process 

message and are location independent. The CAN protocol is chosen as the best candidate wired 

protocol, and the Zigbee protocol is chosen as the best candidate wireless protocol.  

 With a specific network format and protocol envisioned, the requirements for the MeRL 

design and operation are: 



71 
 

1. MeRL would be a single layer for all tasks to communicate. 

2. MeRL would not allow direct communication between tasks, forcing independence. 

3. MeRL would pass data with no knowledge of location of receiving or transmitting 

task. 

MeRL’s operation entails all desired task communications, whether they are between 

different processes on the same processor or between different processors on the same network. 

The message is sent to the MeRL layer, which determines if any local tasks want access to the 

data. No matter whether a local task uses the data or not, the data is then placed on the network 

for other tasks on other processors. When a task receives the data, it goes into a queue of received 

data that that task is subscribed to. This architecture is depicted in Figure 18.  

 

 

Figure 18: MeRL message-passing architecture [44] 

For a task to have access to data, it needs to register for that data’s ID. This means that all 

data needs to be enumerated and assigned an ID before compile-time. MeRL provides two APIs: 
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an SM layer API and a Network Interface API. The SM layer API is present no matter the 

implementation, and is used to initialize the system, register tasks to receive messages, send 

messages, and receive messages. This layer is called from SM code, no matter if the recipients are 

local tasks or other processors. The network interface API is present if the system consists of 

multiple processors on a network, and provides a similar set of commands to the SM layer API. 

An implementation of MeRL exists and runs on a Silicon Labs 8-bit 8051F040 

microcontroller running IDEAnix, a microC/OS-II port for the 8051. This RTOS is a proposed 

setup for MeRL integration, and thus contains #define statements that enable/disable features of 

MeRL, and provide for user management of memory allocation. 

4.1.3 Space Plug-and-play Avionics (SPA) 

 The Space Plug-and-play Avionics (SPA) architecture is the result of years of work 

within the aerospace and defense communities to enhance rapid systems integration. SPA 

specifically aims to improve the robustness and time to integration of other popular avionics 

protocols, such as MIL-STD-1553, and to create a plug-and-play architecture for space SMs. SPA 

draws upon the design challenges and implementation of other plug-and-play approaches in other 

industries, such as the Highway Addressable Remote Transceiver (HART) protocol that 

superimposes digital telemetry on top of analog current loop measurements for precise industrial 

control [80]; LonTalk, used in industrial sensor networks [81] and discussed later in this chapter; 

IEEE 1451, a smart sensor standard that defines Transducer Electronic Datasheets (TEDS) [82]; 

and Universal Plug-and-play (PnP), a publish/subscribe self-organizing network standard for the 

PC industry [83]. 

 There are several motivations for such a system. The cost of spacecraft construction, in 

time, money, and human resources, has always been exorbitantly high, requiring millions of 

dollars and years or even decades to reach orbit. The miniaturization of satellites, notably into 

micro- and nanosatellites, has alleviated this problem somewhat; however even this small satellite 

revolution still requires an extra reduction in development and integration timelines. Two notable 

terrestrial industries have embraced the PnP concept: consumer PCs with their embrace of USB 

and Peripheral Component Interconnect (PCI), and industrial factory adoption of PnP sensor 

networks through Echelon’s industrial Internet of things, the LonTalk protocol. SPA forsakes 

simply relying on these existing PnP architectures to “adapt” existing components through 

interfaces to communicate on USB or PCI networks; rather, a new standard that is “built-in” to 

spacecraft components is needed. While SPA is only the network management aspect of this 



73 
 

standard, fully reconfigurable software defined radios (SDR), programmable wiring systems, 

malleable signal processors, and radiation-hardened components form the full PnP picture for a 

satellite [84]. 

 SPA itself aims to differentiate itself from terrestrial PnP implementations by addressing 

special constraints more unique to space SMs. These include environmental constraints, 

synchronization, high power delivery, and driverless operation. 

1. Environment – processing elements in space SMs must be cognizant of radiation effects, 

such as total ionizing dose, latchups, and single event upsets. These can temporarily 

wreck individual task execution, corrupt memory elements, and even destroy processing 

elements. 

2. Synchronization – all systems in the satellite must have a “unified notion of time” 

3. High Power Delivery – many terrestrial PnP implementations provide some kind of 

power/data bundling; however, these are not well-suited to most spacecraft power 

requirements (such as a 28V bus).  

4. Driverless – again, terrestrial PnP implementations oftentimes require drivers to operate 

with new devices; this is not desirable for SPA 

 With these motivations and constraints in mind, an example implementation of SPA is 

SPA-U, the USB-based variant of SPA. The term “variant” is used because SPA-U, while 

borrowing the data transfer characteristics and capabilities from USB, provides additional power 

and synchronization facilities. Like USB, the three types of SPA-U components in a network are 

hosts, endpoints, and hubs. SPA-U hosts are the root of the tree-structured SPA-U network, with 

all communication being between hosts and endpoints. SPA-U endpoints are the PEs of the SPA-

U network, and serve as the interface between the network and SPA-U devices. Finally, SPA-U 

hubs are similar to USB hubs, providing connections between multiple hosts and endpoints. 

Additionally, SPA-U hubs provide power switching to connected endpoints. Within SPA-U, two 

models exist. These are applique sensor interface modules (ASIM) and the satellite data model 

(SDM) [73]. 

ASIM 

 The ASIM bridges between a compliant SPA network and a user’s implementation of a 

system, seamlessly handling the system’s electronic datasheet, power requirements and 

management, and synchronization. ASIMs should contain the requisite circuitry and services to 
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adapt a device or system to the SPA network. To follow the ideal SPA design guidelines, these 

should include: 

1. Central Processing Unit (CPU) – a processing unit of some kind is required to respond to 

SPA commands. 

2. Non-volatile memory – the extended transducer electronic datasheet (xTEDS), which is 

an XML document that describes the device’s capabilities and requirements, must be 

persistently stored on the ASIM. 

3. SPA network interface – for a SPA-U network, a USB interface should be implemented 

by the ASIM. Similarly, for SPA-E (Ethernet) and SPA-S (Spacewire), similar interfaces 

should be implemented. 

4. User facilities – the ASIM should provide commonly-used services in embedded SMs, 

such as digital and analog input/output channels and serial ports, simplifying coding and 

complexity on the device. 

5. Power management – the ASIM should take care to power before the device, in order to 

enumerate on the network and provide some control over the connected device’s power. 

6. Clock management – in service of the synchronization goal of SPA, a 1 Hz clock pulse 

services to unify time-keeping on all devices in the SPA network. The ASIM should be 

able to manage this pulse, and keep track of pulses to provide timestamping to the device. 

7. Test bypass interface – the ASIM should provide a secondary connection for in-system 

testing. 

8. SPA software API – the ASIM should provide a simple “client-side” API for 

programmers setting the xTEDS values and interacting with other SPA devices. 

SDM 

 The ASIM is a piece of hardware that implements both hardware and software services. 

The SDM is usually a similar piece of hardware, but only implements software services. These 

services are the primary middleware layer that implements the services of SPA. The goal of the 

SDM is provide an interface that allows devices to communicate with each other as processes or 

services, instead of physical devices. This abstraction allows for devices changing address, 

location, makeup, etc., all without knowledge of other devices. The purpose is to force SPA 

designers and users to focus on adhering to software interfaces instead of physical electrical 

interfaces. Specifically, adherence to a Command Data Dictionary (CDD) that describes sensors, 

computing resources, subsystems, etc. must be used to ensure correct, device-independent routing 
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of messages. To accomplish this, the SDM implements a set of five software managers: the 

processor manager, the data manager, the task manager, the sensor manager, and the network 

manager.  

1. Processor Manager – This manager keeps each processor busy by checking its parent 

processor and executing any pending tasks. This is particularly important in view of the 

“reconfigurability” aspect of SPA, and allows processors to pass off executables of tasks 

to other processors experiencing down time. 

2. Data Manager – keeps track of all data available and routes data requests and responses 

3. Task Manager – indexes tasks that are both executing and pending 

4. Sensor Manager – implements the PnP network interface 

5. Network Manager – manages the network and creates/updates routing tables for 

messages, keeping track of endpoint locations as they vary 

 While the ultimate goal of SPA is a catalogue of SPA-compliant components, adoption of 

SPA has been slow after initial successes due to the restricted computing and power capabilities 

of small satellites. An additional SPA standard, SPA-1 based on I2C, was created to answer the 

need for a smaller-footprint SPA implementation. 

4.1.3.1 SPA-1 

 SPA-1 is intended for use on the simplest SPA devices [4]. This variant uses I2C as its 

network communication protocol, since the potential majority of SPA devices are simple and 

lightweight enough to only require I2C data rates. However, despite the reduction in data rates, a 

SPA-1 network is still compliant with the other versions of SPA because SPA-1 still supports the 

hallmark features of SPA, including network self-enumeration and automatic discovery and self-

description.  

 The role of the ASIM is the same as in SPA, and perhaps even more applicable as SPA-1 

describes connections to inherently less capable devices, making the SPA task easier for users of 

devices not built to SPA specifications. The ASIM takes care of all power management for the 

device, as well as commanding, synchronization, and data transfer mechanics. These are 

envisioned as comparable to USB chips that take care of the complicated protocol-level 

translations, giving the end device an easier interface than that exhibited by the network. 

 To specify SPA-1, a design goal was formulated through which all SPA-1 decisions were 

passed: the new SPA variant was to minimize the size, weight, and power footprint of SPA. 
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Implicit in this need for minimum wires is scalability, as SPA networks are agnostic to the 

number of connected devices. Several different communication protocols were considered, 

including RS-485, SPI, I2C, and the wireless protocols Zigbee, Bluetooth, and 802.11. In light of 

the advantages and disadvantages of each communications protocol, such as the lack of network 

management in RS-485, wire overhead in SPI, and power overhead and interference issues with 

wireless technologies, I2C was chosen since it meets the goal of having the smallest design 

footprint possible.  

 In light of the advantages and disadvantages of each protocol, as well as their utility to 

the SPA-1 network, I2C was chosen since it meets the design goal of having the smallest footprint 

possible. With the protocol chosen, the functionality was then defined. This functionality was 

broken into two groups of functions: common functions and device-specific functions. Common 

functions are commands that any SPA-1 device must respond to, and are instrumental in making 

the SPA-1 device a fully compliant member of the network, allowing it to be discovered and 

enumerate on the network. Table 10 lists these common functions. 

Table 10: SPA-1 Common Functions 

Command Mnemonic Response 

Reset R Status Message 

Initialization I Status Message 

Self-test T Status Message 

Version U Version Message 

Time-at-tone O Status Message 

xTEDS X xTEDS Message 

 

 Device-specific functions are those that perform the capabilities listed in the device’s 

xTEDS. These functions consist of an interface identification byte and a message identification 

byte, along with any arguments for the function.  In addition to these two sets of functions, SPA-1 

devices must support all elements of SPA-1 network operation, which consists of three phases: 

address resolution, enumeration, and routine network operation. 
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Address Resolution  

I2C offers no address resolution protocol (ARP), but SPA-1 implements this by assigning 

a global unique identifier (GUID) to each ASIM, allowing that ASIM to change I2C addresses 

should conflicts arise. The address resolution process involves ASIMs finding an “open” I2C 

address. 

Enumeration  

After the ASIM has an address and is on the SPA-1 network, the SDM initializes the 

ASIM, reads the version identification, performs any self-testing on the ASIM, and reads and 

registers the xTEDS.  

Routine  

After address resolution and enumeration, the ASIM is ready to participate on the 

network. The SDM performs round robin cycling on all registered ASIMs, checking for new 

ASIMs and performing any commanding or data requests as they arise. 

 The creation of SPA-1 has led to more adoption of the standard, as well as formal support 

for SPA services. xTEDS can now be generated using online tools, and SPA-U, SPA-S, and SPA-

1-compliant devices are being offered at commercial prices by companies such as AAC-Microtec 

and Micro-RDC [4].  

4.1.4 MIL-STD-1553 

MIL-STD-1553 is the most widely deployed serial communications architecture. It was 

first published in 1978 by the U.S. Air Force for F-16s and U.S. Army Apache warfighters. Other 

SMs include the Space Shuttle and International Space Station (ISS), along with countless 

satellites currently in orbit. The frenetic pace of air systems development during the Cold War, 

particularly the late 1960’s, saw the need for new aircraft to incorporate distributed processing to 

make up for the inability of period hardware to offer the speed and throughput necessary. These 

new distributed networks reduced the load central computers, and required the creation of a 

standard serial bus [85].  

MIL-STD-1553 describes an asynchronous time division command/response multiplex 

data bus.  There are three interfaces to this bus: the bus controller (BC), remote terminals (RTs), 

and monitoring terminals (MTs). The BC supervises time division multiple access (TDMA) to a 

multidrop bus of interconnected RTs. MTs listen to traffic on the bus and can record transactions 
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for telemetry or development/debugging. This represents an ETP architecture: RTs only respond 

to requests for data from the BC, which may or may not follow a periodic pattern. Typically, 

there are other backup BCs that can take over BC responsibilities in the event of BC failure, and 

there is a secondary bus in a dual-redundant configuration in case the primary bus goes down 

[48]. This topology is shown in Figure 19. 

 

Figure 19: MIL-STD-1553 Bus Topology [86] 

On the byte level, there are three words: command words, which are issued only from the 

BC and contain the RT address and command; data words, which are two bytes of data; and status 

words, which are issued only from RTs and contain the RT address and a status byte. These three 

words form three basic message transfers: BC to RT, where the BC commands the RT; RT to BC, 

where the RT responds to a BC command with its status word; and RT to RT, where the BC 

commands one RT to transmit and another RT to receive. Both RTs perform an RT-to-BC 

transfer with their status words [86]. While the BC initiates all communications and messages on 

the bus, the RTs are required to perform word validation for every received byte of data. Failure 

of any of these validations prompts the message to be discarded: valid sync field at the beginning 

of the word, valid Manchester II code, a 16-bit information field, and valid odd parity. While the 

word is discarded if any of these conditions fail to be met and a message error bit is set in the 

RT’s status message to the BC, no native action is taken to retransmit the word [87]. 
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The primary drawback of this architecture is the limited transfer speed of 1MB/s. While 

much work has been done to increase this speed (with different star topology configurations and 

standard add-ons yielding 10MB/s and 200MB/s, respectively), MIL-STD-1553 is an antiquated 

architecture that will continue to find use not for its performance, but for its reliability and the 

expense required to replace it in existing systems [48]. 

4.1.5 LonTalk 

 LonTalk is a communications protocol that implements the EIA-709.1 standard, designed 

for terrestrial control networks whose messages are very short and require low bandwidth, power, 

and maintenance [88]. LonTalk was originally developed by the Echelon Corporation, and is now 

part of a networking platform called LonWorks that includes physical interconnect specifications 

and a commercial chip called the Neuron.  

The design goals of LonTalk are many-fold. These goals include: media independence, 

meaning LonTalk can be deployed in a very wide range of environments; scalability, from only a 

few PEs to many thousands; low cost; no central controller necessary, meaning no single point of 

failure; peer-to-peer, and no protocol subsets so that all PEs are interoperable [81]. There are 

many “internet of things” SMs, and many that already use this protocol. These include heating, 

ventilating, and air conditioning (HVAC) systems, industrial control, medical instrumentation, 

security, home automation, etc. The protocol envisions a vastly deployed sensor network, all 

communicating with only two or three byte payloads; for example, temperature or pressure 

sensors providing periodic readings to a central computer over a factory floor. To accomplish 

this, LonTalk implements a seven layer network stack very similar to the OSI model. These stack 

portions include the physical layer, link layer, network layer, transport layer, session layer, 

presentation layer, and SM layer.  

4.1.5.1 Layer 1 

 Layer 1 is the physical layer of LonTalk, and comprises the protocols and encodings used 

to transmit data over the physical media connecting LonTalk PEs. These include Manchester 

encoding, frequency shift-keying modulation, etc.  

4.1.5.2 Layer 2 

 Layer 2 is split into the Media Access Control (MAC) sublayer and the Link sublayer. 

The MAC sublayer implements a CSMA scheme, and uses the Neuron-ID of PEs as the hardware 

address of each endpoint. The Link sublayer frames data and checks for errors using CRC. Errors 

are only reported in this layer, and are not handled. 
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4.1.5.3 Layer 3 

 Layer 3 is the Network layer of LonTalk. This layer implements a connection-less, 

unacknowledged, single-domain packet delivery service. This service can be unicast, multicast, or 

broadcast. 

4.1.5.4 Layer 4 

 Layer 4 is split into the Transaction Control sublayer and the Transport sublayer. The 

Transaction Control sublayer handles the ordering of incoming messages and checks for 

duplicates. The Transport sublayer implements a connection-less, reliable message delivery 

service over multiple domains.  

4.1.5.5 Layer 5 

 Layer 5 is the Session layer of LonTalk. This layer implements a “request/response” 

service to make remote procedure calls on other PEs. This layer also distinguishes between 

idempotent transactions, which are transactions that can be executed any number of times, and 

non-idempotent transactions, which are transactions whose actions depend on previous states. 

Idempotent transactions’ reliability is “at-least-once”, such as reading data entries from a table; 

non-idempotent transactions’ reliability is “at-most-once”, such as turning a valve a certain 

amount.  

4.1.5.6 Layers 6/7 

 Layers 6 and 7 of the OSI model are grouped into one layer, and comprise the 

Presentation and SM layers of LonTalk. This layer checks the application protocol data unit 

(APDU) header of LonTalk packets for network variable updates, and propagates these updates to 

other PEs. This layer also provides the highest-level generic message-passing for SMs. 

Collectively, these layers provide collision detection, error checking, connection-less 

packets, broadcasting, acknowledged and unacknowledged uni/multicasting, and guaranteed 

message delivery. A typical packet using this protocol is shown in Figure 20, and notably consists 

of only 12 bytes, including the 2 byte data field [88]. 
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Figure 20: Typical LonTalk packet [81] 

For the network layer (layer 3), all commercial Neuron chips are assigned a 48-bit 

Neuron ID for initial configuration. However, in operation, logical address specifying a PEs 

domain, subnet, and PE ID are used. This scheme supports many devices, allowing for 127 

devices per subnet, 255 subnets per domain, and 18,446,744,073,726,329,086 domains. This 

yields a total of 597,397,806,827,627,450,110 devices that can communicate with each other 

[89]. The session layer provides authentication via the 48-bit Neuron ID burned in at 

manufacture, verifying the sender; the receiver must provide a 64-bit random challenge answer in 

order to communicate. In order for devices to communicate with each other, they use the 

Standard Network Variable Types (SNVT), which provides generic names and units for 

temperature, rotation, speed, time, etc. This is very similar to SPA’s CDD. In the presentation 

layer, sensors “publish” information using these common terms, and actuators “subscribe” to the 

information using these common terms. This is again very similar to SPA and is similar to the 

object request brokers discussed in 4.2. 

 The layered approach of LonTalk can be implemented in several ways; the parent 

company of LonTalk, Echelon, sells Neuron chips at less than $3.00 per chip. Alternatively, since 

LonTalk is an open source standard, user devices can implement portions of the stack, mixing and 

matching commercial-off-the-shelf (COTS) components to implement other portions of the stack. 
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Other companies pursuing these products include Adept Systems, using an MC68360 

microprocessor; Loytec Electronics implementing the Link, Transport, and Network layers on an 

FPGA; and Toshiba using a MIPS RISC core with Java OS. LonTalk manually defines all 

protocol layers in the stack for two reasons: to guarantee interoperability between devices from 

different manufacturers and to make the most use of memory in the smallest and lowest-cost 

package possible. For example, a Neuron-powered and LonTalk-connected temperature sensor 

requires only 344 bytes of EEPROM and 841 bytes of RAM to be fully compliant PE in the 

network [81]. 

4.1.6 Middleware Aspects 

The degrees to which each D-Transport layer middleware address the five key aspects of 

middleware will now be compared and contrasted. The results are summarized in Table 11. 

Table 11: Comparison of D-Transport Middleware 

 Network 

Communication 

Coordination Reliability Scalability Heterogeneity 

Ardea Message-oriented Asynchronous Exactly-once Migration, 

replication 

Network 

MeRL Message-oriented Both At-least-once Access, 

Location 

Hardware 

SPA Node-oriented Synchronous At-most-once Location Hardware, 

Network 

MIL-STD-

1553 

Node-oriented Synchronous At-most-once None Hardware, 

Software 

LonTalk Node-oriented Asynchronous Mixture Access, 

Location 

Software 

 

4.1.6.1 Network Communication 

Ardea handles network communication through the communication network component 

of its architecture, and identifies a message-oriented approach. While the architecture does not 

specify a network communication protocol, Ardea’s implementation on the BIG BLUE UAV 

used a subset of CAN-Aerospace, already reviewed as an HI-Network middleware in Chapter 3. 

Ardea only specifies the SM data and management messages of the network, using only a generic 
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interface to a specific network communication protocol. This interface can link to any distributed 

communications protocol. 

MeRL handles network communication through a message-oriented API interface for 

SMs in the SM layer to use. The SMs are ignorant of where the destination SM is located, 

whether it’s on the same PE or a different PE in the network. Internally, MeRL specifies CAN as 

the network communication protocol; however, the MeRL design analyzes other options as well, 

such as I2C, Ethernet, SPI, and RS-485. Any of these could theoretically be swapped out for 

CAN. Additionally, the MeRL design specifies Zigbee as the network communication protocol in 

wireless network configurations. 

SPA handles network communication differently through its four implementations: SPA-

U (USB-based), SPA-O (optical-based), SPA-S (SpaceWire-based), and SPA-1 (I2C-based). Each 

implementation uses that communications protocol for their physical and data link layers, but 

SPA extends these protocols to meet the plug-and-play challenge in the space environment, 

including restricted hardware, greater power delivery, self-description, and fault tolerance. All of 

these implementations of SPA are node-oriented.   

MIL-STD-1553 handles network communication by specifying a node-oriented 

multidrop serial bus, with the BC controlling and initiating all traffic between RTs. Since the 

architecture is node-oriented, each RT is assigned a unique global address but can receive 

broadcast messages addressed with the reserved decimal 31. To initiate a data transfer between 

RTs, the BC addresses a command message to the RT that is supposed to transmit; this RT 

responds with a status message to the BC, and then takes control of the bus to send the data to the 

receiving RT. The transmitting RT then relinquishes control of the bus back to the BC [86]. 

LonTalk handles network communication through a node-oriented architecture and by 

fully specifying the seven layers of the OSI network stack. On the physical layer, LonTalk allows 

a variety encoding schemes, and allows for twisted pair and wireless communications. This 

network communication is abstracted by the MAC and Link sublayers, implementing framing, 

error checking, and collision avoidance algorithms. 

4.1.6.2 Coordination 

Ardea handles coordination through asynchronous messaging, using the system manager 

component. This system manager is responsible for tracking the status of hardware and software 

resources, deploying new configurations should faults occur. The system manager also handles 
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checkpointing, and is able to track the completion state of software modules running on each 

processing element.  

MeRL handles coordination by offering both synchronous and asynchronous messaging 

in its API. The get_msg function is blocking, and suspends the SM task until a new message is 

pushed into that SM task’s buffer. This function is synchronous, requiring the calling SM to wait 

for a response. The accept_msg function, however, is non-blocking, and only checks the SM 

task’s buffer for a new message, copying the message if one exists and returning “no new 

message received” if not. This function is asynchronous, and allows the SM task to continue 

execution of other duties after sending its message, checking for new messages as it desires. 

SPA handles coordination through synchronous communication based upon its 

underlying architecture. SPA-U (USB-based), SPA-S (SpaceWire-based), and SPA-1 (I2C-based) 

are all built on synchronous host-infrastructure middleware, requiring a combination of clock 

synchronization and acknowledgement cycles that prevent the transmitting PE from continuing 

execution after data has been sent. The SDM in SPA directly manages communications between 

PEs as well, preventing execution from continuing after a message has been sent. 

MIL-STD-1553 handles coordination through asynchronous communication for BC-to-

RT and RT-to-RT messages. The BC initiates all communication, telling which RTs to transmit 

and which RTs to receive; however, no clock signal is shared between PEs and each PE continues 

execution after the message has been transmitted. 

LonTalk handles coordination through asynchronous communication. With no shared 

clock signal or acknowledgement system, transmitting PEs continue execution after sending 

messages. 

4.1.6.3 Reliability 

Ardea handles reliability again through the system manager. The system manager tracks 

all state data from each processing element, and should a fault or reset occur, can restore the state 

of that processing element. If a permanent fault or temporary load balancing issue occurs, the 

system manager can reconfigure another processing element to adopt the responsibilities of the 

faulty processing element. This allows for multiple redundant processing elements in the network, 

and allows for other idle processing elements to adopt the roles of failed or faulty processing 

elements. Reliability is the key goal of Ardea, and the architecture of reconfigurable processing 
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elements and floating software modules was created specifically for this goal. In service of this 

goal, Ardea’s reliability is exactly-once. 

MeRL’s reliability is at-least-once handles reliability both through its extensive selection 

of network communication protocol, CAN, and its use of message queues. CAN is a fault-tolerant 

network protocol for embedded systems, and was chosen as MeRL’s physical layer protocol for 

its broadcast messaging style and its message-oriented delivery. Broadcast network messages are 

seen by all PEs’ physical layers, ensuring that a message subscribed to by multiple PEs is 

consistent; this removes faults from occurring due to inconsistent message delivery. This differs 

from multicast messaging style, where a select set of destination PEs are chosen by the sender. 

Message-oriented delivery means that all PEs on the network see the message and choose 

whether or not to interpret the message based on a message identifier. This differs from node-

oriented messaging style, where an addressing scheme limits the interpretation of the message to 

intended PEs.  

SPA’s reliability is at-most-once and is based on the underlying communications 

protocol. SPA-U, SPA-S, and SPA-1 are all based on host-infrastructure middleware that has at-

most-once reliability. 

MIL-STD-1553’s reliability is at-most-once. All RT’s on the bus are required to validate 

incoming words for a valid sync field, valid Manchester II code, 16-bit wide information fields, 

and odd parity. Failure of any of these tests prompts the word to be discarded and a message error 

bit in the RT’s status message to the BC to be set. However, no native action is taken to re-

transmit the word, preventing delivery of the word multiple times. 

LonTalk’s reliability is either at-most-once or at-least-once, depending on the 

interpretation of packets by the Session Layer. This layer distinguishes between idempotent 

messages, which can be executed any number of times but still need to be executed (at-least-

once), and non-idempotent messages, which must be executed once or not at all (at-most-once). 

4.1.6.4 Scalability 

Ardea provides migration and replication transparency. All processing elements in the 

network run software modules, and it is these software modules that SMs interact with. Each 

processing element runs the network management, task scheduler, memory loading tasks, 

handling all outgoing and incoming communications below the level of SMs. The system 

manager monitors the status of processing elements as they support their software modules, and 
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handles migration of software modules between processing elements with no knowledge or input 

from the user. Finally, the fault detection and correction algorithm of N-redundancy voting 

ensures that the most reliable data is delivered to software modules in the event of replicated 

endpoints. 

MeRL provides access and location transparency. All messages are passed to MeRL, 

which determines whether the target task is locally registered or elsewhere on the network, 

providing access transparency. If the target task is determined to be elsewhere on the network, 

MeRL manages delivery to that task with location knowledge required from the user, providing 

location transparency. New data needs only be assigned an ID at compile-time, and then SMs can 

register for reception of that ID when available.  

SPA provides location transparency. xTEDS registration and network enumeration yield 

logical locations for each endpoint to the user, and SMs do not have to manage or know the 

physical locations of PEs to communicate. 

MIL-STD-1553 provides no transparency. Bus interactions are initiated and maintained 

by bus controller unit, and no remote terminals can initiate network communication. The 

locations are each remote terminal are explicitly known and referenced by the bus controller as 

well. Finally, there are 31 address locations for RTs, limiting the scalability of MIL-STD-1553 to 

those addresses. 

LonTalk implements access and location transparency through its full provision of OSI 

layers. The location details of PEs in the LonTalk network are hidden by the MAC and Link 

sublayers; while SMs can use the Neuron-ID to address endpoints, logical addresses for PEs are 

employed. The access details in LonTalk are hidden by the Session layer’s request/response 

service: this service allows PEs to execute remote procedure calls on the same or other PEs. 

4.1.6.5 Heterogeneity  

Ardea exhibits only network heterogeneity. Ardea assumes homogeneous hardware 

because it is built around graceful degradation, migrating software modules to different hardware 

modules to preserve essential functionality in the face of load balancing issues and hardware 

failures. Additionally, Ardea assumes knowledge of and support for the C programming 

language, precise SMs, and operating system specification. This support is required in order for 

Ardea to effectively migrate tasks between hardware PEs, and has to be concise enough to 
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support migration. Ardea does not, however, specify the network signaling and protocols between 

PEs, giving it network heterogeneity. 

MeRL exhibits hardware heterogeneity. As an implementation of the Ardea network 

component, MeRL specifies network communication component as CAN. MeRL only requires 

CAN support from the hardware it runs on, allowing for a range of microcontroller architectures. 

MeRL does not exhibit software heterogeneity because it specifies the uCOS-II real-time 

operating system and the C programming language. 

SPA exhibits network and partial software heterogeneity. SPA does not scale to lower 

power processing units, requiring dynamic memory allocation and Linux or VxWorks operating 

systems that are not supported on 8-bit microcontrollers. This restricts SPA’s hardware support to 

more powerful processors, many outside the target scope of this thesis. SPA does support 

different network protocols, such as USB, I2C, Ethernet, and SpaceWire, giving it network 

heterogeneity. Finally, SPA requires an operating system and restricts these to Linux and 

VxWorks, providing partial software heterogeneity.  

MIL-STD-1553 exhibits hardware and software heterogeneity. The MIL-STD-1553 

specification provides a set of requirements that candidate hardware must comply to, but does not 

restrict the architectures or hardware used. Furthermore, MIL-STD-1553 provides a set of 

requirements for software to comply to and does not restrict the SM or operating systems being 

used to fulfill these SMs. However, the network communication protocol and signaling is tightly 

controlled, giving it no network heterogeneity. 

LonTalk exhibits software heterogeneity. The hardware, Neuron chips, are offered by 

several manufacturers but rigidly defined. Similarly, the LonTalk network protocol and transfer 

mechanics are rigidly defined. However, there is no limitation on SMs using LonTalk. (need 

more here) 

4.2 PEPt Middleware 

 PEPt middleware differs from D-transport middleware in that it completely obscures the 

programming models, data encodings, framing protocols, and frame transport from the user, 

presenting the user with an object-oriented-style reference to other SMs and components. These 

SMs and components are presented as services. Middleware in this layer follows the 

publish/subscribe model and represents SMs and components on the distributed network as 

services with object-oriented syntax.  Instead of sending a message to specific SM, the message is 
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“published” to the middleware, which routes the message to any “subscribed” SMs. The primary 

reasons for PEPt middleware are two-fold: PEPt middleware allows for more scalable networks, 

and completely obscures the existence of other SMs. The PEPt middleware to be reviewed in this 

layer include Common Object Request Broker Architecture (CORBA), CORBA/embedded, and 

micro-ORB.  

 

4.2.1 Common Object Request Broker Architecture (CORBA) 

 The Common Object Request Broker Architecture (CORBA) was created by the 

Object Management Group (OMG). The OMG was formed in 1989 to address the need for 

standardized, distributed, heterogeneous middleware standards in response to the growing 

occurrence of computer networks, such as the Internet. OMG created the Object Management 

Architecture (OMA) to describe an architecture for such distributed heterogeneous systems, and 

created CORBA as an implementation component of this architecture. CORBA 1.0 was released 

in 1991, with routine updates through CORBA 3.3 in 2012 [90]. CORBA is intended for large-

scale computing networks, and has been used by a multitude of government agencies and large 

companies, such as The Weather Channel, Raytheon, Thames Water, NASA, the U.S. Navy, and 

over three-quarters of the world’s financial institutions [91]. In response to criticism that CORBA 

has too large a footprint and requires too much computational power for smaller-scale embedded 

systems, the OMG released CORBA/e in 2008 to reduce the footprint and support distributed 

embedded systems. Two variants of CORBA/e exist: Compact Profile and Micro Profile [92].  

CORBA is the object request broker (ORB) implementation in the OMG’s OMA model. 

The OMA model consists of two internal models: the Object Model and the Reference Model. 

The Object Model describes the four types of objects in a distributed environment, and the 

Reference Model describes how those objects interact. The Object Model is shown in Figure 21.  
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Figure 21: OMG Reference Architecture [93] 

The above reference architecture defines the various components in a distributed 

computing model, particularly the component OMG fulfills with CORBA. These components 

exist on each PE in a distribute network, and consist of: object services, common facilities, 

domain interfaces, and SM interfaces, all linked by the object request broker (in this case, 

CORBA). Object services are domain-independent interfaces used in distributed object SMs. 

These include services for discovery and naming services, which allow clients to find objects 

based on name or properties (see Naming Service and Trading Service), security services, 

transaction services, lifecycle management services, etc. Common facilities provide facilities, 

which similar to object services, but geared more toward end users. An example facility is the 

Distributed Document Component Facility, which allows for linking document object 

components for users. Domain interfaces, again like common facilities and object services, 

provide services, but for specific domains. These can include telecommunications, medical, and 

financial SMs. Finally, SM interfaces provide services for specific SMs, and are not standardized 

due to their variability. The object request broker (ORB) links all of these services together, 

allowing for services to find each other and communicate as both clients and servers. Within this 

framework, different combinations of these components may exist on any PE, as shown in Figure 

22. 
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Figure 22: Peer-to-peer network linked by ORB [94] 

CORBA is the ORB component of the OMA. The goal of CORBA is to facilitate 

communication between clients and objects. In facilitating communication, CORBA hides the 

object location, whether this location is on the same machine or a different PE; the object 

implementation, including the programming language, hardware, operating system, etc.; the 

object execution state, including whether the object is ready to accept requests; and the object 

communication mechanisms, which define the processes and protocols used to deliver the request 

and response (TCP/IP, shared memory, local call, etc.). Clients make requests to objects by 

invoking object references, which are available through the Naming and Trading Services; these 

are object services that are minimally required by each of the components in order to be 

implemented with the ORB, and provide object references based on name or properties to clients. 

These client requests and server responses are based on the client/server model, and form 

synchronous communications between the two. However, CORBA also offers a publish/subscribe 
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model through its Event Service, which allows data to be both anonymously published to the 

ORB core and anonymously subscribed to by SMs. 

Requests for object references and operations with objects are coded according to the 

OMG Interface Definition Language (IDL). This IDL provides interfaces for each object, and is 

similar to C++ and Java in format. However, it is declarative and not compiled, and is interpreted 

by the ORB, allowing for full programming language independence because the object 

implementations are defined separately. An example interface that only creates an object is: 

 

 Factory is the object interface, and allows an object of Factory to be created, returning an 

object reference. Additionally, interfaces can inherit from other interfaces in a format similar to 

C++, shown below: 

 

 The spreadsheet object interface inherits the above create() operation from Factory, and 

specifies its own create_spreadsheet() operation. In addition to this C++/Java-style language 

format, the IDL also provides variable types similar to those found in popular programming 

languages, including unsigned and signed long, short, char, enum, float, struct, union, and string 

[94].  
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Figure 23: CORBA ORB Implementation [93] 

 Figure 23 is the implementation of CORBA. At compile time, an IDL compiler makes 

use of an interface repository, which contains all object interfaces, allowing SMs to traverse and 

discover IDL information at runtime. This compiler translates the IDL code into the target 

programming language, and provides stubs and skeletons. Stubs are client-side mechanisms that 

issue requests for the client, whereas skeletons are server-side mechanisms that deliver the 

requests to the specific implementation. In addition to these static requests and responses that are 

set at compile-time, dynamic run-time discovery of services to request are provided for as well. 

This is accomplished through the Dynamic Invocation Interface (DII), allowing a client to 

directly access the ORB to request instead of needing IDL-defined interfaces, and the Dynamic 

Skeleton Interface (DSI), allowing a server to respond to such requests not defined at compile-

time.  The final component of the ORB is the Object Adapter, which maps the ORB to object 

implementations [93]. 

 For communication between distributed components on a CORBA network, two 

communications protocols are specified: the General Inter-ORB Protocol (GIOP) and the Internet 

Inter-ORB Protocol (IIOP). The GIOP specifies the syntax and composition of messages, whereas 

the IIOP specifies CORBA’s mapping to a TCP/IP-style network transport. While both are 

required for CORBA 2.0 and later releases, the GIOP is not IIOP-specific, and does not contain 

any restriction to TCP/IP for transport; rather, the GIOP is standard for any connection-oriented 

transport. 

 CORBA/Embedded (CORBA/e) is a new version of CORBA that is targeted toward the 

real-time and low-footprint needs of distributed embedded environments. CORBA/e is available 
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in two versions, or “profiles”: Compact Profile, which is intended for 32-bit microprocessors 

running real-time operating systems, and Micro Profile, which is intended for low-power 

microprocessors and digital signal processors. The goal of the Compact Profile is to merge 

CORBA and Real-Time CORBA for smaller processors, creating a deterministic version of 

CORBA. The goal of the Micro Profile is to shrink the CORBA footprint so that it can fit on very 

small low-power microprocessors. Both profiles are fully compatible with the GIOP and IIOP 

protocols, allowing for communication with SMs running on other CORBA profiles or full 

CORBA. Furthermore, both profiles compile and support the entire IDL except for the dynamic 

aspects (the DII and DSI and the dynamic data types such as Any and Valuetype). This retains 

CORBA support for a heterogeneous mixture of programming languages and hardware 

architectures [92]. This comparison of CORBA profiles is summarized in Table 12. 

Table 12: Comparison of CORBA Profiles 

 CORBA CORBA/e Compact CORBA/e Micro 

Target Processors Enterprise 32-bit, RTOS  32-bit/8-bit low-power  

IDL Support Yes Yes Yes 

GIOP/IIOP Comms Yes Yes Yes 

Real-Time Scheduling Yes Yes No 

Naming/Event Services Yes Yes No 

 

4.2.2 uORB 

 Micro Object Request Broker (uORB) is a custom ORB written for the PX4 micro air 

vehicle autopilot, and facilitates the passing of data structures between SMs. It follows the 

publish/subscribe model, and offers an API. It is intended for use on low-power embedded 

microcontrollers. uORB does not formally specify a network communication implementation, but 

interfaces with MAVLink for off-chip communications. 

 uORB works by managing a table of all subscriptions and publications that each 

individual SM maintains. Data structures are registered in the uORB core as “topics” using the 

ORB_advertise() function call, which returns a pointer handle for that topic. Updates to that topic 

are pushed to the uORB core by the publisher using the ORB_publish() function, which then 

updates that topic’s internal marker. Subscribers use the ORB_subscribe() function call to 

initially subscribe to a topic, which returns a pointer handler to that topic. These subscribers then 

must poll the uORB core using the ORB_check() function call, which returns a Boolean 
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indicating whether the topic has been updated since the last time the subscriber has copied new 

topic data. If the data is indeed new, the subscriber must use the ORB_copy() function call, which 

fetches data from the topic and prompts uORB to reset the topic’s internal marker for the 

subscriber that copied the data, since there can be multiple subscribers [95] [96].  

4.2.3 XML-RPC 

 XML-Remote Procedure Call (XML-RPC) is a middleware for calling procedures on 

distributed PEs over a network, historically using the OSI SM Layer program HTTP. However, 

work has been done to use CAN as the network communication component of XML-RPC [97]. 

 XML-RPC is primarily distributed as C/C++ libraries; however, there are Ruby, Perl, 

Java, and Objective-C implementations as well. The goal of XML-RPC is to abstract away the 

programming languages and hardware on endpoints in the network, allowing for the calling of 

objects on remote hosts through the universal XML language. XML-RPC is a client-server 

architecture, where clients are created on PEs and make requests “methods” on servers on other 

PEs [98].  

4.2.4 Middleware Aspects 

The degrees to which each PEPt layer middleware address the five key aspects of 

middleware will now be compared and contrasted. The results are summarized in Table 13. 

Table 13: Comparison of PEPt Middleware 

 Network 

Communication 

Coordination Reliability Scalability Heterogeneity 

CORBA 

Profiles 

Message-oriented Synchronous At-least-once Access, 

Location  

Hardware, 

Network, 

Software 

uORB Message-oriented Asynchronous At-most-once Access, 

Location, 

Replication 

Hardware, 

Network, 

Software 

XML-RPC Message-oriented Asynchronous Mixture Location Hardware, 

Network, 

Software 
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4.2.4.1 Network Communication 

CORBA’s network communication is message-oriented, and includes both client/server 

and publish/subscribe architectures. Clients can make requests to servers, and clients can publish 

and subscribe to object references anonymously. Both of these communications architectures are 

handled through CORBA’s GIOP and IIOP, which specify a syntax and TCP/IP style connection-

based, transport-level network. CORBA/e’s network communication is also message-oriented, 

and is a new definition of CORBA that removes CORBA’s dynamic aspects in order to offer 

deterministic timing and fit on low-power embedded microcontrollers. While exhibiting a smaller 

memory footprint, CORBA/e is still fully compliant with CORBA’s IIOP, retaining 

interoperability with CORBA systems. 

uORB, while a custom implementation of an ORB, is still message-oriented and relies 

solely on the publish/subscribe model for message-passing. Off-chip communications interface 

through MAVLink, which marshals the messages and packs them over a serial channel to all 

other processors in the network.  

XML-RPC’s network communication is message-oriented and relies on a client/server 

architecture. Traditionally based on HTTP over TCP/IP as the network communication 

mechanism, CAN-based XML-RPC has been demonstrated to prove XML-RPC’s applicability to 

distributed embedded networks [97].  

4.2.4.2 Coordination 

CORBA handles coordination by default through synchronous object requests. Full 

CORBA’s DII allows for deferred synchronous and asynchronous object requests, but both 

CORBA/e profiles remove this dynamic interface and only support synchronous object requests. 

Stubs and skeletons are present on every PE in the network to facilitate these object requests. 

Stubs are client-side mechanisms for issuing requests, and skeletons are server-side mechanisms 

for responding to requests. Since each PE in a CORBA network can be both a server and a client 

depending on the services it offers or requires, these are present on a per interface basis.  

uORB handles coordination through an asynchronous publishing/subscribing service. PEs 

with new data publish the data to the ORB and continue with execution; however, PEs 

subscribing to topics must poll the ORB core periodically checking for new data, copying over 

new data as it becomes available. Since this process requires any receiving PEs in the network to 

devote execution time dedicated to checking for new data, instead of being notified that new data 

is available by the ORB, this coordination is only partially asynchronous.  
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XML-RPC handles coordination through asynchronous communication. While 

historically based on TCP/IP communication, research as shown XML-RPC running on a CAN 

bus, which is asynchronous. This is the target host-infrastructure architecture for XML-RPC in 

the target small-scale, low-power embedded networks of this thesis. 

4.2.4.3 Reliability 

 CORBA’s reliability is at-least-once. While the addition of the Event Service allowed for 

a publish/subscribe network communication model, it did not address CORBA’s inherent lack of 

a reliability guarantee. The addition of the Notification Service, however, provided at-least-once 

reliability by offering a set of parameters, EventReliability and ConnectionReliability, that allow 

the user to set the desired messaging reliability. Setting both to “persistent” provides this at-least-

once reliability, where the calls to object references do not return until the references are valid 

and stored to persistent memory, and the push or pull request keeps retrying.  

 uORB’s reliability is at-most-once. ORB_publish and ORB_subscribe calls contain no 

inherent verification that subscribers receive the published data. While the orb_publish function 

prompts notification to waiting subscribers, subsequent orb_publish calls will overwrite the data, 

no matter if subscribers have received this data or not. 

 XML-RPC’s reliability depends on the underlying transport mechanism; for traditional 

TCP/IP transport, the reliability is exactly-once. For CAN-based transport, the reliability is at-

least-once. XML-RPC includes no functionality to guarantee the procedure calls occur correctly 

or on time.  

4.2.4.4 Scalability 

CORBA offers access and location transparency. All services in the system are abstracted 

to object references, and the access point, whether local or remote, and location of these 

references are irrelevant to SMs.  

uORB offers access, location, and replication  transparency. Like CORBA, all data in the 

system is abstracted into object references, called “topics”. The access point, whether local or 

remote, and location of these topics are irrelevant to SMs. Since uORB uses an exclusively a 

publish/subscribe architecture, replicated endpoints are also irrelevant to SMs, since no 

knowledge of such replication is required and replicated endpoints must simply subscribe to or 

publish data anonymously. 
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XML-RPC offers location transparency. Remote procedure calls made by SMs require no 

knowledge of the location of the procedures on other PEs. 

4.2.4.5 Heterogeneity  

CORBA exhibits hardware, network, and software heterogeneity. One of the primary 

design goals of CORBA is to mask the hardware, location, operating system, and programming 

language implementations of each PE; these are all abstracted from CORBA operation. 

Furthermore, CORBA’s IDL exists for the purpose of allowing usres to map specific 

programming languages onto a common declarative language, with official support for Ada, C, 

C++, COBOL, Java, Lisp, Python, and Ruby. This gives CORBA hardware and software 

heterogeneity. Furthermore, CORBA suggests a network communication similar to TCP/IP, but 

does not require or implement any network communication, giving it network heterogeneity as 

well. 

 uORB exhibits hardware, network, and partial software heterogeneity. As a C library, 

uORB is restricted to the C programming language, but provides an API to interface with any SM 

or operating system, giving it partial software heterogeneity. uORB does not specify any network 

communication, and in implementation relies on MAVLink, giving it network heterogeneity. 

Finally, uORB does not specify hardware, and is a low-footprint library that is not restricted to 

any particular architecture, giving it hardware heterogeneity.  

 XML-RPC exhibits hardware, network, and software heterogeneity. By using XML as 

the encoding, PEs may use different programming languages and hardware architectures to 

format the XML messages. Furthermore, the transport mechanics of XML-RPC are not rigidly 

defined; usually implemented using TCP/IP, CAN-based transport for XML-RPC has been used, 

and any message-oriented network communication style could theoretically support XML-RPC 

messages. 
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5 Common Services Layer Middleware 
 This chapter details common services layer middleware. Common services middleware is 

above distribution middleware, and provides common distributed embedded network services in 

addition to end-to-end transport mechanisms. The set of services provided vary, but their goal is 

to utilize the kind of encapsulations and extensions provided by host-infrastructure and 

distribution middleware to form SM-level services that are typical in distributed SMs. These 

kinds of services include the message transportation found in distribution middleware, but also 

other services: file manipulation, timing and synchronization, logging, and device virtualization. 

The middleware to be reviewed in this layer are Spacecraft Onboard Integration Services (SOIS) 

and Core Flight System (CFS). 

5.1 Spacecraft Onboard Interface Services (SOIS) 

The Spacecraft Onboard Interface Services (SOIS) middleware is currently being defined 

and standardized by the Consultative Committee for Space Data Systems (CCSDS), which is a 

collection of 11 member space agencies from around the world seeking to improve 

interoperability between international space systems. CCSDS organizes standards releases by 

color: the SOIS handbook is currently in Green Book form, meaning it is an Informational Report 

that describes the desired design process and methodologies for the adoption of SOIS. This Green 

Book was first released in June 2007, and was updated in December 2013. SOIS stands out from 

other middleware reviewed by this thesis in that it is not a standard or downloadable code base; 

rather it is a detailed middleware approach that is still in early stages of design and review. 

Individual features of SOIS, such as the Device Virtualization Service and File/Packet Store 

Service, are currently in the Red Book phase of review, to be completed in mid-2014. 

The target system of SOIS is generically declared by CCSDS to be “all classes of civil 

missions, including scientific and commercial spacecraft, manned and un-manned systems” [99]. 

Since the SOIS Green Book defines a design process and recommended organization of a 

distributed computing network, there is no provision for specific hardware requirements or 

software restrictions; however, the Device Virtualization Service and recommended protocols 

have been flown on the UKube-1 CubeSat; CubeSats in general, with their goal of rapid design 

and integration, are ideal targets for this middleware [100]. 

SOIS is composed of computing services organized into three layers: the SM support 

layer, the transfer layer, and the subnetwork layer. The services provided in each layer attempt to 

disassociate users from any specifics of endpoint hardware and the network used to link them. 
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Figure 24: SOIS Reference Architecture [101] 

 

 Figure 24 details the layers that compose SOIS, as well as the services each layer 

provides. The development of this architecture results from several observations on typical 

spacecraft designs. Despite the ideality of a spacecraft’s internal components all using the same 

communications medium, this is not usually the case. Rather, spacecraft usually exhibit multiple 

point-to-point connections, along with a single communications bus. Additionally, the choice of 

these communications mediums will occur on a mission-by-mission and hardware basis; 

essentially, no single communications protocol or method will necessarily be best for all 

missions, and these protocols will undoubtedly vary. Finally, the devices communicating will not 

typically have similar computing power or elements; microprocessors performing scheduling, file 

management, etc. operations may have such similar capabilities, but sensors and other actuators 

will have far reduced capabilities. These observation arise from the various network categories in 

use on satellites, many times within a single satellite: multidrop buses, where a central bus master 

maintains tight control over a number of slaves; point-to-point serial interface, which are mainly 

used for sensor and instrument connections (and sometimes bulk data transfers); and homogenous 
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networks, which consist of PEs with similar computing power that communicate on a peer-to-

peer basis. In view of these observations, the SOIS concept attempts to completely disassociate 

network and hardware from users. To accomplish this, SOIS operates through three service 

interface layers: the SM support layer, the transfer layer, and the subnetwork layer. 

5.1.1 SM Support Layer 

 The SM support layer provides common spacecraft capabilities for SMs, isolating user-

space from network topology, communications architecture, and physical hardware realizations of 

spacecraft systems. This currently consists of five services: command and data acquisition 

services (CDAS), time access service (TAS), message transfer service (MTS), file and packet 

store services, and device enumeration service (DES). 

5.1.1.1 Command and Data Acquisition Services (CDAS) 

 The first service in the SM support layer is CDAS, which details both commanding and 

obtaining data from devices on the spacecraft, regardless of location; these devices are hardware 

devices such as sensors or actuators. The CDAS further splits into three distinct services to 

provide access to such devices: the device access service, device virtualization service, and the 

device data pooling service. Each service progressively provides more user abstraction from the 

endpoint hardware device. The location of this service in the SOIS framework is shown in Figure 

25. 

5.1.1.2 Device Access Service (DAS) 

The DAS is the most basic service for commanding or reading from a hardware device. 

This service isolates users from the physical location of the device only, providing access through 

a physical device identifier. This physical device identifier, as well as a value identifier for the 

operation and any parameters, is used to address the device for commanding or reading values, 

since such target hardware devices typically only asynchronously emit data. This service is best 

described as a Device Specific Driver. 
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Figure 25: CDAS Services [101] 

5.1.1.3 Device Virtualization Service (DVS) 

The DVS abstracts all elements of a hardware device’s physical embodiment from the 

SM, and is instead represented by a virtual or generic image of that hardware device, such as a PC 

user’s interaction with a disk drive. The user is entirely abstracted from the physical 

characteristics of the device, including its location and operation; instead, the virtual device 

provides an idealized interface with a set syntax and simple semantics that allow changing 

hardware configuration and part numbers with no knowledge to the SM, provided that these parts 

fulfill the simplified definition of the virtual device. These virtual devices offer commanding 

(parameter modification on the device) and acquisition (return of requested parameter on device) 

operations. These are specified using a Dictionary of Terms (DoT) to compose an engineering 

profile of the device, which is interpreted by the SOIS services in an Electronic Data Sheet 

(EDS). This is similar to SPA in its description of a device’s capabilities and properties in an EDS 

(xTEDS in SPA); however, whereas SPA utilizes these xTEDS in run-time and dynamic 

discovery and registration of devices, SOIS espouses their use at design-time. SOIS claims that 

the real benefit of this device virtualization is with design-time adaptability, allowing hardware 

changes that are invisible to the SM, which sees only a generic functional interface.  
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Figure 26: SOIS Device Virtualization [101] 

Figure 26 depicts the device virtualization process, again utilizing the layering of 

protocols. Starting from the bottom, the subnetwork protocol transfers the actual data between 

SOIS and the hardware device. Above that, the device-specific access protocol (DAP) maps the 

generic upper-level functions to the physical device being connected to through the subnetwork 

protocol. While this level is device-specific, it is not subnetwork-specific. Above the DAP is the 

Device Abstraction Control Procedure (DCAP) block, which hides the physical device by 

mapping the generic functional interface to the device-specific layer. This layer may map single 

generic user functions onto several device-specific functions, may contain state machines to 

obtain several pieces of information from devices required by a generic function, and may 

perform any type conversions required by the DAP.  This service is best described as a Standard 

Device Driver. 

5.1.1.4 Device Data Pooling Service (DDPS) 

This optional service periodically requests the status and caches values from each of the 

hardware devices connected, in order to provide better servicing time when full data acquisition 

operations through the DAP or DVS are not required. This is particularly true to periodic requests 

with some predetermined sampling rate. 
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5.1.1.5 Time Access Service (TAS) 

 The second service in the SM support layer provides an interface to a consistent local 

time source for all SMs. The most basic capability of this service is a “wall clock”, where any SM 

can request the time on demand for time-stamping and scheduling. Optionally, an “alarm clock” 

capability, where SMs are notified at a specific time, and a “metronome” capability, where SMs 

are notified at periodic intervals, can be provided as well through this service. 

5.1.1.6 Message Transfer Service (MTS) 

 The third service in the SM support layer allows for SMs to send and receive messages 

from each other. Each service user is identified by a unique MTS PE identifier, and messages are 

addressed using this identifier. The MTS provides basic sending and receiving of messages, with 

priority. Optionally, the MTS can provide multicast (publish) and broadcast (announce) functions. 

 When the transmitting and receiving SMs are on the same processor, MTS addresses the 

destination SM using its MTS PE identifier and places the message in a priority first in, first out 

(FIFO) queue. When the transmitting and receiving SMs are on different processors, MTS uses 

the Asynchronous Message Service (AMS) to provide prioritized delivery and bounded delivery 

times for messages. AMS is a CCSDS protocol that is defined in Blue Book form, meaning it is a 

recommended standard. Broadly, AMS is an OSI SM Layer service that relies on underlying 

transport layers to transfer physical information. These transport layers can include any network 

transportation services that give by senders and receivers access, including TCP/IP, multi-master 

I2C, CAN, etc. AMS implements four messaging models:  asynchronous send/receive, where 

single messages are sent to designated PEs; synchronous query, where sending SMs suspend 

activity until receiving SMs reply; publish/subscribe, where anonymous messages are published 

to set of subscribers; and announcement, where messages are simultaneously sent to SMs chosen 

by the sender [102]. 

5.1.1.7 File and Packet Store Services 

 The fourth service in the SM support layer allows for users to manipulate and transfers 

files and packets, which can include science data, images, commands, telemetry, etc. This service 

also abstracts the file system implementation from the user. There are four categories of services 

used to accomplish this: file access service (FAS), file management service (FMS), packet store 

access service (PSAS), and packet store management service (PSMS). 
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5.1.1.8 File Access Service (FAS) 

This service gives user access to files, including basic open, close, read, and write 

operations. These can be provided through a Network File Access Protocol for use on the 

subnetwork service if the files are located on a different data service; however, if on the same 

data system as the user, a set of capabilities are required by the file store: directory list, create file, 

open file, close file, read file, write to file, delete file, move file, and copy file. Additional 

directory manipulation capabilities can be provided. Finally, this file store must maintain the 

name, creation time, last write time, lock status, and file size for each file.  

5.1.1.9 File Management Service (FMS) 

The FMS allows users to manipulate existing files, regardless of their location on the 

same data service or across a network. The FMS provides the following capabilities to users: 

directory list, create a file, delete a file, copy a file, and move a file. Further directory 

manipulation can be optionally provided. 

5.1.1.10 Packet Store Access Service (PSAS) 

This service is the packet analogue of the FAS, and allows the user to operate on packet 

stores, which are different than file stores in that they are the frames used to route and exchange 

messages. These operations include getting packet store information, clearing the store, writing 

packets, reading packets, moving packets, freeing packets, and reporting the status of a packet 

store. 

5.1.1.11 Packet Store Management Service (PSMS) 

This service is the packet analogue of the FMS, allow packet stores to be created and 

removed, regardless of the packet store’s location. 

5.1.1.12 Device Enumeration Service (DES) 

 The fifth and final service in the SM support layer assigns a system-wide unique virtual 

device identifier to each device in the system, and is used to verify that each of those devices 

meet the configurations required by the system. This service enumerates devices by discovering 

devices, and optionally allows for dynamic discovery through a Device Discovery Service (DDS). 

These enumeration styles generally follow the SOIS definitions of plug-and-play. These 

definitions fall into three levels:  no plug-and-play, where are device IDs and network addresses 

are hardcoded; device capability verification, where the DDS validate each device’s metadata to 

ensure that the expectations of the device meets the actually capabilities of the device; and Device 
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Discovery, where DES dynamically discovers devices and configures DAS and DVS to allow 

SMs to use and access them. 

5.1.2 Transfer Layer  

The second layer of SOIS provides packet routing on a spacecraft network, and may not be 

required if no packet routing service between subnetworks is required. Examples of such packet 

routing protocols are TCP/UDP/IP and Space Packet Protocol. If required, the Transfer Layer will 

usually consist of two services: 

1. Packet Routing 

2. System Addressing 

As this layer is optional depending on the configuration, and is not essential to SOIS 

functionality, it is discussed in no more detail. 

5.1.3 Subnetwork Layer 

The third and bottom of SOIS consists of services that transfer and synchronize packets between 

SOIS users and devices. The SM support layer utilizes these services implement the services 

provided to the user. These services are: packet service, memory access service, synchronization 

service, device discovery service, and test service. 

5.1.3.1 Packet Service 

This service transfers data packets over buses and subnetworks, and is invoked from a 

user transparent to the type of network. This service can also multiplex between different kinds of 

networks on the same system, including serial buses and TCP-style packets. This service is 

specific to the type of network being interfaced to, but essentially provides address translation, 

protocol identification, and segmentation of data. 

5.1.3.2 Memory Access Service 

This service allows the user to directly read/write to a specific memory or register 

location on a device, bypassing higher-level convenience and virtualization layers. 

5.1.3.3 Synchronization Service 

This service notifies users of subscribed events in a subnetwork, such as a time requests. 

5.1.3.4 Device Discovery Service 

This service detects devices becoming active, whether the devices are connected directly 

to the system or to a subnetwork the system is connected to. 
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5.1.3.5 Test Service 

This service checks the go/no-go status and available error codes of all data systems on 

the network. 

5.1.4 Future Work 

In order to accomplish the plug-and-play and message-passes mechanisms of SOIS, 

electronic datasheets (EDS) are used. An EDS is like an Interface Control Document (ICD), but is 

machine readable. It describes all possible operations for a device, what protocols are required by 

the device, and human-readable documentation for that device. Since SOIS is still in the 

definition and standardization state, it is expected that SOIS will adopt the xTEDS format used by 

SPA, such that SOIS EDS are a superset of SPA xTEDS, allowing for some measure of 

interoperability and collaboration. Additionally, SOIS will define a DoT for use in engineering 

profiles, which will define ontology for units of measure, purpose of devices, syntactic type of 

data produced and required by devices, reference frames, and subjects. This will be especially 

important for device virtualization, where generic functional interfaces will absolutely require a 

common DoT to operate correctly. In order for “dumb” devices to comply with SOIS and not 

require direct connection to the primary SOIS processing unit, Smart Transducer Interface 

Modules (STIM) can be used as a connection point that handles communication for these dumb 

devices, including EDS provision. These are functionally equivalent to ASIMs in SPA 

nomenclature. 

5.2 Core Flight System (CFS) 

The Core Flight System (CFS) middleware was developed by the Flight Software 

Systems Branch at NASA Goddard Space Flight Center (GSFC). GSFC’s Flight Software 

Systems Branch provides embedded software for on-orbit satellite science missions, and places 

an emphasis on software reusability and onboard autonomy. The Core Flight System (CFS) is a 

synthesis and formalization of software layers that have both been in use for nearly 15 years and 

have yet to be defined. The earliest satellite system to fly with CFS components was the Solar 

Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite in 1992; CFS was 

released as an open source package in 2011. 

CFS is targeted toward satellite science observatory missions, and has flown in various 

forms on several missions to date. These include SAMPEX in 1992, Lunar Reconnaissance 

Orbiter (LRO) in 2009, Solar Dynamics Observatory (SDO) in 2010, the Van Allen Probes in 

2012, the Lunar Atmosphere and Dust Environment Explorer in 2013, and the Global 
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Precipitation Measurement (GPM) satellite in 2014. Furthermore, GSFC has identified the 

CFS/cFE architecture as an area of interest for NASA CubeSat development [103]. The 

Intelligent Systems Division at NASA Ames Research Center has also listed CFS/cFE as the 

architecture for the proposed BioSentinel CubeSat mission, targeting launch on the Space Launch 

System (SLS) and will measure radiation-induced DNA damage [104]. In addition to proposed 

CubeSats, the GSFC creators of CFS/cFE are collaborating with James Lyke of SPA and CCSDS 

of SOIS to integrate EDS support to further enhance adoption and standardization of CFS. 

CFS is composed of a set of layers, with each layer obscuring its implementation and 

technical details from other layers, as well as the SM. The benefits of this architecture are that it 

doesn’t suggest hardware or operating system implementation; rather, CFS gives hardware and 

platform independence. CFS consists of five layers, including an SM layer for SMs; an SM 

library layer for translating these SM’s communications into the Core Flight Executive (cFE) 

layer; a platform abstraction layer to isolate the above CFS layers from the specific OS and 

hardware implementation, translating generic OS calls into the specific OS calls of the chosen OS 

and processor through a Platform Support Package (PSP); and the RTOS/BOOT layer, which 

holds the boot information and RTOS. Currently supported RTOSs include VxWorks and 

RTEMS, as well as support for desktop Linux. These layers are depicted in Figure 27. 

 

Figure 27: CFS layers [105] 
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5.2.1 SM Library Layer 

The SM layer in CFS consists of 11 pre-built flight software SMs developed by the 

GSFC Flight Software Services branch. These include CCSDS File Delivery Protocol (CFDP), 

which is a CCSDS Blue Book recommended standard that handles file delivery from a spacecraft-

based filestore to a ground-based filestore; Checksum (CS), which allows the user to schedule 

checksum calculations over code and data memory regions; Data Storage (DSS), which stores 

messages exchanged on the software bus interconnect; File Manager (FM), which provides file 

management for individual files and directories; Health and Safety (HS), which kicks hardware 

watchdog timers, monitors the execution of tasks, and takes corrective action should task errors 

occur; Housekeeping (HK), which can build user-specified telemetry strings; Limit Checker 

(LC), which monitors user-defined data watch points by checking message data against threshold 

values; Memory Dwell (MD), which can sample processor addresses and append values to 

telemetry streams for debugging; Memory Manager (MM), which can perform memory read, 

write, load, and dump as well as diagnostics; Scheduler (SCH), which implements a time-

triggered architecture with 10 millisecond slots for each SM; and Stored Command (SC), which 

can follow command sequences set at relative or absolute times (ref). 

5.2.2 cFE Layer 

 The Core Flight Executive (cFE) layer in CFS is the oldest layer and original middleware 

implementation that spawned CFS. It provides a set of five services that are used by SMs in the 

SM library layer, and it provides an abstraction between those higher-layer SMs and the platform 

abstraction layer below. These reusable core software services are: executive services, event 

services, software bus services, table services, and time services. 

The executive services handle maintenance of spacecraft computer activities. This 

includes startup, task record keeping, system log, library loading, device drivers, and a Critical 

Data Store (CDS). After cFE code is loaded into a predetermined address in volatile memory at 

startup, control is transferred to cFE, which begins loading the higher-layer CFS SMs denoted in 

a configuration file. The event services allow SMs to send asynchronous debug/error messages, 

as well as local system logs. These services may also be used during debugging. The software bus 

service allows for inter-SM messaging. Relying on a previously developed publish/subscribe 

messaging middleware, SMs publish and subscribe to data completely ignorant of other SMs’ 

requirements. Additionally, this service automatically reports errors during transfers, and can 

provide statistics on packet delivery and routing. The table service provides tables, which are 

groups of related parameters similar to a C structure. These tables are used in two ways: they are 
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shared between SMs, acting as a shared memory resource, and they are used to update mission 

parameters at runtime. This provides a configuration option after compile-time, allowing for 

greater flexibility after a mission has commenced by allowing for changes to be made to software 

without requiring a patch. Finally, the time service provides spacecraft time to SMs, both on 

demand and through periodic wakeup and time-at-the-tone messages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3 Platform Abstraction Layer 

 The platform abstraction layer consists of two components: the Operating System 

Abstraction Layer (OSAL) and the Platform Support Package (PSP), which is a proposed open 

community component that adapts other operating systems and platforms not supported by 

OSAL. The PSP can either be written by the user for their specific SM, or one of the existing 

PSPs can be used. The functions included in the PSP are the startup code, memory read, write, 

and copy functions, processor-specific reset and exception handler functions, and timer functions. 

Both the PSP and OSAL are accessed by cFE through a Platform Abstraction API.  

Files  
 

Figure 28: cFE Layered Architecture [108] 
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5.2.3.1 OSAL 

OSAL is a software layer for embedded systems that provides an abstraction layer 

between specific real-time operating systems and SMs. Created and released by NASA Goddard 

Space Flight Center in 2010, the goal of OSAL is to allow for greater portability for embedded 

systems [106]. On the operating system side, OSAL combines and encapsulates the operating 

system-specific functions into generic functions for the SM. OSAL currently supports three 

operating systems: RTEMS, an open source real-time distributed operating system; VxWorks, a 

proprietary real-time operating system; and any other POSIX-compliant operating system, such as 

Contiki, Linux, and SkyOS. NASA hopes to include support for Windows XP as well, with the 

goal of embedded systems developers being able to port their code between various embedded 

systems and between embedded systems and desktop personal computers.  

 The APIs available to users are split into three sections: RTOS API, File System API, and 

Interrupt/Exception API.  

RTOS API 

 The API for RTOS configuration and manipulation cover tasks and queues, as well as 

semaphores. Any use of OSAL must begin with an OS_API_Init function call, which sets up the 

internal data structures of OSAL and allows for further use. The RTOS API then splits into six 

APIs: miscellaneous, queue, semphamore/mutex, task control, dynamic loader and symbol, and 

timer.  

File System API 

 The API for file system usage covers file creation and editing, directory creation and 

editing, and physical media actions, and is modeled after POSIX file APIs. As long as the 

underlying file system is POSIX-compliant, OSAL will give the user a common directory 

structure and a common volume organization. This means that the paths to files will not change 

between file systems, and the file system can be simulated on desktop computers. In order to use 

the file system API, the user provides OSAL a “Volume Table” consisting of a unique device 

name, an implementation-specific physical device name that is the mount point (“/dev” in Linux, 

for example), a volume type chosen from a predefined set of strings that describe the supported 

media types (FS_BASED, RAM_DISK, FLASH_DISK_FORMAT, FLASH_DISK_INIT, or 

EEPROM), a volatile flag indicating whether the volume is volatile, a free and mounted flag that 

should both be set to false, a volume name and mount point field that are both internal and should 
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be set to the empty space character, and an block size field that is left empty. After providing this 

volume table, the OS_mkfs and OS_mount functions can be called to create and mount the file 

system. The file system API splits into three APIs: file, directory, and disk.   

Interrupt/Exception API 

The API for interrupt/exception handling covers interrupt and exception setup and 

handling, and maps interrupt numbers to C code to handle the interrupt. The interrupt/exception 

API splits into three APIs: system interrupt, system exception, and system FPU exception.   

5.2.4 RTOS/BOOT Layer 

 The RTOS/BOOT layer consists of the RTOS implementation and programmable read-

only memory (PROM) boot software. The RTOS must either be supported by OSAL or the PSP 

in the platform abstraction layer. The PROM boot software handles early initialization and loads 

the RTOS and cFE. GSFC commonly uses RAD750- BAE SUROM, Coldfire, and LEON3 with 

uBoot. 

Figure 29 depicts the architecture of the GPM mission. The green blocks all represent 

cFE layer services, including the green Software Bus for inter-task message routing. The blue 

blocks all represent SM Library Layer SMs. The yellow and shaded yellow blocks represent 

specific SMs written for the GPM mission, including command and data handling and guidance, 

control, and navigation SMs. This figure highlights the large percentage of reused components in 

the architecture [105]. 
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Figure 29: Example Mission with CFS [105] 
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5.3 Middleware Aspects 

The degrees to which each Common Services layer middleware address the five key 

aspects of middleware will now be compared and contrasted. The results are summarized in Table 

14.  

Table 14: Comparison of Common Services Middleware 

 Network 

Communication 

Coordination Reliability Scalability Heterogeneity 

SOIS Node-oriented Both At-most-once Access, 

Location, 

Replication 

Hardware, 

Network, 

Software  

CFS Message-oriented Asynchronous At-most-once Location, 

Migration, 

Replication 

Hardware, 

Network, 

Software 

5.3.1 Network Communication 

SOIS handles network communication by providing the MTS at the SM support layer. 

MTS provides priority FIFO queuing, no matter if the receiving SM is on the same processor or a 

different processor on the network, and AMS-protocol messaging services. AMS messaging uses 

the subnetwork layer packet services to physically transfer bytes through the network, using 

implementation-specific protocols such as SpaceWire and Ethernet. These are node-oriented HI-

Hardware and HI-Network layer middleware. 

CFS handles network communication through cFE’s Software Bus service.  This software 

bus implements a message-oriented middleware (MOM) that relies on the publish/subscribe, 

message-oriented model, and leaves network implementation and drivers to lower levels. It can 

be theoretically run over any network communication protocol. 

5.3.2 Coordination 

SOIS addresses coordination through the MTS’s AMS messaging models, supporting 

either synchronous or asynchronous messaging. Using asynchronous messaging, sender and 

receiver SMs are decoupled, allowing the sender SM to continue processing and avoid blocking 

while waiting for the receiver SM to service the message. Additionally, group messaging is 

natively supported through the MTS’s AMS publish/subscribe and announcement messaging 

models. 
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CFS handles coordination through cFE’s Software Bus service’s asynchronous 

messaging. SMs are allowed to continue execution after messages are dispatched, and SMs have 

no knowledge of other SMs through the publish/subscribe messaging model. Each SM must be 

independent of any other SM, and must be able to start and complete execution on its own.  

5.3.3 Reliability 

SOIS offers at-most-once reliability by requiring the MTS implementation to provide 

priority FIFO queuing, no matter whether the sender and receiver SMs are on the same PE or not. 

This means that if either the sender or receiver are currently busy, the message is still available 

after those SMs complete their tasks; likewise, neither sender nor receiver have to pause or 

abandon execution of a task in order to service a message.  

CFS offers at-most-once reliability through its Software Bus service. Software Bus is a 

publish/subscribe inter-task router that routes data between tasks running on the same hardware, 

but interfaces with a serial communications architecture for distributed networking. Historically 

this serial communications architecture is either SpaceWire or MIL-STD-1553, and CFS’s 

reliability is based on the reliability of those architectures. Furthermore, CFS’s Software Bus 

service reports errors in message transactions but takes no native action to correct those errors, 

guaranteeing no reliable delivery but guaranteeing no duplicate delivery. 

5.3.4 Scalability 

SOIS exhibits access, location, and replication transparency. These are addressed through 

SOIS’s DVS. By abstracting specific implementation or unique details of hardware endpoints, 

changes can be made to such endpoints without user interaction. This makes the system more 

scalable because the DVS can simply replicate and group like hardware endpoints. For example, 

DVS can address one or many temperature modules by providing a virtual addressing system to a 

user, while using the same virtualization layers and code. SOIS also addresses scalability by 

encapsulating common computing services into its SM support layer. SMs need not rewrite such 

service software, and additional SMs and PEs can be added with no knowledge of how the 

message transport or device interrogation mechanisms are implemented. While SOIS offers a 

high degree of scalability by abstracting network and hardware implementation details from the 

user, this scalability comes primarily at design time. Other middleware architectures, such as 

SPA, focus on run-time scalability by providing dynamic plug-and-play, self-description through 

machine-readable datasheets, and periodic device enumeration. SOIS, however, focuses on 
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design-time plug-and-play by virtualizing devices and automatically generating the software 

interfaces for Standard Device Drivers.  

CFS exhibits location, replication, and migration transparency. CFS handles scalability 

through its publish/subscribe message model, provided by the Software Bus in cFE. As a 

publish/subscribe messaging model, new SMs can be added to the common software bus with no 

knowledge of or dependence on other SMs. These new SMs can either be local to the processor or 

distributed on other processors, since CFS sets no restriction on the presence of a distributed 

network. By pushing network communication to lower layers below the operating system, new 

SMs have no penalty to CFS operation. 

5.3.5 Heterogeneity  

SIOS exhibits hardware, network, and software heterogeneity. SOIS supports this 

heterogeneity through its layered service approach: as long as the physical hardware at endpoints 

can respond to MTS messaging following the specified syntax, there is no restriction on hardware 

or operating system. Additionally, CCSDS is currently compiling and creating the DoT, which 

will allow any hardware that describes itself in a compliant way to be integrated. The goal of 

SOIS is to enhance interoperability and encapsulate the use of common services, using no 

hardware-specific or operating system-specific language.  MTS’s AMS messaging is an OSI SM-

layer protocol, and does not suggest or restrict the lower-level protocols or methods of data 

transportation.  

CFS exhibits hardware, network, and software heterogeneity. Both are supported through 

CFS’s platform abstraction layer. This layer exists solely to abstract the specific operating system 

and running hardware from the cFE and above layers. As long as each PE in the system uses a 

compliant operating system, the integration of OSAL allows for any combination of 

heterogeneous processors and operating systems to be present in the network, with no impact to 

the cFE and above layers. If the network consists of operating systems or hardware not supported 

by OSAL, custom PSPs can be written to support those platforms, still requiring no changes to 

the cFE layer or above layers. Furthermore, CFS’s Software Bus routes messages between tasks 

on the same processor, and interfaces with unspecified serial communications architectures for 

off-chip communications; historically this is SpaceWire or MIL-STD-1553, but can be expanded 

to include any serial communications architecture. 
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6 Recommended Middleware Solution  

6.1 Recommended Methods  

This chapter summarizes the results of the middleware comparison from the previous 

chapters and recommends a solution for the target distributed embedded systems. A survey of 

common and widely-used middleware for distributed systems highlights how these middleware 

handle the five primary features of distributed middleware: network communication, 

coordination, reliability, scalability, and heterogeneity. Table 15 provides a summary of each of 

these requirements.  

Table 15: Summary of middleware aspects 

 Network 

Communication 

Coordination Reliability Scalability Heterogeneity 

CAN Message-oriented Asynchronous At-least-once Location, 

Replication 

Hardware, 

Software 

I2C Node-oriented Synchronous At-most-once None Hardware, 

Software 

USB Node-oriented Mixture Mixture None Hardware, 

Software 

Ethernet Node-oriented Asynchronous At-most-once None Hardware, 

Software 

UART Node-oriented Asynchronous At-most-once None Hardware, 

Software 

SpaceWire Node-oriented Synchronous At-most-once Location Hardware, 

Software 

MAVLink Message-oriented Asynchronous At-most-once Location, 

Replication 

Hardware, 

Network, 

Software 

SDM-Lite Node-oriented Asynchronous At-most-once None Hardware 

SPA-1L Node-oriented Asynchronous At-least-once Location Hardware 

AFDX Node-oriented Asynchronous Exactly-once None Hardware, 

Software 

TTCAN Message-oriented Asynchronous At-least-once Location, 

Replication 

Hardware, 

Software 
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 Network 

Communication 

Coordination Reliability Scalability Heterogeneity 

CAN-Aero Both Both At-least-once Location, 

Partial 

replication 

Hardware, 

Software 

Ardea Message-oriented Asynchronous Exactly-once Migration, 

Replication 

Network 

MeRL Message-oriented Both At-least-once Access, 

Location 

Hardware 

SPA Node-oriented Synchronous At-most-once Location Hardware, 

Network 

MIL-STD-

1553 

Node-oriented Synchronous At-most-once None Hardware, 

Software 

LonTalk Node-oriented Asynchronous Mixture Access, 

Location 

Software 

CORBA 

Profiles 

Message-oriented Synchronous At-least-once Access, 

Location  

Hardware, 

Network, 

Software 

uORB Message-oriented Asynchronous At-most-once Access, 

Location, 

Replication 

Hardware, 

Network, 

Software 

XML-RPC Message-oriented Asynchronous Mixture Location Hardware, 

Network, 

Software 

SOIS Node-oriented Both At-most-once Access, 

Location, 

Replication 

Hardware, 

Network, 

Software  

CFS Message-oriented Asynchronous At-most-once Location, 

Migration, 

Replication 

Hardware, 

Network, 

Software 

 

Table 15, continued: Summary of middleware aspects 
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 The survey of middleware provided by this thesis captures several methods of handling 

each middleware requirement. While all methods reviewed have their merits according to their 

deployment environment, there are preferred methods specifically for the distributed embedded 

systems targeted by this thesis: CubeSats and UAVs. While the ideal case is for each middleware 

requirement to be handled in the most fault-tolerant and robust way, this is often not possible 

given the resource-constrained and often harsh environments these systems operate in. 

6.1.1 Network Communication 

 The recommended method for handling network communication on the target systems is 

through a message-oriented, mixed time-triggered and event-triggered architecture. This is also 

the most fault-tolerant way to handle network communication. Message-oriented, as reviewed in 

Chapter 2, means that the traffic between PEs on a network are not addressed to specific 

endpoints. Rather, the messages themselves contain a message identifier and the SMs on PEs 

determine whether or not to interpret the message. This means that messages normally sent to 

multiple PEs need only be sent once, reducing network traffic and ensuring that all required PEs 

see the same message.  

A time-triggered architecture, as reviewed in Chapter 2, means that each PE is given a 

specific period of time during which to transmit data or request information; an event-triggered 

architecture, also reviewed in Chapter 2, means that messages and data are transferred on-

demand, as needed between PEs. From a fault-tolerance standpoint, the TTP is most ideal 

because it prevents starvation of any one node, offers a constant and known message latency, can 

optimize bus loading, and is contention-free. However, pure TTP introduces latency in large data 

transfers, which forces data to be segmented and leads to longer transfer times. Furthermore, PEs 

that do not need access to the bus during their allotted time slot lead to wasted cycles, further 

increasing the overall power consumption and latency in responding to outside stimuli. ETP, 

while less fault-tolerant than TTP and yielding sometimes unpredictable latency and bus loading, 

can be more efficient in large data transfers and more responsive to external stimuli, both highly 

applicable to satellite and UAV maneuvering and science data. The recommended solution is to 

blend TTP and ETP: give each PE an allotted time slot for data request and transmission but a 

channel for ETP in high-priority situations. 

6.1.2 Coordination 

The recommended method for handling coordination on the target systems is through 

asynchronous communication. This is also the most fault-tolerant way to handle coordination. 
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Asynchronous communication means that transmitting PE does not need to wait for the receiving 

PE to receive the data, and there is no clock synchronization between the two. This allows the 

transmitting PE to service other tasks while the receiving PE checks the validity of the data, 

retransmitting if necessary according to the reliability needs of the system.  

6.1.3 Reliability 

The recommended method for handling reliability on the target systems is through 

guaranteeing at-most-once reliability. The most fault-tolerant method for handling reliability is to 

guarantee exactly-once reliability, where communications are guaranteed to be delivered 

correctly and only once. At-most-once means that the message integrity is not guaranteed, but 

message duplication is guaranteed not to occur. In the resource-constrained and limited 

communications environment of CubeSats, guarding against duplication is more important that 

invalid data because unpredicted or duplicate actions could lead to significant changes in the 

satellite system. For example, duplicate deliveries of power commands could yield an unknown 

subsystem power status for ground controllers, potentially altering the power budget of the 

satellite on orbit. Likewise, duplicate deliveries of science commands could lead to extraneous or 

convoluted data that ruins experiments or produces false or unknown results. Similarly, duplicate 

command deliveries on UAVs could significantly alter the system’s flight path or flight 

mechanics. 

6.1.4 Scalability 

The recommended method for handling scalability on the target systems is through 

minimal adoption of location and replication transparency. The most scalable method of handling 

scalability would be to offer access, location, replication, and migration transparency. Message-

oriented network communication implies both location and replication transparency because the 

makeup or location of PE endpoints are not needed for the transmitting PE; this means that the 

user SM can transmit messages agnostic to the location and redundant number of PEs on the 

network. 

6.1.5 Heterogeneity  

The recommended method for handling heterogeneity on the target systems is through 

minimal adoption of hardware heterogeneity. The most expansive method of offering 

heterogeneity is to adopt hardware, network, and software heterogeneity. The resource-

constrained and harsh environments occupied by CubeSats and UAVs demand low-power 

consumption PEs; while PEs in modern CubeSats and UAVs have experience exponential 
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advances in processing power, they are still more limited than desktop and enterprise 

environments. Thus, the need for software heterogeneity to support a variety of operating systems 

and programming languages does not exist, as most low-power microcontrollers are programmed 

in C and run low-level RTOSs or light versions of Linux. Furthermore, the need to for network 

heterogeneity to support a variety of network protocols and signaling levels does not exist, since 

most PEs used in the target systems offer hardware support for several protocols and have rigidly-

set signaling levels anyway. Hardware heterogeneity, however, allows for a variety of 

microcontroller architectures to coexist on the network as according to the computational needs 

of the system. The availability of special-purpose microcontrollers at different levels of power 

consumption allows for such a distributed embedded system to optimize the power consumption 

and computational capabilities of each PE in the network, and middleware support for these 

various architectures should be given. 

6.2 Recommended Implementation 

A comparison between the ideal and the recommended methods of handling the 

middleware requirements are summarized in Table 16. 

Table 16: Possible middleware configurations 

 Network 

Communication 

Coordination Reliability Scalability Heterogeneity 

Ideal Message-oriented Asynchronous Exactly-once Access, 

Location, 

Replication, 

Migration 

Hardware, 

Network, 

Software 

Recommended Message-oriented Asynchronous At-most-once Location, 

Replication 

Hardware 

 

 From the set of reviewed middleware, there are several middleware options that fulfill 

most of the fault-tolerant and the recommended methods for handling these middleware 

requirements. These options are summarized in Table 18. In this table, the middleware 

requirements have been abbreviated, where NC is network communication, C is coordination, R 

is reliability, S is scalability, and H is heterogeneity. The color codes indicate whether each stated 

middleware fulfills the ideal or recommended methods for handling each particular requirement. 

Green means that the middleware fulfills the requirement exactly, yellow means the middleware 
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fulfills the method partially, and red means the middleware does not fulfill the method. To 

numerically compare the compliance, each requirement is worth a total of 12 points. This total is 

to allow for ratios of points for partial compliance. For example, there are four possible 

scalabilities: access, location, replication, and migration. However, there are only three possible 

heterogeneities: hardware, network, and software. In order to compare these, the maximum 

compliance for each category is out of 12, which is the least common multiple between these 

categories. Table 17 breaks down the point categories. 

 

Table 17: Compliance Ratings 

 Compliance to Model 

Full Half One-third Two-thirds One-fourth Three-fourths None 

Network 

Communication 

12 6 N/A N/A N/A N/A 0 

Coordination 12 6 N/A N/A N/A N/A 0 

Reliability 12 6 N/A N/a N/A N/A 0 

Scalability 12 6 4 8 N/A N/A 0 

Heterogeneity 12 6 N/A N/A 3 9 0 

 

6.2.1 Ideal Model 

The ideal model suggests that the middleware should exhibit message-oriented network 

communication, asynchronous communication, an exactly-once reliability guarantee, access, 

location, replication, and migration transparency, and hardware, network, and software 

heterogeneity. A summary of how each middleware compares against this ideal model is in Table 

18. 

Table 18: Middleware Compliance with Ideal Model 

Model Middleware Requirements Score 

NC C R S H 

 

Ideal 

I2C     8 8 

CAN 12 12  6 8 38 

USB  6 6  8 20 

Ethernet  12   8 20 
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 There are middleware implementations reviewed by this thesis that address all five 

requirements according to the ideal model. The criteria for partial compliance (yellow in the 

table) encompass two scenarios: “mixture” or “both” compliance from Table 15 or a subset of the 

available transparencies in scalability and heterogeneities. A highest score of 46 is held by Ardea, 

which exhibits full compliance with three of the five requirements and partial compliance with 

the remaining two. Its dependency graph ensures that the system will always supply the required 

data to each SM if that data is available in the system, and its ability to migrate SMs between PEs 

help give it the exactly-once reliability guarantee. Furthermore, its use of CAN-Aerospace in 

applications and recommendation of some CAN-based communications for future work give it its 

message-oriented and asynchronous aspects. Finally, it could be brought even closer to the ideal 

Model Middleware Requirements Score 

NC C R S H 

 

 

 

 

 

 

 

 

Ideal 

UART  12   8 20 

SpaceWire  12  3 8 23 

MAVLink 12 12  6 12 42 

SDM-Lite  12   4 16 

SPA-1L  12  3 4 19 

AFDX  12 12 3 8 35 

TTCAN 12 12  6 8 38 

CAN-Aero 6 6  6 8 26 

Ardea 12 12 12 6 4 46 

MeRL 12 6  6 4 28 

SPA    3 8 11 

MIL-STD-1553     8 8 

LonTalk  12 6 6 4 28 

CORBA/e 6   3 12 21 

uORB 12 6  9 12 39 

XML-RPC 12 12 6 3 12 45 

SOIS  6  9 12 27 

CFS 12 12  9 12 45 

Table 18, continued: Middleware Compliance with Ideal Model 
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model by abstracting its reliance on the uC/OS-II RTOS, and by being more tightly integrated 

with MeRL to adopt MeRL’s access and location transparency. 

6.2.2 Recommended Model 

The recommended model suggests that middleware exhibit message-oriented network 

communication, asynchronous communication, an at-most-once reliability guarantee, minimally 

location and replication transparency, and minimally hardware heterogeneity. A summary of how 

each middleware compares against this recommended model is in Table 19. 

Table 19: Middleware Compliance with Recommended Model 

Model Middleware Requirements Score 

NC C R S H 

 

 

 

 

 

 

 

 

 

 

Recommended 

I2C   12   12 24 

CAN 12 12  12 12 48 

USB  6 6  12 24 

Ethernet  12 12  12 36 

UART  12 12  12 36 

SpaceWire   12 6 12 30 

MAVLink 12 12 12 12 12 60 

SDM-Lite  12 12  12 36 

SPA-1L  12  6 12 30 

AFDX  12 12 6 12 42 

TTCAN 12 12  12 12 48 

CAN-Aero 6 6  12 12 36 

Ardea 12 12 12   36 

MeRL 12 6  6 12 36 

SPA   12 6 12 30 

MIL-STD-1553   12  12 24 

LonTalk  12 6 6  24 

CORBA/e 12    12 24 

uORB 12 6 12 12 12 54 

XML-RPC 12 12 6 6 12 48 

SOIS  6 12 12 12 42 

CFS 12 12 12 12 12 60 
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 While there are no exact matches to an ideal model middleware in this thesis, there are 

two exact matches to the recommended model for the target distributed embedded systems: 

MAVLink and CFS. Both middleware handle the middleware requirements using methods 

deemed most applicable to the target distributed embedded systems of this thesis, but these are on 

different layers of middleware: MAVLink is HI-Network layer and CFS is Common Services 

layer. Further comparison between the two is based on the practical implementation limits of the 

distributed embedded systems themselves, instead of the theoretical handling of middleware 

requirements.  

 Since CubeSats and UAVs are the target distributed embedded systems for this thesis, it 

is useful to examine MAVLink and CFS’s translation to those platforms. Neither MAVLink nor 

CFS has been implemented on CubeSats; however, NASA GSFC has identified CFS as a 

potential technology for CubeSats, and the NASA BioSentinel CubeSat has tentatively listed CFS 

for powering its C&DH [103] [104]. Despite this possibility, the class of missions that CFS has 

flight heritage with are large-scale satellites, such as LRO and GPM, with much larger computer 

systems and power budgets than those available on CubeSats. For UAVs, MAVLink was 

designed for and is implemented on a variety of autopilots and ground stations, including 

ArduPilotMega, SmartAP, PIXHAWK, QGroundControl, and APM Planner [67]; CFS has no 

history or heritage on UAVs.  

Table 20: Comparison of MAVLink and CFS 

 MAVLink CFS 

CubeSats No No 

UAVs Yes No 

Missions PIXHAWK, ArduPilotMega LRO, SDO, GPM 

Function Packing C-structures over serial channels 

and network abstraction 

Common computing services 

and hardware/OS abstraction 

 

 While both have a long implementation history on missions and commercial platforms, 

the intrinsic functions of MAVLink and CFS are fundamentally different according to the 

middleware layer they are classified into by this thesis. As HI-Network layer middleware, 

MAVLink is chiefly concerned with moving data off one PE and transferring it through the 

network to another PE. It is a network layer middleware by the OSI model. CFS, however, as a 

Common Services layer middleware, provides common computing services required for large-
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scale satellite missions. Instead of implementing any protocols or layers to transfer data off of one 

PE, CFS abstracts these HI-Network layer functions and instead provides a software bus 

interconnect for moving data between tasks. The location of such tasks is abstracted. Therefore, 

while CFS works well providing common computing services and an API for interfacing to 

middleware that manage a distributed embedded network, it is further from the hardware level 

typically seen on the CubeSat and UAV missions that are the motivators for this thesis. 

MAVLink is a portable C-header file that is lightweight enough to be used on the low power 8- 

and 32-bit processors favored for CubeSat and UAV missions, and can be easily expanded or 

restricted by editing human-readable XML files. The MAVLink generator script, freely available 

online, checks the validity and syntax of MAVLink messages, removing user error from encoding 

new messages. MAVLink is the recommended middleware for CubeSat and UAV missions. 

6.3 Performance Analysis 
The recommended MAVLink solution is currently available for download on GitHub 

[107], and is targeted for use in a POSIX-compliant environment and GNU toolchain. In order to 

provide a performance analysis of MAVLink, the communication library was downloaded and 

ported for direct use on an ARM Cortex-M4 STM32F4-Discovery board using the Keil toolchain. 

Benchmark and timing analysis were then performed. 

6.3.1 Port to Keil Toolchain 

MAVLink is a header-only communications library that is automatically generated from 

an XML specification. This means that the project need only include the generated “mavlink.h” 

and call the generated message packing and unpacking functions. Since the downloadable 

MAVLink is intended for a GNU toolchain, several steps were taken to include it in a project 

using the Keil toolchain. A new project was created in Keil uVision5 to perform the test, and 

under the Target Options, C/C++ option for that project, C99 mode was selected. This allows 

the functions and structures in the included MAVLink files to be compiled into the project.  

After C99 mode was selected, the “mavlink_types.h” file required a “#pragma 

anon_unions” to allow for the anonymous unions declared in that file. Anonymous unions are 

unions that can be declared without a class name. Furthermore, MAVLink makes use of packed 

structures. These packed structures contain a pointer to a running CRC checksum value for when 

messages are being packed and unpacked, in order to avoid memory space mismatches and thus 

extra overhead. The automatically generated “checksum.h” file, however, attempts to passed 

unpacked pointers as function parameters, generating an error within the C99 Keil toolchain. To 
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fix this, the packing of structures was removed from the “mavlink_types.h”, allowing the pointers 

being passed unpacked to the functions in “checksum.h”. This was accomplished by commenting 

out the “#pragma pack(push, 1)” and “#pragma pack(pop)” directives in that “mavlink_types.h” 

file. 

6.3.2 Experiment Test Setup 

In order to complete performance analysis of the MAVLink middleware on the ARM 

Cortex-M4 STM32F4-Discovery board, the RTX real-time operating system was used. 

Experiments were set up to test throughput, latency, and CPU usage. These were measured using 

software counters through Keil uVision MDK-5 and the Tektronix MSO4034B four-channel 

mixed signal oscilloscope with two Tektronix TPP0500 probes. This test setup is pictured in 

Figure 30. 

 

Figure 30: MAVLink Performance Test Setup 

The software test setup involved Keil uVision MDK-5, a sample project created 

specifically for these tests. The code for each test is explained in the respective sections below. 

Finally, custom MAVLink messages were created in the MAVLink message XML specification. 

These created messages each varied by the number of payload bytes, from a single payload byte 

up to 248 payload bytes. A sample message is shown below.   

<message id="155" name="PL1_MAV_TEST"> 
<description>Test message for using MAVLink between two 
microcontrollers sending smallest (1 byte) MAVLink 
packet.</description> 
 
<field type = "uint8_t" name="test_variable">Test variable to 
transfer between two microcontrollers. </field> 

</message> 
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 This message consists of the unique identifier, a human-readable description, and the 

single byte data field. Other messages for the test simply added more <field> tags with more 

unique variables. 

6.3.2.1 Throughput 

To test the throughput capabilities of MAVLink on the STM32F4-Discovery, two tests 

were conducted: the amount of time required to pack a single message with different payload 

sizes, and the number of messages that can be packed per unit time with different payload sizes. 

To test the amount of time required to pack a single message with different payload sizes, 

a GPIO pin was toggled upon entering the MAVLink pack function and again upon exiting the 

MAVLink pack function, before message transmission. This GPIO pin was monitored by an 

oscilloscope and the pulse duration was measured. 

To test the maximum number of messages that can be packed per unit time, two operating 

system tasks in RTX were created: a low-priority MAVLink transmit task that performs message 

marshalling with no delay, and a high-priority task that occurs every one second. Both tasks 

increment 32-bit counters. By setting a breakpoint in the high-priority task, the number of 

executions of the low-priority task can be measured by inspecting the low-priority task’s counter. 

The tasks are reproduced below: 

#if MAVLINK_THROUGHPUT_TEST  
//--------------------------------------------------------------------- 
// phaseC 
//--------------------------------------------------------------------- 
// Return Value: None 
// Parameters:  Argument to pass task if necessary 
// Description: This RTX task runs every 1 second, pre-empting a lower-       
priority task counting MAVLink pack executions 
//---------------------------------------------------------------------
void phaseC(void const *argument) 
{    
    //infinite loop for task 
    while(1){ 
        //increment 32-bit counter to show number of executions of task 
        countc++; 
         
        //RTX library call is to delay 1000ms, pre-empting the lower 
        //priority task 
        //and allowing that lower priority's counter to be read 
        osDelay(1000); 
         
    }//end while - will never reach 
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}//end phaseC 
 
//--------------------------------------------------------------------- 
// phaseD 
//--------------------------------------------------------------------- 
// Return Value: None 
// Parameters:  Argument to pass task if necessary 
// Description: This RTX task transmits a MAVLink message every 500ms 
//      and increments a 32-bit counter 
//--------------------------------------------------------------------- 
void phaseD(void const *argument) 
{    
    //infinite loop for task 
    while(1){ 
        //increment 32-bit counter to show number of executions of task 
   // -this counter is read when this task is pre-empted by the 

  // higher-priority phaseC 
        countd++; 
         
        //Call MAVLink function to pack and transmit MAVLink message 
        mavlink_comms_tx(); 
         
    }//end while - will never reach 
}//end phaseD 
 
//End MAVLINK_THROUGHPUT_TEST code 
#endif 
 

 To transmit data, the mavlink_comms_tx() function was created to pack the appropriate 

data for the message and transmit it using a serial library function on the native processor – in this 

case, 115200 baud UART using the CMSIS-Driver API. The mavlink_comms_tx() function is 

reproduced below: 

//--------------------------------------------------------------------- 
// mavlink_comms_tx 
//--------------------------------------------------------------------- 
// Return Value: None 
// Parameters:  None 
// Description: Packs and transmits MAVLink packet 
//--------------------------------------------------------------------- 
void mavlink_comms_tx(void) 
{ 
        //mavlink_system structure definition, allowing MAVLink packet 

  //header information to be set (system ID, component ID) 
        mavlink_system_t mavlink_system; 
        //Length variable for serial transmission 
        uint16_t len = 0; 
        //MAVLink message buffer (packed by pack function) 
        mavlink_message_t msg; 
        //Buffer for transmission 
        uint8_t buf[MAVLINK_MAX_PACKET_LEN]; 
     
      //---------Information for MAVLink Heartbeat packet from example 
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        //Define the system type 
        uint8_t system_type = MAV_TYPE_FIXED_WING; 
        //Define the autopilot type 
        uint8_t autopilot_type = MAV_AUTOPILOT_GENERIC; 
        //Define system mode 
        uint8_t system_mode = MAV_MODE_PREFLIGHT; 
        //Define custom mode 
        uint32_t custom_mode = 0;                 
        uint8_t system_state = MAV_STATE_STANDBY;  
        //---------End Information for MAVLink Heartbeat packet  
         
        //Populate system ID for MAVLink header 
        mavlink_system.sysid = 20; 
        //Populate component ID for MAVLink header 
        mavlink_system.compid = MAV_COMP_ID_IMU;     
        //Populate type of sysetm for MAVLink header 
        mavlink_system.type = MAV_TYPE_FIXED_WING;   
     
        //if this is the first execution of this function, populate 

  //buffers 
        if (first_run) 
        { 
                init_test_var(); 
                init_test_16var(); 
                init_test_32var(); 
                init_test_64var(); 
                //set state variable so that this "if" statement never 

    //executes again 
                first_run = 0; 
        } 
          
        //The XML->C generation of MAVLink messages creates individual 
     //pack functions for each message in the specification. Call 

  //these functions depending on which message needs to be sent, 
  //composing the message. These are differentiated in this test 
  //by size of payload 

         
        //Uncomment the message with the desired payload size 
         
        //1 byte payload 
        mavlink_msg_pl1_mav_test_pack(mavlink_system.sysid, 

mavlink_system.compid, &msg, test_var[0]); 
         
         
         
        //Copy the message to the send buffer 
        len = mavlink_msg_to_send_buffer(buf, &msg); 
          
        //Turn off GPIO pin to measure MAVLink latency 
        LED_Off(0x00); 
         
        //Call UART write function with the prepared buffer 
        //This could be any serial library call, and is not specified 
by MAVLink 
        CMSIS_UART_Write(buf, USE_UART4, len); 
         
}//end mavlink_comms_tx 
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This test was run without the physical transmission function call to isolate the overhead 

incurred by invoking the STM32F4-Discovery’s native serial library. MAVLink does not specify 

a serial protocol, and instead leaves this selection to the user. 

6.3.2.2 Latency 

To test the latency incurred by using MAVLink, two STM32F4-Discovery boards were 

connected via UART. Each ran the same project, but with a #define denoting the sender and 

receiver. A general-purpose input/output (GPIO) pin was toggled by the sender upon entering the 

MAVLink message-packing function call, and a GPIO pin was toggled by the receiver upon 

exiting its MAVLink message-unpacking function call. Using a two-channel oscilloscope, the 

time delay between these two GPIO pin toggles was measured to determine the amount of time 

spent in packing/unpacking and transmitting the message. 

To create this test, separate sender and receiver tasks were created: the sender transmits a 

MAVLink packet every 500ms and the receiver task listens for incoming packets to parse. This 

receiver task runs every 5ms to minimize latency incurred by the operating system, but is required 

to avoid emptying the UART receiver buffer too quickly. The tasks are reproduced below: 

#if !MAVLINK_THROUGHPUT_TEST 
//only compile phaseA if programming the transmitter 
#if TX 
//--------------------------------------------------------------------- 
// phaseA 
//--------------------------------------------------------------------- 
// Return Value: None 
// Parameters:  Argument to pass task if necessary 
// Description: This RTX task transmits a MAVLink message every 500ms 
//              and increments a 32-bit counter 
//--------------------------------------------------------------------- 
void phaseA(void const *argument) 
{    
    //infinite loop for task 
    while(1){ 
        //increment 32-bit counter to show number of executions of task 
        counta++; 
         
        //RTX library call is to delay 500ms (prompts task switch) to 

  //test latency  
        //of single messages 
        osDelay(500); 
         
        //Turn on GPIO pin when entering MAVLink pack function 
        LED_On(0x00); 
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        //Call MAVLink function to pack and transmit MAVLink message 
        mavlink_comms_tx(); 
         
    }//end while - will never reach 
}//end phaseA 
 
//End tx-only code 
#endif 
 
//--------------------------------------------------------------------- 
// phaseB 
//--------------------------------------------------------------------- 
// Return Value: None 
// Parameters:  Argument to pass task if necessary 
// Description: This RTX task checks for new MAVLink messages and 
//              processes them, and increments a 32-bit counter 
//--------------------------------------------------------------------- 
void phaseB(void const *argument) 
{ 
    //infinite loop for task 
    while(1){ 
        //increment 32-bit counter to show number of executions of task 
        countb++; 
         
        //check for and process new MAVLink messages 
        mavlink_comms_rx(); 
 
        //RTX library call is to delay 10ms (required to avoid empyting 

  //buffer too quickly) 
        osDelay(5); 
         
    }//end while - will never reach 
}//end phaseB 
 
//End !MAVLINK_THROUGHPUT_TEST code 
#endif 
  

 To transmit MAVLink messages, the same mavlink_comms_tx() function above was 

used as in the throughput test in 6.3.2.1. To receive and parse data, the mavlink_comms_rx() 

function was created. This function checks for available data in the STM32F4-Discovery UART 

buffer using the CMSIS-Drvier API. Unfortunately, the STM32FX-Discovery boards do not 

support the latest CMSIS-Driver API, meaning that interrupt-based, lower-latency serial 

communications were not possible. Support for the latest CMSIS-Driver API is expected by the 

end of 2014. The mavlink_comms_rx() function is reproduced below: 

//--------------------------------------------------------------------- 
// mavlink_comms_rx 
//--------------------------------------------------------------------- 
// Return Value: None 
// Parameters:  None 
// Description: Checks for available MAVLink packets and unpacks 
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//--------------------------------------------------------------------- 
void mavlink_comms_rx() 
{ 
        //variable to hold the number of bytes to read 
        int32_t size_to_read = 0; 
        //buffer to read MAVLink packed into from serial read function 
        uint8_t read_buf[262]; 
        //counter variable 
        uint8_t i = 0; 
        //number of bytes actually read from serial read function 
        int32_t size_read = 0; 
        //flag to denote whether MAVLink unpack function returns a 

  //successful message 
        uint8_t correct = 0; 
        //MAVLink generated message structure containing message 

  //parameters 
        mavlink_message_t msg; 
        //MAVLink generated status structure containing the status of 

  //the message 
        mavlink_status_t status; 
 
        //Check if data is available 
        size_to_read = CMSIS_UART_IsDataAvailable(); 
        //if data is available, read the data 
        if (size_to_read > 0) 
        { 
                //serial read function 
                size_read = CMSIS_UART_Read(read_buf, USE_UART4, 

   size_to_read); 
                if (read_buf[0] == 0xFE) 
                { 
        //if a MAVLink start packet is detected, turn on GPIO pin 
                        LED_On(0x00); 
        //reset correct message flag 
                        correct = 0; 
        //Loop through read buffer  
                        for (i = 0; i < size_to_read; i++) 
                        { 
//Call MAVLink generated function state machine to parse messge, 
//reading result into the msg structure 
                                if(mavlink_parse_char(0, read_buf[i], 

&msg, &status)) 
                                { 
//the above function returns a 1 when the end of the message is reached 
//and checksums are verified. Set the correct message flag denoting 
//this 
                                        correct = 1; 
//break out of loop 
                                        break; 
                                }//end if 
                        }//end for 
     
//If MAVLink successfully parsed the message 
                        if (correct) 
                        { 
//Handle the message according to the message ID originally coded 
//during the XML specification 
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                            switch(msg.msgid) 
                            { 
                              case MAVLINK_MSG_ID_HEARTBEAT: 
                              { 
                                 LED_Off(0x00); 
                                 break;                                       
                              }        
                              case MAVLINK_MSG_ID_PL1_MAV_TEST: 
                              { 
                                //LED_Off(0x00); 
                                  break; 
                              } 
                              case MAVLINK_MSG_ID_PL16_MAV_TEST: 
                              { 
                                //LED_Off(0x00); 
                                  break; 
                              } 
                              case MAVLINK_MSG_ID_PL16_2B_MAV_TEST: 
                              { 
                                //LED_Off(0x00); 
                                  break; 
                              } 
                              case MAVLINK_MSG_ID_PL40_MAV_TEST: 
                              { 
                                //LED_Off(0x00); 
                                  break; 
                              } 
                              case MAVLINK_MSG_ID_PL200_8B_MAV_TEST: 
                              { 
                                //LED_Off(0x00); 
                                  break; 
                              } 
                              case MAVLINK_MSG_ID_PL248_8B_MAV_TEST: 
                              { 
                                //LED_Off(0x00); 
                                  break; 
                              } 
                              default: 
                              { 
                                 LED_On(0x01); 
                                 break; 
                              } 
                            }//end switch            
                        }//end if 
                    }   //end if 
        }//end if 
         
//A size_to_read less than zero denotes an error within UART system 
        else if (size_to_read < 0) 
        {    
                size_to_read = 0; 
        } 
     
}//end mavlink_comms_rx 
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6.3.2.3 CPU Usage 

To test the CPU usage incurred by using MAVLink, an STM32F4-Discovery board was 

used with the same RTX tasks. Using the two-channel oscilloscope and isolating the pulse created 

by activating the GPIO pin upon entering the MAVLink function and deactivating the GPIO pin 

upon exiting the MAVLink function, the number of CPU cycles required was calculated using the 

internal clock speed of the STM32F4-Discovery and the duration of the pulse. 

The number of CPU cycles required to execute a task can be found by multiplying the 

number of cycles per second by the number of seconds required to execute the task, given by 

Equation 1. 

 
𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 =

𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝑠𝑠𝑠

∗ 𝑁𝑁𝑁𝑁𝐶𝑁 𝑠𝑜 𝐶𝐶𝐶𝑠𝑠𝑠𝐶 (1) 

  

6.3.3 Experiment Results 

This section summarizes the results collected by following the tests outlined in 6.3.2. By 

collecting these results, it is shown that MAVLink is of viable code size and speed for one of the 

target processors, and can feasibly be integrated into the target sysetms.  

6.3.3.1 Throughput 

MAVLink packets contain eight bytes of overhead, outlined in 3.2.2. On top of these 

overhead bytes, the payload field is variable between one byte and 255 bytes. This variability 

yields MAVLink packets between nine bytes and 263 bytes total. In order to fully characterize the 

throughput, the number of payload bytes were varied and the test repeated in otherwise identical 

conditions. The time required to pack each message was measured toggling a GPIO pin upon 

entering the MAVLink pack function and again upon exiting, before sending the data over 

UART. This test was repeated over a selection of message sizes. An example of this timing test 

showing the time to pack a nine-byte payload is shown in Figure 31. 
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Figure 31: Time Required for MAVLink to Pack a Nine-Byte Payload Message 

The pack times for larger packets are summarized in Table 21. 

Table 21: MAVLink Message Pack Times 

Payload Size (bytes) 1 9 16 40 200 248 

Time to Pack 3.27µs 5.18 µs 6.80 µs 10.79 µs 39.56 µs 48.38 µs 

 

Next, the number of messages that can be packed per second was measured using the 

RTX real-time operating system and software counters. The resulting number of MAVLink 

messages prepared per second for each payload size were plotted in Figure 32. 
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Figure 32: MAVLink messages packed per second with varying payload sizes 

 The above graph shows that MAVLink packets with a one byte payload are packed the 

fastest, with nearly 325,000 executions per second. As the payload size increases linearly, the 

number of messages packed per second experiences an exponential decay, indicating an inherent 

overhead with packing MAVLink packets. 

6.3.3.2 Latency 

As presented in 6.3.3.1, there is overhead in packing MAVLink messages for 

transmission, and similarly overhead for unpacking the MAVLink message upon reception. The 

latency measured is between entering the MAVLink pack function on the transmitting node and 

exiting the MAVLink unpack function on the receiving node.  
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Figure 33: MAVLink Latency for Nine Byte Payload 

 Figure 33 shows an example oscilloscope reading showing the latency for a MAVLink 

packet with a nine byte payload. The latency between entering the MAVLink pack function on 

the transmitting node and exiting the MAVLink unpack function on the receiving node is 1.910 

ms. Latencies for a representative grouping of MAVLink messages with different payload sizes 

are summarized in Table 22. 

Table 22: MAVLink Message Latencies 

Payload Size (bytes) 1 9 16 40 200 248 

Latency 1.06ms 1.91ms 2.56ms 10.28ms 30.52ms 64.94ms 

  

6.3.3.3 CPU Usage 

As presented in 6.3.2.3 and Equation 1, the number of CPU cycles consumed during the 

MAVLink packing process can be found by multiplying the system clock speed of the STM32F4-

Discovery processor and the number of seconds required to execute that MAVLink pack function. 
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This was first completed for packing a MAVLink message with a single byte payload. This 

calculation is given by Equation 2. 

 
𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 =

168 𝑥 106𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝑠𝑠𝑠

∗ 3.27 µ𝐶𝐶𝐶𝑠𝑠𝑠𝐶 = 549 𝐶𝐶𝐶𝐶𝐶𝐶 (2) 

  

The CPU cycles was then calculated again for packing a MAVLink message with a 248-

byte payload. This calculation is given by Equation 3. 

 
𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 =

168 𝑥 106𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝑠𝑠𝑠

∗ 48.38 µ𝐶𝐶𝐶𝑠𝑠𝑠𝐶 = 8127 𝐶𝐶𝐶𝐶𝐶𝐶 (3) 

 The additional overhead in CPU cycles is incurred for two reasons: additional load and 

store operations for the additional bytes, and additional looping in creating the CRC checksums. 

These usage values are easily handled by the target platform, which in the PIXHAWK 

implementation of the px4 autopilot for autonomous UAVs packs and unpacks MAVLink 

messages while running the NuttX RTOS and managing the flight of the vehicle, as described in 

2.1.  
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7 Conclusion 
This chapter summarizes the motivations and research for this thesis, and proposes an 

area for future research and validation.  

7.1 Summary of Work 
The purpose of this thesis was to survey existing popular middleware implementations in 

distributed computing, form a categorization system based on an existing middleware taxonomy, 

recommend a solution for a targeted set of distributed embedded systems, and finally to perform 

preliminary experimental characterization of that solution on a target platform. These targeted 

embedded systems are CubeSats and UAVs, and both operate in harsh and resource-constrained 

environments. While neither carries human life and need be as safety-critical as an airliner, UAVs 

fly in proximity to humans and other structures and CubeSats often carry expensive equipment 

that cannot be returned or physically accessed after launch.  

This thesis categorized middleware for distributed embedded applications into three 

broad categories, based upon an established taxonomy: Host-Infrastructure, Distribution, and 

Common Services. With Host-Infrastructure, two sub-categories were created: HI-Hardware 

where the middleware has hardware support built-in to microcontrollers, and HI-Network, where 

the middleware blindly transfers and routes data on a network. With Distribution layer 

middleware, two sub-categories were created: D-Transport, where the middleware actively 

interprets data and offers extension services beyond simply routing data on a network usually for 

additional fault-tolerance in safety-critical systems, and PEPt, which describes middleware that 

use object-oriented references to access objects on distributed hosts in order to mask 

implementation details from each host. The goal of this classification system was not to suggest a 

single layer as the recommended layer for distributed embedded network management; rather, it 

was to build upon an established taxonomy in order to better compare similar middleware 

approaches. 

Each middleware reviewed was classified into one of these layers and evaluated on how 

it addressed the five fundamental requirements of middleware: network communication, 

coordination, reliability, scalability, and heterogeneity. Two models were offered by this thesis 

that prescribed specific handling of these requirements: an ideal model, where middleware 

adopted message-oriented network communication, asynchronous coordination, exactly-once 

reliability, access, location, replication, and migration transparency, and hardware, software, and 

network heterogeneity; and a recommended model for the target embedded systems, where 
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middleware adopted message-oriented network communication, asynchronous coordination, at-

most-once reliability, location and replication transparency, and hardware heterogeneity. This 

recommended model is attainable by the target processors and uniquely suited for use within the 

target systems, targeting fault-tolerance in message-passing and the transparency required to 

easily scale the number and function of distributed hosts. 

The middleware reviewed by this thesis were then scored based on how closely they 

followed these models. MAVLink and CFS tied, with both exactly matching the recommended 

model. In lieu of further quantitative comparison between these middleware on different layers, a 

qualitative comparison was performed to determine the best option for the target platforms. Based 

upon its targeted user community, scale of previously flown missions, and ease of integration into 

existing architectures, MAVLink was the middleware selected as the recommended solution for 

handling distributed embedded networking on future CubeSat and UAV missions. Finally, an 

introductory performance analysis was conducted. This performance analysis measured the 

throughput, latency, and CPU usage incurred by MAVLink. This performance analysis also 

resulted in a compiled, executable project for the STM32F4-Discovery board that can be used as 

a baseline for future projects using MAVLink. 

7.2 Future Work 
This research could be valuably extended by constructing a hardware setup consisting of 

a heterogeneous mixture of low power microcontrollers running a benchmarking test application, 

including both ARM Cortex-M processors and 8051-core processors. The use of CMSIS core and 

drivers for the experimental validation portion from thesis will greatly aid in adding more Cortex-

M processors. This setup could be used to quantitatively verify transfer speeds, dropped packet 

percentages, and overall stability of MAVLink against other close competitor middleware, such 

as CFS, AFDX, and uORB. 

This research could also be extended by adding processor-level security into its 

consideration. With improvements in wireless technology and the increasing use of embedded 

systems in safety-critical applications, security against hacking is becoming a more important 

issue. Many implementations of the target processors are available with built-in hardware 

encryption modules, and there are software techniques to encrypt internal data and verify external 

data. Such considerations could potentially be very important for autonomous UAVs, flying in 

close proximity to humans and human-built structures and thus more susceptible to security 

concerns with dire safety consequences. 



141 
 

List of Acronyms 
 1U  1 Unit 

 ADCS  Attitude Determination and Control System 

 ADN  Aircraft Data Network 

 AFDX  Avionics Full-Duplex Switched Ethernet 

 AMP  Arbitration on Message Priority 

 AMS  Asynchronous Message Service 

 APDU  Application Protocol Data Unit 

 API  Application Programming Interface  

 Ardea  Automatically Reconfigurable Distributed Embedded Architecture 

 ARINC  Aeronautical Radio, Incorporated 

 ARM  Advanced RISC Machine 

 ASCII  American Standard Code for Information Interchange 

 ASIM  Applique Sensor Interface Module 

 ATM  Anyone-to-many 

 BC  Bus Controller 

 BIOS  Basic input/output system 

 C&DH  Command and Data Handling 

 CAN  Controller Area Network 

 CAT5  Category-5 

 CCSDS  Consultative Committee for Space Data Systems 

 CD  Collision Detection 

 CDAS  Command and Data Acquisition 
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 CDD  Common Data Dictionary 

 CDS  Critical Data Store 

 CEA  Command Execution A 

 CEB  Command Execution B 

 CFDP  CCSDS File Delivery Protocol  

 cFE  Core Flight Executive 

 CFS  Core Flight System 

 CICS  Customer Information Control System 

 CORBA Common Object Request Broker Architecture 

 CORBA/e Common Object Request Broker Architecture/Embedded 

 COTS  Commerical-off-the-shelf 

 CPU  Central processing unit 

 CRC  Cyclic redundancy check 

 CS  Checksum Service 

 CSMA  Carrier sense/multiple access 

 DAP  Device Access Service 

 DCAP  Device Abstraction Control Procedure 

 DDPS  Device Data Pooling Service 

 DDS  Device Discovery Service 

 DES  Device Enumeration Service 

 DG  Dependency Graph 

 DII  Dynamic Invocation Interface 
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 DOC  Distributed Object Computing 

 DoT  Dictionary of Terms 

 DS  Data-Strobe 

 DSI  Dynamic Skeleton Interface 

 DSS  Data Storage 

 DTP  Distributed Transaction Processing 

 DVS  Device Virtualization Service 

 EBCDIC Extended Binary Coded Decimal Interchange Code 

 EDS  Electronic Data Sheet 

 EEP  Error End of Packet 

 EEPROM Electrically erasable programmable read-only memory 

 ELaNa  Educational Launch of Nanosatellites 

 EOP  Normal End of Packet 

 EPS  Electrical Power System 

 ESA  European Space Agency 

 ESC  Escape Token 

 ETP  Event-triggered Architecture 

 FAA  Federal Aviation Administration 

 FAS  File Access Service 

 FCT  Flow Control Token 

 FIFO  First in, first out 

 FM  File Manager 
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 FMS  File Management Service 

 GIOP  General Inter-ORB Protocol 

 GNC  Guidance, navigation, and control 

 GPIO  General purpose input/output 

 GPM  Global Precipitation Measurement 

 GPS  Global positioning system 

 GSFC  Goddard Space Flight Center 

 GUI  Graphical user interface 

 GUID  Global unique identifier 

 HAL  Hardware Access Layer 

 HART  Highway Addressable Remote Transceiver 

 HI  Host-Infrastructure 

 HK  Housekeeping Service 

 HS  Health and Safety 

 HTTP  Hypertext Transfer Protocol 

 HVAC  Heating, ventilation, and air conditioning 

 IBM  International Business Machines Corporation 

 I/O  Input/output 

 I2C  Inter-integrated Circuit 

 ICD  Interface Control Document 

 IDL  Interface Definition Language 

 IEEE  Institute of Electrical and Electronics Engineers 
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 IP  Internet Protocol 

 ISS  International Space Station 

 IT  Information Technology 

 LASIM  Lite Applique Sensor Interface Module 

 LC  Limit Checker 

 LCC  Logical communication channel 

 LRO  Lunar Reconnaissance Orbiter 

 LVDS  Low Voltage Differential Signaling 

 MAC  Media Access Control  

 MAVLink Micro Air Vehicle Link 

 MD  Memory Dwell  

 MeRL  Message Routing Layer 

 MIB  Management Information Base 

 MIME  Multipurpose Internet Mail Extensions 

 MM  Memory Manager 

 MOM  Message-Oriented Messaging 

 MT  Monitoring Terminal 

 MTS  Message Transfer Service 

 NFS  Network File System 

 NM  Network Monitor  

 ODP  Open Distributed Processing 

 OMA  Object Management Architecture 
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 OMG  Object Management Group 

 ORB  Object Request Broker 

 OSAL  Operating System Abstraction Layer 

 OSI  Open Systems Interconnect 

 PC  Personal computer 

 PCB  Printed circuit board 

 PCI  Peripheral Component Interconnect 

 PE  Processing Element 

 PEPt  Presentation, Encoding, Protocol and transport 

 PnP  Plug-and-play 

 P-POD  Poly Picosatellite Orbital Deployer 

 PPP  Point-to-Point Protocol 

 PROM  Programmable Read-only Memory 

 PSAS  Packet Store Access Service 

 PSMS  Packet Store Management Service 

 PSP  Platform Support Package 

 PTP  Peer-to-peer 

 RC  Radio Controlled 

 RISC  Reduced Instruction Set Computer 

 RPC  Remote procedure call 

 RT  Remote Terminal 

 RTOS  Real-time Operating System 
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 SAMPEX Solar Anomalous and Magnetospheric Particle Explorer 

 SC  Stored Command 

 SCH  Scheduler Service 

 SCL  Serial Clock  

 SDA  Serial Data 

 SDM  Satellite Data Model 

 SDM-L  Satellite Data Model-Lite 

 SDO  Solar Dynamics Observatory 

 SFD  Start Frame Delimiter 

 SLUGS  Santa Cruz Low-cost UAV (GNC System 

 SM  Software Module 

 SNVT  Standard Network Variable Types 

 SOA  Service-oriented Architecture 

 SOCEM Suborbital CubeSat Experimental Mission 

 SOIS  Spacecraft Onboard Interface Services 

 SPA  Space Plug-and-play Avionics 

 SPA-1L Space Plug-and-play Avionics-1 Lite 

 SPI  Serial Peripheral Interface 

 SSC  Space Science Center 

 SSL  Space Systems Laboratory 

 SSTP  Small Spacecraft Technology Program 

 STIM  Smart Transducer Interface Module 



148 
 

 TAS  Time Access Service 

 TCP  Transmission Control Protocol 

 TCP/IP  Transmission Control Protocol/Internet Protocol 

 TDMA  Time Division/Multiple Access 

 TEDs  Transducer Electronic Data Sheets 

 TTCAN Time-Triggered Controller Area Network 

 TTP  Time-Triggered Architecture 

 UART  Universal Asynchronous Receiver/Transmitter 

 UAV  Unmanned Aerial Vehicle 

 UDP  User Datagram Protocol 

 UK  University of Kentucky 

 uORB  Micro Object Request Broker 

 USB  Universal Serial Bus 

 WDT  Watchdog Timer 

 XML  Extensible Markup Language 

 XML-RPC Extensible Markup Language- Remote Procedure Call 

 XOR  Exclusive-OR 

 xTEDS  Extensible Transducer Electrical Data Sheets 
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