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In this thesis, we present a new architecture for application-aware cognitive multi-

hop wireless networks (AC-MWN) with testbed implementations and experiments.

Cognitive radio is a technique to adaptively use the spectrum so that the resource

can be used more efficiently in a low cost way. Multihop wireless networks can

be deployed quickly and flexibly without a fixed infrastructure. In presented new

architecture, we study backbone routing schemes with network cognition, routing

scheme with network coding and spectrum adaptation. A testbed is implemented

to test the schemes for AC-MWN. In addition to basic measurements, we imple-

ment a video streaming application based on the AC-MWN architecture using

cognitive radios. The Testbed consists of three cognitive radios and three Linux

laptops equipped with GNU Radio and GStreamer, open source software devel-

opment toolkit and multimedia framework respectively. Resulting experiments

include a range from basic half duplex data to full duplex voice communications

and audio/video streaming with spectrum sensing. This testbed is a foundation

for a scalable multipurpose testbed that can be used to test such networks as AC-

MWN, adhoc, MANET, VANET, and wireless sensor networks. Experiment results

demonstrate that the AC-MWN is applicable and valuable for future low-cost and

flexible communication networks.
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Chapter 1

Introduction

In multi-hop wireless networks (MWN), there are one or more intermediate nodes

along the path (route) that receive and forward packets via wireless links. In

cellular and wireless local area networks, wireless communications only occurs

on the last link between a base station and the wireless end system. Multi-hop

wireless networks have several benefits: (1) Compared with networks with a

single wireless link, multi-hop wireless networks can extend the coverage of a

network and improve connectivity; (2) Transmission over multiple short links

might require less transmission power and energy than that required over long

links; (3) Multi-hop wireless networks can be quickly deployed without the support

(or with limited support) from wired infrastructure. Due to such salient features,

multi-hop wireless networks are expected to play a key role in modern society,

helping to improve quality of life and to solve problems related to homeland

security, protection of critical infrastructure, and the diagnosis and treatment

of illnesses. In the past two decades, we have witnessed a dramatic growth in

wireless communications and networks, with mobile devices such as cell phones,

personal digital assistants (PDAs), and laptop computers becoming essential to

everyday life. Such a trend has been accelerated in the past three years, driven by
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the popularity of a new generation of mobile devices like netbooks, smart phones

(iPhone, Andriod Phones, etc.), and other new gadgets (Kindle reader, iPad, etc.).

Our society has been rapidly evolving toward the pervasive computing age, in

which the network infrastructure shall support not only traditional communication

patterns (i.e., human-to-human, human-to-computer, and computer-to-computer)

but also the communication needs from devices such as mobile phones, PDAs,

sensors, and radio frequency identification (RFID) devices. To support the so-

called Internet-of-things, it becomes a major challenge to fully explore multi-hop

wireless networks. Given the recent upward trend in wireless traffic, capacity

demand increases faster than spectral efficiency and availability (in particular at

hot spots/areas). On the other hand, it has been well-known that in wireless

communications most of the spectrum is significantly under-utilized in most of

the time. This simple fact has attracted researchers from academia and industry

who are interested in the next generation cognitive and radio communication

systems. Despite the importance of such ongoing efforts, we have observed a

huge gap between the research on cognitive radios and the network applications.

For instance, most researchers on cognitive radios focus on the spectrum sensing

and dynamic spectrum allocation, but few of them have considered to interact

with the network layer so that the network can accommodate the requirements of

applications from the upper layer. In spite of many recent research activities on the

topics related to multi-hop wireless networks, including cognitive radios, capacity

analysis and improvement, and wireless applications, there is still a critical gap

in the knowledge base to understand the network design principles to meet the

requirements of different applications for multi-hop wireless networks with the

constraints of spectrum availability.

In this thesis, we propose and study a new wireless networking architecture,

Application-Aware Cognitive Multi-hop Wireless Networks (AC-MWN) and imple-
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Figure 1.1: A new model and a mega network layer for the AC-MWN architecture

mentation of testbed. In AC-MWN, we apply a new layered model that has three

layers (application layer, network layer and physical layer), as shown in Fig. 1.1.

We propose to design a mega network layer for multi-hop wireless networks that

will combine the major functionalities of medium access control layer, network

layer and transport layer in the traditional layered model of wireless networks.

The mega network layer will have cognition related to the spectrum availability

in the network and the requirements of applications of the network. Moreover,

the new design not only can efficiently utilize the spectrum resources, but also

can effectively adjust the application resources, such as storage and computational

capabilities, etc. Since each MWN will be deployed as an autonomous domain even

if it is interconnected with the Internet, we envision that our novel layered model

and the mega network layer for the AC-MWN architecture can be implemented

and deployed in the MWN domain regardless of the standard 7-layer ISO/OSI

model or the standard TCP/IP layer model, in a manner similar to most wireless

sensor networks. AC-MWN can push the capacity limit for MWNs and at the
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same time to accommodate the requirements of different applications in MWNs;

thus, it achieves application-aware cognitive multi-hop wireless network design.

At the center of the AC-MWN architecture is a mega network layer model

as shown in Fig. 1.1, which consists of three sublayers: application adaptation

sublayer, network cognition sublayer, and spectrum adaption sublayer. The appli-

cation adaptation sublayer is the interface in the network layer that interacts with

the application layer; it passes the application requirements from the application

layer to the network cognition sublayer, and it receives reconfiguration guidelines

from the network cognition sublayer. The network cognition sublayer is the central

part of the AC-MWN for cognitive networking. This layer takes the application

requirements from the application adaptation sublayer, and it also receives the

spectrum availability information from the spectrum adaptation sublayer. Both

the application requirements and the spectrum availability information will be

used to generate the best fitting routing strategies in the network layer (for the

required applications with the spectrum constraints); then, the best fitting routing

strategies will be mapped into spectrum usage guidelines to be passed to spectrum

adaptation sublayer below. The best fitting routing strategies will also be translated

into reconfiguration guidelines and then sent to the application adaptation sublayer

above. The spectrum adaptation sublayer is the interface in the network layer

that interacts with the physical layer for cognitive radio functions like spectrum

sensing and dynamic spectrum allocations. The previously published AC-MWN

architecture [1] focused on the mega network layer, which including application

adaption sublayer, network cognition sublayer, and spectrum adaption sublayer,

will be discussed in the three sections following.

In Chapter II., we describe the application adaptation, and the design of network

cognition for AC-MWN, including backbone network construction, routing with

channel bonding, and routing with network coding as proposed in [1], [2] and
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[3]. Also, we elaborate the spectrum adaptation for AC-MWN, including channel-

aware routing for both unicast and multicast transmissions. Next, a background

in ad-hoc routing protocols is given with examples to help define the need for a

more robust hybrid protocol. Finally, simulation setup and results are discussed.

We set up a testbed, and show experiment results of sensing, channel switching,

as well as a video streaming application based on the presented AC-MWN.
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Chapter 2

Background of Multi-hop Wireless

Cognitive Radio Networks

2.1 MWCRN

Multi-hop wireless cognitive radio networks (MWCRNs) combine two different

technologies that increase spectrum efficiency. These technologies are multi-hop

wireless networking (MWN) and cognitive radio networking (CRN). Combining

these two is made possible by recent advances in hardware and routing protocols

that enable multi-channel, device-to-device (D2D) and machine-to-machine (M2M)

RF communications. Spectrum demand is increasing at unprecedented levels. This

is largely due to factors such as urbanization, new high data applications, and

the Internet of Things (IoT). The population density of our cities is increasing and

therefore so is the demand for bandwidth from end users. Adding 4G LTE and

5G high speed and capacity channels with big data analytics and the low cost

of sensors is resulting in government and businesses deploying massive sensor

networks to gather information. Also, due to the demand of mobile multi-media

services there are predictions of global wireless-traffic volume increasing by three
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orders of magnitude by 2020 starting in 2010 [4].

Efficiently utilizing costly spectrum is necessary due to the limited amount

available. One way to do this is by decreasing the load on the base station (BS).

Multi-hop D2D and M2M communications allow information to be shared from

sources other than the BS, thus decreasing its load. This benefits of using the

aforementioned technologies is explained very well in [5]. These technologies allow

peer-to-peer (P2P) communications which take advantage of device proximity and

ubiquitous advanced mobile devices capable of handling the multiple protocols

needed.

Cognitive radio networking uses spectrum sensing to detect unused portions of

the radio frequency (RF) spectrum in order to diffuse traffic, alleviating congestion

[6]. However, most of the RF spectrum is leased to commercial or government

entities. These entities pay the Federal Communication Commission (FCC) for a

license and these license holders are known as primaries in CRN research lexicon.

When a channel is not occupied by a primary user (PU), a secondary user (SU)

can use the channel opportunistically after sensing. The major characteristic of

cognitive radios is that the activities of PUs change dynamically and channel

availability changes from time to time. Thus, the SUs have to efficiently sense the

activities of PUs and make decisions on which channel to use in the changing

environment.

Fundamentally, the required elements of a MWCRN include spectrum sensing,

fair dynamic channel allocation, adequate quality of service (QoS), and seamless

handover, enabling mobility [7].
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2.2 Application Adaptation for AC-MWN

In this section, we describe the design of the application adaptation sublayer

for AC-MWN, and the interactions with the application layer above and the

network cognition sublayer below. In this way, the application adaptation sublayer

will achieve “application-aware” design in AC-MWN. In future MWNs, each

type of application can be characterized by communication patterns and service

requirements [8].

Communication patterns: A network application can have one of the specific

communication patterns [8]: (1) one-to-one (unicast), (2) one-to-many (multicast),

(3) one-to-all (broadcast), (4) many-to-one, and (5) many-to-many.

Service requirements: A network application can also be associated with a

variety of service requirements, including data rate type (fixed or variable), delay

type (real-time, non-real-time, and delay-tolerant), and security and reliability

requirements [8].

In the application adaptation sublayer design for AC-MWN, we specifically

focus on the application characteristics of communication patterns and service

requirements with data rate type and delay type, which are the major characteristics

of network applications that could affect the design and operation of MWNs. The

work in [8] shows that WiMAX networks can be properly complemented through

advance connection management and scheduling in the network layer with the

consideration of application characteristics from the application layer above. In

this AC-MWN we consider different combinations of communication patterns

and service requirements for future applications of MWNs, and the impact of

the network application characteristics on MWN network layer design including

routing schemes.

We define a simple interface between the application layer above and the

application adaption sublayer, so that a network application can be abstracted in
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the application adaption sublayer in terms of the communication patterns and

service requirements discussed early, to be used by the network cognition sublayer

below. We also define a simple interface between the application adaption sublayer

and the network cognition sublayer below, so that the abstracted application

requirements can be passed to the network cognition sublayer for routing and

scheduling, and it will also receive the reconfiguration guidelines from the routing

and scheduling functions of the network cognition sublayer, so that different

applications will be accommodated in MWNs.

2.3 Spectrum Adaptation for AC-MWN

In this section we present the design of the spectrum adaptation sublayer for

AC-MWN, and the interactions with the network cognition sublayer above and the

physical layer below. The spectrum adaptation sublayer will obtain the spectrum

availability information from the spectrum sensing function in the physical layer

below, and pass it to the network cognition sublayer above for the network layer

function (routing) design. At the same time, it will receive the spectrum usage

guidelines from the network cognition sublayer above, and the spectrum usage

guidelines will be used for dynamic spectrum allocation in the physical layer

below.

Here, we investigate how the spectrum availability information can be abstract-

ed and be used by the algorithms in the network cognition sublayer. Spectrum

sensing has been comprehensively studied for the past ten years. In order to

achieve the cognitive network design in AC-MWN, it is necessary to implement

the basic spectrum sensing schemes and provide the realistic spectrum availability

information to the network layer. We consider the spectrum occupancy as random

variables over frequency and time domain. Based on the stochastic properties
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and asymptotic performance of eigenvalues of random matrices, we can apply

these properties for the spectrum sensing in cognitive radios. We can capture the

channel state information by exploring the following schemes.

Scheme 1 - Energy detection for wideband spectrum sensing. In wideband

cognitive radio, wideband (i.e. from 0 to 3 GHz) spectrum sensor scanning

multiple licensed bands may not be practical for all feature detection algorithms

to identify the primary users (PUs) operating in the measured frequency band.

In this case, it may be preferred to use energy detection. As a secondary user

(SU) or cognitive user, this sensing and transmission function is performed over

the wider bandwidth to give the highest probability of detecting unused spectra-

opportunistic transmission. The unique sensing function requires quality hardware

such that the front-ends have several GHz sampling rate with high resolution

(at least 12 bits), if GHz bandwidth need to be searched. Therefore, we can use

energy-based sensing which does not require a priori knowledge of the signals.

Scheme 2 - Spectrum sensing using cyclostationarity. The inherent spectral

redundancy caused by the use of a cyclic prefix in orthogonal frequency division

multiplexing (OFDM) signals has been exploited in several literature, e.g., [9, 10].

A unified approach to the recognition of signals belongs to the three basic air

interfaces categories: single carrier TDMA, OFDM systems, and single carrier

CDMA systems. It is also used in wideband CDMA. It has been used in a

framework of overlay/underlay cognitive radio. This unified approach may be the

most promising from the view point of stochastic performance, if there is a priori

information about the communications such as modulation format [10]. Therefore

higher-order statistics of the cyclostationary signals are explored for spectrum

sensing.

Scheme 3 - Sensing dynamic range of front-end. As written in [11]:

A major limitation is a radios front-end ability to detect weak signals
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is its dynamic range, which dictates the requirement for number of bits

in A/D converter. Since it is difficult to design high-resolution A/D

converters - the pricing will not follow Moore’s law, it is highly desirable

to relax the A/D requirement. In addition, the power consumption and

complexity of ADC increases nearly exponentially with the resolution

or the number of bits.

For example, TV broadcasters have set a stringent limit for the digital TV

signals to be reliably detected (probability of detection greater than 90% and

probability of false alarm less than 10%) at a signal strength of −116 dBm per

IEEE 802.22 parameters [12]. This translates to roughly −21 dB of signal-to-noise

ratio (SNR) based on the receiver noise figure (NF) of around 11 dB and the

use of omni-directional antenna for spectrum sensing. Based on the traditional

estimation and detection framework, FCC determined a detection sensitivity of

−114 dBm. Measurements suggest that using this threshold will result in limited

white space availability, especially in metropolitan area where spectrum demand is

high. The research community has developed cooperative approaches to spectrum

sensing that do not require the same fading margins because they can exploit

cooperative diversity. However, these approaches are impractical because the

current regulatory model is based on certification of individual devices, and there

is no notion of certifying the cooperative performance of devices. Therefore, we

plan to develop fast algorithms insensitive to the dynamic range.

In the design of spectrum adaptation sublayer for AC-MWN, we first study

how the spectrum availability information can be abstracted and be used by the

algorithms in the network cognition sublayer, i.e., how to capture the channel state

information by exploring the three schemes described above, Scheme 1 - Energy

detection for wideband spectrum sensing; Scheme 2 - Spectrum sensing using

cyclostationarity; and Scheme 3 - Sensing dynamic range of front-end. We define a
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simple interface between the network cognition sublayer above and the spectrum

adaption sublayer, so that the spectrum availability information obtained above

can be used by the network cognition sublayer above to make the routing and

transmission decisions. We further define a simple interface between the spectrum

adaption sublayer and the physical layer below, so that spectrum usage guidelines

can be passed to the physical layer for dynamic spectrum access, thus a cognitive

MWN.
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Figure 2.1: Network load v.s. throughput in uni-cast
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Because of the dynamic activities of PUs, SUs need to allocate their resources

and route accordingly so that the multi-hop transmission can remain connected
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with high throughput. In [13], we apply network coding with backpressure algo-

rithm and dynamic channel allocation scheme into unicast routing in AC-MWN.

Our objective is to maximize the aggregated throughput of all time slots while

ensuring the stability of all the queues from the backpressure algorithm. As shown

in Fig. 2.1, our schemes (i.e., AR for adaptive routing and ARNC for adaptive

routing with network coding) achieve higher throughput than both shortest path

routing (SR) and shortest path routing with network coding. Moreover, we once

again prove that network coding improves network performance.

In addition to unicast, we further study channel allocation and routing in

multicast transmission in AC-MWN [14]. Multicast has its advantage of saving

spectrum resources by broadcasting. Due to the dynamic activities of PUs, tree-

based routing schemes may not work well for multicast transmission in AC-MWN.

In our schemes, we maximize the transmission rate of the network with several

multicast sessions. As shown in Fig. 2.2, our scheme achieves higher throughput.

2.4 Multi-hop Wireless Network Routing Protocols

2.4.1 Routing protocols

Considering the importance of mobility, scalability, and adaptability, MWN proto-

cols are ideal for modern wireless networks.

Two categories of MWN routing protocols include reactive and proactive [15].

Hybrid protocols combine advantageous components of both proactive and reactive

protocols. Hierarchical protocols exclusively use proactive or reactive protocols

depending on situation and can switch when network environment changes. A

high level flow chart is shown in Figure 2.3. Each node in proactive routing

maintains routing tables and often use modified versions of Dijkstra’s algorithm

to calculate the shortest path to every other node, especially in the simulated
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environment [16]. Reactive routing is also known as on demand routing because

instead of keeping periodically updated tables, each node will initiate a route

discovery stage when it needs to transmit a message. Proactive routing such

as Optimized Link State Routing Protocol (OLSR) has greater routing control

overhead than reactive but has no route discovery delay. Also, the overhead

generated is independent of the number of routes being created. However, reactive

routing such as Ad hoc On-Demand Distance Vector Routing (AODV) reduces the

amount of overhead but increases delay.

MANET ROUTING PROTOCOLS

REACTIVE PROACTIVE

AODV OLSR

HIERARCHICAL

ADVANTAGES ADVANTAGES

HYBRID

AND

XOR

Figure 2.3: Manet Routing Schemes

2.4.2 Single hop

Classic cellular networks are an example of single-hop networks where the user

equipment (UE) communicates directly with the base station (BS). This config-
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Table 2.1: OLSR vs. AODV

Characteristics OLSR AODV
End-to-end delay LOW HIGH
Communication overhead HIGH LOW
Scalability LOW MEDIUM

uration is not power or spectrum efficient. Using the Friis power transmission

equation shown in (2.1) you can see that radius or R in the denominator is the

only non-constant (usually the change in frequency is negligible), showing that

the transmission power is dependent on the distance between BS and EU. There-

fore, adding hops can reduce congregate transmission power and increase energy

efficiency [17].

Pr

Pt
= GrGt

(λ)2

(4πR)2 (2.1)

2.4.3 Multi-hop

Choosing the correct routing protocol depends on several factors and one of

those is how fast the topology changes. These changes include number of nodes,

connectivity, size and rate of change. Also, there are several different types of

ad-hoc networks such as some wireless sensor networks (WSN), mobile ad-hoc

networks (MANETs) and vehicular ad-hoc networks (VANETs). Even more suited

for our area of research is cognitive wireless mesh networks and cognitive radio

ad-hoc networks (CRAHNs) presented in [18] and [19] respectively. Each of these

networks have unique engineering constraints and therefore often rely on different

routing protocols.



16

2.4.3.1 Proactive

Proactive ad-hoc routing protocols such as Optimized Link State Routing (OLSR)

reduces delay but has higher overhead. Figure 2.4 simplifies OLSR route discovery

into three stages. This visual assumes that the Multipoint Relays (MPRs) are

established. First, nodes periodically exchange ”HELLO” messages to populate

link, neighbor and two-hop neighbor sets [20]. The optimization component of

OLSR comes from reducing flooding of control messages by use of centralized

MPRs that have the highest vertex degree. Once MPRs have an updated list of

their neighborhood they broadcast link state messages to the nodes that includes

routing tables to every other node.

OLSR Route 
Discovery

,

Node 1

Node 2
(MPR 1)

Node 4
(MPR 2)

Node 5

Node 3
Node 6

MPR | 1
Neigbors | 2, 3
Route to Node 2

1 ‐> 2
Route to Node 3

1 ‐> 3
Route to Node 4

1 ‐> 2 ‐> 4
Route to Node 5
1 ‐> 2 ‐> 4 ‐> 5
Route to Node 6
1 ‐> 2 ‐> 4 ‐> 6

TC Message: Nodes 1, 
3 & 4 are in my area!

TC Message: These 
are the new routes!Node 1

Node 2
(MPR 1)

Node 4
(MPR 2)

Node 5

Node 3
Node 6

Node 1

Node 2
(MPR 1)

Node 4
(MPR 2)

Node 5

Node 3
Node 6

My MPR is Node 4!

My MPRs are 
Nodes 2 & 4! 

Figure 2.4: OLSR Route Discovery
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2.4.3.2 Reactive

Reactive ad-hoc routing protocols minimize broadcast flooding by limiting route

discovery requests to an as needed basis. Ad-hoc On-demand Distance Vector

(AODV) is a common reactive routing protocol. Figure 2.5 shows a source node

initiating a route request (RREQ), to communicate with the destination node.

Nodes 2 and 3 are intermediate nodes and upon receiving the RREQ it creates a

temporary return route table and then broadcasts the RREQ to any node within

range. This re-broadcast happens until the destination node is found and a route

reply (RREP) message is sent back to the source node. However, if the destination

node is no longer in the network, the RREQ will expire after a period of time. The

RREP is sent along the path and each intermediate node uses its return route table

to pass it along. Intermediate nodes often move or drop out of the network during

communication sessions which creates a link failure error. Link failure notifications

are sent to neighbors within range and this is repeated until the source receives it

and begins the route discovery procedure again.

2.4.3.3 Hybrid

In [21], an on demand spectrum-tree based routing protocol is presented which is

a hybrid protocol that uses proactive to establish and maintain adjacent channel

or subnet connections and reactive for intranet communications. This method

establishes a root upon initialization that periodically sends an in-channel (spec-

trum band) announcement message telling other nodes within the same channel

to connect. After children connect with the root they update tables such as a cost

metric determined by the quality of service (QoS). This same metric determines

if it is worth another node to connect directly to the root or to connect through

an intermediate node. Every time a node joins the network the announcement

message is changed to let the rest of the network know what the configuration is
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,

Source Node 2 Node 3 Destination

RREQ

Source Node 2 Node 3 Destination

Source Node 2 Node 3 Destination

[Src,Src,1]

[Src,2,2][Src,Src,1]

[Src,Src,1] [Src,2,2] [Src,3,3]

Source Node 2 Node 3 Destination

RREP

Source Node 2 Node 3 Destination

RREP

Source Node 2 Node 3 Destination

RREP

AODV Route 
Discovery

Figure 2.5: AODV Route Discovery

so that each of them can update the cost metric. If the PU changes status to ”on”,

the root sends a message telling the others what channel to change to. Also, when

a node needs to communicate with a node in an adjacent channel it sends a request

to send and the intermediate nodes calculate the cheapest path to a gateway node

that sends it to the gateway node in the adjacent channel. A simple example of a

tree based network formation is shown in figure 2.6 where the roots are chosen by

highest degree and channel availability.

2.4.4 Static networks

WSNs are often static. Proactive routing protocols work well with these because

routing table and topology updates happen less frequent which keeps overhead

low. Proactive routing has many benefits such as low latency but overhead is a
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2 Neighbors
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Figure 2.6: Tree Formation

limiting factor as stated in [22]. Not all WSNs are ad-hoc networks but some are

and they commonly are static. Often these networks only change when a new

node in installed or another drops out for maintenance issues such as battery

replacement.

2.4.5 Dynamic networks

Typical networks that are commonly dynamic are VANETs and MANETs. Complete

path routing tables are not always practical when the topology is constantly

changing. Therefore, proactive routing is not always the optimal choice but

reactive is instead. One highly dynamic example would be a high speed VANET

such as discussed in [23] where communication links are of very short duration

and network density varies greatly.
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Chapter 3

Experimentation of AC-MWN

3.1 Equipment Setup

The testbed consists of three laptops, two USRP-N210 SDRs, and one USRP2 SDR

with USRP being an abbreviation for Universal Software Radio Peripheral. Each

laptop is running Ubuntu version 13.10 64-bit operating system with GNU Radio

software package. The radios were equipped with firmware and WBX-120 RF

daughterboards like the ones shown in Figure 3.1.

The USRP itself handles the digital signal processing (DSP) such as analog to

digital conversion (ADC) and digital to analog conversion (DAC) using a field

programmable grid array (FPGA). Also, the USRP has physical interfaces such as

Ethernet, multiple-in multiple-out (MIMO), and RF Daughterboard like the WBX.

Enabling RF capabilities the end user must buy and install a RF Daughterboard

onto the USRP main board chassis and connect it via MCX-Bulkhead cables (MCX-

M to SMA-F connectors) as shown in Figures 3.2 and 3.3.

Antennas were chosen after selecting a USRP and RF Daughterboard to meet

the needs of project. Just like choosing the RF Daughterboard the end user must

know the frequency range that will be used. The VERT900 Antenna shown in
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Figure 3.1: WBX Daughterboard
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Figure 3.4 has a low band from 824 to 960 MHz which covers the high end of

IEEE 802.22a-2014 Regional Area Network (RAN) standard which is 54 to 862

MHz [24]. Likewise, the WBX RF Daughterboard has a range of 50 MHz - 2.2

GHz. Another consideration was the channel bandwidth (BW) needs which is a

minimum of 6 MHz for television broadcast. The WBX has a maximum BW of 40

MHz which exceeds our needs. Finally, Figure 3.5 shows the hardware after the

WBX is installed, antennas screwed on and enclosure secured to the USRP N210.

USRPN210

WBX 

DAUGHTERBOARD

VERT900 ANT

Figure 3.2: WBX Daughterboard, USRP N210 and VERT900 Antennas

3.1.1 Software Defined Radio (SDR) configuration

There are three main things that must be done to setup the system so that the

USRP can be interfaced with GNU Radio and GNU Radio Companion (GRC).

These include:

• Download GNU Radio software and packages, once installation is complete

use gnuradio-companion to run the graphical programming interface of

GNU Radio.

• Download required packages for building the USRP Hardware Driver (UHD).
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Figure 3.3: USRP N210 with installed WBX RF Daughterboard

• Configure the network interface by assigning a static IP address to the host

computer Ethernet interface card connected to the USRP2 with i f con f ig eth0

192.168.10.1 and finally to test connection with ping 192.168.10.2.
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Figure 3.4: VERT900 Antennas
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Figure 3.5: USRP N210 with two VERT900 atnennas
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Chapter 4

Basic Testing

Global population is increasing and many rural communities populations are

dramatically decreasing because of migration to urban areas. An estimated 66

percent of the population will live in urban areas by mid-century [25]. Population

density of our cities will continue to rise which increases the demand for band-

width. Considering our limited radio frequency (RF) spectrum, researchers have

been looking toward cognitive radio networking (CRN) as a temporary solution

to the overcrowding. CRN utilizes idle RF channels for limited amounts of time

to relieve congestion on other channels. These channels are owned by the license

holder which is known as the primary user (PU). An example of a PU would be a

broadcast television station that airs sub channels in different languages, but only

has enough programming to broadcast on that channel for twelve hours a day or

only during peak hours. These researchers need testbeds to test and analyze their

algorithms; and software defined radios (SDR) are the tool of choice because of

the low cost and flexibility. Universal Software Radio Peripheral (USRP) radios are

interoperable with GNU Radio programming software which includes hardware

drivers specifically for USRPs.

Cognitive radio networking (CRN) is a promising technology based on spec-
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trum sensing and opportunistic spectrum access which can improve the spectrum

efficiency of wireless networks [26]. The secondary users would sense the activities

of primary users periodically according to Federal Communications Commission

(FCC) [27]. When a channel is not occupied by a primary user, a secondary user

can use the channel opportunistically after sensing. The major characteristic of

cognitive radios is that the activities of primary users change dynamically and

channel availability changes from time to time. Thus, the secondary users have to

efficiently sense the activities of the primary users and make decisions on which

channel to use in the dynamic environment. In order to study the performance

of the cognitive radios, we investigate how to develop a testbed and implement

algorithms on it.

Multi-hop cognitive radio networks bring many challenges in testbed design.

First, transmissions on different hops might interfere with each other. Therefore,

we investigate how to implement multi-hop transmission on different channels

using USRP2. Second, secondary users have to sense the activities of the primary

users instantly to get the availability information of the channels. Thus, we need to

develop a practical sensing scheme to find whether the primary users are working

or not. After one available channel is found, the secondary users have to switch to

this channel as soon as possible. Third, the routing and channel allocation schemes

have to be embedded on testbed. We need to implement our routing and allocation

schemes on testbed to show the effectiveness of our algorithms.

To prove the theoretical performance in multi-hop cognitive radio networks,

we develop a testbed in this project. First, we set up the system so that the

USRP can be interfaced with GNU Radio. Second, we study several different

transmission schemes including single-hop and multi-hop transmissions based on

USRP and smart radios. Then, we investigate how to perform spectrum sensing

using cognitive radios. Finally, we implement our routing and channel allocation
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schemes on our testbed. Our testbed is developed as the following.

In this chapter, we set up a testbed for the AC-MWN to implement the basic

functions of cognitive radio and the schemes. Moreover, we implement a video

stream application in AC-MWN based on the testbed setup. The testbed consists

of three laptops, two Universal Software Radio Peripheral (USRP) USRP2-N210

software defined radios (SDR) [28], and one USRP2 SDR. The SDRs are capable

of transmitting in both 824-960 MHz and 1710-1990 MHz spectrum. Most of the

work done was in the lower band. Each laptop operates as signal generator and

processor. The laptops are identically configured, running Ubuntu [29] version

13.10 64-bit operating system with GNU Radio and GStreamer software packages.

The main tasks of this REU project include: Computer programming and net-

work configuration using Universal Software Radio Peripheral (USRP) hardware;

and performance evaluation through simulations and measurements. Using this

technology we will complete the followings:

• Basic functions

Naive one-way transmission

Naive half-duplex transmission

Multi-channel one-way transmission

Naive full-duplex transmission

Adaptive one-way transmission

Adaptive half-duplex transmission

• Sensing

Sensing if primary user has activity at a given channel

• Cognitive radio technique application

Adaptive channel switching
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• Multi-hop applications

File transferring, voice chat, and video conference applications using

cognitive radio technique

4.1 Single-hop Transmission

4.1.1 Half-duplex one-way transmission

In this part, we are going to set up one radio as the transmitter and one for

receiving, and successfully send and receive verifiable data. The data is verified

at the receiving end when benchmark rx.py prints the message and how many

successful packets were received.

Two smart radios, each equips one antenna. One smart radio is set up for

transmitting, the other for receiving, single dedicated channel (e.g., FM radio).

We successfully achieved this milestone by transmitting and receiving based

on frequencies, by packages transfer and data transfer. We used benchmark code

under our gnuradio folder to accomplish these tasks.

• First we composed a .odb file with the sentence ”It is a beautiful day!!”. The

.odb file extension is associated with OpenOffice in Ubuntu, which we saved

in the same folder of our benchmark code

(usr/local/share/gnuradio/examples/digital/o f dm).

• Then we modified the benchmark tx.py and benchmark rx.py code to confor-

m as transmitting and receiving a data file.

• And finally we executed the scripts below from the transmission terminal

and reception terminal:

./benchmarktx.py− f 900M−− f rom − f ile = nice.odb

./benchmarkrx.py− f 900M
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Figure 4.1: Two USRPs with One Antenna

Figure 4.2: benchmark tx py Terminal Initialization
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Figure 4.3: benchmark tx py Terminal Running Output

Figure 4.4: benchmark tx py Output to Document

4.1.2 Adaptive One-Way Transmission

In this part, we are going to have two smart radios, each equipped with one

antenna. First, one smart radio is set up for transmitting and the other for

receiving. Then a single dedicated channel that can be switched according to an
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Figure 4.5: benchmark tx py Terminal Initialization with File Sink to Document

Figure 4.6: benchmark rx py Received Text Saved to Document

algorithm automatically (e.g., FM radio, but will change channel once every 10

seconds). Settings and results are below in Figures 4.8 and 4.9. Setting: two radios

with two antennas

4.2 Half-duplex two-way transmission

In this part, we are going to have one radio as transmitter and one as receiver.

Radio 1 starts as the transmitter running benchmark tx.py and will send data for

five seconds while Radio 2 is receiving running benchmark rx.py during that time.

After five seconds the bash script will stop the running python file and start the

other switching the role of the radio from transmitter to receiver or vice versa.



33

Figure 4.7: Two USRPs with Two Antennas Each

Two smart radios, each equips one antenna. Each radio takes turn to be

transmitter or receiver (e.g., 5 seconds as transmitter, 5 seconds as receiver, but

acting automatically)

The settings and results are shown below: We accomplished this by creating a

bash script with our benchmark tx.py and benchmark rx.py codes:

From the 1st radio (will receive first and then will send data)

#!/bin/bash

sudo i f con f ig eth0 192.168.10.1

f or i in(seq 1 2 20) – code to be repeatedly executed

do
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Figure 4.8: Adaptive One-way Transmit GRC Blocks

./benchmark rx.py f 900M – Receiving

sleep 5; – Delay for a specified time

killall benchmark rx.py; – Stop receiving

./benchmark tx.py f 900M f rom − f ile = nice.odb; – Transmitting

done

From the 2nd radio (will transmit first then will receive a data)

#!/bin/bash

sudo i f con f ig eth0 192.168.10.1

f or i in(seq 1 2 20) – code to be repeatedly executed

do

./benchmark tx.py f 900M − f rom − f ile = nice.odb; – Transmitting

./benchmark rx.py f 900M – Receiving
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Figure 4.9: Adaptive One-way Receive GRC Blocks

sleep 5; – Delay for a specified time

killall benchmark rx.py; – Stop receiving

done

We executed the bash script and we can see that each radio alternated trans-

mitting and receiveing automatically. Bash script at the transmitter is shown if

Figures 4.10, 4.11 and 4.12

4.3 Full-Duplex Transmission

In this part, we are going to have two radios with two antennas each. Radio 1

will transmit using the TX/RX antenna while Radio 2 will receive on the same

channel using the RX2 antenna. Next, Radio 2 will be set up to transmit on a
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Figure 4.10: Half Duplex Two-way Transmit Bash Script

Figure 4.11: Half Duplex Two-way Receive Bash Script

different channel using its TX/RX antenna while Radio 1 receives on the same

channel using the RX2 antenna.

First, one-way multi-channel testing. Two smart radios, each equipped with two

antennas. One smart radio is set up for transmitting and the other for receiving.

Transmission is set up using two channels through two antennas simultaneously.
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Figure 4.12: Half Duplex Two-way Receive Output to Document

We repeated the same design and procedure with the Naive one-way transmission

but with two antennas.

Full-duplex communications achieved with having two smart radios, each e-

quipped with two antennas. One antenna of a smart radio is set up for transmitting,

while the other is set up for receiving. Two-way transmission is achieved.

We also worked on IO file management between the transmitting and receiving

radios, and then added an acknowledgment time stamp when either one received

or transmitted in the proper folder designed in advance by using the benchmark

scripts. The objective was to save the data in text file after receiving in from the

transmitting radio; then to resend the same data in the text file to the first radio

with acknowledgment time and date of reception. Settings and results are shown

below:

Transmission script: Needed to be added to the benchmark tx script

de f read dir() :

I f os.path.exist(””)

f ile = open(”, ”) - Opens a file on the specified path with read/write access.
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ts = str(datetime.datetime.now()) - Print the actual time.

f ile.write(ts)

global ack

f ile.close()

Reception script: Needed to be added in the benchmark rx script.

de f read dir() :

I f not os.path.exist(””)

Os.mkdir(””)

f ile = open(”, ”) - Opens a file on the specified path with read/write access.

global x

x = payload

f ile.write(x)

f ile.close()

Setup: two radios with two antennas each shown in Figure 4.13

Odb file on transmitter side shown in Figure 4.14

4.3.1 Adaptive Full-Duplex Transmission

In this part, we are going to set up hardware as shown in Figure 4.13, but we use

GRC flow chart software to utilize the built in threading capabilities. The scripts

are same as Full-Duplex shown above but the flow charts shown in Figures 4.8 &

4.9 are combined to make one flow chart to create a transceiver.
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Figure 4.13: Two USRPs with Two Antennas Each

Figure 4.14: Transmit Side Document
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Figure 4.15: Receive Side Document Created

Figure 4.16: Receive Side Document Received with Time Stamp

Figure 4.17: Receive Side Terminal Output with Verification

4.4 Multi-Hop Transmission

4.4.1 Simple Transceiver Transmission with Two Smart Radios

In this part, we are going to use two radios setup with the GRC file shown in

Figure 4.21 and both channels are observed with the FFT GUI as shown in Figure
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Figure 4.18: Adaptive Full Duplex GRC Configuration

4.22.

The settings are shown below: The block below was designed in GRC. It

consisted of two separated blocks, one for the transmission and the other for the

receiving. GNU Radio Companion components used for this design are:

Equipment configuration: One radio with one laptop as shown in Figure 4.20.

4.4.2 Two Radio Multi-Hop (Round-Trip) Transmission

In this part, we are going to use two radios, one with our regular transceiver GRC

file and another with a relay file. The relay is set up to receive on one frequency

and immediately transmit the data on another frequency. Therefore, the data is

transmitted from Radio 1 and channel A, received by Radio 2 on channel A then

transmitted by Radio 2 on channel B, and finally, received by Radio 1 on channel B.
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Figure 4.19: Adaptive Full Duplex FFT Plot

In this section we designed a full duplex transmission with data exchange

between two radios. We used specific blocks as OFDM, File Source and File Sink.

The full duplex was tested and it worked perfectly by exchanging data from

the receiving radio to the transmission radio in a folder we pre-created for the

circumstance. Settings and results are shown below:

Equipment configuration: two radios with two antennas and two laptops as

shown in Figure 4.25

The first radio sent data information with two sets of blocks in GRC companion

(a receiver and transmitter blocs) as shown in Figure 4.26. Data received from

the second system is shown in Figure 4.27. The second system received the data,
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Figure 4.20: One USRP with Two Antennas and One Laptop

saved and resent it to the first system creating the loop. Figure 4.28 shows the

GRC configuration for the second system, and Figure 4.29 shows the output.

Radio 1:

Transmission frequency: 950 MHz

Receiving frequency: 900 MHz

File source:

We created an ofdm tx folder with the sentence PKI OPEN HOUSE on directory

/home/user/ofdm tx

File sink (where the file is received after the second radio resent what it

received.):

/home/user/ofdm rx

Radio 2:

Transmission frequency: 900 MHz
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Figure 4.21: Multi-hop Transceiver GRC Configuration

Figure 4.22: FFT plot of Transceiver block design with 1 MHz BW

Receiving frequency: 950MHz
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Figure 4.23: FFT plot of Transceiver block design with 10 Mhz BW at 900 MHz

Figure 4.24: FFT plot of Transceiver block design with 10 Mhz BW at 920 MHz

4.4.3 Three Radio Multi-Hop (Circular) Transmission

In this part, we are going to use the same design for the simple loop transmission

between 2 radios. The first radio was set on the frequency of 950 MHz to transmit

and 900 MHz to receive. The second radio receives at 950 MHz but retransmits the



46

Figure 4.25: Two USRP radio with two antennas and two laptops each

same information at 830 MHz and the third radio receives at the frequency of 830

MHz but retransmits the same data to the first radio on the frequency of 900MHz.

The design was tested and it worked successfully. Settings and results are shown

below:

Setting: Three radios, each with one laptop as shown in 4.30

Radio 1:

Transmission frequency: 950MHz

Receiving frequency: 900MHz

Radio 2:

Transmission frequency: 830MHz

Receiving frequency: 950MHz with FFT shown in Figure 4.34
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Figure 4.26: Multi-hop Transceiver GRC Configuration - Endpoint 1

Figure 4.27: Multi-hop Data Saved to Document Received by Relay
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Figure 4.28: Multi-hop Transceiver GRC Configuration - Relay

Radio3:

Transmission frequency: 900 MHz

Receiving frequency: 830MHz with FFT shown in Figure 4.33

Radio 3: Design Template and output shown in Figures 4.31 & 4.32
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Figure 4.29: Multi-hop Data Saved to Document Received by Endpoint 2
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Figure 4.30: Three USRPs with Two Antennas and Two Laptops Each
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Figure 4.31: Circular transmission, Radio 3, GRC configuration

Figure 4.32: Circular transmission, Radio 3, output
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Figure 4.33: Circular transmission, Radio 3, receive frequency FFT plot 830 MHz

Figure 4.34: Circular transmission, Radio 2, receive frequency FFT plot 950 MHz
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Chapter 5

Spectrum Sensing

5.1 Sensing with No Primary User Activities

In this part, we are going to use programs provided with the GNU Radio package

such as uhd fft.grc, and usrp spectrum sense.py to observe spectrum activity.

Redesign of a configuration file in GRC to output amplitude and frequency

(uhd fft.grc). The block is shown below with the GRC graph shown in Figure 5.1.

On the FFT Plot generated by the GRC graph shown in Figure 5.2 we could see

the average noise amplitude was around -120dB and close to 900MHz it was little

bit over -100dB.

We also used usrp spectrum sense.py script to validate our design. Under

the directory /usr/local/share/gnuradio/examples/uhd we ran the script ./ur-

sp spectrum sense.py 895M 905M The output showed and confirmed that our

noise floor db average was -120dB as shown in Figure 5.3

Setting: One radio with two antennas as shown in Figure 4.20
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Figure 5.1: GRC configuration with built-in sensing blocks

5.2 Sensing with Primary User Activities

In this part, we included another radio to transmit at different frequencies to

observe changes in noise floor power received.

Work continued on the frequency sensing milestone but this time we used a

transmission block design to send a signal at 900MHz. Figures 5.2 and 5.3 is when

no signal was sent to the uhd fft design on the radio 1. Figures 5.4 and 5.5 are

when the transmission signal is run on the second radio at 900M. The amplitude

when no signal is available was at -93.75 dBm, and it was -67 dBm when a signal

was detected with -34 dBm as peak amplitude.

usrp spectrum sense.py script method

We also used usrp spectrum sense.py script when the transmission signal was

available. We set it to sense between 895MHz to 905MHz. Under the directory
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Figure 5.2: Sensing noise floor around -120 dB with FFT plot

Figure 5.3: Output of usrp spectrum sense.py confirming noise floor
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/usr/local/share/gnuradio/examples/uhd we ran the script with the following

command: ./ursp spectrum sense.py 895MHz 905MHz

with the output shown in Figure 5.5.

The output shown in Figure 5.5 shows that our noise floor db average was

-102 dBm around 900MHz the center frequency at which the transmission radio is

sending signal. At 899MHz the average noise floor was -112 dBm and at 901MHz

the noise floor was at -114 dBm. Settings and results are shown below:

Conclusion: Our radio senses at -102 dBm Setting: Set two radios with GRC

companion, one to transmit at 900M the other to run the uhd fft.grc to sense as

shown in Figure 5.4.

Figure 5.4: FFT plot sensing primary at 900 MHz
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Figure 5.5: Output of usrp spectrum sense.py showing sensing power and noise
floor with primary on

2013-11-07 10:48:08.946518 center freq 899375000.0 freq 899718750.0 power db

36.3289261445 noise floor db -112.140832222

2013-11-07 10:48:08.946571 center freq 899375000.0 freq 899725000.0 power db

33.9021367626 noise floor db -112.140832222

2013-11-07 10:48:08.946624 center freq 899375000.0 freq 899731250.0 power db

32.7616186608 noise floor db -112.140832222

2013-11-07 10:48:08.946677 center freq 899375000.0 freq 899737500.0 power db

34.906888034 noise floor db -112.140832222

2013-11-07 10:48:08.946745 center freq 899375000.0 freq 899743750.0 power db

36.5907079158 noise floor db -112.140832222

2013-11-07 10:48:09.439582 center freq 900125000.0 freq 899750000.0 power db
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27.3321624648 noise floor db -102.905683348

2013-11-07 10:48:09.439726 center freq 900125000.0 freq 899756250.0 power db

30.0780642102 noise floor db -102.905683348

2013-11-07 10:48:09.439858 center freq 900125000.0 freq 899762500.0 power db

32.2757709265 noise floor db -102.905683348

2013-11-07 10:48:09.439962 center freq 900125000.0 freq 899768750.0 power db

33.0531365666 noise floor db -102.905683348

2013-11-07 10:48:09.440124 center freq 900125000.0 freq 899775000.0 power db

35.5477540436 noise floor db -102.905683348

2013-11-07 10:48:09.940027 center freq 900875000.0 freq 900500000.0 power db

16.1476730148 noise floor db -114.387927013

2013-11-07 10:48:09.940143 center freq 900875000.0 freq 900506250.0 power db

12.7616848263 noise floor db -114.387927013

2013-11-07 10:48:09.940205 center freq 900875000.0 freq 900512500.0 power db

9.832082081 noise floor db -114.387927013

2013-11-07 10:48:09.940282 center freq 900875000.0 freq 900518750.0 power db

10.62603825 noise floor db -114.387927013

2013-11-07 10:48:09.940372 center freq 900875000.0 freq 900525000.0 power db

11.8954172239 noise floor db -114.387927013

In this part, we are observing change in received signal power. Sensing with

signal power:

Sensing with no signal transmission

Settings and results are shown below: We ran usrp spectrum sense.py script

when any transmission signal was not available between 895MHz to 905MHz and

observe the power of the signal received at the output.

We can observe that the power db of the signal the receiver is sensing around 4

to 5 dB when no signal is present as shown in Figures 5.6 & 5.7. Figures 5.8 & 5.9
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show that power db received is 35 to 50 dB when PU is transmitting.

Figure 5.6: Output of usrp spectrum sense.py showing sensing power and noise
floor with primary off

5.3 Audio/Video Application

Audio/Video (AV) applications are great for demos, and GStreamer is a well-

documented application programming interface (API) that was used to capture,

encode and pipe AV to GNU Radio.

5.3.1 Webcam

The first GStreamer application written was to capture live video from the built

in webcam on the laptop and display it on the screen. Figure 5.10 shows the

successful script and results.
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Figure 5.7: Output of usrp spectrum sense.py showing sensing power with
primary off

5.3.2 User Datagram Protocol (UDP)

Initially, research showed other people using UDP to send data from GStreamer to

GNU Radio, however, those people were using wired media between SDRs. Figures

5.11 and 5.12 show the script and GRC graph created to test communications

using this protocol. Another reason UDP was looked was because we did not

know how to create a pipe between GStreamer and GNU Radio. Our first idea

was to use sockets or write to a port with one application while reading from the

same port with another. Please notice that the below test was done using a channel

model (virtual channel).

A Wireshark filter to sniff UDP packets at port 1234 and the USRP Ethernet
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Figure 5.8: Output of usrp spectrum sense.py showing sensing power and noise
floor with primary on

port (eth2) was used to verify packets at port. Packets were observed at both IPs

and stopped when transmission stopped.

5.3.3 Video File Transfer via Virtual Channel

Upon further research pipelines were created using First In, First Out (FIFO) files

which are created with the following command: sudo mkfifo filename. Figure 5.13

shows GRC flow graph that takes a video file and encodes, modulates, transfers

through virtual radio channel, demodulates, decodes, and writes to the FIFO file

rxvid3.ts. The virtual channel was used to ensure that all steps excluding the radio

link worked properly.

Figure 5.14 is the GStreamer script used to read from the FIFO file and save it

as a different file. The Linux command line shown in Figure 5.15 shows the shell

file running. Finally, Figure 5.16 shows the saved file
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Figure 5.9: Output of usrp spectrum sense.py showing sensing power with
primary on

5.3.4 Live Streaming Using Two USRP2 SDRs

The next step was to successfully transmit and receive live video from the webcam

on terminal one, and display the video on terminal two. Figure 5.17 shows the

GStreamer script for the transmit side while Figure 5.18 shows the receive side.

Figure 5.19 shows the GRC flow graph for the transmit side while Figure 5.20

shows the receive side. Figure 5.21 shows a screen shot of the live video from the

receive side. Please click on the hyperlinks below to view the setup and successful

execution of this test.

Link 1

Link 2

http://youtu.be/aowgu6jgBXw
http://youtu.be/WLM21ea5Op8
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Figure 5.10: GStreamer terminal command for video transmit to GRC via UDP

Figure 5.11: GStreamer terminal command for video receive from GRC via UDP

5.3.5 Audio Recording and Streaming with GStreamer

Audio streaming is a great application for demos and a great way to learn GStream-

er. Learning the audio libraries in GStreamer was done in multiple steps which

include recording live audio from microphone to file, and streaming audio between
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Figure 5.12: GRC flow graph to receive video from GStreamer via UDP and tx/rx
using a virtual channel

Figure 5.13: GRC flow graph to retrieve video from file, tx/rx through virtual
channel and send to GStreamer using Linux FIFO pipe file

Figure 5.14: GStreamer BASH script to receive video file from GRC and save it to
another file

two stations.

1. Successfully saved audio to file using GStreamer with the script shown in
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Figure 5.15: GStreamer shell file executed and running

Figure 5.16: Directory with new file name rxvidfile.ts created by GStreamer

Figure 5.17: GStreamer shell script for live video streaming - transmit side

Figure 5.22
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Figure 5.18: GStreamer shell script for live video streaming - receive side

Figure 5.19: GRC flow graph for live video streaming - transmit side

Figure 5.20: GRC flow graph for live video streaming - receive side

2. Successfully saved audio to file using GStreamer piped to GNU Radio

3. Successfully transmitted audio file from node 1 to node 2 with playback

ability. Also, no error in playback due to use of throttle block in GRC

4. Successfully recorded live voice to file using built in microphone and GStream-
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Figure 5.21: Received streamed video produced by GStreamer sink

er with the script shown in Figure 5.23

5. Successfully transmitted live voice stream from node 1 to node 2; however,

noise made it difficult to hear voice

6. Cleaned up signal with use of Chebyshev bandpass filter in GStreamer;

however, an echo is present and amplifies as time progresses. This echo

includes a feedback that after a period of time is so loud that the receiving

person is unable to hear voice

Figure 5.22: GStreamer shell script to test creating audio tone and saving to file

To stream live audio the GStreamer script shown in Figure 5.24 was used

along with the GRC flow graph shown in Figure 5.25 completes the transmit side.



68

Figure 5.23: GStreamer shell script to test creating live audio and saving to file

GStreamer makes it easy to enable the built in microphone by using autoaudiosrc.

To ensure format compatibility, audioconvert is used. This GRC flow graph uses a

throttle block which ended up being removed in later revisions. The throttle block

literally throttles down the cpu which is not wanted. Figures 5.26 and 5.27 show

the receive side GStreamer script and GRC flow graph. Once again GStreamer

makes it easier on the user by providing the decodebin command which detects

the incoming streams format and selects the correct decoder. Lastly, due to the

noise, a band-pass filter was implemented which helped with the noise but not the

echo present. To correct the echo issue, a keyboard shortcut was created to enable

the user to key the microphone when needed and turn it off when idle.

Figure 5.24: GStreamer shell script creating live audio and sending to GRC via
FIFO pipe file

Figure 5.25: GRC flow graph receiving live audio from GStreamer via FIFO pipe
file and transmitting
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Figure 5.26: GRC flow graph receiving live audio from SDR and sending to
GStreamer via FIFO pipe file

Figure 5.27: GStreamer shell script to receive live audio from GRC and sending
to laptop speaker hardware driver

5.3.6 Live Video with Test Audio

After succeeding in transmitting audio and video separately, the next goal was

to combine the two using multiplexing and demultiplexing. Unfortunately, there

were obstacles such as the program stopping on the receive side because of a

premature end of stream (EOS) message. If GStreamer did not receive anything

from the pipe it would assume EOS and quit. case GST MESSAGE EOS:

http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/chapter-

bus.html

/* end-of-stream */

g main loop quit (loop);

break;

Considering the problems found when trying to do both live audio and live

video streaming together, live video with test audio was accomplished first. The
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troubleshooting approach taken was to find the correct sample rate. The sample

rate setting was the independent variable that was modified several times with

different results. The best results were between 2.5M-5MHz but would achieve no

longer than 13 seconds before error. USRP2 and USRP N210 both have 100MHz

clocks. However, the first transmitting radio was the USRP2 so it was switched

with another N210 to eliminate any interoperability issues. Next, since GStreamer

is piped to the radio via GRC the timing synchronization was researched. The

USRP Sink block in GNU Radio Companion (GRC) has an option to Sinc with the

computer. After changing to this setting from the default of None, 49 seconds of

streaming was achieved.

To be able to view when the error occurred, the benchmark rx.py program was

modified to kill the process upon the first error and display the time duration. The

time until first error correlated to the time until EOS previously found. Using the

benchmark made troubleshooting easier and helped find the efficient sample rate

and bandwidth settings. These settings were changed on the GRC flow graph on

the transmit side and over two minutes without error was achieved. Finally, after

inputting these settings on the receive side GRC flow graph, over two minutes of

continuous live video and test audio (tone) was achieved. Other settings besides

sample rate, bandwidth, and sinc that were changed were the transmit and receive

antenna gains and the windowing on the LPF. Antenna gains went from 0 to 0.05.

Windowing went from Hamming to Rectangular. Please see Figures 5.28, 5.29,

5.30, 5.31 and 5.32 for GStreamer scripts, the terminal view of the receive script

running, and GRC flow graph.

5.3.7 Live Video and Live Audio

After successfully completing the live video with test audio, the next step was to

complete both live video and live audio together. Figure 5.33 is the first GStreamer
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Figure 5.28: GStreamer shell script creating live video & test audio and sending
to GRC via FIFO pipe file

Figure 5.29: GStreamer shell script to receive live video & test audio from GRC
and sending to video player and laptop speaker hardware driver

Figure 5.30: Terminal execution of GStreamer receive shell script for live video
and test audio

transmitter script that succeeded but with audio lagging video by approximately

one second.
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Figure 5.31: GRC flow graph receiving live video & test audio from GStreamer
via FIFO pipe file and transmitting

Figure 5.32: GRC flow graph receiving live video & test audio from SDR and
sending to GStreamer via FIFO pipe file

Figure 5.33: GStreamer shell script creating live video & audio and sending to
GRC via FIFO pipe file
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5.4 Creating GRC Block for Spectrum Sensing and

Channel Allocation

In order to take advantage of GRCs ability to use threading and parallel computing

users have the choice of creating their own blocks. Blocks can be made using C++

or Python. GNU Radio makes this task easier by using the gr modtool, which,

creates the necessary directories and files needed. Also, GNU Radio provides a

tutorial [30] that is very useful. When using Python it is useful to read the C++

functions that you are calling to understand how they work, especially previously

made blocks. A good source to learn or refresh C++ is ”A C++ Primer For

Engineers” [31]. Files such as spectrum sense.py and digital bert.py are useful to

understand since many of the same functions and methods will be used. Also,

reading research papers such as [32] and [33] allows you to see how others have

already done what you are trying to do.

After following the instructions in [30] to create the directories and files we

edited the C++ or Python block file to do the intended function. Next, we edited

the test file to enable testing the function. After editing test file, the XML file,

which is created by gr modtool, needs to be edited. The XML file creates the actual

block you see in GRC. Once these steps are completed the user will go to the Build

directory, created while following the steps in [30], and, do cmake, ldconfig, and

make install. This will update the make file and add your block to GRC. While

editing the C++ or Python file you can create as many inputs and outputs as

needed. There are different types of blocks which include: synchronous, decimator,

interpolator, hierarchical, and basic. A synchronous block was created because it

will consume and produce an equal number of items per port, and may have any

number of inputs or outputs. Defining the number and type of ports is done in

the init function as shown in Figure 5.34 below.
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Figure 5.34: Python snippet defining data and port type

Please notice the different types of ports defined in the example shown in

Figure 5.34. This was only done because when writing the test module it will

not accept more than one of the exact same block. The blocks are imported from

the blocks module that comes with GNU Radio. In this case the output ports are

connected to blocks.vector sink f and blocks.vector sink i, where f is float and i

is integer. The function of the example given in [30] is a squaring function that

takes the input, square it, and sends to a vector sink. This was the module that

was modified to build the block needed. After changing the number of output

ports the work function was changed to include a threshold that checks a variable

before either squaring the inputs or adding them. This was meant to emulate a

signal threshold from spectrum sensing, while the if-else statement is the channel

allocation. The modified function is shown below in Figure 5.35.

Figure 5.35: Python function implementing threshold and channel allocation

While writing the QA test code it is helpful to know what you want the GRC
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flow graph to be because it builds the flow graph using Python instead of GRC.

The flow graph that was built before creating the QA test code is shown in Figure

5.36 below.

Figure 5.36: QA test GRC flow graph for visual aid

While connecting blocks in the QA test, all blocks connected need to have

matching types and size of ports. Figure 5.37 shows the QA test work method with

an example of how to modify the size. GNU Radio syntax states that if a module

has different data types it will be stated as the suffix to the name of the block

such as the vector sink examples shown in Figure 5.34 with declaring data types

numpy.float32 and numpy.int. Numeric Python, known as NumPy, supplements

basic Python by supporting linear algebra, Fourier transforms, random number

capabilities and tools for integrating with C/C++ languages [34].

To run test the user can either go to the /build directory and either run:

$ make t e s t

or the QA Python file from terminal using:



76

Figure 5.37: QA Python test module

$ sudo python foo . py

If the former is used then there is an output such as the one shown in Figure

5.38 & 5.39 below. Both successful and non-successful examples are shown. Notice

how it states that the output received does not equal the expected output upon

failure in Figure 5.39.

Figure 5.38: Terminal execution of QA Python test - Success

Figure 5.39: Terminal execution of QA Python test - Failure
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5.5 Live Audio, Spectrum Sensing, and Dynamic

Channel Allocation

The final demo marks the culmination of learning Linux, GNU Radio, GNU Radio

Companion, Python and C++ programming languages, and GStreamer multimedia

framework. In this chapter we step through the main Python class, associated

modules, GSstreamer script, and GRC flow graph. In the next section, the process

of running the demo is described.

5.5.1 Python Script

5.5.1.1 Main

After defining variables the specsense module is called after the getavg module has

calculated the average value of the input vector from the software defined radio

(SDR) and converted to decibel. The specsense module takes 10,000 samples from

getavg for each of three channels. After collecting the samples they are temporarily

stored to three vectors, the averages of the vectors are then compared and the

channel correlated to the lowest average is chosen. The above steps occur on the

first iteration of the program and when the decibel threshold is exceeded. Next, it

goes through a loop of switching between transmitting and receiving. This is done

because when transmitting and receiving simultaneously the data from the receiver

is erroneous. Next, the average value is compared to the previous value because

a significant change in value usually indicates that the primary is transmitting

again. Finally, if there is a significant change in value, and the decibel threshold is

exceeded, while in the receive only loop, and not in the spectrum sensing mode,

the spectrum sensing mode is initiated and the channel is changed. However, if

those requirements are not met then the main loop continues. Below is a high level

flow chart of the main class and the code can be found in the Appendix.
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Figure 5.40: Main class flow chart

5.5.1.2 Get Average

The getavg module takes the input from the USRP which is the magnitude squared

of the fft output [35]. Next, it calculates the average and converts it to decibel by

using the formula shown in equation 5.1 where the average fft output is divided

by the usrp rate.

Also, noise floor calculation is shown in 5.2. Figure 5.41 is the flow chart for

the getavg module.

10 ∗ log(
avg f f t output magnitude squared

usrp rate
)− noise f loor (5.1)

10 ∗ log(
min f f t output magnitude squared

usrp rate
) (5.2)
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Figure 5.41: Get Average module flow chart

5.5.1.3 Spectrum Sense & Channel Allocation

The specsense module tunes the receiver to one of the three channels, depending

on the counter, appends 10,000 values, received from getavg, to a temporary vector,

and repeats for the remaining channels. Finally, the averages of the three vectors

are compared, and the channel correlated to the lowest value is selected. The flow

graph for specsense is shown in Figure 5.42 below.

5.5.1.4 GStreamer Live Audio

GStreamer is the multimedia framework used to process the raw audio input from

the computer hardware, or encoded audio from the SDR, encode it or decode it

respectively, and send to or receive from pipe connected to GRC. The following

GStreamer script shown in Figure 5.43 is used to process and send a live audio

stream.

1. Initialize application: gst-launch-1.0

2. Use internal microphone: autoaudiosrc
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Figure 5.42: Spectrum Sensing module flow chart

Figure 5.43: GStreamer shell script for live audio transmitted to GRC via FIFO
pipe file

3. Prepare raw audio for conversion to different format: audioconvert

4. Convert to mp3: lamemp3enc

a) Optimize for quality or bitrate: target=1 (bitrate)

b) Set bitrate: bitrate=64

c) Enforce constant bitrate encoding (CBR): cbr=true

5. Send to pipe connecting to GRC: filesink location=audioFifo.mp3
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The following GStreamer script is used to process a live audio stream on the

receive side.

Figure 5.44: GStreamer shell script to receive live audio from GRC and send it to
the laptops speaker hardware driver

1. Initialize application: gst-launch-1.0

2. Receive from pipe connecting to GRC: filesrc location=audioFifo.mp3

3. Decode: decodebin

4. Use buffer because computer is slow: queue2

a) Set a maximum size of buffer that allows correct playback with minimal

delay: max-size-buffers=1024

5. Buffer raw audio for resampling and any data type conversion that are

needed: audioconvert

6. Interpolate signal to fill in any missing information: audioresample

7. Play audio through built in speakers: autoaudiosink

a) Ignore buffer time stamp, and clock, and play frame upon arrival (This

helps to avoid frame dropping errors): sync=false

5.5.1.5 GNU Radio Companion

The GRC flow graph in Figure 5.45 has two parts to it, a transmit side, and a

receive side. The transmit side starts with receiving the encoded stream from
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GStreamer via the Linux pipe. Next, the data is packetized, modulated, and

finally, transmitted. The receive side first receives data stream from SDR, and

then converts stream to vector format. Next, a Fast Fourier Transform is done on

the data and the magnitude squared value is sent on to the created block which

decides whether or not to change the channel and if so, then which channel. In this

configuration the Vector Sink block has no real task except to provide the output

of the proprietary block a sink.

Figure 5.45: GRC flow graph with receive and transmit including custom made
block

5.5.2 Running Demo

To run the demo the user needs a minimum of three nodes. The first node is the

cognitive radio, the second is the live audio streaming receiver, and any other

nodes are primaries. For the first and second nodes the user needs to be in the

proper directories to run the GStreamer scripts and have GRC open. First, the

user needs to run the GStreamer script and then the GRC flow graph, in order

of first and then second node. Once live streaming is accomplished the user can

run the benchmark tx program on another node to act as a primary coming on.

Upon transmitting from primary, the first node should detect, stop streaming,



83

scan spectrum, and change channel. Finally, the user needs to stop the GRC and

GStreamer on second node and restart them with the same frequency that node

one is using. The Python script for custom block is shown in Figures 5.46, 5.47,

5.48, 5.49, 5.50, & 5.51. Figure 5.52 shows the XML file to create the actual block

that can be used in GRC.

5.5.3 Basic Measurements for Benchmark

When a channel is busy, SUs should sense a much higher power compared with

an idle channel. In order to establish a benchmark for further implementations,

we first set one SDR as a PU, and set the other two as SUs. When the PU is

transmitting on a specific channel, we tune the SUs to measure the receiving

power of that channel. The measurement is done for the spectrum from 824 MHz

to 960 MHz with/without PU activity for 1, 000 times. The average results are

shown in Fig. 5.53. As we can see, receiving power is much higher with PU

activity compared with the one without PU activity. The average values are used

as benchmark for channel switching.

In the second step, we measure the receiving power on the adjacent channel

of a channel with PU activity. The channels chosen for sensing started at 820

MHz and finished at 960 MHz incremented by 35 MHz. The channels used for

primaries were 830 MHz, 900 MHz, and 960 MHz. The results in Fig. 5.54 are the

average values of 1000 samples of each aforementioned channel. As we can see,

adjacent channels within 25 MHz of 900 MHz are significantly affected. However,

it is not the case even within 10 MHz when the PU transmits on 830 MHz. This

information can be used to establish a minimum band gap between the current

channel and the new channel chosen. More channel efficiency can be achieved if

adaptive channel gap is adopted based on real-time channel quality.
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Figure 5.46: Custom block Python script - 1
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Figure 5.47: Custom block Python script - 2

5.5.4 Video Streaming Application

In this preliminary implementation, a one-way video streaming service between

two SUs is provided based on the AC-MWN architecture using 900 MHz spectrum.

The third SDR functions as a PU with arbitrary activities. For better service,

channel sensing/switching need to be transparent to users. Therefore, a maximum

of approximately 100 ms delay ensures transparency for most users [36]. However,
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Figure 5.48: Custom block Python script - 3

Figure 5.49: Custom block Python script - 4

neither the transmitter nor the receiver notices any interruption due to background

channel sensing/switching. In the application, we adopt GStreamer as the applica-
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Figure 5.50: Custom block Python script - 5
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tion programming interface (API) to capture, encode and pipe Audio/Video (AV)

to GRC. Fig. 5.55 shows the video stream application. The computer on the left

captures live video through webcam. Signal is transmitted from SU1 to SU2. Live

video streaming is shown on the right-hand-side computer.
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Figure 5.51: Custom block Python script - 6
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Figure 5.52: Custom block XML code
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Figure 5.53: Threshold detection sensing plot
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Figure 5.54: Adjacent channel sensing plot
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Figure 5.55: Live video streaming hardware setup and screen shot



94

Chapter 6

Conclusion

Multi-hop wireless cognitive radio networking (MWCRN) is a useful tool that will

help alleviate congested channels. This congestion is caused by limited spectrum

along with increasing demand and node density. However, researchers need

testbeds to compare theory and reality, this thesis is an accumulation of work

done in order to create a multi-hop wireless cognitive radio network testbed.

Accomplishing this goal required a myriad of software tools including Ubuntu

(Linux), GNU Radio, GStreamer, MATLAB integrated development environment

(IDE) and BASH. Programming languages included Python, C++, XML, GStreamer

BASH Scripting, Linux BASH Scripting, MATLAB and GNU Radio Companion

guided user interface (GUI) IDE. We also used the USRP2 and USRPN210 software

defined radios equipped with WBX RF Daughterboards and VERT900 antennas

which are all Ettus Research products. Overall, considerable experience and

technical proficiency has been gained and documented to give researchers the

basic tools needed to execute testing, evaluation and observation steps of their

empirical studies.

GNU Radio Companion is a great graphical programming tool that makes it

easy to work with software defined radios, but it is the ability to multithread and
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use multiple cores that is most useful when trying to simultaneously transmit and

receive. This is accomplished by its thread-per-block scheduler. Most of the early

work was done by modifying benchmark programs using Python but in order

to utilize the scheduler it was necessary to build customized blocks to use with

GRC. The final demo was done this way and was run along with GStreamer at the

physical layer handling the audio-video processing.

GStreamer is a low-level multimedia development framework written in C

that facilitates programmers with adding physical layer functionality to their

applications such as providing encoding, decoding, containerization, sources, sinks

and filters. Encoding and decoding formats include mp3, mpeg4, H.264 and others,

while types of containers include avi, mkv, ogg, mov and others. Sources and sinks

enable I/O functionality with the hardware drivers such as the microphone and

webcam. Common filtering objects include low pass, high pass, Chebyshev, finite

impulse response and multiplexing. GStreamer communicates with GNU Radio

through a Linux First In, First Out (FIFO) pipe file.

Ettus Research’s USRP software defined radios have a field programmable

gate array (FPGA) that enable the user to quickly flash different configurations

using a program such as GNU Radio. Other notable components embedded

on the motherboard are the analog-to-digital converter (ADC) and digital-to-

analog converter (DAC) and clock. The USRP has a modular analog component

called a RF Daughterboard. Each daughterboard handles a certain range of

spectrum. Particularly, the WBX-120 RF Daughterboard is capable of full duplex

communications between 50 - 2200 MHz with 120 MHz of bandwidth. Finally, the

omni-directional VERT900 antennas are compatible with the WBX-120 with ranges

of 824 - 960 MHz and 1710 - 1990 MHz.

Experiments completed, starting with running examples provided, one-way

and half-duplex transmissions, then culminated with live video streaming with
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channel sensing and dynamic allocation. As shown in Figures 5.53 and 5.54,

physical testing produces results that deviate from ideal, giving more accurate local

environmental parameters than virtual testing. When looking at Figure 5.53 it is

obvious that not every channel will have the same threshold value for calculating

when to change to another channel. Also, considering some multi-hop wireless

cognitive networking radios will be mobile, researchers will need to either run

several tests or create algorithms that implement discrete sampling to frequently

update the threshold values.

Figure 5.54 shows that some adjacent channels are affected more than others.

Also, it shows that adjacent channels can receive a stronger signal than the center

frequency channel. These observations indicate that supplementary routines may

need to be created to avoid false positive primary detection.

Many failed or inefficient attempts forced us to refine settings and research

different tools such as GStreamer. A good example was using the Throttle block in

GRC because without it the experiment would not work but later we found that

changing the sample rate and bandwidth made the block extraneous. Creating

blocks expands the GRC library and allows for more complicated configurations.

However, we suggest that the blocks be simple, modular and with many comments

in consideration of other researchers who might be able to use them in their

configuration.

This thesis has shown the progress and process of creating a testbed for Multi-

hop cognitive radio networks. With more time the final demo would be improved

upon by synchronizing the transmitter and receiver so that the receiver would

automatically change channels along with the transmitter. Also, eliminating delays,

and audio-video synchronization would be done. Many of the blocks in GRC

require more knowledge in digital signal processing in order to use them.
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