3,469 research outputs found

    Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks

    Full text link
    Mobile ad hoc networks (MANETs) offer an excellent scenario for deploying communication applications because of the connectivity and versatility of this kind of networks. In contrast, the topology is usually extremely dynamic causing high rate of packet loss, so that ensuring a specific Quality of Service (QoS) for real-time video services becomes a hard challenge. In this paper, we evaluate the effect of using Multiple Description Coding (MDC) and Forward Error Correction (FEC) techniques for improving video quality in a multimedia content distribution system. A hybrid architecture using fixed and wireless ad hoc networks is proposed, which enables the use of multipoint-to-point transmission. MDC and FEC mechanisms can be combined with multipath transmission to increase the network efficiency and recover lost packets, improving the overall Quality of Experience (QoE) of the receiver. Simulations have been analyzed paying attention to objective parameters (Peak Signal to Noise Ratio, Packet Delivery Ratio, Decodable Frame Rate and interruptions) and subjective parameters. Results show that MDC increases the probability of packet delivery and FEC is able to recover lost frames and reduce video interruptions in moderate mobility scenarios, resulting in the improvement of video quality and the final user experience.This work was supported by project MIQUEL (TEC2007- 68119-C02-01/TCM) of the Spanish Ministry of Education and Science. The authors would like to thank the Editor and the reviewers for helpful suggestions to improve the quality of this paper.Acelas Delgado, P.; Arce Vila, P.; Guerri Cebollada, JC.; Castellanos Hernández, WE. (2014). Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks. Multimedia Tools and Applications. 68(3):969-989. https://doi.org/10.1007/s11042-012-1111-3969989683Apostolopoulos JG, Wong T, Tan W, Wee SJ (2002) On multiple description streaming with content delivery networks. IEEE INFOCOMBoukerche A (2009) Algorithms and protocols for wireless and mobile ad hoc networks. John Wiley & Sons IncChow CO, Ishii H (2007) Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput Commun 30:1754–1764Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR), RFC 3626Corrie B et al (2003) Towards quality of experience in advanced collaborative environments. Third Annual Workshop on Advanced Collaborative EnvironmentsGabrielyan E, Hersch R (2006) Reliable multi-path routing schemes for real-time streaming. International Conference on Digital Telecommunications, pp 65–65Gandikota VR, Tamma BR, Murthy CSR (2008) Adaptive-FEC based packet loss resilience scheme for supporting voice communication over adhoc wireless networks. IEEE Trans Mobile Comput 7:1184–1199Gharavi H (2008) Multi-channel for multihop communication links. International Conference on Telecommunications, pp 1–6Grega M, Janowski L, Leszczuk M, Romaniak P, Papir Z (2008) Quality of experience evaluation for multimedia services. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne 4:142–153Hsieh MY, Huang YM, Chian TC (2007) Transmission of layered video streaming via multi-path on ad hoc networks. Multimed Tool Appl 34:155–177ITU—International Telecommunication Union (2007) Definition of quality of experience (QoE)”, Reference: TD 109rev2 (PLEN/12)ITU-R Recommendation BT.500-12 (2009) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, GenevaITU-T Recommendation P.910 (2000) Subjective video quality assessment methods for multimedia applications. International Telecommunication Union, GenevaKao KL, Ke ChH, Shieh CH (2006) An advanced simulation tool-set for video transmission performance evaluation. IEEE Region 10 Conference, pp 1–40Ke CH et al (2006) A novel realistic simulation tool for video transmission over wireless network. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trsutworthy ComputingKeisuke U, Cheeonn C, Hiroshi I (2008) A study on video performance of multipoint-to-point video streaming with multiple description coding over ad hoc networks. EEJ Trans Electron, Inf Syst 128:1431–1437Kilkki K (2008) Quality of experience in communications ecosystem. J Univers Comput Sci 14:615–624Li A (2007) RTP payload format for generic forward error correction. RFC 5109, Dec. 2007Li J, Blake C, Couto DD, Lee H, Morris R (2001) Capacity of ad hoc wireless networks. 7th Annual International Conference on Mobile Computing and Networking, pp 16–21Liao Y, Gibson JD (2011) Routing-aware multiple description video coding over mobile ad-hoc networks. IEEE Trans Multimed 13:132–142Lindeberg M, Kristiansen S, Plagemann T, Goebel V (2011) Challenges and techniques for video streaming over mobile ad hoc networks. Multimed Syst 17:51–82Mao S et al (2003) Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J Sel Area Comm 21:1721–1737Ni P (2009) Towards Optimal Quality of Experience Via Scalable Video Coding. Mälardalen University Press Licentiate Theses, SwedenPinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50:312–322Rong B, Qian Y, Lu K, Hu RQ, Kadoch M (2010) Multipath routing over wireless mesh networks for multiple description video transmission. IEEE J Sel Area Comm 28:321–331Schierl T, Ganger K, Hellge C, Wiegand T, Stockhammer T (2006) SVC-based multisource streaming for robust video trans- mission in mobile ad hoc networks. IEEE Wireless Comm 13:96–103Schierl T, Stockhammer T, Wiegand T (2007) Mobile video transmission using scalable video coding. IEEE Trans Circ Syst Video Tech 17:1204–1217Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circ Syst Video Tech 17:1103–1120VQEG (2008) Video quality experts group. Available online: http://www.vqeg.orgWang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612Wei W, Zakhor A (2004) Robust multipath source routing protocol (RMPSR) for video communication over wireless ad hoc net- works. Proceedings of IEEE International Conference on Multimedia and Expo 2:1379–1382Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54:660–668Xunqi Y, Modestino JW, Bajic IV (2005) Performance analysis of the efficacy of packet-level FEC in improving video transport over networks. IEEE International Conference on Image Processing 2:177–180Zink M, Schmitt J, Steinmetz R (2005) Layer-encoded video in scalable adaptive streaming. IEEE Trans Multimed 7:75–8

    Video streaming over wireless networks

    Full text link

    A Survey of multimedia streaming in wireless sensor networks: progress, issues and design challenges

    Full text link
    Advancements in Complementary Metal Oxide Semiconductor (CMOS) technology have enabled Wireless Sensor Networks (WSN) to gather, process and transport multimedia (MM) data as well and not just limited to handling ordinary scalar data anymore. This new generation of WSN type is called Wireless Multimedia Sensor Networks (WMSNs). Better and yet relatively cheaper sensors that are able to sense both scalar data and multimedia data with more advanced functionalities such as being able to handle rather intense computations easily have sprung up. In this paper, the applications, architectures, challenges and issues faced in the design of WMSNs are explored. Security and privacy issues, over all requirements, proposed and implemented solutions so far, some of the successful achievements and other related works in the field are also highlighted. Open research areas are pointed out and a few solution suggestions to the still persistent problems are made, which, to the best of my knowledge, so far have not been explored yet

    Application-aware Cognitive Multi-hop Wireless Networking Testbed and Experiments

    Get PDF
    In this thesis, we present a new architecture for application-aware cognitive multihop wireless networks (AC-MWN) with testbed implementations and experiments. Cognitive radio is a technique to adaptively use the spectrum so that the resource can be used more efficiently in a low cost way. Multihop wireless networks can be deployed quickly and flexibly without a fixed infrastructure. In presented new architecture, we study backbone routing schemes with network cognition, routing scheme with network coding and spectrum adaptation. A testbed is implemented to test the schemes for AC-MWN. In addition to basic measurements, we implement a video streaming application based on the AC-MWN architecture using cognitive radios. The Testbed consists of three cognitive radios and three Linux laptops equipped with GNU Radio and GStreamer, open source software development toolkit and multimedia framework respectively. Resulting experiments include a range from basic half duplex data to full duplex voice communications and audio/video streaming with spectrum sensing. This testbed is a foundation for a scalable multipurpose testbed that can be used to test such networks as AC-MWN, adhoc, MANET, VANET, and wireless sensor networks. Experiment results demonstrate that the AC-MWN is applicable and valuable for future low-cost and flexible communication networks. Adviser: Yi Qia

    Cross-layer signalling and middleware: a survey for inelastic soft real-time applications in MANETs

    Get PDF
    This paper provides a review of the different cross-layer design and protocol tuning approaches that may be used to meet a growing need to support inelastic soft real-time streams in MANETs. These streams are characterised by critical timing and throughput requirements and low packet loss tolerance levels. Many cross-layer approaches exist either for provision of QoS to soft real-time streams in static wireless networks or to improve the performance of real and non-real-time transmissions in MANETs. The common ground and lessons learned from these approaches, with a view to the potential provision of much needed support to real-time applications in MANETs, is therefore discussed

    E2XLRADR (Energy Efficient Cross Layer Routing Algorithm with Dynamic Retransmission for Wireless Sensor Networks)

    Full text link
    The main focus of this article is to achieve prolonged network lifetime with overall energy efficiency in wireless sensor networks through controlled utilization of limited energy. Major percentage of energy in wireless sensor network is consumed during routing from source to destination, retransmission of data on packet loss. For improvement, cross layered algorithm is proposed for routing and retransmission scheme. Simulation and results shows that this approach can save the overall energy consumptio

    Simulation and experimental testbed for adaptive video streaming in ad hoc networks

    Full text link
    [EN] This paper presents a performance evaluation of the scalable video streaming over mobile ad hoc networks. In particular, we focus on the rate-adaptive method for streaming scalable video (H.264/SVC). For effective adaptation a new cross-layer routing protocol is introduced. This protocol provides an efficient algorithm for available bandwidth estimation. With this information, the video source adjusts its bit rate during the video transmission according to the network state. We also propose a free simulation framework that supports evaluation studies for scalable video streaming. The simulation experiments performed in this study involve the transmission of SVC streams with Medium Grain Scalability (MGS) as well as temporal scalability over different network scenarios. The results reveal that the rate-adaptive strategy helps avoid or reduce the congestion in MANETs obtaining a better quality in the received videos. Additionally, an actual ad hoc network was implemented using embedded devices (Raspberry Pi) in order to assess the performance of the proposed adaptive transmission mechanism in a real environment. Additional experiments were carried out prior to the implementation with the aim of characterizing the wireless medium and packet loss profile. Finally, the proposed approach shows an important reduction in energy consumption, as the study revealed.This paper was performed with the support of the National Secretary of Higher Education, Science, Technology and Innovation (SENESCYT)–Ecuador Government (scholarship 195-2012) and the Multimedia Communications Group (COMM) belong to the Institute of Telecommunications and Multimedia Applications (iTEAM)-Universitat Politècnica de València.Gonzalez-Martinez, SR.; Castellanos Hernández, WE.; Guzmán Castillo, PF.; Arce Vila, P.; Guerri Cebollada, JC. (2016). Simulation and experimental testbed for adaptive video streaming in ad hoc networks. Ad Hoc Networks. 52:89-105. https://doi.org/10.1016/j.adhoc.2016.07.007S891055
    • …
    corecore