1,562 research outputs found

    Transparent network-assisted flow mobility for multimedia applications in IMS environments

    Get PDF
    Cellular network operators are striving to solve the problem caused by the increasing volume of traffic over their networks. Given the proliferation of multi-interface devices, offloading part of the traffic to available access networks (e. g., WiFi or 3G access networks, even from other operators) seems to be a promising alternative. Here, we propose an IMS-compatible solution for flow mobility between access networks that exhibits two key features: flow mobility is transparent to both local applications at mobile nodes and their communication peers (e. g., multimedia content servers), and mobility operations are assisted by the network, so the home network supports the terminal in the process of access network discovery, and provides the terminal with policies that meet visited and home operators' roaming agreements while optimizing the use of their networks. The proposed solution has been validated using a real IMS testbed with Ethernet and WiFi access networks, where the mobility of UDP and TCP flows has been tested.The work in this article has been partially granted by the Madrid Community through the MEDIANET project (S-2009/TIC-1468) and by the Celtic UP-TO-US project (TSI-020400-2010-114)Publicad

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available

    Transparent gap filler solution over a DVB-RCS2 satellite platform in a railway scenario: performance evaluation study

    Get PDF
    In this work, a performance study of a system equipped with a transparent Gap Filler solution in a DVB-RCS2 satellite platform has been provided. In particular, a simulation model based on a 3-state Markov chain, overcoming the blockage status through the introduction of a transparent Gap Filler (using devices on both tunnel sides) has been implemented. The handover time, due to switching mechanism between satellite and Gap Filler, has been taken into account. As reference scenario, the railway market has been considered, which is characterized by a N-LOS condition, due to service disruptions caused by tunnels, vegetation and buildings. The system performance, in terms of end-to-end delay, queue size and packet loss percentage, have been evaluated, in order to prove the goodness of communications in a real railroad path

    NEMO-Enabled Localized Mobility Support for Internet Access in Automotive Scenarios

    Get PDF
    This article surveys the major existing approaches and proposes a novel architecture to support mobile networks in network-based, localized mobility domains. Our architecture enables conventional terminals without mobility support to obtain connectivity either from fixed locations or mobile platforms (e.g., vehicles) and move between them, while keeping their ongoing sessions. This functionality offers broadband Internet access in automotive scenarios such as public transportation systems, where users spend time both in vehicles and at stations. The key advantage of our proposal, as compared with current alternatives, is that the described mobile functionality is provided to conventional IP devices that lack mobility functionality. We also performed an experimental evaluation of our proposal that shows that our architecture improves the quality perceived by the end users.IEEE Communications SocietyEuropean Community's Seventh Framework ProgramPublicad
    • 

    corecore