University of Nebraska - Lincoln

Digital Commons@University of Nebraska - Lincoln

Theses, Dissertations, and Student Research from

Electrical & C ter Engineering, Department of
Electrical & Computer Engineering ectrical & Computer Engineering, Department o

Summer 7-25-2017
Application-aware Cognitive Multi-hop Wireless
Networking Testbed and Experiments

Trenton T. Evans
University of Nebraska-Lincoln, evanstrenton@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses

b Part of the Computer Engineering Commons, Other Electrical and Computer Engineering

Commons, Signal Processing Commons, and the Systems and Communications Commons

Evans, Trenton T, "Application-aware Cognitive Multi-hop Wireless Networking Testbed and Experiments" (2017). Theses,
Dissertations, and Student Research from Electrical & Computer Engineering. 89.
http://digitalcommons.unl.edu/elecengtheses/89

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at Digital Commons@ University of
Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an

authorized administrator of Digital Commons@University of Nebraska - Lincoln.

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses/89?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages

APPLICATION-AWARE COGNITIVE MULTI-HOP WIRELESS NETWORKING
TESTBED AND EXPERIMENTS

by

Trenton T. Evans

A THESIS

Presented to the Faculty of
The Graduate College at the University of Nebraska
In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Telecommunications Engineering

Under the Supervision of Professor Yi Qian

Lincoln, Nebraska

May, 2017

APPLICATION-AWARE COGNITIVE MULTI-HOP WIRELESS NETWORKING
TESTBED AND EXPERIMENTS

Trenton T. Evans, M.S.

University of Nebraska, 2017
Adviser: Yi Qian

In this thesis, we present a new architecture for application-aware cognitive multi-
hop wireless networks (AC-MWN) with testbed implementations and experiments.
Cognitive radio is a technique to adaptively use the spectrum so that the resource
can be used more efficiently in a low cost way. Multihop wireless networks can
be deployed quickly and flexibly without a fixed infrastructure. In presented new
architecture, we study backbone routing schemes with network cognition, routing
scheme with network coding and spectrum adaptation. A testbed is implemented
to test the schemes for AC-MWN. In addition to basic measurements, we imple-
ment a video streaming application based on the AC-MWN architecture using
cognitive radios. The Testbed consists of three cognitive radios and three Linux
laptops equipped with GNU Radio and GStreamer, open source software devel-
opment toolkit and multimedia framework respectively. Resulting experiments
include a range from basic half duplex data to full duplex voice communications
and audio/video streaming with spectrum sensing. This testbed is a foundation
for a scalable multipurpose testbed that can be used to test such networks as AC-
MWN, adhoc, MANET, VANET, and wireless sensor networks. Experiment results
demonstrate that the AC-MWN is applicable and valuable for future low-cost and

flexible communication networks.

iii
DEDICATION

Dedicated to my father Dr. Ted Evans Jr. and to the memory of my mother Betty

Evans (1944 - 2011)

iv
ACKNOWLEDGMENTS

Foremost, I would like to thank my advisor, Dr. Yi Qian for providing his time,
wisdom and support throughout my graduate school experience. You have been
a great role model and mentor who always kept me motivated and taught me
what it takes to be a quality researcher. I am proud to say that I was a part of your
research team.

I'd like to thank my thesis committee members for your guidance and I am
honored to have published an article with my name next to yours as a co-author.
Being able to share ideas with you has been a great experience.

I'd like to thank Dr. Bing Chen for being a mentor and providing wisdom,
support, motivation and encouraging me to do the Masters degree program.

I'd like to thank Professor Roger Sash and Professor Herbert Detloff and convey
my appreciation for sharing their wisdom and honoring me with the opportunity
to be their teaching assistant.

I'd like to thank the Electrical and Computer Engineering Department faculty
and staff for always going above and beyond what they are expected to do.
Also, for making myself and other students feel like part of one big cohesive
team. The knowledge gained and lessons learned while attending school here
are immeasurable and have undoubtedly made me a better person, scholar and
productive citizen.

I'd like to thank the graduate students who were on Dr. Yi Qian’s research
team with me. The constant support and exchange of ideas between us provided a
motivating environment. A special thanks to Dr. Feng Ye who not only contributed
to my published article but was always there to provide feedback and guidance.
Also, thank you Dr. Zhihui Shu, Shengjie Xu and Dongfeng Fang for everything

you all have done for me.

I'd like to thank Kossivi Tossou for his technical contributions on the testbed
and detailed documentation.

I'd like to thank my girlfriend Nicole LaPatka for her love, support, motivation
and patience while I spent many hours in the lab.

I'd like to thank my Dad, Dr. Ted Evans and my step-mother Carol Lamb Evans
(CJ) for always being there for me with love, support and motivation. Dad, youve
always inspired me to be better and believed that I could accomplish this even

when I didn’t. Words cannot express my gratitude to both of you.

Contents

Contents

1 Introduction

2 Background of Multi-hop Wireless Cognitive Radio Networks

2.1
2.2
2.3
2.4

Application Adaptation for AC-MWN

Spectrum Adaptation for AC-MWN

Multi-hop Wireless Network Routing Protocols . . .

2.4.1
2.4.2

2.4.3

2.4.4
2.4.5

Routing protocols
Singlehop
Multi-hop oo oL
2.4.3.1 Proactive.
2.4.3.2 Reactive

2433 Hybrid.................

Dynamic networks

3 Experimentation of AC-MWN

3.1

Equipment Setup

3.1.1

Software Defined Radio (SDR) configuration

vi

vi

13
13
14
15
16
17
17
18

19

20

4 Basic Testing

4.1

4.2
43

44

Single-hop Transmission
4.1.1 Half-duplex one-way transmission
4.1.2 Adaptive One-Way Transmission
Half-duplex two-way transmission
Full-Duplex Transmission
4.3.1 Adaptive Full-Duplex Transmission
Multi-Hop Transmission
4.4.1 Simple Transceiver Transmission with Two Smart Radios . . .
4.4.2 Two Radio Multi-Hop (Round-Trip) Transmission
4.4.3 Three Radio Multi-Hop (Circular) Transmission

5 Spectrum Sensing

5.1
5.2
53

5.4
5.5

Sensing with No Primary User Activities
Sensing with Primary User Activities
Audio/Video Application oo oL
531 Webcam
5.3.2 User Datagram Protocol (UDP)
5.3.3 Video File Transfer via Virtual Channel
5.3.4 Live Streaming Using Two USRP2SDRs
5.3.5 Audio Recording and Streaming with GStreamer
5.3.6 Live Video with Test Audio
5.3.7 Live Video and Live Audio
Creating GRC Block for Spectrum Sensing and Channel Allocation .
Live Audio, Spectrum Sensing, and Dynamic Channel Allocation . .
551 PythonScript oo 0oL

551.1 Main

5512 GetAverage

vii

26
29
29
31
32
35
38
40
40
41
45

53
53
54
59

59
60

61
62
63

70
73
77

5.5.2
5-5-3
5.5.4

6 Conclusion

Bibliography

5.5.1.3 Spectrum Sense & Channel Allocation

5.5.1.4 GStreamer Live Audio

5.5.1.5 GNU Radio Companion.

Running Demo

Basic Measurements for Benchmark

Video Streaming Application

viii

79

79
81

82
83
85

94

97

Chapter 1

Introduction

In multi-hop wireless networks (MWN), there are one or more intermediate nodes
along the path (route) that receive and forward packets via wireless links. In
cellular and wireless local area networks, wireless communications only occurs
on the last link between a base station and the wireless end system. Multi-hop
wireless networks have several benefits: (1) Compared with networks with a
single wireless link, multi-hop wireless networks can extend the coverage of a
network and improve connectivity; (2) Transmission over multiple short links
might require less transmission power and energy than that required over long
links; (3) Multi-hop wireless networks can be quickly deployed without the support
(or with limited support) from wired infrastructure. Due to such salient features,
multi-hop wireless networks are expected to play a key role in modern society,
helping to improve quality of life and to solve problems related to homeland
security, protection of critical infrastructure, and the diagnosis and treatment
of illnesses. In the past two decades, we have witnessed a dramatic growth in
wireless communications and networks, with mobile devices such as cell phones,
personal digital assistants (PDAs), and laptop computers becoming essential to

everyday life. Such a trend has been accelerated in the past three years, driven by

the popularity of a new generation of mobile devices like netbooks, smart phones
(iPhone, Andriod Phones, etc.), and other new gadgets (Kindle reader, iPad, etc.).
Our society has been rapidly evolving toward the pervasive computing age, in
which the network infrastructure shall support not only traditional communication
patterns (i.e., human-to-human, human-to-computer, and computer-to-computer)
but also the communication needs from devices such as mobile phones, PDAs,
sensors, and radio frequency identification (RFID) devices. To support the so-
called Internet-of-things, it becomes a major challenge to fully explore multi-hop
wireless networks. Given the recent upward trend in wireless traffic, capacity
demand increases faster than spectral efficiency and availability (in particular at
hot spots/areas). On the other hand, it has been well-known that in wireless
communications most of the spectrum is significantly under-utilized in most of
the time. This simple fact has attracted researchers from academia and industry
who are interested in the next generation cognitive and radio communication
systems. Despite the importance of such ongoing efforts, we have observed a
huge gap between the research on cognitive radios and the network applications.
For instance, most researchers on cognitive radios focus on the spectrum sensing
and dynamic spectrum allocation, but few of them have considered to interact
with the network layer so that the network can accommodate the requirements of
applications from the upper layer. In spite of many recent research activities on the
topics related to multi-hop wireless networks, including cognitive radios, capacity
analysis and improvement, and wireless applications, there is still a critical gap
in the knowledge base to understand the network design principles to meet the
requirements of different applications for multi-hop wireless networks with the
constraints of spectrum availability.

In this thesis, we propose and study a new wireless networking architecture,

Application-Aware Cognitive Multi-hop Wireless Networks (AC-MWN) and imple-

A novel
layered model

Application / AT

Adaptation
sublayer

A mega

network layer

Cognitive

layer Service

i Application Reconfiguration
requiremen guidelines
o Cognitive
Network layer Cognition g
Network
sublayer
Spectrum
Spectrum
i sage availabilit
guidelines y

Spectrum
Adaptation

\ sublayer

Cognitive
Radio /

Figure 1.1: A new model and a mega network layer for the AC-MWN architecture

Physical layer

mentation of testbed. In AC-MWN, we apply a new layered model that has three
layers (application layer, network layer and physical layer), as shown in Fig. 1.1.
We propose to design a mega network layer for multi-hop wireless networks that
will combine the major functionalities of medium access control layer, network
layer and transport layer in the traditional layered model of wireless networks.
The mega network layer will have cognition related to the spectrum availability
in the network and the requirements of applications of the network. Moreover,
the new design not only can efficiently utilize the spectrum resources, but also
can effectively adjust the application resources, such as storage and computational
capabilities, etc. Since each MWN will be deployed as an autonomous domain even
if it is interconnected with the Internet, we envision that our novel layered model
and the mega network layer for the AC-MWN architecture can be implemented
and deployed in the MWN domain regardless of the standard 7-layer ISO/OSI
model or the standard TCP/IP layer model, in a manner similar to most wireless

sensor networks. AC-MWN can push the capacity limit for MWNs and at the

same time to accommodate the requirements of different applications in MWNs;
thus, it achieves application-aware cognitive multi-hop wireless network design.

At the center of the AC-MWN architecture is a mega network layer model
as shown in Fig. 1.1, which consists of three sublayers: application adaptation
sublayer, network cognition sublayer, and spectrum adaption sublayer. The appli-
cation adaptation sublayer is the interface in the network layer that interacts with
the application layer; it passes the application requirements from the application
layer to the network cognition sublayer, and it receives reconfiguration guidelines
from the network cognition sublayer. The network cognition sublayer is the central
part of the AC-MWN for cognitive networking. This layer takes the application
requirements from the application adaptation sublayer, and it also receives the
spectrum availability information from the spectrum adaptation sublayer. Both
the application requirements and the spectrum availability information will be
used to generate the best fitting routing strategies in the network layer (for the
required applications with the spectrum constraints); then, the best fitting routing
strategies will be mapped into spectrum usage guidelines to be passed to spectrum
adaptation sublayer below. The best fitting routing strategies will also be translated
into reconfiguration guidelines and then sent to the application adaptation sublayer
above. The spectrum adaptation sublayer is the interface in the network layer
that interacts with the physical layer for cognitive radio functions like spectrum
sensing and dynamic spectrum allocations. The previously published AC-MWN
architecture [1] focused on the mega network layer, which including application
adaption sublayer, network cognition sublayer, and spectrum adaption sublayer,
will be discussed in the three sections following.

In Chapter II., we describe the application adaptation, and the design of network
cognition for AC-MWN, including backbone network construction, routing with

channel bonding, and routing with network coding as proposed in [1], [2] and

[3]. Also, we elaborate the spectrum adaptation for AC-MWN, including channel-
aware routing for both unicast and multicast transmissions. Next, a background
in ad-hoc routing protocols is given with examples to help define the need for a
more robust hybrid protocol. Finally, simulation setup and results are discussed.
We set up a testbed, and show experiment results of sensing, channel switching,

as well as a video streaming application based on the presented AC-MWN.

Chapter 2

Background of Multi-hop Wireless

Cognitive Radio Networks

21 MWCRN

Multi-hop wireless cognitive radio networks (MWCRNSs) combine two different
technologies that increase spectrum efficiency. These technologies are multi-hop
wireless networking (MWN) and cognitive radio networking (CRN). Combining
these two is made possible by recent advances in hardware and routing protocols
that enable multi-channel, device-to-device (D2D) and machine-to-machine (M2M)
RF communications. Spectrum demand is increasing at unprecedented levels. This
is largely due to factors such as urbanization, new high data applications, and
the Internet of Things (IoT). The population density of our cities is increasing and
therefore so is the demand for bandwidth from end users. Adding 4G LTE and
5G high speed and capacity channels with big data analytics and the low cost
of sensors is resulting in government and businesses deploying massive sensor
networks to gather information. Also, due to the demand of mobile multi-media

services there are predictions of global wireless-traffic volume increasing by three

orders of magnitude by 2020 starting in 2010 [4].

Efficiently utilizing costly spectrum is necessary due to the limited amount
available. One way to do this is by decreasing the load on the base station (BS).
Multi-hop D2D and M2M communications allow information to be shared from
sources other than the BS, thus decreasing its load. This benefits of using the
aforementioned technologies is explained very well in [5]. These technologies allow
peer-to-peer (P2P) communications which take advantage of device proximity and
ubiquitous advanced mobile devices capable of handling the multiple protocols
needed.

Cognitive radio networking uses spectrum sensing to detect unused portions of
the radio frequency (RF) spectrum in order to diffuse traffic, alleviating congestion
[6]. However, most of the RF spectrum is leased to commercial or government
entities. These entities pay the Federal Communication Commission (FCC) for a
license and these license holders are known as primaries in CRN research lexicon.
When a channel is not occupied by a primary user (PU), a secondary user (SU)
can use the channel opportunistically after sensing. The major characteristic of
cognitive radios is that the activities of PUs change dynamically and channel
availability changes from time to time. Thus, the SUs have to efficiently sense the
activities of PUs and make decisions on which channel to use in the changing
environment.

Fundamentally, the required elements of a MWCRN include spectrum sensing,
fair dynamic channel allocation, adequate quality of service (QoS), and seamless

handover, enabling mobility [7].

2.2 Application Adaptation for AC-MWN

In this section, we describe the design of the application adaptation sublayer
for AC-MWN, and the interactions with the application layer above and the
network cognition sublayer below. In this way, the application adaptation sublayer
will achieve “application-aware” design in AC-MWN. In future MWNSs, each
type of application can be characterized by communication patterns and service
requirements [8].

Communication patterns: A network application can have one of the specific
communication patterns [8]: (1) one-to-one (unicast), (2) one-to-many (multicast),
(3) one-to-all (broadcast), (4) many-to-one, and (5) many-to-many.

Service requirements: A network application can also be associated with a
variety of service requirements, including data rate type (fixed or variable), delay
type (real-time, non-real-time, and delay-tolerant), and security and reliability
requirements [8].

In the application adaptation sublayer design for AC-MWN, we specifically
focus on the application characteristics of communication patterns and service
requirements with data rate type and delay type, which are the major characteristics
of network applications that could affect the design and operation of MWNSs. The
work in [8] shows that WiIMAX networks can be properly complemented through
advance connection management and scheduling in the network layer with the
consideration of application characteristics from the application layer above. In
this AC-MWN we consider different combinations of communication patterns
and service requirements for future applications of MWNSs, and the impact of
the network application characteristics on MWN network layer design including
routing schemes.

We define a simple interface between the application layer above and the

application adaption sublayer, so that a network application can be abstracted in

the application adaption sublayer in terms of the communication patterns and
service requirements discussed early, to be used by the network cognition sublayer
below. We also define a simple interface between the application adaption sublayer
and the network cognition sublayer below, so that the abstracted application
requirements can be passed to the network cognition sublayer for routing and
scheduling, and it will also receive the reconfiguration guidelines from the routing
and scheduling functions of the network cognition sublayer, so that different

applications will be accommodated in MWNs.

2.3 Spectrum Adaptation for AC-MWN

In this section we present the design of the spectrum adaptation sublayer for
AC-MWN, and the interactions with the network cognition sublayer above and the
physical layer below. The spectrum adaptation sublayer will obtain the spectrum
availability information from the spectrum sensing function in the physical layer
below, and pass it to the network cognition sublayer above for the network layer
function (routing) design. At the same time, it will receive the spectrum usage
guidelines from the network cognition sublayer above, and the spectrum usage
guidelines will be used for dynamic spectrum allocation in the physical layer
below.

Here, we investigate how the spectrum availability information can be abstract-
ed and be used by the algorithms in the network cognition sublayer. Spectrum
sensing has been comprehensively studied for the past ten years. In order to
achieve the cognitive network design in AC-MWN, it is necessary to implement
the basic spectrum sensing schemes and provide the realistic spectrum availability
information to the network layer. We consider the spectrum occupancy as random

variables over frequency and time domain. Based on the stochastic properties

10

and asymptotic performance of eigenvalues of random matrices, we can apply
these properties for the spectrum sensing in cognitive radios. We can capture the
channel state information by exploring the following schemes.

Scheme 1 - Energy detection for wideband spectrum sensing. In wideband
cognitive radio, wideband (i.e. from 0 to 3 GHz) spectrum sensor scanning
multiple licensed bands may not be practical for all feature detection algorithms
to identify the primary users (PUs) operating in the measured frequency band.
In this case, it may be preferred to use energy detection. As a secondary user
(SU) or cognitive user, this sensing and transmission function is performed over
the wider bandwidth to give the highest probability of detecting unused spectra-
opportunistic transmission. The unique sensing function requires quality hardware
such that the front-ends have several GHz sampling rate with high resolution
(at least 12 bits), if GHz bandwidth need to be searched. Therefore, we can use
energy-based sensing which does not require a priori knowledge of the signals.

Scheme 2 - Spectrum sensing using cyclostationarity. The inherent spectral
redundancy caused by the use of a cyclic prefix in orthogonal frequency division
multiplexing (OFDM) signals has been exploited in several literature, e.g., [9, 10].
A unified approach to the recognition of signals belongs to the three basic air
interfaces categories: single carrier TDMA, OFDM systems, and single carrier
CDMA systems. It is also used in wideband CDMA. It has been used in a
framework of overlay /underlay cognitive radio. This unified approach may be the
most promising from the view point of stochastic performance, if there is a priori
information about the communications such as modulation format [10]. Therefore
higher-order statistics of the cyclostationary signals are explored for spectrum
sensing.

Scheme 3 - Sensing dynamic range of front-end. As written in [11]:

A major limitation is a radios front-end ability to detect weak signals

11

is its dynamic range, which dictates the requirement for number of bits
in A/D converter. Since it is difficult to design high-resolution A/D
converters - the pricing will not follow Moore’s law, it is highly desirable
to relax the A/D requirement. In addition, the power consumption and
complexity of ADC increases nearly exponentially with the resolution

or the number of bits.

For example, TV broadcasters have set a stringent limit for the digital TV
signals to be reliably detected (probability of detection greater than 90% and
probability of false alarm less than 10%) at a signal strength of —116 dBm per
IEEE 802.22 parameters [12]. This translates to roughly —21 dB of signal-to-noise
ratio (SNR) based on the receiver noise figure (NF) of around 11 dB and the
use of omni-directional antenna for spectrum sensing. Based on the traditional
estimation and detection framework, FCC determined a detection sensitivity of
—114 dBm. Measurements suggest that using this threshold will result in limited
white space availability, especially in metropolitan area where spectrum demand is
high. The research community has developed cooperative approaches to spectrum
sensing that do not require the same fading margins because they can exploit
cooperative diversity. However, these approaches are impractical because the
current regulatory model is based on certification of individual devices, and there
is no notion of certifying the cooperative performance of devices. Therefore, we
plan to develop fast algorithms insensitive to the dynamic range.

In the design of spectrum adaptation sublayer for AC-MWN, we first study
how the spectrum availability information can be abstracted and be used by the
algorithms in the network cognition sublayer, i.e., how to capture the channel state
information by exploring the three schemes described above, Scheme 1 - Energy
detection for wideband spectrum sensing; Scheme 2 - Spectrum sensing using

cyclostationarity; and Scheme 3 - Sensing dynamic range of front-end. We define a

12

simple interface between the network cognition sublayer above and the spectrum
adaption sublayer, so that the spectrum availability information obtained above
can be used by the network cognition sublayer above to make the routing and
transmission decisions. We further define a simple interface between the spectrum
adaption sublayer and the physical layer below, so that spectrum usage guidelines

can be passed to the physical layer for dynamic spectrum access, thus a cognitive

MWN.

0.6 ‘
*2*ARNC
-A-AR _O--0--G-0-0--0
051 SRNC| %]
—+-SR /
=04} N N N S Y
3 S
.g) /
503 /Q/,
/
= A

o
o

l‘/

/S U SR
Va

o
=

R’

0 0.2 0.4 0.6 0.8 1
Network load

Figure 2.1: Network load v.s. throughput in uni-cast

14 \ \ ‘ ‘ —%
-
= - Without CR & /A
/@**@ A/
=10 /) N
> / //
g / X
S 8 R g
o ’ -
= 7 A
[/ Vs
6 Py
o7 a7
4 s’
4—// /&/
7
7
2L : . : :
4 6 8 10 12

Number of channels

Figure 2.2: Number of channels v.s. throughput in multicast transmission

Because of the dynamic activities of PUs, SUs need to allocate their resources

and route accordingly so that the multi-hop transmission can remain connected

13

with high throughput. In [13], we apply network coding with backpressure algo-
rithm and dynamic channel allocation scheme into unicast routing in AC-MWN.
Our objective is to maximize the aggregated throughput of all time slots while
ensuring the stability of all the queues from the backpressure algorithm. As shown
in Fig. 2.1, our schemes (i.e., AR for adaptive routing and ARNC for adaptive
routing with network coding) achieve higher throughput than both shortest path
routing (SR) and shortest path routing with network coding. Moreover, we once
again prove that network coding improves network performance.

In addition to unicast, we further study channel allocation and routing in
multicast transmission in AC-MWN [14]. Multicast has its advantage of saving
spectrum resources by broadcasting. Due to the dynamic activities of PUs, tree-
based routing schemes may not work well for multicast transmission in AC-MWN.
In our schemes, we maximize the transmission rate of the network with several

multicast sessions. As shown in Fig. 2.2, our scheme achieves higher throughput.

2.4 Multi-hop Wireless Network Routing Protocols

2.4.1 Routing protocols

Considering the importance of mobility, scalability, and adaptability, MWN proto-
cols are ideal for modern wireless networks.

Two categories of MWN routing protocols include reactive and proactive [15].
Hybrid protocols combine advantageous components of both proactive and reactive
protocols. Hierarchical protocols exclusively use proactive or reactive protocols
depending on situation and can switch when network environment changes. A
high level flow chart is shown in Figure 2.3. Each node in proactive routing
maintains routing tables and often use modified versions of Dijkstra’s algorithm

to calculate the shortest path to every other node, especially in the simulated

14

environment [16]. Reactive routing is also known as on demand routing because
instead of keeping periodically updated tables, each node will initiate a route
discovery stage when it needs to transmit a message. Proactive routing such
as Optimized Link State Routing Protocol (OLSR) has greater routing control
overhead than reactive but has no route discovery delay. Also, the overhead
generated is independent of the number of routes being created. However, reactive
routing such as Ad hoc On-Demand Distance Vector Routing (AODV) reduces the

amount of overhead but increases delay.

MANET ROUTING PROTOCOLS

!

PROACTIVE

!

&

HYBRID
HIERARCHICAL
v
AODV

Figure 2.3: Manet Routing Schemes

v

2.4.2 Single hop

Classic cellular networks are an example of single-hop networks where the user

equipment (UE) communicates directly with the base station (BS). This config-

15

Table 2.1: OLSR vs. AODV

Characteristics OLSR | AODV
End-to-end delay LOW | HIGH
Communication overhead | HIGH | LOW
Scalability LOW | MEDIUM

uration is not power or spectrum efficient. Using the Friis power transmission
equation shown in (2.1) you can see that radius or R in the denominator is the
only non-constant (usually the change in frequency is negligible), showing that
the transmission power is dependent on the distance between BS and EU. There-
fore, adding hops can reduce congregate transmission power and increase energy

efficiency [17].

P W2
P, "'(4nR)?

2.4.3 Multi-hop

Choosing the correct routing protocol depends on several factors and one of
those is how fast the topology changes. These changes include number of nodes,
connectivity, size and rate of change. Also, there are several different types of
ad-hoc networks such as some wireless sensor networks (WSN), mobile ad-hoc
networks (MANETSs) and vehicular ad-hoc networks (VANETs). Even more suited
for our area of research is cognitive wireless mesh networks and cognitive radio
ad-hoc networks (CRAHNSs) presented in [18] and [19] respectively. Each of these
networks have unique engineering constraints and therefore often rely on different

routing protocols.

16

2.4.3.1 Proactive

Proactive ad-hoc routing protocols such as Optimized Link State Routing (OLSR)
reduces delay but has higher overhead. Figure 2.4 simplifies OLSR route discovery
into three stages. This visual assumes that the Multipoint Relays (MPRs) are
established. First, nodes periodically exchange "HELLO” messages to populate
link, neighbor and two-hop neighbor sets [20]. The optimization component of
OLSR comes from reducing flooding of control messages by use of centralized
MPRs that have the highest vertex degree. Once MPRs have an updated list of
their neighborhood they broadcast link state messages to the nodes that includes

routing tables to every other node.

OLSR Route

?&) «E Discovery
P Node 2 P Node 5
(MPR 1) .

TC Message: Nodes 1,
3&4areinmyareal

(B)
@ Node 2 (€ Node 5 o
(MPR1) TC Message:The5e>
Node 1 Node 4 are the new routes!,
\/

«E (MPR 2)

Node 6
Node 3 My MPRs are \Node 6 > Node 3
Nodes 2 & 4!

(E (E
1 Node 2 P Node 5
(MPR 1)
Node 1 Node 4

MPR |1 @ (MPR 2) (€]
Neigbors | 2,3
Route to Node 2 é

g Node 6

Route to Node 3
>

Node 1 Node 4
@ (MPR 2)

E Node 3
Route to Node 4
1>2->4
Route to Node 5
152545
Route to Node 6

6

Figure 2.4: OLSR Route Discovery

17
2.4.3.2 Reactive

Reactive ad-hoc routing protocols minimize broadcast flooding by limiting route
discovery requests to an as needed basis. Ad-hoc On-demand Distance Vector
(AODV) is a common reactive routing protocol. Figure 2.5 shows a source node
initiating a route request (RREQ), to communicate with the destination node.
Nodes 2 and 3 are intermediate nodes and upon receiving the RREQ it creates a
temporary return route table and then broadcasts the RREQ to any node within
range. This re-broadcast happens until the destination node is found and a route
reply (RREP) message is sent back to the source node. However, if the destination
node is no longer in the network, the RREQ will expire after a period of time. The
RREP is sent along the path and each intermediate node uses its return route table
to pass it along. Intermediate nodes often move or drop out of the network during
communication sessions which creates a link failure error. Link failure notifications
are sent to neighbors within range and this is repeated until the source receives it

and begins the route discovery procedure again.

2.4.3.3 Hybrid

In [21], an on demand spectrum-tree based routing protocol is presented which is
a hybrid protocol that uses proactive to establish and maintain adjacent channel
or subnet connections and reactive for intranet communications. This method
establishes a root upon initialization that periodically sends an in-channel (spec-
trum band) announcement message telling other nodes within the same channel
to connect. After children connect with the root they update tables such as a cost
metric determined by the quality of service (QoS). This same metric determines
if it is worth another node to connect directly to the root or to connect through
an intermediate node. Every time a node joins the network the announcement

message is changed to let the rest of the network know what the configuration is

18

AODV Route
B=% 8 5 8 8 b=t
Source Node 2 Node 3 Destination Source Node 2 Node 3 Destination
Source Node 2 Node 3 Destination Source Node 2 Node 3 Destination
Source Node 2 Node 3 Destination Source Node 2 Node 3 Destination
@smsm] | <[Src,2,2] | <[Src,3,3] |

Figure 2.5: AODV Route Discovery

so that each of them can update the cost metric. If the PU changes status to “on”,
the root sends a message telling the others what channel to change to. Also, when
a node needs to communicate with a node in an adjacent channel it sends a request
to send and the intermediate nodes calculate the cheapest path to a gateway node
that sends it to the gateway node in the adjacent channel. A simple example of a
tree based network formation is shown in figure 2.6 where the roots are chosen by

highest degree and channel availability.

2.4.4 Static networks

WSNis are often static. Proactive routing protocols work well with these because
routing table and topology updates happen less frequent which keeps overhead

low. Proactive routing has many benefits such as low latency but overhead is a

19

2 Neig}iburs
"1 Ch’s available

2 Neighkors
1 Ch’s availakle

3 Neighbors

2 Ch’s available 3/Neighbors

2 Ch’s available

2 Neighbors
1 Ch’s available

1 Neig|)‘R‘rs
1 Ch’s ajfailable

Figure 2.6: Tree Formation

limiting factor as stated in [22]. Not all WSNs are ad-hoc networks but some are
and they commonly are static. Often these networks only change when a new
node in installed or another drops out for maintenance issues such as battery

replacement.

2.4.5 Dynamic networks

Typical networks that are commonly dynamic are VANETs and MANETs. Complete
path routing tables are not always practical when the topology is constantly
changing. Therefore, proactive routing is not always the optimal choice but
reactive is instead. One highly dynamic example would be a high speed VANET
such as discussed in [23] where communication links are of very short duration

and network density varies greatly.

20

Chapter 3

Experimentation of AC-MWN

3.1 Equipment Setup

The testbed consists of three laptops, two USRP-N210 SDRs, and one USRP2 SDR
with USRP being an abbreviation for Universal Software Radio Peripheral. Each
laptop is running Ubuntu version 13.10 64-bit operating system with GNU Radio
software package. The radios were equipped with firmware and WBX-120 RF
daughterboards like the ones shown in Figure 3.1.

The USRP itself handles the digital signal processing (DSP) such as analog to
digital conversion (ADC) and digital to analog conversion (DAC) using a field
programmable grid array (FPGA). Also, the USRP has physical interfaces such as
Ethernet, multiple-in multiple-out (MIMO), and RF Daughterboard like the WBX.
Enabling RF capabilities the end user must buy and install a RF Daughterboard
onto the USRP main board chassis and connect it via MCX-Bulkhead cables (MCX-
M to SMA-F connectors) as shown in Figures 3.2 and 3.3.

Antennas were chosen after selecting a USRP and RF Daughterboard to meet
the needs of project. Just like choosing the RF Daughterboard the end user must

know the frequency range that will be used. The VERTg9oo Antenna shown in

21

RI21 | woe

| N

.ﬁ‘h.ku.‘ B

TR vE

Cchy e RO

CHEECER

) ¥

T i il B g

WBX Daughterboard

1

igure 3.

F

22

Figure 3.4 has a low band from 824 to 960 MHz which covers the high end of
IEEE 802.22a-2014 Regional Area Network (RAN) standard which is 54 to 862
MHz [24]. Likewise, the WBX RF Daughterboard has a range of 50 MHz - 2.2
GHz. Another consideration was the channel bandwidth (BW) needs which is a
minimum of 6 MHz for television broadcast. The WBX has a maximum BW of 40
MHz which exceeds our needs. Finally, Figure 3.5 shows the hardware after the

WBX is installed, antennas screwed on and enclosure secured to the USRP N21o0.

Figure 3.2: WBX Daughterboard, USRP N210 and VERT9oo Antennas

3.1.1 Software Defined Radio (SDR) configuration

There are three main things that must be done to setup the system so that the
USRP can be interfaced with GNU Radio and GNU Radio Companion (GRC).

These include:

e Download GNU Radio software and packages, once installation is complete
use gnuradio-companion to run the graphical programming interface of

GNU Radio.

e Download required packages for building the USRP Hardware Driver (UHD).

23

Figure 3.3: USRP N210 with installed WBX RF Daughterboard

e Configure the network interface by assigning a static IP address to the host
computer Ethernet interface card connected to the USRP2 with ifconfig ethQ
192.168.10.1 and finally to test connection with ping 192.168.10.2.

24

VERTgo0 Antennas

Figure 3.4

Figure 3.5: USRP N210

with two VERT9o0 atnennas

25

26

Chapter 4

Basic Testing

Global population is increasing and many rural communities populations are
dramatically decreasing because of migration to urban areas. An estimated 66
percent of the population will live in urban areas by mid-century [25]. Population
density of our cities will continue to rise which increases the demand for band-
width. Considering our limited radio frequency (RF) spectrum, researchers have
been looking toward cognitive radio networking (CRN) as a temporary solution
to the overcrowding. CRN utilizes idle RF channels for limited amounts of time
to relieve congestion on other channels. These channels are owned by the license
holder which is known as the primary user (PU). An example of a PU would be a
broadcast television station that airs sub channels in different languages, but only
has enough programming to broadcast on that channel for twelve hours a day or
only during peak hours. These researchers need testbeds to test and analyze their
algorithms; and software defined radios (SDR) are the tool of choice because of
the low cost and flexibility. Universal Software Radio Peripheral (USRP) radios are
interoperable with GNU Radio programming software which includes hardware
drivers specifically for USRPs.

Cognitive radio networking (CRN) is a promising technology based on spec-

27

trum sensing and opportunistic spectrum access which can improve the spectrum
efficiency of wireless networks [26]. The secondary users would sense the activities
of primary users periodically according to Federal Communications Commission
(FCC) [27]. When a channel is not occupied by a primary user, a secondary user
can use the channel opportunistically after sensing. The major characteristic of
cognitive radios is that the activities of primary users change dynamically and
channel availability changes from time to time. Thus, the secondary users have to
efficiently sense the activities of the primary users and make decisions on which
channel to use in the dynamic environment. In order to study the performance
of the cognitive radios, we investigate how to develop a testbed and implement
algorithms on it.

Multi-hop cognitive radio networks bring many challenges in testbed design.
First, transmissions on different hops might interfere with each other. Therefore,
we investigate how to implement multi-hop transmission on different channels
using USRP2. Second, secondary users have to sense the activities of the primary
users instantly to get the availability information of the channels. Thus, we need to
develop a practical sensing scheme to find whether the primary users are working
or not. After one available channel is found, the secondary users have to switch to
this channel as soon as possible. Third, the routing and channel allocation schemes
have to be embedded on testbed. We need to implement our routing and allocation
schemes on testbed to show the effectiveness of our algorithms.

To prove the theoretical performance in multi-hop cognitive radio networks,
we develop a testbed in this project. First, we set up the system so that the
USRP can be interfaced with GNU Radio. Second, we study several different
transmission schemes including single-hop and multi-hop transmissions based on
USRP and smart radios. Then, we investigate how to perform spectrum sensing

using cognitive radios. Finally, we implement our routing and channel allocation

28

schemes on our testbed. Our testbed is developed as the following.

In this chapter, we set up a testbed for the AC-MWN to implement the basic
functions of cognitive radio and the schemes. Moreover, we implement a video
stream application in AC-MWN based on the testbed setup. The testbed consists
of three laptops, two Universal Software Radio Peripheral (USRP) USRP2-N210
software defined radios (SDR) [28], and one USRP2 SDR. The SDRs are capable
of transmitting in both 824-960 MHz and 1710-1990 MHz spectrum. Most of the
work done was in the lower band. Each laptop operates as signal generator and
processor. The laptops are identically configured, running Ubuntu [29] version
13.10 64-bit operating system with GNU Radio and GStreamer software packages.

The main tasks of this REU project include: Computer programming and net-
work configuration using Universal Software Radio Peripheral (USRP) hardware;
and performance evaluation through simulations and measurements. Using this

technology we will complete the followings:
e Basic functions
Naive one-way transmission
Naive half-duplex transmission
Multi-channel one-way transmission
Naive full-duplex transmission
Adaptive one-way transmission

Adaptive half-duplex transmission

e Sensing

Sensing if primary user has activity at a given channel

e Cognitive radio technique application

Adaptive channel switching

29

e Multi-hop applications

File transferring, voice chat, and video conference applications using

cognitive radio technique

4.1 Single-hop Transmission

4.1.1 Half-duplex one-way transmission

In this part, we are going to set up one radio as the transmitter and one for
receiving, and successfully send and receive verifiable data. The data is verified
at the receiving end when benchmark_rx.py prints the message and how many
successful packets were received.

Two smart radios, each equips one antenna. One smart radio is set up for
transmitting, the other for receiving, single dedicated channel (e.g., FM radio).

We successfully achieved this milestone by transmitting and receiving based
on frequencies, by packages transfer and data transfer. We used benchmark code

under our gnuradio folder to accomplish these tasks.

e First we composed a .odb file with the sentence “It is a beautiful day!!”. The
.odb file extension is associated with OpenOffice in Ubuntu, which we saved
in the same folder of our benchmark code

(usr/local /share/ gnuradio/examples/digital /o fdm).

e Then we modified the benchmark_tx.py and benchmark_rx.py code to confor-

m as transmitting and receiving a data file.

e And finally we executed the scripts below from the transmission terminal
and reception terminal:
./benchmark;x.py— f900M— — from — file = nice.odb
./ benchmark,x.py— f900M

30

Figure 4.1: Two USRPs with One Antenna

1
user@PKI346-LTO3: ~ | user@PKI346-LTO3: fusr/local/share/gnuradio/examples/digital/ofdm_mod \
Unable to set the thread priority. Performance may be negatively affected.
Please see the general application notes in the manual for instructiens.
EnvironmentError: OSError: error in pthread_setschedparam

No gain specified.

Setting gain to 15.500000 (from [0.000000, 31.000008])
-- Loaded /home/user/.uhd/cal/tx_iq_cal_v@©.2_F36177.csv
Using Volk machine: avx_64_mmx_orc

Warning: failed to enable realtime scheduling

[1]+ Stopped . /benchmark_tx.py -f 986M
user@PKI346-LT03: fusr/local/share/gnuradio/examples/digital/ofdm_mod$./benchmark_tx.py -f SeemM
linux; GNU C++ version 4.8.1; Boost_165300; UHD_003.865.003-87-g8740007T

-- Opening a USRPZ/N-Series device...
-- Current recv frame size: 1472 bytes
-- Current send frame size: 1472 bytes

UHD Warning:
Unable to set the thread priority. Performance may be negatively affected.
Please see the general application notes in the manual for instructions.
EnvironmentError: OSError: error in pthread_setschedparam

No gain specified.

Setting gain to 15.500000 (from [6.000000, 31.000000])
-- Loaded /home/user/.uhd/cal/tx_iq_cal_ve.2_F36177.csv
Using Volk machine: avx_64_mmx_orc

Warning: failed to enable realtime scheduling

[2]+ Stopped . /benchmark_tx.py -f 986M
user@PKI346-LT03: fusr/local /share/gnuradio/examples/digital/ofdm_mods [l

Figure 4.2: benchmark_tx_py Terminal Initialization

31

user@PKI346-LT02: ~ | user@PKI346-LT02: fusr/local/share/gnuradio/examples/digital/ofdm
ok: True pktno: 56 n_rcvd: 57
ok: True pktno: 57 n_rcvd: 58
ok: True pktno: 58 n_rcvd: 59
ok: True pktno: 59 n_rcvd: 60
ok: True pktno: 66 n_rcvd: 61
ok: True pktno: 61 n_rcvd: 62
ok: True pktno: 62 n_rcvd: 63
ok: True pktno: 63 n_rcvd: 64
ok: True pktno: 64 n_rcvd: 65
ok: True pktno: 65 n_rcvd: 66
ok: True pktno: 66 n_rcvd: 67
ok: True pktno: 67 n_rcvd: 68
ok: True pktno: 68 n_rcvd: 69
ok: True pktno: 69 n_rcvd: 70
ok: True pktno: 76 n_rcvd: 71
ok: True pktno: 71 n_rcvd: 72
ok: True pktno: 72 n_rcvd: 73
ok: True pktno: 73 n_rcvd: 74
ok: True pktno: 74 n_rcvd: 75
ok: True pktno: 75 n_rcvd: 76
ok: True pktno: 76 n_rcvd: 77
ok: True pktno: 77 n_rcvd: 78
ok: True pktno: 78 n_rcvd: 79
ok: True pktno: 79 n_rcvd: 80
ok: True pktno: 86 n_rcvd: 81
ok: True pktno: 81 n_rcvd: 82
ok: True pktno: 82 n_rcvd: 83
ok: True pktno: 83 n_rcvd: 84
ok: True pktno: 84 n_rcvd: 85
ok: True pktno: 85 n_rcvd: 86
ok: True pktno: 86 n_rcvd: 87
ok: True pktno: 87 n_rcvd: 88
ok: True pktno: 88 n_rcvd: 89
ok: True pktno: 89 n_rcvd: 90 -
ok: True pktno: 90 n_rcvd: 91
ok: True pktno: 91 n_rcvd: 92
ok: True pktno: 92 n_rcvd: 93 .2
ok: True pktno: 93 n_rcvd: 94 n_right:

! 93
user@pKI346-LT02: fusr/local/share/gnuradio/examples/digital/ofdms D

Figure 4.3: benchmark_tx_py Terminal Running Output

File Edit View Search Tools Documents Help
Do~ Asm O TTEQa

| &) nice.odb
Today is Monday November 25th 2813 and Nice it is working !!!

Plain Text v Tab Width: 8 v n1, Col1 INS

Figure 4.4: benchmark_tx_py Output to Document

4.1.2 Adaptive One-Way Transmission

In this part, we are going to have two smart radios, each equipped with one
antenna. First, one smart radio is set up for transmitting and the other for

receiving. Then a single dedicated channel that can be switched according to an

32

user@PKI346-LTO3: ~ | user@PKI346-LTO3: fusr/local/share/gnuradio/examples/digitaliofdm_mod
No gain specified.
Setting gain to 15.500000 (from [6.000000, 31.000000])
warning: failed to enable realtime scheduling
.U-- Opening a USRP2/N-Series device...
-- Current recv frame size: 1472 bytes
-- Current send frame size: 1472 bytes

UHD Warning:
Unable to set the thread priority. Performance may be negatively affected.
Please see the general application notes in the manual for instructions.
EnvironmentError: OSError: error in pthread_setschedparam

No gain specified.

Setting gain to 15.500000 (from [0.000000, 31.000000])
Warning: failed to enable realtime s(hedul\n-

U

py -f 980M --from-file=nice.odb

linux; GNU C++ version 4.8.1; Boost_: 105300 UHD_0803.005. 003 87-g8f4000ff

-- Opening a USRP2/N-Series device...

-- Current recv frame size: 1472 bytes

-- Current send frame size: 1472 bytes

UHD Warning:
Unable to set the thread priority. Performance may be negatively affected.
Please see the general application notes in the manual for instructions.
EnvironmentError: OSError: error in pthread_setschedparam

No gain specified.

setting gain to 15.560008 (from [0.600006, 31.000060])

-- Loaded /home/user/.uhd/cal/tx_iq_cal_v@.2_F36177.csv

Using Volk machine: avx_64_mmx_orc

Warning: failed to enable realtime scheduling

.U-- Opening a USRP2/N-Series device...

-- Current recv frame size: 1472 bytes

-- Current send frame size: 1472 bytes

UHD Warning:
Unable to set the thread priority. Performance may be negatively affected.
Please see the general application notes in the manual for instructions.

Figure 4.5: benchmark_tx_py Terminal Initialization with File Sink to Document

Today is Monday November 25th 20813 and Nice it is working !!!

ok: True pktno: © n_rcvd: 1 n_right: 1
Figure 4.6: benchmark_rx_py Received Text Saved to Document

algorithm automatically (e.g., FM radio, but will change channel once every 10
seconds). Settings and results are below in Figures 4.8 and 4.9. Setting: two radios

with two antennas

4.2 Half-duplex two-way transmission

In this part, we are going to have one radio as transmitter and one as receiver.
Radio 1 starts as the transmitter running benchmark_tx.py and will send data for
tive seconds while Radio 2 is receiving running benchmark rx.py during that time.
After five seconds the bash script will stop the running python file and start the

other switching the role of the radio from transmitter to receiver or vice versa.

33

Figure 4.7: Two USRPs with Two Antennas Each

Two smart radios, each equips one antenna. Each radio takes turn to be
transmitter or receiver (e.g., 5 seconds as transmitter, 5 seconds as receiver, but
acting automatically)

The settings and results are shown below: We accomplished this by creating a

bash script with our benchmark_tx.py and benchmark_rx.py codes:

From the 1st radio (will receive first and then will send data)
#!/bin/bash
sudo ifconfig eth0 192.168.10.1
foriin(seq 1 2 20) — code to be repeatedly executed

do

Options
ID: transceiver i Maaishile
i 1D: samp rate ID: freq0 acie
Generate Options: WX GUI i faas Decimation: 1
Value: 900M i NBFM Receive
in:

Sample Rate: 32k
Cutoff Freq: 10k
Transition Width: 2k
Window: Hamming
Beta: 6.76

Audio Rate: 32k

Quadrature Rate: 320k [3i] Bultply Const g R otk
: 75u Constant: 2 Sample Rate: 32k
x Deviation:

UHD: USRP Source
Samp Rate (Sps): 32
Cho: Center Freq (Hz): S00M
Cho: Gain (dB): D
ChO: Antenna: RX2

WX GUI FFT Sink
Title: FFT Plot
Sample Rate: 32k
Baseband Freq: 900M
¥ per Div: 10 d8
¥ Divs: 10
RefLevel (dB): 0
Ref Scale (p2p): 2
FFT Size: 1,024k
Refresh Rate: 15
Average Alpha: 500m
Window Size: 800, 300
Grid Position: 0,0, 5.4
Freq Set Varname: None

NBFM Transmit

Audio Rate: 32k
Audio Source T in| Quadrature Rate: 320k
Sample Rate: 32 Tau: 75u

Max Deviation: 5k

UHD: USRP Sink
Samp Rate (Sps): 32k
ifl] cho: Center Freq (Hz): s00M
ChO: Gain {dB): 0
ChO: Antenna: TX/RX

e Multiply Const
4 Constant: 2 l

Variable
1D: freql
Value: 9001

Figure 4.8: Adaptive One-way Transmit GRC Blocks

./benchmark_rx.py f 900M — Receiving

sleep 5; — Delay for a specified time

killall benchmark_rx.py; — Stop receiving

./benchmark_tx.py f 900M from — file = nice.odb; — Transmitting
done

From the 2nd radio (will transmit first then will receive a data)
#!/bin /bash

sudo ifconfig eth0 192.168.10.1

foriin(seq 1 2 20) — code to be repeatedly executed

do

./benchmark_tx.py f 900M — from — file = nice.odb; — Transmitting
./benchmark_rx.py f 900M — Receiving

34

35

Options
ID: transceiver i Maaishile
i 1D: samp rate i Low Pas
Generate Options: WX GUI i faas Decimation: 1
Value: 900M i NBFM Receive

Sample Rate: 32k
Cutoff Freq: 10k
Transition Width: 2k
Window: Hamming
Beta: 6.76

Audio Rate: 32k
Quadrature Rate: 320k [3i] Bultply Const g R otk
: 75u Constant: 2 Sample Rate: 32k
x Deviation:

UHD: USRP Source
Samp Rate (Sps): 32
Cho: Center Freq (Hz): S00M
Cho: Gain (dB): D
ChO: Antenna: RX2

WX GUI FFT Sink
Title: FFT Plot

Sample Rate: 32k
Baseband Freq: 900M

¥ per Div: 10 d8

¥ Divs: 10

RefLevel (dB): 0

Ref Scale (p2p): 2

FFT Size: 1,024k
Refresh Rate: 15
Average Alpha: 500m
Window Size: 800, 300
Grid Position: 0, 0, 5,4
Freq Set Varname: None

NBFM Transmit

- Audio Rate: 32k
Audio Source T in| Quadrature Rate: 320k [5i
Sample Rate: 32 Tau: 75u

Max Deviation: 5k

UHD: USRP Sink
Samp Rate (Sps): 32k

fifl] cno: Center Freq (Kz): 300M
Cho: Gaiin {dB): 0
ChO: Antenna: TX/RX

i Multiply Const oy
4 Constant: 2 —

Variable
1D: freql
Value: 9001

Figure 4.9: Adaptive One-way Receive GRC Blocks

sleep 5; — Delay for a specified time
killall benchmark_rx.py; — Stop receiving
done
We executed the bash script and we can see that each radio alternated trans-
mitting and receiveing automatically. Bash script at the transmitter is shown if

Figures 4.10, 4.11 and 4.12

4.3 Full-Duplex Transmission

In this part, we are going to have two radios with two antennas each. Radio 1
will transmit using the TX/RX antenna while Radio 2 will receive on the same

channel using the RX2 antenna. Next, Radio 2 will be set up to transmit on a

[Elopen v ome | &) 5 QA R
| [@l bench_bashz.sh

#!/bin/bash -xv
sudo ifconfig ethe 192.168.10.1

for i in $(seq 1 2 20)

do

./bench_mod4_rx.py -f 906M;

sleep 1

./bench_mod5_tx.py -f 906M --from-file=Test.odb;
done

shv Tab Width: 8 v Ln 13, Col 56 INS

Figure 4.10: Half Duplex Two-way Transmit Bash Script

File Edit View Search Tools Documents Help

| Elopen v [Lsave |) Undo B Q<
— .
[beneh_mod4_re.py * | [@ bench_bash2.sh * | £ Test.odb

#1/bin/bash -xv
sudo ifconfig eth® 192.168.10.1

for i in S(seq 1 2 26)
do
./bench_mod5_tx.py -f 986M;

.fbench_mod4_rx.py -f 966M;

done

shwv Tab Width: 8 v Ln 14, Col 5 INS

Figure 4.11: Half Duplex Two-way Receive Bash Script

different channel using its TX/RX antenna while Radio 1 receives on the same
channel using the RX2 antenna.

First, one-way multi-channel testing. Two smart radios, each equipped with two
antennas. One smart radio is set up for transmitting and the other for receiving.

Transmission is set up using two channels through two antennas simultaneously.

37

File Edit View Search Tools Documents Help
|| Bopen v isave | 5 A Q@

[¢] bench-mod4_mepy * | [3] bench-bash2.sh * | A Test.odb * |

1 The file i. igit Test.odb changed on disk. Reload
2N
Do you want to reload the file? Cancel

[roday is Monday

Plain Text v Tab Width: 8 v n1, Col 1 INS

Figure 4.12: Half Duplex Two-way Receive Output to Document

We repeated the same design and procedure with the Naive one-way transmission
but with two antennas.

Full-duplex communications achieved with having two smart radios, each e-
quipped with two antennas. One antenna of a smart radio is set up for transmitting,
while the other is set up for receiving. Two-way transmission is achieved.

We also worked on IO file management between the transmitting and receiving
radios, and then added an acknowledgment time stamp when either one received
or transmitted in the proper folder designed in advance by using the benchmark
scripts. The objective was to save the data in text file after receiving in from the
transmitting radio; then to resend the same data in the text file to the first radio
with acknowledgment time and date of reception. Settings and results are shown
below:

Transmission script: Needed to be added to the benchmark_tx script
def read dir() :

If os.path.exist(””)

i

file = open(”,”) - Opens a file on the specified path with read/write access.

ts = str(datetime.datetime.now()) - Print the actual time.
file.write(ts)

global ack

file.close()

Reception script: Needed to be added in the benchmark_rx script.
def read dir() :
If not os.path.exist("")
Os.mkdir(”")
file = open(”,”) - Opens a file on the specified path with read/write access.
global x
x = payload
file.write(x)
file.close()

Setup: two radios with two antennas each shown in Figure 4.13

Odb file on transmitter side shown in Figure 4.14

4.3.1 Adaptive Full-Duplex Transmission

In this part, we are going to set up hardware as shown in Figure 4.13, but we use
GRC flow chart software to utilize the built in threading capabilities. The scripts
are same as Full-Duplex shown above but the flow charts shown in Figures 4.8 &

4.9 are combined to make one flow chart to create a transceiver.

Figure 4.13: Two USRPs with Two Antennas Each

| Elopen v Lisave & | = undo o il e ¢

[¢| bench_bash2.sh =
Tuesday ©3Dec2013 ACK.

bench_modé_rx.py [6) bench_mod5_tx.py * | 2] Test.odb

Plain Text v Tab Width: 8 v

Figure 4.14: Transmit Side Document

Ln2, Col 1

INS

39

40

<] usr local share gnuradio examples digital ofdm_mod revd Q

= v Esd
Places —
-
O Recent ‘J
A hione Test.odb

D) Documents

¥ Downloads

dd Music

B Pictures

Hi videos

{@ Trash
Devices

@ computer
Network

& Browse Network

B Connect to Server

Figure 4.15: Receive Side Document Created

\Tuesday ©3Dec2813 ACK.

12013-12-03 15:28:47. 93855

Figure 4.16: Receive Side Document Received with Time Stamp

~CUser@PKI346-LT03: fusr/local/share/gnuradio/examples/digital/ofdm_modS$./bench_mod4 rx.py -f 986M
linux; GNU C++ version 4.8.1; Boost_105300; UHD_003.0065.003-87-g874000ff

- Opening a USRP2/N-Series device...
- Current recv frame size: 1472 bytes
- Current send frame size: 1472 bytes

UHD Warning:
Unable to set the thread priority. Performance may be negatively affected.
Please see the general application notes in the manual for instructions.
EnvironmentError: OSError: error in pthread_setschedparam

No gain specified.

setting gain to 19.008000 (from [0.008080, 38.000000])

Using Volk machine: avx_64_mmx_orc

>>> gr_fir_ccf: using SSE

>>> gr_fir_fff: using SSE

darning: failed to enable realtime scheduling

ok: True pktno: © n_rcvd: 1 n_right: 100

Figure 4.17: Receive Side Terminal Output with Verification

4.4 Multi-Hop Transmission

4.4.1 Simple Transceiver Transmission with Two Smart Radios

In this part, we are going to use two radios setup with the GRC file shown in

Figure 4.21 and both channels are observed with the FFT GUI as shown in Figure

41

Options
ID: transceiver e Menahie
: 1D: samp rate i Low Pass Filter
Generate Options: WX GUI e : freqf R
ot Gain: 1 NBFM Receive
in:

Sample Rate: 32k
Cutoff Freq: 10k

UHD: USRP Source Transition Width: 2k
Samp Rate (Sps): 32k Window: Hamming
ChO: Center Freq (Hz): 900M Beta: 6.76

Audio Rate: 32k

Quadrature Rate: 320k [3i] Bultply Const g R otk
: 75u Constant: 2 Sample Rate: 32k
x Deviation:

WX GUI FFT Sink
Title: FFT Plot

Sample Rate: 32k
Baseband Freq: 900M

¥ per Div: 10 d8

¥ Divs: 10

RefLevel (dB): 0

Ref Scale (p2p): 2

FFT Size: 1,024k
Refresh Rate: 15
Average Alpha: 500m
Window Size: 800, 300
Grid Position: 0, 0, 5,4
Freq Set Varname: None

NBFM Transmit

- Audio Rate: 32k
Audio Source T in| Quadrature Rate: 320k (G0
Sample Rate: 32 Tau: 75u

Max Deviation: 5k

UHD: USRP Sink
Samp Rate (Sps): 32k
Bl cho: Center Freq (Ha): 500M
Cho: Gaiin {dB): 0
ChO: Antenna: TX/RX

i Multiply Const oy
=2 constant: 2 —

Variable
1D: freql
Value: 9001

Figure 4.18: Adaptive Full Duplex GRC Configuration

4.22.

The settings are shown below: The block below was designed in GRC. It
consisted of two separated blocks, one for the transmission and the other for the
receiving. GNU Radio Companion components used for this design are:

Equipment configuration: One radio with one laptop as shown in Figure 4.20.

4.4.2 Two Radio Multi-Hop (Round-Trip) Transmission

In this part, we are going to use two radios, one with our regular transceiver GRC
file and another with a relay file. The relay is set up to receive on one frequency
and immediately transmit the data on another frequency. Therefore, the data is
transmitted from Radio 1 and channel A, received by Radio 2 on channel A then

transmitted by Radio 2 on channel B, and finally, received by Radio 1 on channel B.

42

I T T
UHD FFT — [k]
I
FFT | Waterfall = Scope
FFT Plot . Trace Options
0 ~| Peak Hold
.10 | Average
-20
-30 .
-40 Persistence
-50
_ﬂ!;" -60 :
L] L =
¥ T Trace A | Store
En. -80
E 90 Trace B | Store
100 Axis Options
o dB/D
5 sl
5 v
-130 Ref Level: Hl =
-140
150 Autoscale
895 896 897 898 899 900 901 902 903 904 903
Frequency (MHz) Run
Antenna
S le Rate: | 10M = -~ LO Locked: Ti
ample Rate ® rRx2 TX/RX ocked: True
RX Gain: |0
RX Tune Frequency: 900M

Figure 4.19: Adaptive Full Duplex FFT Plot

In this section we designed a full duplex transmission with data exchange
between two radios. We used specific blocks as OFDM, File Source and File Sink.
The full duplex was tested and it worked perfectly by exchanging data from
the receiving radio to the transmission radio in a folder we pre-created for the
circumstance. Settings and results are shown below:

Equipment configuration: two radios with two antennas and two laptops as
shown in Figure 4.25

The first radio sent data information with two sets of blocks in GRC companion
(a receiver and transmitter blocs) as shown in Figure 4.26. Data received from

the second system is shown in Figure 4.27. The second system received the data,

43

Figure 4.20: One USRP with Two Antennas and One Laptop

saved and resent it to the first system creating the loop. Figure 4.28 shows the
GRC configuration for the second system, and Figure 4.29 shows the output.
Radio 1:
Transmission frequency: 950 MHz
Receiving frequency: goo MHz
File source:
We created an ofdm_tx folder with the sentence PKI OPEN HOUSE on directory
/home/user/ofdm_tx
File sink (where the file is received after the second radio resent what it
received.):
/home/user/ofdm_rx
Radio 2:

Transmission frequency: goo MHz

- Jptioos Variable
15 rani[r::t — I s ol i Low Pass Filter
nerate Options: ; 2
Value: 32k Value: 94.1M :T'"‘fﬂ""' N NBFM Receive
n:

Audio Rate: 32k
Quadrature Rate: 320k
Tau: 75u

Max Deviation: 5k

Sample Rate: 32
Cutoff Freq: 10k
Transition Width: 2k
Window: Hamming
Beta: 6.76

Muitiply Const
Constant: 2

Audio Sink
Sample Rate: 32k

S i

UHD: USRP Source
Samp Rate (Sps): 32k
ChO: Center Freq (Hz): 4.1
Cho: Gain (dB): D
ChO: Antenna: RX2

WX GUI FFT Sink
Title: FFT Plot

Sample Rate: 32
Baseband Freq: 94.1M

¥ per Div: 10 d8

¥ Divs: 10

RefLevel (dB): 0

Ref Scale (p2p): 2

FFT Size: 1,024k
Refresh Rate: 15
Average Alpha: 500m
Window Size: 800, 300
Grid Position: 0,0, 5.4
Freq Set Varname: None

NBFM Transmit
Audio Rate: 32k

| Quadrature Rate: 320k
Tau: 75u

Max Deviation: 5k

UHD: USRP Sink
Samp Rate (Sps): 32k

ChO: Center Freq (Hz): 300M
ChO: Gain {dB): 0
ChO: Antenna: TX/RX

Figure 4.21: Multi-hop Transceiver GRC Configuration

FFT Plot . Trace Options
4] Peak Hold
4 & Average
Awg Alpha: 0.5000
-20 (S
30 ! 3 Persistence
g 40
w
E 50 Trace A | Store
Z
E -60 Trace B | Store
_70 Axis Options
% s +
NE dB/Div:
7 +
T Ref Level:
100 Autoscale
899,985 899.99 899.995 900 900.005 900.01 900.015
Frequency (MHz) Stap

44

Figure 4.22: FFT plot of Transceiver block design with 1 MHz BW

Receiving frequency: 9g50MHz

45

Peak Hold
& Average
Avg Alpha: 0.5000

Persistence

Trace A |Store

Amplitude (dB)

Trace B | Store
Axis Options
dB/Div: + -

FFT Plot [l Trece Options
Ref Level: + -
90!

-100
-110
-120

895 890 897 898 899 200 901 902 903 204
Frequency (MHz)

Autoscale

Run

Figure 4.23: FFT plot of Transceiver block design with 10 Mhz BW at goo MHz

Trace Options
Peak Hold
¥ Average
Avg Alpha: 0.5000

FFT Plot []

Persistence

Trace A | Store

Trace B | Store

Amplitude (dB)

Axis Options
dB/Div: -

rlquM‘N‘WWW WWMMNWWM Reflevel |+ | -

Autoscale

Frequency (MHz) Run

Figure 4.24: FFT plot of Transceiver block design with 10 Mhz BW at 920 MHz

4.4.3 Three Radio Multi-Hop (Circular) Transmission

In this part, we are going to use the same design for the simple loop transmission
between 2 radios. The first radio was set on the frequency of 950 MHz to transmit

and 9oo MHz to receive. The second radio receives at 950 MHz but retransmits the

46

Figure 4.25: Two USRP radio with two antennas and two laptops each

same information at 830 MHz and the third radio receives at the frequency of 830
MH2z but retransmits the same data to the first radio on the frequency of gooMHz.
The design was tested and it worked successfully. Settings and results are shown
below:

Setting: Three radios, each with one laptop as shown in 4.30

Radio 1:
Transmission frequency: 9g50MHz

Receiving frequency: gooMHz

Radio 2:
Transmission frequency: 830MHz

Receiving frequency: g50MHz with FFT shown in Figure 4.34

Options
1D: transceiver_ofdm

Variable Variable
1D: samp rate
Value: 1M

Generate Options: WX GUI

File Sink
userfofdm_rxjofdm o

UHD: USRP Source
Samp Rate (Sps): 1M
Cho: Center Freq (Hz): 500M

Modulation: BPSK
FFT Length: 512
Occupled Tones: 200 -
Cyclic Prefix Length: 128
SNR: 10

€ho: Antenna: RX2

OFDM Mod
BPSK.
FFT Length: 512
Occupled Tones: 200
Cyclic Prefix Length: 128
Pad for USRP: ¥es
Payload Length: 0

UHD: USRP Sink
Samp Rate (Sps): 1M
Cho: Center Freq (Hz): 950
Cho: Gain (dB): 10

ChO: Antenna: TXRX

ChO: Bandwidth (Hz): 500k

variable WX GUI Chooser
1D: samp rate 0 1D: freql
Value: 1M Default Value: 9501
Cholces: 852M, 950M, 172G
Labels:

Type: Radio Buttens

Figure 4.26: Multi-hop Transceiver GRC Configuration - Endpoint 1

File Edit View Search Tools Documents Help

Ly Bopen v s | G = | B Q&

—
| [ofdm_rx * |
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 206TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 206TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN
HOUSE OCTOBER 2O0TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 2@TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 2@0TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 28TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 2@TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 28TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 206TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN
HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBPKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 206TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20PEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 2@TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 28TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 2O8TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 28TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 206TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
2ATH. PKI _OPEN _HOLISE _OCTOBER 2ATH PKI OPEN _HOUSE OCTORFR 2ATH_PKI OPFN _HOUSE OCTORER 2ATH. PKT OPEN HOUSE OCTORER 2ATH. PKI _OPEN HOUSE OCTORER L
Plain Text ¥ TabWidth: 8 v Ln1,Coll INS

Figure 4.27: Multi-hop Data Saved to Document Received by Relay

B8 x| g« EO® @R O ¢ 2 4del|g %

File Sink
Options Variable Variable Variable
e Message Source [outlw[Ti| File: ...userjofdm_rxfofdm
1D: top_block 1D: samp_rate 1D: freq_rx 1D: freg_tx Off_ =
Generate Options: WX GUI Value: 1M Value: 950M Value: 500M
Delay Message Sink
Delay: 5 Don't Block: Block

'OFDM Demod
Modulation: BPSK
FFT Length: 512
Occupied Tones: 200
Cyclic Prefix Length: 128
SNR: 10

UHD: USRP Source
Samp Rate (Sps): 1M
ChO: Center Freq (Hz): 950M
ChO: Gain (dB): 0
ChO: Antenna: RX2

'OFDM Mod
Modulation: BPSK
FFT Length: 512
Occupied Tones: 200
Cyclic Prefix Length: 128
Pad for USRP: Yes
Payload Length: 0

UHD: USRP Sink
Samp Rate (Sps): 1M
‘ChO: Center Freg (Hz): 900M
ChO: Gain (dB): 10

ChO: Antenna: TX/RX

Ch0: Bandwidth (Hz): 500k

Using Volk machine: avx_64_mmx_orc

=>> gr_fir_ccf: using SSE

>>> gr_fir_fff: using SSE

UTIMEOUT

TIMEQUT
UuuUUUUUULUUUUUUUUUUULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUULUYUUUUUUUUUUUYUUUUUUUUUUUUUUUUUUUUUUuUUuU
UuUUUUUUUUULUUUUUULULUUUUUUULLUUULUUULUUULUUUUUUULULUUULUY

[=>> Done

Figure 4.28: Multi-hop Transceiver GRC Configuration - Relay

Radios:
Transmission frequency: goo MHz
Receiving frequency: 830MHz with FFT shown in Figure 4.33

Radio 3: Design Template and output shown in Figures 4.31 & 4.32

ofdm_rx (-/ofdm_rx) — gedit - | 0| X

File Edit View Search Tools Documents Help
Bopen v Lsae | @ U & | e o 0 Q &

_1 bench_mod4_rx.py * Dfdrn rx

_PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER l

20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPENCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE
OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 206TH.PKI OPEN HOUSE OCTOBER 206TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 2@TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI QOPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 26TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER
20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 20TH.PKI OPEN HOUSE
OCTOBER 20TH.PKI OPEN HOUSE OCTOBER 28TH.PKI OPEN HOUSE OCTOBER 28TH.PKI OPEN HOUSE OCTOBER 20TH.PKI
Plain Text v Tab Width: 8 v Ln1, Coll INS

Figure 4.29: Multi-hop Data Saved to Document Received by Endpoint 2

49

Figure 4.30: Three USRPs with Two Antennas and Two Laptops Each

50

1D: top bl

Options
lock

Generate Options: WX GUI | | Value: 1M

Variable Varlable
1Dz samp rate | | ID: freq_rx
Value: £30M

Variable
1D freq te
Value: 500M

ChO: Gair

[ofdm_s

OCTOBER
OCTOBER

DCTOBER 20TH.PKI DPEN HOUSE OC
OCTOBER 20TH.PKI OPEN HOUSE
G(TOBER ZOTH PKI OPEN HOUSE

OPEN HOI
OPEN HOI
OPEN HOI
OPEN HOI

UHD: USRP Source
samp Rate (Sps): 1M
ChO: Center Freq (Hz): 830M
in (dB): 0
RX2

UHD: USRP Sink
Samp Rate (Sps): M
Cho: Center Freq (Hz): 300M
ChO: Gain (dB): 10

ChO: Antennas TXIRX

Cho: Bandwidth (Hz): 500k

File Sink
Flle: .userjofdm_rxiofdm
off

OFDM Mod
Modulation: BPSK
FFT Length: 512

Occupied Tones: 200

Figure 4.31: Circular transmission, Radio 3, GRC configuration

x X

20TH.
20TH.
20TH.
20TH.
20TH.
20TH.
20TH.
20TH.
20TH.
20TH.
20TH.
20TH.
20TH.
20TH.

20TH.

PKI
PKI
PKI
PKI
PKI
PKI
PKI
PKI
PKI
PKI
PKI
PKI
PKI
PKI
PKI

=
o
A
a

USE OCTOBER 20TH.PKI OPEN HOUSE
USE OCTOBER 20TH.PKI OPEN HOUSE
USE OCTOBER 20TH.PKI OPEN HOUSE

OPEN HOUSE OCTOBER
OPEN HOUSE OCTOBER
OPEN HOUSE OCTOBER
OPEN HOUSE OCTOBER
OPEN HOUSE OCTOBER
OPEN HOUSE OCTOBER

OPEN HOUSE OCTOBER

20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI

20TH.PKI
20TH.PKI

Figure 4.32:

OCTQBER

OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN

KT

OCTOBER 20TH.PKI OPEN
OCTOBER ZGTH PKI OPENQTH PKI OPEN HGUSE OCTUBER 20TH.PKI OPEN HOUSE O[TOBER 20TH.PKI OPEN HGUSE OCTUBER 20TH. PKI
ER 20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN

OTH.PKI OPEN HOUSE OCTOBE
20TH.PKI OPEN HOUSE OCTOBER

20T
20TH.PKI OPEN HDUSE
20TH.PKI OPEN HOUSE
20TH.PKI OPEN HOUSE
20TH.PKI OPEN HOUSE
20TH.PKI OPEN HOUSE
20TH.PKI OPEN HOUSE
20TH.PKI OPEN HOUSE
ZOTH.PKI OPEN HOUSE

HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER

20TH. PKI
20TH. PKI

HOUSE OCTOBER 2

HOUSE OCTOBER
HOUSE OCTOBER

H.PKI OPEN

z

HOUSE OC

OCTOBPKI OPEN HOUSE OCTOBER

HOUSE OCTOBER

20TH. PKI
20TH. PKI
20TH. PKI
20TH. PKI
20TH. PKI
20TH.PKI
20TH. PKI

=]
m
o

OCTOBER
OCTOBER
OCTOBER
OCTOBER
OCTOBER
OCTOBER
OCTOBER
OCTOBER

OPEN

OPEN
OPEN

3

20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20TH.PKI OPEN
20T
ZDTH PKI OPEN HOUSE OCTDBER

HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER

20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH. PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH. PKI

HOUSE OCTOBER 2

HOUSE OCTOBER
HOUSE OCTOBER

H.PKI OPEN

z

=
<]
€

HOUSE
HOUSE
HOUSE
HOUSE
HOUSE
HOUSE
HOUSE
HOUSE

@
m

ocC

20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI
20TH.PKI

OCTOBER

OPEN
OPEN

=
o

PlainText +

HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER

HOUSE OCTOBER 2

HOUSE OCTOBER
HOUSE OCTOBER

z

HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER
HOUSE OCTOBER

Tab Width: 8 ~

HDUSE
HOUSE
HOUSE

20TH. PKI
20TH. PKI

20TH. PKI
20TH. PKI
20TH. PKI
20TH. PKI
20TH. PKI
20TH. PKI
20TH. PKI

OCTOBER
OCTOBER
OCTOBER
OCTOBER
OCTOBER
OCTOBER
OCTOBER
OCTOBER

OPEN

OPEN
OPEN

el
N
@
e
2
9
A

R 20T

OPEN

Ln1, Col 169562

Circular transmission, Radio 3, output

20TH. PKI OPEN HDUSE

INS

51

FFT Plot B

Amplitude (dB)
4
3

" aas &26 827 828 829 &30 831 832 833 834 835

Frequency (MHz)

Trace Options
7 Peak Hold
@ Average

Avg Alpha: 0.5000

Persistence

Trace A | Store
Trace B | Store

Axis Options
dB/Div: +| -

Ref Level: il
Autoscale

Run

52

Figure 4.33: Circular transmission, Radio 3, receive frequency FFT plot 830 MHz

FFT Plot [Trece Options
-20 Peak Hold
Cd
- Average
Avg Alpha: 0.5000
-40
5 Persistence
g 0 : ¢
v
T Trace A | Store
£
B
£ 0 Trace B | Store
T Axis Options
. +| -
_100 dB/Div:
+| -
50 Autoscale
945 946 947 948 949 950 951 952 953 954 955
Frequency (MHz) Run

Figure 4.34: Circular transmission, Radio 2, receive frequency FFT plot 950 MHz

53

Chapter 5

Spectrum Sensing

5.1 Sensing with No Primary User Activities

In this part, we are going to use programs provided with the GNU Radio package
such as uhd_fft.grc, and usrp_spectrum_sense.py to observe spectrum activity.

Redesign of a configuration file in GRC to output amplitude and frequency
(uhd_fft.grc). The block is shown below with the GRC graph shown in Figure 5.1.
On the FFT Plot generated by the GRC graph shown in Figure 5.2 we could see
the average noise amplitude was around -120dB and close to g9ooMHz it was little
bit over -100dB.

We also used usrp_spectrum _sense.py script to validate our design. Under
the directory /usr/local/share/gnuradio/examples/uhd we ran the script ./ur-
sp-spectrum_sense.py 895M gosM The output showed and confirmed that our
noise_floor_db average was -120dB as shown in Figure 5.3

Setting: One radio with two antennas as shown in Figure 4.20

54

Options Parameter
1D: uhd it 1D: adaress
Title: UHD FFT Label: IP Address ency
Author: Example Value: IM
Description: UKD .. Potter ing Type: Float Type: Float Type: Float
Generate Options: WX GUI | | Short ID: a Short ID: 5 Short ID: £ Short 1D: g
Import
It ta i WX GUI Text Box N XGEEDSG WX GUI Slider WX GUI Chooser
po Py
1D: samp rate: 1D: freq : gain :
Label: Sample Rate: Label: RX Tine Frequency : in 3
SYXLUENeatack Default Value: 1M Default Value: 2.456 ul : uit Value:
0 oo Converter: Float Minimum; 50M
ek Onjentaon: o0 Grid Position: 1,0,1,3 | | Maximum: 66
e 2] comertr: o Conversaerit | | Tope:hacko s
WX GUI Scope Sink Grid Position: 3.0.1.8 Grid Position: 2,0, 1,8 Grid Position: 1,4, 1, 2
Title: Scope Plot
Sample Rate: 1M e
Notebook: b0, 2 D
Trigger Mode: Auto WX GUI Static Text Label: Antenna,
¥ Axis Labet: Counts 1D: lo_locked probe Default Value: |2
Label: LO Locked o
WX GUI FFT Sink Defauit Value: False Labels: 12, |1
Title: FFT Plot Converter: string Type: Radio Buttans
UHD: USRP Source Sample Rate: 1M Grid Position: 1,7, 1, 1
Baseband Freq: 2.45G

Samp Rate (Sps): M
Cho: Center Freq (Hz): 245G
Cho: Gain (dB): 0

ChO: Antennas RX2

Cho: Bandwidth (Hz): 1M

¥ per Div: 10 68 e —
¥ Divs: 15 petion, et

|| ReLevel (am): 0 1Dz chand_Jo_locked
RefScale (p2p): 2

FFT Size: 1,023k
Refresh Rate: 15
Window Size: -1, 400
Notebook: nbo, 0

Freq Set Varname: None

WX GUI Waterfall Sink

Title: Waterfall Plot

Sample Rate: 1M

Baseband Freq: 0

Dynamic Range: 100
Reference Level: 0

4" Ref Scale (p2p): 2

FFT Size: 512

FFT Rate: 15

Window Size: -1, 400

Netebook: no0, 1

Freq Set Varname: None

Figure 5.1: GRC configuration with built-in sensing blocks

5.2 Sensing with Primary User Activities

In this part, we included another radio to transmit at different frequencies to
observe changes in noise floor power received.

Work continued on the frequency sensing milestone but this time we used a
transmission block design to send a signal at gooMHz. Figures 5.2 and 5.3 is when
no signal was sent to the uhd_fft design on the radio 1. Figures 5.4 and 5.5 are
when the transmission signal is run on the second radio at gooM. The amplitude
when no signal is available was at -93.75 dBm, and it was -67 dBm when a signal
was detected with -34 dBm as peak amplitude.
usrp_spectrum_sense.py script method

We also used usrp_spectrum_sense.py script when the transmission signal was

available. We set it to sense between 895MHz to gosMHz. Under the directory

— .
FFT | Waterfall = Scope

FFT Plot [| Trece Options
0 Peak Hold

71 Average

I Persistence

@ -
g s
P -
] Trace A | Store
£
£ -
E Trace B | Store
<
Axis Options
dB/Div: + | =
Ref Level: 0 [IR
Autoscale
896 897 898 899 900 901 902 903 904 905
Frequency (MHz) Stop
Antenna

Sample Rate: | 10M LO Locked: True

® Rx2 7 TXRX
RX Gain: O

RX Tune Frequency: 900.85M

Figure 5.2: Sensing noise floor around -120 dB with FFT plot

= v
user@PKI346-LTO3: ~ I user@PKI346-LTO3: /usr/local/share/gnuradio/examples/... * | user@PKI346-LTO3: ~

2013-11-17 14:03:46.503641 center_freq 902875600.0 freq 962968750.6 power_db 4.60584643968 noise_floor_db -119.136785409
2013-11-17 14:03:46.503692 center_freq 902875000.0 freq 962975000.0 power_db 5.90720446646 noise_floor_db -119.130705409
2013-11-17 14:03:46.503742 center_freq 992875000.0 freq 902981250.0 power_db 5.66709799018 noise_floor_db -119.130705409
2013-11-17 14:03:46.503792 center_freq 902875000.0 freq 902987500.6 power_db 4.49830908905 noise_floor_db -119.130785409
2013-11-17 14:03:46.503843 center_freq 902875000.0 freq 962993750.6 power_db 5.36734151807 noise_floor_db -119.130785409
2013-11-17 14:03:46.503894 center_freq 902875000.0 freq 9083000000.0 power_db 6.79988165421 noise_floor_db -119.130785409
2013-11-17 14:03:46.503944 center_freq 902875000.0 freq 903006250.0 power_db 5.08908352235 noise_floor_db -119.130785409
2013-11-17 14:03:46.503995 center_freq 902875000.0 freq 963012500.0 power_db 4.69923826338 noise_floor_db -119.130785409
2013-11-17 14:03:46.504045 center_freq 992875000.0 freq 963018750.0 power_db 4.55322762338 noise floor_db -119.130785409
2013-11-17 14:03:46.504696 center_freq 902875600.0 freq 903625000.6 power_db 5.61956877366 noise floor_db -119.136785409
2013-11-17 14:03:46.504146 center_freq 902875600.0 freq 963031250.6 power_db 7.36700013682 noise_floor_db -119.1306785409
2013-11-17 14:03:46.504197 center_freq 902875000.0 freq 903037500.0 power_db 5.79035871056 noise_floor_db -119.130705409
2013-11-17 14:03:46.504248 center_freq 992875000.0 freq 903043750.0 power_db 5.80835034838 noise_floor_db -119.130705409
2013-11-17 14:03:46.504299 center_freq 902875000.0 freq 903050000.6 power_db 4.29614157503 noise_floor_db -119.130785409
2013-11-17 14:03:46.504372 center_freq 902875000.0 freq 903056250.0 power_db 4.58486033477 noise_floor_db -119.130785409
2013-11-17 14:03:46.504427 center_freq 902875000.0 freq 963062500.0 power_db 5.32161367562 noise_floor_db -119.130785409
2013-11-17 14:03:46.504464 center_freq 902875000.0 freq 963068750.0 power_db 5.39139122919 noise_floor_db -119.130785409
2013-11-17 14:03:46.504484 center_freq 902875000.0 freq 9083075000.0 power_db 3.86628292101 noise floor_db -119.130785409
2013-11-17 14:03:46.504505 center_freq 902875000.0 freq 903081250.0 power_db 3.88978160334 noise floor_db -119.130785409
2013-11-17 14:03:46.504525 center_freq 902875600.0 freq 9030687500.0 power_db 5.80969569602 noise floor_db -119.136785409
2013-11-17 14:03:46.504545 center_freq 902875600.0 freq 963093750.6 power_db 5.38218406845 noise floor_db -119.136785409
2013-11-17 14:03:46.504565 center_freq 902875000.0 freq 903100000.0 power_db 4.44538068828 noise_floor_db -119.130705409
2013-11-17 14:03:46.504585 center_freq 992875000.0 freq 903106250.0 power_db 6.35787612927 noise_floor_db -119.130705409
2013-11-17 14:03:46.504606 center_freq 902875000.0 freq 903112500.6 power_db 6.62650178844 noise_floor_db -119.130785409
2013-11-17 14:03:46.504627 center_freq 902875000.0 freq 963118750.0 power_db 4.5970948004 noise_floor_db -119.130705409
2013-11-17 14:03:46.504647 center_freq 902875000.0 freq 9083125000.0 power_db 4.73706144517 noise_floor_db -119.130785409
2013-11-17 14:03:46.504667 center_freq 902875000.0 freq 9063131250.0 power_db 4.55618557611 noise_floor_db -119.130785409
2013-11-17 14:03:46.504688 center_freq 902875000.0 freq 903137500.0 power_db 4.663759406122 noise_floor_db -119.130785409
2013-11-17 14:03:46.504708 center_freq 992875000.0 freq 903143750.0 power_db 5.083318694365 noise floor_db -119.130785409
2013-11-17 14:03:46.504728 center_freq 992875600.0 freq 903150000.6 power_db 4.10291048253 noise floor_db -119.136785409
2013-11-17 14:03:46.504748 center_freq 902875600.0 freq 963156250.0 power_db 5.88445466905 noise_floor_db -119.136785409
2013-11-17 14:03:46.504768 center_freq 902875000.0 freq 903162500.0 power_db 4.89272015746 noise_floor_db -119.130705409
2013-11-17 14:03:46.504788 center_freq 992875000.0 freq 903168750.0 power_db 5.52755231389 noise_floor_db -119.130705409
2013-11-17 14:03:46.504868 center_freq 902875000.0 freq 983175000.6 power_db 5.32752549197 noise_floor_db -119.130785409
2013-11-17 14:03:46.504828 center_freq 902875000.0 freq 903181250.0 power_db 5.27608868364 noise_floor_db -119.130785409
2013-11-17 14:03:46.504849 center_freq 902875000.0 freq 963187500.0 power_db 4.89902511622 noise_floor_db -119.130785409
2013-11-17 14:03:46.504869 center_freq 902875000.0 freq 963193750.0 power_db 4.49474979587 noise_floor_db -119.130785409
2013-11-17 14:03:46.504889 center_freq 992875000.0 freq 903200000.0 power_db 6.13484696989 noise floor_db -119.130785409
2013-11-17 14:03:46.504909 center_freq 902875600.0 freq 903206250.6 power_db 4.73883935062 noise_floor_db -119.130785409

Figure 5.3: Output of usrp_spectrum_sense.py confirming noise floor

56

/usr/local/share/gnuradio/examples/uhd we ran the script with the following
command: ./ursp_spectrum_sense.py 895MHz gosMHz
with the output shown in Figure 5.5.

The output shown in Figure 5.5 shows that our noise_floor_db average was
-102 dBm around 9ooMHz the center frequency at which the transmission radio is
sending signal. At 8g9gMHz the average noise_floor was -112 dBm and at gotMHz
the noise_floor was at -114 dBm. Settings and results are shown below:

Conclusion: Our radio senses at -102 dBm Setting: Set two radios with GRC
companion, one to transmit at g9ooM the other to run the uhd_fft.grc to sense as

shown in Figure 5.4.

UHD FFT — | O
FFT | Waterfall = Scope
FFT Plot . Trace Options
0 | Peak Hold
-10 | Average
-20
-30 .
-40 Persistence
-50
_ﬂ!;" -60
L] L =
& T Trace A | Store
£ -80
[-8
E -90 Trace B Store
~100 Axis Options
-110
. il
58 dB/Div:
-130 Ref Level: Hl =
-140
150 Autoscale
895 896 897 898 899 900 901 902 903 904 905
Frequency (MHz) Run

Antenna

i i LO Locked: Ti
® RX2 7 TX/RX ocked: frue

Sample Rate: | 10M

RX Gain: O

RX Tune Frequency: 900M

Figure 5.4: FFT plot sensing primary at goo MHz

user@PKI346-LT03: ~

2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07
2013-11-07

10:48:09.442385
10:48:09.442486
10:48:09.442602
10:48:09.442707
1 8:09.442809
10:48:09.442928
10:48:09.443028
10:48:09.443130
10:48:09.443232
10:48:09.443347
10:48:09.443432
10:48:09.443491
10:48:09.443547
10:48:09.443607
10:48:09.443676
10:48:09.443740
10:48:09.443795
10:48:09.443855
10:48:09.443912
10:48:09.443965
10:48:09.444053

8:09.444163
10:48:09.444217
10:48:09.444270
10:48:09.444324
10:48:09.444390
10:48:09.444446
10:48:09.444500
10:48:09.444553
10:48:09.444606
10:48:09.444659
10:48:09.444724
10:48:09.444781
10:48:09.444835
10:48:09.444889
10:48:09.444943
10:48:09.444997
1 8:09.445050
10:48:09.445117
10:48:09.445173
10:48:09.445227
10:48:09.445281
10:48:09.445334
10:48:09.445386
10:48:09.445450
10:48:09.445565
10:48:09.445558
10:48:09.445611
10:48:09.445664
10:48:09.445717
10:48:09.445770
10:48:09.445834

center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq

[
| user@PKI346-LT03: fusr/local/share/gnuradio/exam...

900125000 .
900125000 .
900125000 .
900125000 .
900125000 .
900125000 .
9001256000 .
900125000.
9001256000 .
900125000 .
900125000 .
900125000 .
900125000 .
900125000 .
900125000 .
9001256000 .
900125000.
9001256000 .
900125000,
900125000 .
900125000 .
900125000 .
900125000 .
900125000 .
900125000 .
900125000.
900125600 .
900125000 .
900125000 .
900125000 .
900125000 .
900125000 .
900125000 .
900125000 .
900125000.
9001256000 .
900125000,
9001256000 .
900125000 .
900125000 .
900125000 .
900125000 .
9001256000 .
900125000.
900125000 .
900125000 .
900125600 .
900125000 .
900125000 .
900125000 .
900125000 .
9001256000 .
900125000.

¢}

]
(¢}
<]
(¢}
(<]
¢}
o
@
(¢}
¢}
(¢}
@
(¢}
(<]
]
¢}
¢}
o
<]
(¢}
(<]
(¢}
(<]
@
(¢}
¢}
(]
@
(¢}
¢}
(¢}
0
<]
(¢}
¢}
¢}
¢}
(¢}
<]
(¢}
(¢}
(¢}
(]
@
(¢}
¢}
(¢}
@
(¢}
(¢}
¢}
¢}

freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq

899906250.0
899912500.0
899918750.0
899925000.0
899931250.0
899937500.0
8999437560.0
899950000.0
8999562560.0
899962500.0
8999687560.0
899975000.0
8999812560.0
899987500.0
899993750.0
200000000.0
900006250.0
900012500.0
900018750.0
900025000.0
900031250.0
900037500.0
900043750.0
900050000.0
9000562560.0
900062500.0
9000687560.0
900075000.0
900081250.0
900087500.0
900093750.0
900100000.0
900106250.0
900112500.0
900118750.0
900125000.0
900131250.0
900137500.0
900143750.0
900150000.0
900156250.0
900162500.0
9001687560.0
900175000.0
9001812560.0
900187500.0
9001937560.0
900200000.0
900206250.0
900212500.0
9002187560.0
900225000.0
900231250.0

power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db

55.4475254288
51.6952971936
49.1569733988
47.9869748658
47.8567526805
48.7839485543
56.4569752889
51.5205370115
52.23620870988
53.4690297913
55.2873822282
57.6247547733
58.2075603027
62.0832216242
67.3961647284
67.3153857211
61.8400957284
58.5621927642
57.3521156233
55.2847640216
53.2494721701

\
| user@PKI346-LTO3: ~

noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db

-102.905683348
-102.905683348
-102.905683348
-102.905683348
-102.905683348
-102.905683348
-102.905683348
-102.905683348
-102.985683348
-102.905683348
-102.905683348
-162.905683348
-102.9685683348
-102.905683348
-102.905683348
-162.905683348
-102.905683348
-162.905683348
-102.905683348
-102.905683348
-102.905683348

52.545366421 noise_floor_db -102.9065683348

51.9001049266
50.4026827065
48.7239946747
47.9891807807
46.8651378129
47.5185196466
51.8510775501
55.6713096692
58.7223890776
56.1745733024
52.8777144993
49.9958817175
48.1252843085

noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db

-102.905683348
-102.905683348
-102.9085683348
-102.905683348
-162.905683348
-102.905683348
-102.905683348
-102.905683348
-102.905683348
-162.905683348
-102.905683348
-102.905683348
-102.905683348

46.350717357 noise_floor_db -102.905683348

45.8224894236
45.0045728974
44.2982721442
44.4029204878
44.0187959081
43.1198574517
43.98420803505
44.7347575272
46.9525591743
49.2262961053
56.3158782387
46.4834837789
42.2551472051
38.5584752188
35.0354506812
33.1813308817
32.4359117966

noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db
noise_floor_db

-102.905683348
-162.905683348
-102.905683348
-162.905683348
-102.905683348
-102.905683348
-102.905683348
-102.905683348
-102.9085683348
-102.905683348
-162.905683348
-162.905683348
-102.9685683348
-102.905683348
-102.905683348
-162.905683348
-102.905683348

57

Figure 5.5: Output of usrp_spectrum_sense.py showing sensing power and noise
floor with primary on

2013-11-07 10:48:08.946518 center_freq 899375000.0 freq 899718750.0 power_db

36.3289261445 noise_floor_db -112.140832222

2013-11-07 10:48:08.946571 center_freq 899375000.0 freq 899725000.0 power_db

33.9021367626 noise_floor_db -112.140832222

2013-11-07 10:48:08.946624 center_freq 899375000.0 freq 899731250.0 power_db

32.7616186608 noise_floor_db -112.140832222

2013-11-07 10:48:08.946677 center_freq 899375000.0 freq 899737500.0 power_db

34.906888034 noise_floor_db -112.140832222

2013-11-07 10:48:08.946745 center_freq 899375000.0 freq 899743750.0 power_db

36.5907079158 noise_floor_db -112.140832222

2013-11-07 10:48:09.439582 center_freq 900125000.0 freq 899750000.0 power_db

27.3321624648 noise_floor_db -102.905683348
2013-11-07 10:48:09.439726 center_freq 900125000.0 freq 899756250.0 power_db
30.0780642102 noise_floor_db -102.905683348
2013-11-07 10:48:09.439858 center_freq 900125000.0 freq 899762500.0 power_db
32.2757709265 noise_floor_db -102.905683348
2013-11-07 10:48:09.439962 center_freq 900125000.0 freq 899768750.0 power_db
33.0531365666 noise_floor_db -102.905683348
2013-11-07 10:48:09.440124 center_freq 900125000.0 freq 899775000.0 power_db
35.5477540436 noise_floor_db -102.905683348
2013-11-07 10:48:09.940027 center_freq 900875000.0 freq 900500000.0 power_db
16.1476730148 noise_floor_db -114.387927013
2013-11-07 10:48:09.940143 center_freq 900875000.0 freq 9oo506250.0 power_db
12.7616848263 noise_floor_db -114.387927013
2013-11-07 10:48:09.940205 center_freq 900875000.0 freq 900512500.0 power_db
9.832082081 noise_floor_db -114.387927013
2013-11-07 10:48:09.940282 center_freq 900875000.0 freq 900518750.0 power_db
10.62603825 noise_floor_db -114.387927013
2013-11-07 10:48:09.940372 center_freq 900875000.0 freq 900525000.0 power_db
11.8954172239 noise_floor_db -114.387927013

In this part, we are observing change in received signal power. Sensing with
signal power:

Sensing with no signal transmission

Settings and results are shown below: We ran usrp_spectrum_sense.py script
when any transmission signal was not available between 8gsMHz to gosMHz and
observe the power of the signal received at the output.

We can observe that the power_db of the signal the receiver is sensing around 4

to 5 dB when no signal is present as shown in Figures 5.6 & 5.7. Figures 5.8 & 5.9

59

show that power_db received is 35 to 50 dB when PU is transmitting.

user@PKI346-LTO3: /usr/local/share/gn... ‘{ user@PKI346-LTO3: /usr/local/share/gnu..

power_db 4.27438383236 noise_floor_db -118.252610973
power_db 3.13691176279 noise_floor_db -118.252610973
power_db 4.61045771315 noise_floor_db -118.252610973
power_db 5.108912109752 noise_floor_db -118.252610973
power_db 4.7258529307 noise floor_db -118.252610973
power_db 2.36676371559 noise floor_db -118.252610973
power_db 3.606449012256 noise_floor_db -118.252610973

user@PKI346-LTO3: /usr/local/share/gn... user@PKI346-LT03: /usr/local/share/gn.

2013-12-04 17:37:32.624847 center_freq 900625000.0 freq 960281256.
2013-12-04 17:37:32.624900 center_freq 900625000.0 freq 960287500.
2013-12-04 1 7:32.624957 center_freq 900625000.0 freq 908293750.
2013-12-04 1 7:32.625013 center_freq 900625000.0 freq 900300800.
2013-12-04 1 7:32.625090 center_freq 900625000.0 freq 900306250.
2013-12-064 1 7:32.625172 center_freq 900625000.0 freq 908312500.
2013-12-04 17:37:32.625231 center_freq 900625000.0 freq 900318750.

2013-12-04 7:32.625287 center_freq 900625000.8 freq 9008325000.8 power_db 4.134990857243 noise_floor_db -118.252610973
2013-12-04 7:32.625342 center_freq 900625000.0 freq 908331250.0 power_db 4.087166237601 noise_floor_db -118.252610973
2013-12-064 center_freq 900625000.0 freq 966337500.6 power_db 3.67965398525 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 908343750.0 power_db 4.89046745688 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 906350000.6 power_db 6.15964647541 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 900356250.0 power_db 6.13899925656 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 966362500.6 power_db 3.360731890852 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 900368750.0 power_db 3.44938141238 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 966375000.08 power_db 3.68114525512 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 900381250.0 power_db 3.84520110398 noise_floor_db -118.2526108973
2013-12-04 17:37:32.625927 center_freq 900625000.0 freq 966387500.0 power_db 3.48332118781 noise_floor_db -118.252610973
2013-12-04 7:32.625982 center_freq 900625000.0 freq 988393750.0 power_db 4.38438446862 noise_floor_db -118.252610973
2013-12-04 .17331319478 noise_floor_db -118.252618973
2013-12-04 7:32.626095 center_freq 900625000.0 freq 908406250.

2013-12-04 7:32.626167 center_freq 900625000.0 freq 966412500.0 power_db 4.54674170169 noise_floor_db -118.252610973

2013-12-04 17:37:32.626247 center_freq 900625000.0 freq 980418750.08 power_db 5.85339833354 noise_floor_db -118.252610973

2013-12-04 center_freq 900625000.0 freq 966425000.08 power_db 4.67884254606 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 900431250.0 power_db 5.68337447612 noise_floor_db -118.2526108973
2013-12-04 center_freq 900625000.0 freq 966437500.0 power_db 4.76325333485 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 986443750.08 power_db 4.34321621247 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 966450000.08 power_db 6.12138924818 noise_floor_db -118.252610973
2013-12-04 center_freq 900625000.0 freq 900456250.0 power_db 6.23850754527 noise_floor_db -118.2526108973
2013-12-04 center_freq 900625000.0 freq 986462500.0 power_db 5.308389686864 noise_floor_db -118.252610973

2013-12-04 17:37:32.626732 center_freq 900625000.0 freq 900468750 .
2013-12-04 7:32.626783 center_freq 900625000.0 freq 900475600.
2013-12-04 7:32.626834 center_freq 900625000.0 freq 900481250.
2013-12-04 17:37:32.626916 center_freq 900625000.0 freq 960487500.
2013-12-04 1 7:32.626977 center_freq 900625000.0 freq 908493750.
2013-12-04 1 7:32.627029 center_freq 900625000.0 freq 908500800 .
2013-12-04 1 7:32.627081 center_freq 900625000.0 freq 900506250.
2013-12-04 1 7:32.627132 center_freq 900625000.0 freq 9085125600.
2013-12-04 17:37:32.627183 center_freq 900625000.0 freq 900518750.

power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db

.196462408558 noise_floor_db -118.252610973
.52078952762 noise_floor_db -118.252610973
.20222822106 noise_floor_db -118.252610973
.90476562711 noise_floor_db -118.252610973
.34156349197 noise_floor_db -118.252610973
.05281808905 noise_floor_db -118.252610973
.86770589482 noise_floor_db -118.252610973
.57265999464 noise_floor_db -118.252610973
.20552276302 noise_floor_db -118.252610973

]
] 3
] 4
] 5
] 4
] 2
] 3
] 4
] 4
] 3
] 4
] 6
] 6
] 3
] 3
] 3
] 3
] 3
] 4
7:32.626038 center_freq 900625000.0 freq 966400000.0 power_db 4
@ power_db 3.56907615728 noise_floor_db -118.2526108973
] 4
] 5
] 4
] 5
] 4
] 4
] 6
] 6
] 5
] 4
] 4
] 4
] 4
] 5
] 5
] 3
] 4
] 4

Figure 5.6: Output of usrp_spectrum_sense.py showing sensing power and noise
floor with primary off

5.3 Audio/Video Application

Audio/Video (AV) applications are great for demos, and GStreamer is a well-
documented application programming interface (API) that was used to capture,

encode and pipe AV to GNU Radio.

5.3.1 Webcam

The first GStreamer application written was to capture live video from the built
in webcam on the laptop and display it on the screen. Figure 5.10 shows the

successful script and results.

2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04

.624847
.624900
.624957
.625013
.625090
.625172
.625231
.625287
.625342
.625394
.625482
.625543
.625602
.625655
.625713
.625773
.625864
.625927
.625982
.626038
.626095
.626167
.626247
.626306
.626361
.626416
626473
626563
.626627
.626680
626732
.626783
.626834
.626916
626977
.627029
.627081
.627132
.627183

center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq

900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
200625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.
900625000.

Q0000000000000 000R000000000

freq
freq
freq
freq
freq
freqg
freqg
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freqg
freqg
freq
freq
freq
freq

900281250.
900287500.
900293750.
900300000.
900306250.
9003125600.
900318750.
900325000.
900331250.
900337500.
900343750.
900350000.
900356250.
900362500.
900368750.
900375000.
900381250.
900387500.
900393750.
900400000.
900406250.
900412500.
900418750.
900425000.
900431250.
900437500.
900443750.
900450000.
900456250.
900462500.
900468750.
900475000.
900481250.
900487500.
900493750.
900500000.
900506250.
900512500.
900518750.

Q0000000000000

power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db

bW bbbhRU bR bULUDLWDSLDLEWWWWWOS R WDRDBWRNBWU R WL

.27438383236
.13691176279
.01045771315
.10912109752
.7258529307 n
.36676371559
.00449012256
.13499057243
.07166237601
67965398525
.09046745688
.15964047541
.13899925656
.36073109052
.44938141238
.68114525512
.84520110398
.48332118781
.38438446862
.17331319478
.56907615728
.54674170169
.05339033354
.67884254606
.68337447612
.76325333485
.34321621247
.12130924818
.23850754527
.30309686864
.19646240558
.52078952762
.20222822106
.90476562711
.34156349197
.05281808905
.B6770589482
.57265999464
.20552276302

60

Figure 5.7: Output of usrp_spectrum_sense.py showing sensing power with

primary off

5.3.2 User Datagram Protocol (UDP)

Initially, research showed other people using UDP to send data from GStreamer to

GNU Radio, however, those people were using wired media between SDRs. Figures

5.11 and 5.12 show the script and GRC graph created to test communications

using this protocol. Another reason UDP was looked was because we did not

know how to create a pipe between GStreamer and GNU Radio. Our first idea

was to use sockets or write to a port with one application while reading from the

same port with another. Please notice that the below test was done using a channel

model (virtual channel).

A Wireshark filter to sniff UDP packets at port 1234 and the USRP Ethernet

user@PKI346-LTO3: /usr/local/share/gn...

17:
17:

2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04

17
17

17:
17:
17:
A7z
17:

17
17

A7z
17:
17:
17:
A7z
17:
17:
17:
A7z
17:
17:

17
17

17:
17:
17:
17z
17:

17
17

17:
17:
17:
17:
17:
17:
17:
17:

Figure 5.8:

39:52.980039
52.980107
.980184
.980241
.980305
.980362
.980416
.980490
.980561
.980626
.980685
.980739
.980792
.980878
.980941
.980995
.981048
.981102
.981155
.981242
.981305
.981359
.981414
.981468
.981521
.981606
.981669
.981723
.981776
.981830
.981883
.474705
.474837
.474947
.475048
.475157
.475266
3.475372
9:53.475480

center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq

899875000

899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000.
899875000 .
899875000 .
900625000 .
900625000 .
900625000 .
900625000 .
900625000 .
900625000 .
900625000 .
900625000 .

]
]
]
(]
]
]
]
]
]
]
]
(]
]
]
]
]
]
]
.0
(]
]
]
]
]
]
]
]
(]
]
]
]
]
5]
]
]
(]
]
]

(]

freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq

900056250.0
900062500.0
900068750.0
500075000.0
900081250.0
900087500.0
900093750.0
500100000.0
900106250.0
900112500.0
900118750.0
900125000.0
900131250.0
900137500.0
900143750.0
500150000.0
900156250.0
900162500.0
900168750.0
.0
a
(]
]
a
]
a
(]
a
)
]
]
e
)
]
]
e
)
]
]

900175000

900181250.
900187500.
900193750.
500200000 .
900206250 .
900212500.
900218750.
900225000 .
900231250.
900237500.
900243750.
900250000 .
900256250
900262500 .
900268750
900275000 .
900281250.
900287500.
900293750.

user@PKI346-LT03: /usr/local/share/gn...
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .
899875000 .

user@PKI346-LTO3: /usr/local/share/gn...

power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db

48.
48.
47.
49.
52.

58

a4

a0

34.
33.
29.
.
35.
32.
30.
AL

34

6323563254 noise_floor_db
1930762365 noise_floor_db
8402007092 noise_floor_db
3893048187 noise_floor_db
9724292254 noise_floor_db

.0426770761 noise_floor_db
60.
58.
54.
51.
50.
48.
6.
as.
a3.

6882986731 noise_floor_db
1125881794 noise_floor_db
6785110443 noise_floor_db
9217820534 noise_floor_db
4805776433 noise_floor_db
50643834428 noise_floor_db
9465235772 noise_floor_db
7239226291 noise_floor_db
1259312948 noise_floor_db

.8320617799 noise_floor_db
aa.
as.
a6.
6.
48.
51.
51.
a7.
43.

716410082 noise_floor_db
738357524 noise_floor_db
5221750159 noise_floor_db
2229440141 noise_floor_db
8144222536 noise_floor_db
183284819 noise_floor_db
9649365261 noise_floor_db
9796661379 noise_floor_db
8347139975 noise_floor_db

i user@PKI346-LTO3: /usr/local/share/gnu..
-1088.
-108.
-108.
-108.
-1088.
-1088.
-1088.
-108.
-1088.
-108.
-108.
-108.
-1088.
-1088.
-1088.
-108.

607500438
607500438
607500438
607500438
607500438
607500438
607500438
607500438
607500438
607500438
607500438
607500438
607500438
607500438
607500438
607500438

-1088.607508438
-1088.607500438

-108.
-108.
-1088.

607500438
607500438
607500438

-1088.607500438

-1088.
-108.
-1088.
.36161627 noise_floor_db -108.607508438
37.

607500438
607500438
607500438

2069131044 noise_floor_db -108.607500438
565962271 noise_floor_db -188.607500438
434033033 noise_floor_db -108.607500438

9127983296 noise_floor_db
08177478054 noise_floor_db
0656158241 noise_floor_db
9085772356 noise_floor_db
2099825081 noise_floor_db
9707673886 noise_floor_db

.5851684468 noise_floor_db
35.
36.
34.

9007956834 noise_floor_db
3975398507 noise_floor_db
4317957906 noise_floor_db

-108.
-108.
-114.

607500438
607500438
069464118

-114.069464118

-114.
-114.
-114.
-114.
-114.
-114.

069464118
069464118
069464118
069464118
069464118
069464118

61

Output of usrp_spectrum_sense.py showing sensing power and noise
floor with primary on

port (eth2) was used to verify packets at port. Packets were observed at both IPs

and stopped when transmission stopped.

5.3.3 Video File Transfer via Virtual Channel

Upon further research pipelines were created using First In, First Out (FIFO) files

which are created with the following command: sudo mkfifo filename. Figure 5.13

shows GRC flow graph that takes a video file and encodes, modulates, transfers

through virtual radio channel, demodulates, decodes, and writes to the FIFO file

rxvid3.ts. The virtual channel was used to ensure that all steps excluding the radio

link worked properly.

Figure 5.14 is the GStreamer script used to read from the FIFO file and save it

as a different file. The Linux command line shown in Figure 5.15 shows the shell

file running. Finally, Figure 5.16 shows the saved file

2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04
2013-12-04

Figure 5.9:
primary on

5.3.4 Live Streaming Using Two USRP2 SDRs

17:39:52.980039
17:39:52.980107
17:39:52.980184
17:39:52.980241
17:39:52.980305
17:39:52.980362
17:39:52.980416
17:39:52.980490
17:39:52.980561
17:39:52.980626
17:39:52.980685
17:39:52.980739
17:39:52.980792
17:39:52.980878
17:39:52.980941
17:39:52.980995
17:39:52.981048
17:39:52.981102
17:39:52.981155
17:39:52.981242
17:39:52.981305
17:39:52.981359
17:39:52.981414
17:39:52.981468
17:39:52.981521
17:39:52.981606
17:39:52.981669
17:39:52.981723
17:39:52.981776
17:39:52.981830
17:39:52.981883
17:39:53.474705
17:39:53.474837
17:39:53.474947
17:39:53.475048
17:39:53.475157
17:39:53.475266
17:39:53.475372
17:39:53.475480

center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq
center_freq

899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
899875000.
900625000.
900625000.
200625000.
900625000.
900625000.
900625000.
900625000.
900625000.

0000000000000 000R000RR0000CC000QRCC00ORRRO0O

freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freg
freq
freq
freq
freq
freq
freq
freq
freqg
freq
freq
freq
freq
freq
freq
freq

900056250.
900062500.
900068750.
9600075000.
900081250.
9600087500.
900093750.
900100000.
900106250.
900112500.
900118750.
900125000.
900131250.
9600137500.
900143750.
900150000.
900156250.
900162500.
900168750.
900175000.
900181250.
900187500.
900193750.
900200000.
900206250.
900212500.
900218750.
9600225000.
900231250.
9600237500.
900243750.
900250000.
900256250.
900262500.
900268750.
900275000.
900281250.
900287500.
900293750.

power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db
power_db

.6323563254
.1930762365
.8402007092
.3893048187
.9724292254
.0426770761
.6882986731
.1125881794
.6785110443
.9217820534
.4805776433
.5043834428
.9465235772
.7239226291
.1259312948
.8320617799
.710410082 n
.738357524 n
.5221750159
.2229440141
.8144222536
.183284819 n
.9649365261
.9796661379
.8347139975
.36161627 no
.2069131044
.565962271 n
.434033033 n
.9127903296
.0177478054
.0656158241
.905772356 n
.2099825081
.9707673886
.5851684468
.9007956834
.3975398507
.4317957906

62

Output of usrp_spectrum_sense.py showing sensing power with

The next step was to successfully transmit and receive live video from the webcam

on terminal one, and display the video on terminal two. Figure 5.17 shows the

GStreamer script for the transmit side while Figure 5.18 shows the receive side.

Figure 5.19 shows the GRC flow graph for the transmit side while Figure 5.20

shows the receive side. Figure 5.21 shows a screen shot of the live video from the

receive side. Please click on the hyperlinks below to view the setup and successful

execution of this test.

Link 1
Link 2

http://youtu.be/aowgu6jgBXw
http://youtu.be/WLM21ea5Op8

63

Start TS + valZsrc)
. pst-launch ‘wmmm @ Raw viden Viden

JSErEPRII46-LT03: -5 ast - Launch val2sre | videos-raw-vuy, franerates26/1 | svindgesink
setting plpeline to PAUSED ...

Hpeline is live and does not meed PREROLL ...

setting pipeline to PLAYING ...

dew clock: GstSystemClock

= .

Figure 5.10: GStreamer terminal command for video transmit to GRC via UDP

Set UDP udpsrc Protocol ::;T_um ::zg; UDP
Port ort=5
2 e ik protocol {demux)

usergPKI346-LT83: -5 qst-launch udpsrc port=5800 | application/x-rtp, clock-rate=96040,payload=96 ! rtph263pdepay | udpsink |
Setting pipeline t 141 pr

Pipeline is live and does mot need PREROLL ...

Setting pipeline to PLAYING ...

Mew clock: GstSystemClock

“CCaught interrupt -- handling interrupt.

Interrupt: Stopping pipeline ...

Execution ended after 45552757192 ns.

Setting pipeline to PAUSED ...

Setting pipeline to READY ...

Figure 5.11: GStreamer terminal command for video receive from GRC via UDP

5.3.5 Audio Recording and Streaming with GStreamer

Audio streaming is a great application for demos and a great way to learn GStream-
er. Learning the audio libraries in GStreamer was done in multiple steps which

include recording live audio from microphone to file, and streaming audio between

Options
1D: gmsk

Generate Options: WX GUI

Variable
ID: samp_rate
Value: 250k

Variable
1D: freg
Value: 500M

UDP Source
IP Address: 127.0.0.1
Port: 1.234k
Payload Size: 1.472k
Null Pkt is EOF: True

Packet Encoder
Samples/Symbol: 2
Bits/Symbol: 1
Access Code:

Pad for USRP: &5
Payload Length: 0

952 g 7]

UHD: USRP Sink
Samp Rate (Sps): 250k
Ch: Center Freq (Hz): 300M
ChO: Gain (dB): 0
ChO: Antenna: TX/RX
ChO: Bandwidth (Hz): 500k

Packet Decoder
Access Code:
Threshold: -1

GMSK Mod

Samples/Symbaol: 2
BT: 350m
Verbose: On

64

Noise Voltage: 0

Epsilon: 1
Taps: 1+1j
Seed: 0

Channel Model

Frequency Offset: 0

GMSK Demod
Samples/Symbol: 2
Gain Mu: 175m
Mu: 500m

Freq Error: 0

Omega Relative Limit: 5m

JUUI._JUL.JUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUL
JuuuuuuuuuuuUUUuUUUUUUUUuuuuUuUvUvuvUUvUvUUvUvUUvUUUUuUuuyuuuuuuuuuuvlvuuululvuuuuuuyuuL
Juuuuuuuuuuuuuuuuuuuuuuuduuuuduuuuyuudyuuuyuulyuuluduluyuuuuduuddududuuuududduu
JuuuuuuuuuuuuUUuUUUUuuUUUUUuUvvulvvuvvLvlvvvUuvuuuyuuuuyuuvuuuvuvullvvulluvuuuuuuuuuuL
JuuuuuuuuuuuUUUuUUUUUUUUUuUUUUUUvvUUUUUvUvUUUvUUUUuUuuyuuyvuuvuuuuulvuuvululvuuuuuuyuuL

Figure 5.12: GRC flow graph to receive video from GStreamer via UDP and tx/rx
using a virtual channel

Options
ID: gmsk
‘Generate Options: WX GUI

Variable
1D: freg
Value: 200M

Variable
1D: samp_rate
Value: 10M

Packet Encoder
Samples/Symbol: 2
File Source
. Bits/Symbol: 1 ! G Mo
File: ...reamer_stuffftest.ts M %) M Samples/Symbol: 2
Repeat: Yes Cofes :
pes Pad for USRP: Yes BT 350
Payload Length: 0
File Sink Packet Decoder
File: . amer_stuffirxvid3.ts [T | ———{BU| Access Code:
Unbuffered: Off Threshold: -1

Channel Model
Noise Voltage: 0
Frequency Offset: 0
Epsilon: 1

‘GMSK Demod
Samples/Symbol: 2
Gain Mu: 175m

Mu: 500m

‘Omega Relative Limit: 5m
Freq Error: 0

WX GUI FFT Sink

Title: FFT Plot
Sample Rate: 10M
Baseband Freq: 0
Y per Div: 10 dB

Y Divs: 10
ReflLevel (dB): 0
Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 15

Freq Set Varname: N

Figure 5.13: GRC flow graph to retrieve video from file, tx/rx through virtual
channel and send to GStreamer using Linux FIFO pipe file

gst-launch -e -v filesrc location=rxvid3.ts ! queue ! filesink location=rxvidfile.ts

Figure 5.14: GStreamer BASH script to receive video file from GRC and save it to

another file

two stations.

1. Successfully saved audio to file using GStreamer with the script shown in

user@PKI346-LT0O3:~/GStreamer_stuftS$./gst_udptx_port.sh
Setting pipeline to PAUSED ...
Pipeline is PREROLLING ...

Pipeline is PREROLLED ...

Setting pipeline to PLAYING ...

New clock: GstSystemClock

Got EOS from element "pipelined”.
Execution ended after 6676676855 ns.
Setting pipeline to PAUSED ...
Setting pipeline to READY ...

Setting pipeline to NULL ...

Freeing pipeline ...
user@PKI346-LT03:~/G5treamer stuffs I

Figure 5.15: GStreamer shell file executed and running

£ A Homa T L Q =
Places = g I
b b b
@ Rocent Wl et e U
A Home enc_testlsh enc_testZ_ enc_testJsh Getling widea Getting video grsk.gre
withWebCam.sh properties out of properties out of
[Documents GStreamer | Bnah.. GStreamer | Bna_fi

ds L B B OB B

1 Pictisres gk py gst_nspect_out GStroamer2gmak. GStreamerZvirtual, GStreamar. GStreamer_
v gre gre vidFile 2vidFile.wCh, webcam2virtualgre
oot
q
T Trash
Devices <@ é
& Computer g5t Ldpty_port.sh Motes_3lmarld i, 3 el ts reidd ts riafile, avi
&
& Browse Natwork b =
I Conmaerts S rdfile. ts Simple DVE test.ts tostLts w1 avi w2 avi
axampla_tx
) =
P £ =i & ?
widB.avi widd.avi vdeo txavi view.video sh wabcam s wirgshark prap
-}
Wirgghark

GRCwWGStreamer. 1
peap

Figure 5.16: Directory with new file name rxvidfile.ts created by GStreamer

gst-launch -e -v v4l2src ! tee name="splitter" ! \

queue leaky=1 ! video/x-raw-yuv, framerate=10/1, wideth=328,
height=240 ! ffmpegcolorspace ! xvimagesink sync=false)
splitter. ! queue ! x264enc ! mpegtsmux ! filesink
location=test live.ts

Figure 5.17: GStreamer shell script for live video streaming - transmit side

Figure 5.22

66

|gst-launch-1.8 -e -v filesrc location=rxvid.ts ! queue max-size-bytes=512000 ! decodebin ! xvimagesink

Figure 5.18: GStreamer shell script for live video streaming - receive side

Options Variable Variahle Variable
1D: gmsk ID: samp rate 1D: freq 1D: BW
Generate Options: WX GUI Value: 4M Value: 300M Value: Z2M

Packet Encoder
File Source Samples/Symbol: 2

) Bits/Symbol: 1
File: ..r stuffftest livets H @7
L ERIRES e Access Code:

Repeat: No Pad for USRP: Yes
Payload Length: 0

UHD: USRP Sink
Samp Rate (Sps): 4M

ChO: Center Freq (Hz): 900M GMSK Mod
ChO: Gain [dB): 0 Samples/Symbol: 2 E“"_
Chi: Antenna: TX/FX BT: 350m

ChO: Bandwidth (Hz): 2M

Figure 5.19: GRC flow graph for live video streaming - transmit side

Low Pass Filter
UHD: USRP Source Decimation: 1 GMSK Demod
Gain: 1 Samples/Symbol: 2
z::f’:::a:e ':p’): ‘::: i Sample Rate: 4M Gain Mu: 175m -
i mrni;szfqu[): [o Freq: 2M (-l . o0
Cho: Bandwidth (Hz): 2M Transition Width: 50k Omega Relative Limit: Sm
Window: Hamming Freq Error: 0
Beta: 6.76
File Sink Packet Decoder
File: ..eamer_stuff/ravid.ts E‘ E Access Code: El-‘
Unbuffered: Off Threshold: -1

Figure 5.20: GRC flow graph for live video streaming - receive side

2. Successfully saved audio to file using GStreamer piped to GNU Radio

3. Successfully transmitted audio file from node_1 to node_2 with playback

ability. Also, no error in playback due to use of throttle block in GRC

4. Successtully recorded live voice to file using built in microphone and GStream-

67

Figure 5.21: Received streamed video produced by GStreamer sink

er with the script shown in Figure 5.23

5. Successfully transmitted live voice stream from node_1 to node_2; however,

noise made it difficult to hear voice

6. Cleaned up signal with use of Chebyshev bandpass filter in GStreamer;
however, an echo is present and amplifies as time progresses. This echo
includes a feedback that after a period of time is so loud that the receiving

person is unable to hear voice

#Test source to file without gnuradio
#gst-launch-1.0 audiotestsrc num-buffers=446 | audioconvert ! audio/x-raw,rate=44100,channels=2 | queue ! mux. avimux name=mux !\
#filesink location=testAudioil.avi

Figure 5.22: GStreamer shell script to test creating audio tone and saving to file

To stream live audio the GStreamer script shown in Figure 5.24 was used

along with the GRC flow graph shown in Figure 5.25 completes the transmit side.

68

#live audio from mic to fifo file piped to gnuradio
#gst-launch-1.0 autoaudiosrc ! audiowsincband mode=band-pass lower-frequency=580 upper-frequency=2500 ! audioconvert ! mux. avimux name=mux !\
#filesink location=fifoAudiol.avi

Figure 5.23: GStreamer shell script to test creating live audio and saving to file

GStreamer makes it easy to enable the built in microphone by using autoaudiosrc.
To ensure format compatibility, audioconvert is used. This GRC flow graph uses a
throttle block which ended up being removed in later revisions. The throttle block
literally throttles down the cpu which is not wanted. Figures 5.26 and 5.27 show
the receive side GStreamer script and GRC flow graph. Once again GStreamer
makes it easier on the user by providing the decodebin command which detects
the incoming streams format and selects the correct decoder. Lastly, due to the
noise, a band-pass filter was implemented which helped with the noise but not the
echo present. To correct the echo issue, a keyboard shortcut was created to enable

the user to key the microphone when needed and turn it off when idle.

gst-launch-1.0 autoaudiosrc ! audioconvert ! lamemp3enc target=1 bitrate=64 cbr=true ! filesink location=audioFifo.mp3

Figure 5.24: GStreamer shell script creating live audio and sending to GRC via
FIFO pipe file

Options Variable Variable Variable Variable
1D: gmsk 1D: samp_rate 1D: freg 1D: BW ID: samp_rate2
Generate Options: WX GUI Value: 4M Value: 300M Value: 2M Value: 1M

Packet Encoder

Samples/Symbeol: 2
File Source Throttle Bil:s;':ymb:r 1 GMSK Mod
File: ... stufffaudiofifo.mp3 ot outHie] in : Gut|-Bm-{ii]| samples/symbol: 2
i i " sample Rate: 1M Access Code: i
it Pad for USRP: Yes :

Payload Length: 0

UHD: USRP Sink
Samp Rate (Sps): 4M
Chi: Center Freq (Hz): 900M
ChO: Gain [dB): 0
Ch0: Bandwidth (Hz): 2M

Figure 5.25: GRC flow graph receiving live audio from GStreamer via FIFO pipe
file and transmitting

69

Options Variable Variable Variable Variable
1D: top_block ID: samp_rate 1D: freq 1D: BW ID: samp_rate2
Generate Options: WX GUI Value: 4M Value: S00M Value: 2M Value: 100k
Low Pass Filter
: GMSK Demod
UHD: USRP Source oL X
Sa Rate (Sps): 4M Gain: 1 Samples/Symbol: 2
mp Rate (Sps):
Sample Rate: 4M Gain Mu: 175m
ChO: Center Freq (Hz): S00M H out
— u?nT;s:qD[: Cutoff Freq: 2M (B 1. s00m
Cho: = Idth (Hz): 2M Transition Width: 50k Omega Relative Limit: 5m
g b Window: Hamming Freq Error: 0
Beta: 6.76
File SII'.Ik] ™ = Packet Decoder
File: ... stuff/audicFifo.mp3 [in out Sample Rate: 100k in out| Access Code: in
Unbuffered: Off e : Threshold: -1

Figure 5.26: GRC flow graph receiving live audio from SDR and sending to
GStreamer via FIFO pipe file

gst-launch-1.8 -e -v filesrc location=audioFifo.mp3 ! decodebin ! audioconvert I\
audiochebband mode=band-pass lower-frequency=500 upper-frequency=2000 poles=4 ! audioconvert ! autocaudiosink

Figure 5.27: GStreamer shell script to receive live audio from GRC and sending
to laptop speaker hardware driver

5.3.6 Live Video with Test Audio

After succeeding in transmitting audio and video separately, the next goal was
to combine the two using multiplexing and demultiplexing. Unfortunately, there
were obstacles such as the program stopping on the receive side because of a
premature end of stream (EOS) message. If GStreamer did not receive anything
from the pipe it would assume EOS and quit. case GST_MESSAGE_EQOS:
http:/ / gstreamer.freedesktop.org/data/doc/gstreamer /head /manual /html/chapter-
bus.html
/* end-of-stream */
g_main_loop_quit (loop);
break;

Considering the problems found when trying to do both live audio and live

video streaming together, live video with test audio was accomplished first. The

70

troubleshooting approach taken was to find the correct sample rate. The sample
rate setting was the independent variable that was modified several times with
different results. The best results were between 2.5M-5MHz but would achieve no
longer than 13 seconds before error. USRP2 and USRP N210 both have 100MHz
clocks. However, the first transmitting radio was the USRP2 so it was switched
with another N210 to eliminate any interoperability issues. Next, since GStreamer
is piped to the radio via GRC the timing synchronization was researched. The
USRP Sink block in GNU Radio Companion (GRC) has an option to Sinc with the
computer. After changing to this setting from the default of None, 49 seconds of
streaming was achieved.

To be able to view when the error occurred, the benchmark_rx.py program was
modified to kill the process upon the first error and display the time duration. The
time until first error correlated to the time until EOS previously found. Using the
benchmark made troubleshooting easier and helped find the efficient sample rate
and bandwidth settings. These settings were changed on the GRC flow graph on
the transmit side and over two minutes without error was achieved. Finally, after
inputting these settings on the receive side GRC flow graph, over two minutes of
continuous live video and test audio (tone) was achieved. Other settings besides
sample rate, bandwidth, and sinc that were changed were the transmit and receive
antenna gains and the windowing on the LPF. Antenna gains went from o to 0.05.
Windowing went from Hamming to Rectangular. Please see Figures 5.28, 5.29,
5.30, 5.31 and 5.32 for GStreamer scripts, the terminal view of the receive script

running, and GRC flow graph.

5.3.7 Live Video and Live Audio

After successfully completing the live video with test audio, the next step was to

complete both live video and live audio together. Figure 5.33 is the first GStreamer

71

— |
|¥| benchmark_rx.py ." [#] GStreamer2GMSK_30s.sh * |

#1/bin/sh

#This works!

gst-launch-1.8 avimux name=mux ! filesink location=pipe2 mux. v4l2src ! video/x-raw,width=640,height=480 ! \
queue2 ! videoconvert ! x264enc bitrate=498 ! mux. audiotestsrc ! queue2 ! mux.

Figure 5.28: GStreamer shell script creating live video & test audio and sending
to GRC via FIFO pipe file

i
| | bench_mod5_tx.py * | [# AVstreamRX_49s.sh * '._
#!/bin/sh
#This works
gst-launch-1.08 filesrc location=pipe ! avidemux name=demux
demux.video_® ! queuez !
decodebin ! videoconvert ! queue2 ! autovideosink sync=false \

demux.audio_ @ ! queue? max-size-buffers=1824 ! audioconvert ! \
audioresample ! autoaudiosink sync=false|

Figure 5.29: GStreamer shell script to receive live video & test audio from GRC
and sending to video player and laptop speaker hardware driver

user@PKI346-LT03:~/GS5treamer_stuff/17JUN14/49se
cs$./AVstreamRX_49s.sh

Setting pipeline to PAUSED ...

Pipeline is PREROLLING ...

Redistribute latency...

Pipeline is PREROLLED ...

Setting pipeline to PLAYING ...

New clock: GstPulseSinkClock

Got EOS from element "pipeline@”.

Execution ended after 0:02:53.696335664

Setting pipeline to PAUSED ...

Setting pipeline to READY ...

Setting pipeline to NULL ...

Freeing pipeline ...
user@PKI346-LTO3:~/GS5treamer_stuff/17JUN14/49secsS I

Figure 5.30: Terminal execution of GStreamer receive shell script for live video
and test audio

transmitter script that succeeded but with audio lagging video by approximately

one second.

72

Options Variable Variable Variable Variable
1D: gmsk ID: samp_rate 1D: freq 1D: BW ID: samp rate2
Generate Options: WX GUI Value: 2.5M Value: 310M Value: 5M Value: 320k

Packet Encoder
File Source Samples/Symbeol: 2

. Bits/Symbol: 1
File: ... 17]UN14/30 2 H out|
! i i Access Code:

Repeat: No Pad for USRP: s
Payload Length: 0

UHD: USRP Sink
Sync: PC Clock

Samp Rate [Sps): 2.5M GMSK Mod
ChO: Center Freq (Hz): 910M Samples/Symbol: 2 |in
ChO: Gain (dB): 50m BT: 350m

ChO: Antenna: TX/RX
Ch0: Bandwidth (Hz): 5M

Figure 5.31: GRC flow graph receiving live video & test audio from GStreamer
via FIFO pipe file and transmitting

Options Variable Variable Variable Variable
ID: top_block 1D: samp_rate ID: freg 1D: BW ID: samp_rate2
Generate Options: WX GUI Value: 2.5M Value: 310M Value: 5M Value: 320k
Low Pass Filter
UHD: USRP Source Decimation: 1 GMSK Demod
::n:. Ec:mc: - Gain: 1 Samples/Symbol: 2
mp Rate (Sps): 2. Sample Rate: 1M Gain Mu: 175m
ChO: Center Freq (Hz): 910M (G| iR e M e out
Ex: :B::n “B}:Ri[;m Transition Width: 50k Omega Relative Limit: 5m
: Antenna:
Window: Rectangular Freq Error: 0
ChO: Bandwidth {Hz): 5M
bttt e Beta: 6.76
File Sink Packet Decoder
File: .../17)UN14/49secs/pipe M Access Code: E-q
Unbuffered: Off Threshold: -1

Figure 5.32: GRC flow graph receiving live video & test audio from SDR and
sending to GStreamer via FIFO pipe file

#!/bin/sh

gst—launch-1.0 avimux name=mux ! filesink location=pipeZ? mux. v4lZsrc ! \

video/x-raw,width=640 height=480 ! gueue2 ! videoconvert ! x264enc bitrate=433 | \

mux. autoaudiosrc ! queue? ! audiowsincband mode=band-pass lower—-frequency=500 upper-frequency=2500 ! \
audioconvert ! ‘'audio/x-raw,rate=44100,channels=1' ! mux.

Figure 5.33: GStreamer shell script creating live video & audio and sending to
GRC via FIFO pipe file

73

5.4 Creating GRC Block for Spectrum Sensing and
Channel Allocation

In order to take advantage of GRCs ability to use threading and parallel computing
users have the choice of creating their own blocks. Blocks can be made using C++
or Python. GNU Radio makes this task easier by using the gr-modtool, which,
creates the necessary directories and files needed. Also, GNU Radio provides a
tutorial [30] that is very useful. When using Python it is useful to read the C++
functions that you are calling to understand how they work, especially previously
made blocks. A good source to learn or refresh C++ is “A C++ Primer For
Engineers” [31]. Files such as spectrum_sense.py and digital bert.py are useful to
understand since many of the same functions and methods will be used. Also,
reading research papers such as [32] and [33] allows you to see how others have
already done what you are trying to do.

After following the instructions in [30] to create the directories and files we
edited the C++ or Python block file to do the intended function. Next, we edited
the test file to enable testing the function. After editing test file, the XML file,
which is created by gr modtool, needs to be edited. The XML file creates the actual
block you see in GRC. Once these steps are completed the user will go to the Build
directory, created while following the steps in [30], and, do cmake, ldconfig, and
make install. This will update the make file and add your block to GRC. While
editing the C++ or Python file you can create as many inputs and outputs as
needed. There are different types of blocks which include: synchronous, decimator,
interpolator, hierarchical, and basic. A synchronous block was created because it
will consume and produce an equal number of items per port, and may have any
number of inputs or outputs. Defining the number and type of ports is done in

the __init__ function as shown in Figure 5.34 below.

74

- . -

class sqpy(gr.sync_block): [output_port(o)_tvpe(float)

output port(1) tvpe(int
docstring for block sgpy ’ pul_p (W) P (ni)]

def _ init__ (self):
gr.sync_block._init_ (self,

n = = -
in_sig=[numpy.float3z], &
out_sig::[numpy.float32, numpy.int])

Figure 5.34: Python snippet defining data and port type

Please notice the different types of ports defined in the example shown in
Figure 5.34. This was only done because when writing the test module it will
not accept more than one of the exact same block. The blocks are imported from
the blocks module that comes with GNU Radio. In this case the output ports are
connected to blocks.vector_sink_f and blocks.vector_sink_i, where _f is float and _i
is integer. The function of the example given in [30] is a squaring function that
takes the input, square it, and sends to a vector sink. This was the module that
was modified to build the block needed. After changing the number of output
ports the work function was changed to include a threshold that checks a variable
before either squaring the inputs or adding them. This was meant to emulate a
signal threshold from spectrum sensing, while the if-else statement is the channel

allocation. The modified function is shown below in Figure 5.35.

def work(self, input_items, output_items):

if input_items[:] >= 10:
output_items[0][:] = input_items[0] * input_items[@]
output_items[1][:] = input_items[®] * input_items[@]
return len(output_items[8])

else:
output_1items[@][:] = input_items[@] + input_items[@]
output_1items[1][:] = input_items[0] + input_items[0O]
return len(output_items[0])

Figure 5.35: Python function implementing threshold and channel allocation

While writing the QA test code it is helpful to know what you want the GRC

75

flow graph to be because it builds the flow graph using Python instead of GRC.

The flow graph that was built before creating the QA test code is shown in Figure

5.36 below.
Options Variable Variable Variable Variable
1D: top_block 1D: samp_rate 1D: freqg 1D: BW 1D: samp_rate2
Generate Options: WX GU| Value: 2.5M Value: 920M Value: 5M Value: 320k
Packet Encoder WX GUI Static Text WX GUI Static Text
File Source :’it':{:'e;f:::“r"l 2 1D: variable_static_text le:f.\:far:‘lilel_sta-tgc_te:t_l
File: ...ChannelChanger/pipe2 H H 7 LG et
Repeat: No Access Code: Converter: Float Converter: Float
et Pad for USRP: Yes
Payload Length: 0 Function Probe Function Probe
1D: variable_function_probe_0 1D: variable_function _probe_1
Value: 0 :
GMSK Mod Viiue: 1
= Block ID: probe2 Block 1D: probe3
Samples/Symbol: 2
TEREE Function Name: level Function Name: level
UHD: USRP Sink EERET Poll Rate (Hz): 1 Poll Rate (Hz): 1
Sync: PC Clock

Samp Rate (Sps): 2.5M
ChO: Center Freq (Hz): 200 [ii]
ChO: Gain (dB): 50m i
ChO: Antenna: TX/RX

ChO: Bandwidth (Hz): 5M

g Selector
Input Index: 0 i
Output Index: 0

Probe Signal

UHD: USRP Sink
Sync: PC Clock
Samp Rate [Sps): 2.5M
ChO: Center Freq (Hz): 520M [in |
ChO: Gain (dB): 50m
Ch0: Antenna: TX/RX
Ch0: Bandwidth (Hz): 5M

UHD: USRP Source
Ssamp Rate (Sps): 2.5M
Ch0: Center Freq (Hz): 320M
Ch0: Gain (dB}): 50m

Ch0: Antenna: RX2

Ch0: Bandwidth (Hz): 5M

Probe Avg Mag ™2
Threshold {(dB): 0
Alpha: 1

Figure 5.36: QA test GRC flow graph for visual aid

While connecting blocks in the QA test, all blocks connected need to have
matching types and size of ports. Figure 5.37 shows the QA test work method with
an example of how to modify the size. GNU Radio syntax states that if a module
has different data types it will be stated as the suffix to the name of the block
such as the vector sink examples shown in Figure 5.34 with declaring data types
numpy.float32 and numpy.int. Numeric Python, known as NumPy, supplements
basic Python by supporting linear algebra, Fourier transforms, random number
capabilities and tools for integrating with C/C++ languages [34].

To run test the user can either go to the /build directory and either run:
$ make test

or the QA Python file from terminal using;:

76

def test_001_oneXtwo (self):
src_data = (10, 12)
expected_result = (100, 144)
src = blocks.vector_source f(src_data)
x = sqpy()
dst = blocks.vector_sink_f()
dstb = blocks.vector_sink_i{vlenz=2)
self.tb.connect(src,(x,8))
self.tb.connect((x,0),dst)
self.tb.connect((x,1),dstbh)
self.tb.run()
result_data = dst.data()
self.assertFloatTuplesAlmostEqual (expected result, result_data, 6)

Figure 5.37: QA Python test module

$ sudo python foo.py

If the former is used then there is an output such as the one shown in Figure
5.38 & 5.39 below. Both successful and non-successful examples are shown. Notice
how it states that the output received does not equal the expected output upon

failure in Figure 5.39.

user@PKI346-LT03:~/gr-chSel/buildS sudo ctest -v -R ga --output-on-failure
Test project /[homefuser/gr-chsSel/build
Start 2: ga_sq

1L Test B25 QAL BQ cnauiiaiwenannsassoamsaaseiss Passed 0.71 sec
100% tests passed, @ tests failed out of 1

Total Test time (real) = ©.71 sec

Figure 5.38: Terminal execution of QA Python test - Success

user@PKI346-LT03:~/gr-chSel/build$ sudo ctest -v -R ga --output-on-failure
Test project /home/user/gr-chSel/build
Start 2: ga_sq
1L TeSE BT QRESG oomammiensisimereeminssio s ssosiss ***Failed 8.79 sec
F

FAIL: test_001_oneXtwo (__main__.qa_sq)
Traceback (most recent call last):
File "/homefuser/gr-chSel/python/ga_sq.py”, line 71, in test_801_oneXtwo
self.assertFloatTuplesAlmostEqual (expected_result, result_data, 6)
File "/usr/local/lib/python2.7/dist-packages/gnuradio/gr_unittest.py”, line 87, in assertFloatTuplesAlmostEqual
self.assertAlmostEqual (a[i], b[i], places, msg)
AssertionError: 100 != 20.8 within 6 places

Figure 5.39: Terminal execution of QA Python test - Failure

77

5.5 Live Audio, Spectrum Sensing, and Dynamic
Channel Allocation

The final demo marks the culmination of learning Linux, GNU Radio, GNU Radio
Companion, Python and C++ programming languages, and GStreamer multimedia
framework. In this chapter we step through the main Python class, associated
modules, GSstreamer script, and GRC flow graph. In the next section, the process

of running the demo is described.

5.5.1 Python Script
5.5.1.1 Main

After defining variables the specsense module is called after the getavg module has
calculated the average value of the input vector from the software defined radio
(SDR) and converted to decibel. The specsense module takes 10,000 samples from
getavg for each of three channels. After collecting the samples they are temporarily
stored to three vectors, the averages of the vectors are then compared and the
channel correlated to the lowest average is chosen. The above steps occur on the
tirst iteration of the program and when the decibel threshold is exceeded. Next, it
goes through a loop of switching between transmitting and receiving. This is done
because when transmitting and receiving simultaneously the data from the receiver
is erroneous. Next, the average value is compared to the previous value because
a significant change in value usually indicates that the primary is transmitting
again. Finally, if there is a significant change in value, and the decibel threshold is
exceeded, while in the receive only loop, and not in the spectrum sensing mode,
the spectrum sensing mode is initiated and the channel is changed. However, if
those requirements are not met then the main loop continues. Below is a high level

flow chart of the main class and the code can be found in the Appendix.

78

START
First _Yeg| Spectrum |_
Iteration? Sensing
& |
No ¥«
Retrieve
- l?_x %T*JF M Counter < 10k? Yﬁ average of
% input vector
Is comparison
|| Output = 1[10 value and avg — Comparf
new avg greater than ne“f' avg e
thresholds? previous avg
res) .| TXOFF
Count = 30k

Figure 5.40: Main class flow chart

5.5.1.2 Get Average

The getavg module takes the input from the USRP which is the magnitude squared
of the fft output [35]. Next, it calculates the average and converts it to decibel by
using the formula shown in equation 5.1 where the average fft_output is divided
by the usrp rate.

Also, noise floor calculation is shown in 5.2. Figure 5.41 is the flow chart for

the getavg module.

avg_f ftoutput_magnitude _squared

10+ log(usrp_rate

) — noisefloor (5.1)

min_f ft_output_magnitude_squared
usrp_rate

10 * log() (5.2)

79

START
¥

Receive input
vector

¥

Average
input vector

¥

Convert to
dB

¥

Return

Figure 5.41: Get Average module flow chart

5.5.1.3 Spectrum Sense & Channel Allocation

The specsense module tunes the receiver to one of the three channels, depending
on the counter, appends 10,000 values, received from getavg, to a temporary vector,
and repeats for the remaining channels. Finally, the averages of the three vectors
are compared, and the channel correlated to the lowest value is selected. The flow

graph for specsense is shown in Figure 5.42 below.

5.5.1.4 GStreamer Live Audio

GStreamer is the multimedia framework used to process the raw audio input from
the computer hardware, or encoded audio from the SDR, encode it or decode it
respectively, and send to or receive from pipe connected to GRC. The following
GStreamer script shown in Figure 5.43 is used to process and send a live audio

stream.

1. Initialize application: gst-launch-1.0

2. Use internal microphone: autoaudiosrc

Return START
L,
b 4 |
: ‘ Count > 20k Y—esy Rx ON Store
Change to 920 MHz
channel with
least average No 1
value Retrieve
T average of
input vector
Compare
average Count > 10k Y—e‘sv Rx ON —
900 MHz
values
T No 1
Get average
of individual No Yes Rx ON
stored Comte " 920 MHz

vectors

Figure 5.42: Spectrum Sensing module flow chart

get-launch-1.0 autoaudiosrc ! audioconvert ! \
lamemp3enc target=1 bitrate=&4 cbr=true ! \
file=ink location=audioFifo.mp3

8o

Figure 5.43: GStreamer shell script for live audio transmitted to GRC via FIFO

pipe file

3. Prepare raw audio for conversion to different format: audioconvert
4. Convert to mp3: lamemp3enc

a) Optimize for quality or bitrate: target=1 (bitrate)
b) Set bitrate: bitrate=64

¢) Enforce constant bitrate encoding (CBR): cbr=true

5. Send to pipe connecting to GRC: filesink location=audioFifo.mp3

81

The following GStreamer script is used to process a live audio stream on the

receive side.

gat-launch-1.0 filesrc location=audioFifo.mp32 ! decodebin !)\

P

queue? max-size-buffers=1024 ! audioconvert !
audiore=szample ! autoaudiosink sync=fal=ze

Figure 5.44: GStreamer shell script to receive live audio from GRC and send it to
the laptops speaker hardware driver

1. Initialize application: gst-launch-1.0

2. Receive from pipe connecting to GRC: filesrc location=audioFifo.mp3
3. Decode: decodebin

4. Use buffer because computer is slow: queue2

a) Set a maximum size of buffer that allows correct playback with minimal

delay: max-size-buffers=1024

5. Buffer raw audio for resampling and any data type conversion that are

needed: audioconvert
6. Interpolate signal to fill in any missing information: audioresample
7. Play audio through built in speakers: autoaudiosink
a) Ignore buffer time stamp, and clock, and play frame upon arrival (This
helps to avoid frame dropping errors): sync=false
5.5.1.5 GNU Radio Companion

The GRC flow graph in Figure 5.45 has two parts to it, a transmit side, and a

receive side. The transmit side starts with receiving the encoded stream from

82

GStreamer via the Linux pipe. Next, the data is packetized, modulated, and
tinally, transmitted. The receive side first receives data stream from SDR, and
then converts stream to vector format. Next, a Fast Fourier Transform is done on
the data and the magnitude squared value is sent on to the created block which
decides whether or not to change the channel and if so, then which channel. In this
configuration the Vector Sink block has no real task except to provide the output

of the proprietary block a sink.

Options

1D: top_block
Generate Options: WX GUI e Encode.r syu:':ént:l:fRP Sink
e suree ——— I I s oo
File: .. liveAV/audioFifomp3 |out in PAEEETERE out in BT: 350m |/ ChO: Center Freq (Hz): 820M
Repeat: Yes EiEE s ChO: Gain (dB): 50m

ChO: Antenna: TX/RX

Sevioun Lenothc o Cho: Bandwidth (Hz): 2M

Vector Sink
Vet Length: 512

UHD: USRP Source FFT
ChO: Gain (dB): 0 Window: window.blackmanhar...
Complex to Mag ™2
Gt By Vec Length: 512

Samp Rate (Sps): 2M FFT Size: 512
p| Stream to Vector
B2 Num Items: 512
ChO: Antenna: TX/RX Shift: Yes
Figure 5.45: GRC flow graph with receive and transmit including custom made

ChO: Center Freq (Hz): 1.71G —0 Forward/Reverse: Forward
Ch0: Bandwidth (Hz): 1M Num. Threads: 1
block

5.5.2 Running Demo

To run the demo the user needs a minimum of three nodes. The first node is the
cognitive radio, the second is the live audio streaming receiver, and any other
nodes are primaries. For the first and second nodes the user needs to be in the
proper directories to run the GStreamer scripts and have GRC open. First, the
user needs to run the GStreamer script and then the GRC flow graph, in order
of first and then second node. Once live streaming is accomplished the user can
run the benchmark_tx program on another node to act as a primary coming on.

Upon transmitting from primary, the first node should detect, stop streaming,

83

scan spectrum, and change channel. Finally, the user needs to stop the GRC and
GStreamer on second node and restart them with the same frequency that node
one is using. The Python script for custom block is shown in Figures 5.46, 5.47,
5.48, 5.49, 5.50, & 5.51. Figure 5.52 shows the XML file to create the actual block
that can be used in GRC.

5.5.3 Basic Measurements for Benchmark

When a channel is busy, SUs should sense a much higher power compared with
an idle channel. In order to establish a benchmark for further implementations,
we first set one SDR as a PU, and set the other two as SUs. When the PU is
transmitting on a specific channel, we tune the SUs to measure the receiving
power of that channel. The measurement is done for the spectrum from 824 MHz
to 960 MHz with/without PU activity for 1,000 times. The average results are
shown in Fig. 5.53. As we can see, receiving power is much higher with PU
activity compared with the one without PU activity. The average values are used
as benchmark for channel switching.

In the second step, we measure the receiving power on the adjacent channel
of a channel with PU activity. The channels chosen for sensing started at 820
MHz and finished at 960 MHz incremented by 35 MHz. The channels used for
primaries were 830 MHz, 900 MHz, and 960 MHz. The results in Fig. 5.54 are the
average values of 1000 samples of each aforementioned channel. As we can see,
adjacent channels within 25 MHz of 900 MHz are significantly affected. However,
it is not the case even within 10 MHz when the PU transmits on 830 MHz. This
information can be used to establish a minimum band gap between the current
channel and the new channel chosen. More channel efficiency can be achieved if

adaptive channel gap is adopted based on real-time channel quality.

¥!'/nsr/bin/eny pvthon

import numpy

from gnuradic import gr, analog, block=z, digital,
import sy=s, time, math

from grc _gnuradio import blksZ

import scipy

from getavg import getavg

import setup usrp

from specense import specense

clas= =qpy(gr.sync blaock):
global x,v,r,rxfrequency,txfrequency,ctr,freq
¥=y=r=rxfrequency=txfrequency=ctr=freg=_0
def imnit (self):
gr.sync block. imnit (self,
name="sapy",
in sig=[(numpy.float32,512}],
out sig=[(numpy.float3l,S12}])
def work(self, input items, output items):
global x,r,rxfrequency,txfrequency,ctr,freq,v

if x >0 oy = 0O:

if v = 0:

x = 30000

avg = getavg(input items)

freq = specense{avg,x)

x—=1

=512

v+=1

ctr=0

return len{output items[0])
1 b g s SRl L

avg_in = getavg(input items)
g3 = avg_in

r—=1

return len{output items[0])

Figure 5.46: Custom block Python script - 1

fft,

uhd

84

85

if ctr = 5000:
addr = uhd.device addr ()
addr["name™] = "" #leave blank to use default

grcl = uhd.usrp scurce (addr,uhd.ioc type.CCMPLEX FLOATIZ,
num channels=1})

if ctr — 5050:
addr = uhd.device addr ()
addr["nam="] = "" #leave blank to use default

tx]l = uhd.usrp sink({addr,uhd.ioc type.COMPLEX FLOAT3Z,
num channels=1})
txl.=set center freg{freq)

print "Tranamit Freq: ", txl.get center freq(}
B R
if ctr = 10000:

addr = uhd.device addr()

addr["name"] = "" #leave blank to use default

tx]l = uhd.usrp sink({addr,uhd.ioc type.COMPLEX FLOAT3Z,
num channels=1})
txfrequency=txl.get center freq(}
txl.zget center freg({l700000000)
time.=sleep{0.05)
if ctr = 10100:
addr = uhd.device addr ()
addr["nam="] = "" #leave blank to use default
srcl = uhd.usrp source (addr,uhd.ioc type.COMPLEX FLOAT3Z,
num channels=1}
arcl.set center fregq{fredq)
print "rx freg is: ",srcl.get center freq{)
ctr=0
ctr+=1

Figure 5.47: Custom block Python script - 2

5.5.4 Video Streaming Application

In this preliminary implementation, a one-way video streaming service between
two SUs is provided based on the AC-MWN architecture using 900 MHz spectrum.
The third SDR functions as a PU with arbitrary activities. For better service,
channel sensing/switching need to be transparent to users. Therefore, a maximum

of approximately 100 ms delay ensures transparency for most users [36]. However,

86

avg in = getavg(input items)

g3 = avg_in

comp = numpy.average (output_items[0][:]1)

comparing = numpy.abs (comp-g3)

vi=1

if comparing > 15 and x=0 and y > 1000 and g3 > 50 and ctr in range (100,5000}):

out = g3

print " CHANGING CHARNNEL™

print ""

output items[0]1[:] = g3

x=30000

o L o I S R T
addr = uhd.device addr()

addr["name"] = "" #leave blank to use default

txl = uhd.usrp sink(addr,uhd.io type.COMPLEX FLORT3Z,
num channels=1)

txl.set center freg(l710000000)
print "Transmic Freg: ", txl.get_center freq()
print e

time.sleep(0.25)

freg=specense (g3, x)

return len(output items[0])
el=se:

output_items[0][:] = g3
return len(ocutput_items[0])

Figure 5.48: Custom block Python script - 3

import numpy, sScipy

from numpy.fft import f£ftc
from numpy import array
from cmath import exp, pi

def getavg{input items):
m = []
m = input items[0] [0]
avg m = numpy.average {(m)

g3 = ;G*numpy.lnglﬂ:avg_mf;gia_z} + 120
retorn g3

Figure 5.49: Custom block Python script - 4

neither the transmitter nor the receiver notices any interruption due to background

channel sensing/switching. In the application, we adopt GStreamer as the applica-

87

#'/usr/bin/eny python

from gnuradic import gr, amalog, blocks, digital, £ft, uhd
import numpy, scipy

from numpy.fft import f£ft

from numpy import array

from cmath import exp, pi

import sy=, time

global count,12,11,10,L2,L1,L0,rxFreqgZ,rXxFregl ,rxFreqg0
12 =11 = 10 = L2 = L1 = LO = []
rxFreql = rxFreql = rxFregl = 0

def spectrumsense {(avg,xX):
global count,12,11,10,L2,L1,L0,rxFreqgZ,rxFreql , rxFreqg0
count = HX-1
if count = 0:
count = 30000

return
if count = 30000:
e e
. .RX..
addr = uhd.device_ addr(}
addr["name"] = "" #leave blank to use default

srcl = uhd.usrp source (addr,uhd.io type.CCMPLEX FLOAT3Z,
num channels=1})
rxFreg0 = srcl.get center freg()
count—=1
retorn count
elif count >= 20000 and count < 30000
g3 = avg
50 = g3
10.append(s0)
if count = 20000:

LO=numpy.mean {10)

fasumparn T
#..RX..

addr = uhd.device addr(}

addr["name”] = "" #leave blank to use default

srcl = uhd.usrp source (addr,uhd.ic_type.COMPLEX FLOAT3Z,
num channels=1}
reFreql = srcl.get _center freqg()
count-=1
return count

Figure 5.50: Custom block Python script - 5

88

tion programming interface (API) to capture, encode and pipe Audio/Video (AV)
to GRC. Fig. 5.55 shows the video stream application. The computer on the left
captures live video through webcam. Signal is transmitted from SU; to SU,. Live

video streaming is shown on the right-hand-side computer.

elif count >= 10000 and count < 20000:
g3 = avg
51 ='g3
11.append{=sl})
if count — 10000:
Li1=numpy.mean (11)

E e
addr = uhd.device addr(}
addr["name"] = "" #leave blank to use default

s8rcl = uhd.usrp source (addr,uhd.io type.COMPLEX FLOAT3Z,
num channels=1}

srcl.set center freg(230000000
rxFreq? = srcl.get center freg()
count-=1

return count
elif count > 0 and count < 10000:
g3 = avg
22 = g3
12 .append{=s2)
if count = 0:
LZ=nunpv.mean {12}

print ""

print "L2,11,10: ",L2,L1,5.0

print ""

if L2 < L1 and L2 < L0O:
LR AT e S i L G
addr = uhd.device addr()
addr["name"] = "" #leawve blank to use default

srcl = uhd.usrp source (addr,uhd.ic_type.COMPLEX FLOAT3Z,
num channels=1}
srcl.=zet center freqg(rxFregl)
elif L1 < L2 and L1 < LO:

L
addr = uhd.device addr(}
addr["name"] = "" #leave blank to use default

srcl = uhd.usrp source (addr,uhd.ioc type.COMPLEX FLOAT3Z,
num channels=1}
srcl.set center freg(rxFregql})
elif L0 <« L2 and L0 < L1:

FOERRME BSFR -~
addr = uhd.device addr(}
addr["name"] = "" #leave blank to use default

srcl = uhd.usrp source (addr,uhd.ic_type.COMPLEX FLOAT3Z,
num channels=1}
srcl.set center freg(rxFreqQ})
print "
print "freqg is now: ",srcl.get_center freg(}
print ""
time.sleep (10}
count-=1
return count

Figure 5.51: Custom block Python script - 6

=2xml wersion="1.0"32>

<blaockX>
<name>trent sgpy</namex>
<key>trent sgpy</kev>
<category>irent</category>
<importrimport Lrent</imporcs
<makextrent.sgpy () </make>

<sink>
<namerin</name>
ctype>float</type>
cvlen>hl12</vlen>
</=ink>

<Eource
<name>ont<,/name>
ctype>float</type>
<vlenx512«</vien:
</source>
</block>

Figure 5.52: Custom block XML code

90

70

Average sensing power level
T T

60

(o))
o
T

m—\\/ith PU activity
= = = \Nithout PU activity

N
o
T

30

Sensing power level (dB)

20

10

820

840 860 880 900 920
Sensing frequency (MHz)

Figure 5.53: Threshold detection sensing plot

940

960

91

92

T T _ T T
V4
i ’
V4
V4
V4
L " |
V4
I I R R R el
\
L \ |
\
\
\
i)
N A | -
\
u \ i
\
\
N N N N
i .
LSS =S \ .
[eoNeoNe) AN
BEPR| === = === N
T T I
o b o 1 .
oo o ~\
! /]
- - IIIIII ~ IIIIIIIIII
! 1
1 1 L 1 I
Lo o To) o Lo o
Al Al — —

(gp) 1one] aumod Buisuasg

860 880 900 920 940 960
Frequency (MHz)

840

Figure 5.54: Adjacent channel sensing plot

Figure 5.55: Live video streaming hardware setup and screen shot

93

94

Chapter 6

Conclusion

Multi-hop wireless cognitive radio networking (MWCRN) is a useful tool that will
help alleviate congested channels. This congestion is caused by limited spectrum
along with increasing demand and node density. However, researchers need
testbeds to compare theory and reality, this thesis is an accumulation of work
done in order to create a multi-hop wireless cognitive radio network testbed.
Accomplishing this goal required a myriad of software tools including Ubuntu
(Linux), GNU Radio, GStreamer, MATLAB integrated development environment
(IDE) and BASH. Programming languages included Python, C++, XML, GStreamer
BASH Scripting, Linux BASH Scripting, MATLAB and GNU Radio Companion
guided user interface (GUI) IDE. We also used the USRP2 and USRPN210 software
defined radios equipped with WBX RF Daughterboards and VERTgoo antennas
which are all Ettus Research products. Overall, considerable experience and
technical proficiency has been gained and documented to give researchers the
basic tools needed to execute testing, evaluation and observation steps of their
empirical studies.

GNU Radio Companion is a great graphical programming tool that makes it

easy to work with software defined radios, but it is the ability to multithread and

95

use multiple cores that is most useful when trying to simultaneously transmit and
receive. This is accomplished by its thread-per-block scheduler. Most of the early
work was done by modifying benchmark programs using Python but in order
to utilize the scheduler it was necessary to build customized blocks to use with
GRC. The final demo was done this way and was run along with GStreamer at the
physical layer handling the audio-video processing.

GStreamer is a low-level multimedia development framework written in C
that facilitates programmers with adding physical layer functionality to their
applications such as providing encoding, decoding, containerization, sources, sinks
and filters. Encoding and decoding formats include mp3, mpeg4, H.264 and others,
while types of containers include avi, mkv, ogg, mov and others. Sources and sinks
enable I/O functionality with the hardware drivers such as the microphone and
webcam. Common filtering objects include low pass, high pass, Chebysheyv, finite
impulse response and multiplexing. GStreamer communicates with GNU Radio
through a Linux First In, First Out (FIFO) pipe file.

Ettus Research’s USRP software defined radios have a field programmable
gate array (FPGA) that enable the user to quickly flash different configurations
using a program such as GNU Radio. Other notable components embedded
on the motherboard are the analog-to-digital converter (ADC) and digital-to-
analog converter (DAC) and clock. The USRP has a modular analog component
called a RF Daughterboard. Each daughterboard handles a certain range of
spectrum. Particularly, the WBX-120 RF Daughterboard is capable of full duplex
communications between 50 - 2200 MHz with 120 MHz of bandwidth. Finally, the
omni-directional VERT9oo0 antennas are compatible with the WBX-120 with ranges
of 824 - 960 MHz and 1710 - 1990 MHz.

Experiments completed, starting with running examples provided, one-way

and half-duplex transmissions, then culminated with live video streaming with

96

channel sensing and dynamic allocation. As shown in Figures 5.53 and 5.54,
physical testing produces results that deviate from ideal, giving more accurate local
environmental parameters than virtual testing. When looking at Figure 5.53 it is
obvious that not every channel will have the same threshold value for calculating
when to change to another channel. Also, considering some multi-hop wireless
cognitive networking radios will be mobile, researchers will need to either run
several tests or create algorithms that implement discrete sampling to frequently
update the threshold values.

Figure 5.54 shows that some adjacent channels are affected more than others.
Also, it shows that adjacent channels can receive a stronger signal than the center
frequency channel. These observations indicate that supplementary routines may
need to be created to avoid false positive primary detection.

Many failed or inefficient attempts forced us to refine settings and research
different tools such as GStreamer. A good example was using the Throttle block in
GRC because without it the experiment would not work but later we found that
changing the sample rate and bandwidth made the block extraneous. Creating
blocks expands the GRC library and allows for more complicated configurations.
However, we suggest that the blocks be simple, modular and with many comments
in consideration of other researchers who might be able to use them in their
configuration.

This thesis has shown the progress and process of creating a testbed for Multi-
hop cognitive radio networks. With more time the final demo would be improved
upon by synchronizing the transmitter and receiver so that the receiver would
automatically change channels along with the transmitter. Also, eliminating delays,
and audio-video synchronization would be done. Many of the blocks in GRC

require more knowledge in digital signal processing in order to use them.

97

Bibliography

[1]

[2]

[3]

[4]

[5]

T. Evans, K. Tossou, E. Ye, Z. Shu, Y. Qian, Y. Yang, and H. Sharif. A new
architecture for application-aware cognitive multihop wireless networks. IEEE

Wireless Communications, 23(1):120-127, February 2016. 1

Feng Ye, Jiazhen Zhou, Yaoqing Yang, H. Sharif, and Y. Qian. Constructing
backbone of a multi-hop cognitive radio network with channel bonding. In
2012 IEEE Global Communications Conference (GLOBECOM), pages 5596-5601,

Dec 2012. 1

E. Ye,]J. Zhou, Y. Qian, and R. Q. Hu. Application-aware routing for multi-
hop cognitive radio networks with channel bonding. In 2013 IEEE Global

Communications Conference (GLOBECOM), pages 4372—4377, Dec 2013. 1

A. Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten, H. Tullberg, M. A.
Uusitalo, and M. Schellman. The foundation of the mobile and wireless
communications system for 2020 and beyond: Challenges, enablers and
technology solutions. In 2013 IEEE 77th Vehicular Technology Conference (VTC

Spring), pages 1-5, June 2013. 2.1

Lili Wei, Rose Qingyang Hu, Yi Qian, and Geng Wu. Energy efficiency and
spectrum efficiency of multihop device-to-device communications underlay-
ing cellular networks. IEEE Transactions on Vehicular Technology, 65(1):367-380,

2016. 2.1

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

98

B. Benmammar and A. Amraoui. Radio Resouce Allocation and Dynamic Spec-

trum Access. Wiley, Hoboken, NJ. 2.1

Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, and Shantidev Mohanty.
Next generation/dynamic spectrum access/cognitive radio wireless networks:

A survey. Comput. Netw., 50(13):2127-2159, September 2006. 2.1

Kejie Lu, Yi Qian, Hsiao-Hwa Chen, and Shengli Fu. Wimax networks: from

access to service platform. IEEE network, 22(3), 2008. 2.2

Zhi Tian and Georgios B Giannakis. A wavelet approach to wideband spec-
trum sensing for cognitive radios. In Cognitive Radio Oriented Wireless Networks

and Communications, 2006. 1st International Conference on, pages 1—5. IEEE, 2006.

2.3

J. A. Bazerque and G. B. Giannakis. Distributed spectrum sensing for cognitive
radio networks by exploiting sparsity. IEEE Transactions on Signal Processing,

58(3):1847-1862, March 2010. 2.3

Robert Qiu, Nan Guo, Husheng Li, Zhigiang Wu, Vasu Chakravarthy, Yu Song,
Zhen Hu, Peng Zhang, and Zhe Chen. A unified framework for cognitive
radio, cognitive radar, and electronic warfaretutorial, theory, and multi-ghz

wideband testbed. Sensors, 9(8):6530, 2009. 2.3

C. R. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. J. Shellhammer, and W. Cald-
well. Ieee 802.22: The first cognitive radio wireless regional area network

standard. IEEE Communications Magazine, 47(1):130-138, January 2009. 2.3

Z. Shu, J. Zhou, Y. Qian, and R. Q. Hu. Adaptive channel allocation and
routing in cognitive radio networks. In 2013 IEEE Global Communications

Conference (GLOBECOM), pages 4542-4547, Dec 2013. 2.3

[14]

[15]

[16]

[17]

[18]

[19]

[20]

99

Zhihui Shu, Yi Qian, Yaoqing Yang, and H. Sharif. Channel allocation and
multicast routing in cognitive radio networks. In 2013 IEEE Wireless Com-

munications and Networking Conference (WCNC), pages 1703-1708, April 2013.

2.3

S. Singla and S. Jain. Comparison of routing protocols of manet in real world
scenario using ns3. In 2014 International Conference on Control, Instrumentation,
Communication and Computational Technologies (ICCICCT), pages 543-549, July

2014. 2.4.1

F. Bertocchi, P. Bergamo, G. Mazzini, and M. Zorzi. Performance comparison
of routing protocols for ad hoc networks. In Global Telecommunications Confer-
ence, 2003. GLOBECOM ’03. IEEE, volume 2, pages 1033-1037 Vol.2, Dec 2003.

2.4.1

Moshaddique Al Ameen, S. M. Riazul Islam, and Kyungsup Kwak. Energy
saving mechanisms for mac protocols in wireless sensor networks. Interna-

tional Journal of Distributed Sensor Networks, 6(1):163413, 2010. 2.4.2

K. R. Chowdhury and I. F. Akyildiz. Cognitive wireless mesh networks with
dynamic spectrum access. IEEE Journal on Selected Areas in Communications,

26(1):168-181, Jan 2008. 2.4.3

Ian E. Akyildiz, Won-Yeol Lee, and Kaushik R. Chowdhury. Crahns: Cognitive

radio ad hoc networks. Ad Hoc Netw., 7(5):810-836, July 2009. 2.4.3

P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot.
Optimized link state routing protocol for ad hoc networks. In Proceedings.
IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology

for the 21st Century., pages 62—68, 2001. 2.4.3.1

[21]

[22]

[23]

[24]

[25]

[26]

100

G. M. Zhu, 1. F. Akyildiz, and G. S. Kuo. Stod-rp: A spectrum-tree based
on-demand routing protocol for multi-hop cognitive radio networks. In IEEE
GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference, pages 1-5,

Nov 2008. 2.4.3.3

V.P Patil. Efficient aodv routing protocol for manet with enhanced packet
delivery ratio and minimized end to end delay. International Journal of Scientific

and Research Publications, 2(8):197—201, 2012. 2.4.4

Kamal Deep Singh, Priyanka Rawat, and Jean-Marie Bonnin. Cognitive
radio for vehicular ad hoc networks (cr-vanets): approaches and challenges.

EURASIP Journal on Wireless Communications and Networking, 2014(1):49, 2014.

2.4.5

Ieee standard for information technology-telecommunications and infor-
mation exchange between systems wireless regional area networks (wran)-
specific requirements - part 22: Cognitive wireless ran medium access control
(mac) and physical layer (phy) specifications: Policies and procedures foroper-
ation in the tv bands amendment 1: Management and control plane interfaces
and procedures and enhancement to the management information base (mib).
IEEE Std 802.22a-2014 (Amendment to IEEE Std 802.22-2011), pages 1-519, May

2014. 3.1

R. Otieno U. Mbeche-Smith A. Klen-Amin M. Kamiya R. Stren P. McCarney G.
Tipple S. Balakrishnan V. Castan-Broto E. Pieterse B. Stiftel S. McCord-Smith
B. Roberts T. Kanaley M. Cohen E. Moreno, B. Arimah. 2016. 4

J. Mitola. Cognitive radio for flexible mobile multimedia communications. In
Mobile Multimedia Communications, 1999. (MoMuC “99) 1999 IEEE International
Workshop on, pages 3—-10, 1999. 4

101

[27] Martin Powell, Copps and Adelstein. Docket no. 03-222 notice of proposed

rule making and order. 2003. 4
[28] www.ettus.com. https://www.ettus.com/. 4
[29] www.ubuntu.com. https://www.ubuntu.com/. 4

[30] Gnuradio out-of-tree modules. http://gnuradio.org/redmine/projects/

gnuradio/wiki/Out0fTreeModules. 5.4, 5.4

[31] K. Ponnambalam and T. Alguindigue. A C++ Primer for Engineers: An Object-
oriented Approach. Number v. 1. McGraw-Hill Company, 1997. 5.4

[32] Z. Yan, Z. Ma, H. Cao, G. Li, and W. Wang. Spectrum sensing, access
and coexistence testbed for cognitive radio using usrp. In 2008 4th IEEE
International Conference on Circuits and Systems for Communications, pages 270—

274, May 2008. 5.4

[33] R. A. Rashid, M. A. Sarijari, N. Fisal, S. K. S. Yusof, and S. H. S. Ariffin.
Enabling dynamic spectrum access for cognitive radio using software defined
radio platform. In 2011 IEEE Symposium on Wireless Technology and Applications

(ISWTA), pages 180-185, Sept 2011. 5.4
[34] www.numpy.org. http://wuw.numpy.org/. 5.4

[35] B. Reynwar T. Rondeau, C. Kuethe. usrp_spectrum_sense.py.
https://github.com/gnuradio/gnuradio/blob/master/gr-uhd/examples/

python/usrp_spectrum_sense.py, 2015. 5.5.1.2

[36] M. Baldi and Y. Ofek. End-to-end delay analysis of videoconferencing over
packet-switched networks. IEEE/ACM Transactions on Networking, 8(4):479-492,
Aug 2000. 5.5.4

https://www.ettus.com/
https://www.ubuntu.com/
http://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules
http://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules
http://www.numpy.org/
https://github.com/gnuradio/gnuradio/blob/master/gr-uhd/examples/python/usrp_spectrum_sense.py
https://github.com/gnuradio/gnuradio/blob/master/gr-uhd/examples/python/usrp_spectrum_sense.py

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 7-25-2017

	Application-aware Cognitive Multi-hop Wireless Networking Testbed and Experiments
	Trenton T. Evans

	Contents
	Introduction
	Background of Multi-hop Wireless Cognitive Radio Networks
	MWCRN
	Application Adaptation for AC-MWN
	Spectrum Adaptation for AC-MWN
	Multi-hop Wireless Network Routing Protocols
	Routing protocols
	Single hop
	Multi-hop
	Proactive
	Reactive
	Hybrid

	Static networks
	Dynamic networks

	Experimentation of AC-MWN
	Equipment Setup
	Software Defined Radio (SDR) configuration

	Basic Testing
	Single-hop Transmission
	Half-duplex one-way transmission
	Adaptive One-Way Transmission

	Half-duplex two-way transmission
	Full-Duplex Transmission
	Adaptive Full-Duplex Transmission

	Multi-Hop Transmission
	Simple Transceiver Transmission with Two Smart Radios
	Two Radio Multi-Hop (Round-Trip) Transmission
	Three Radio Multi-Hop (Circular) Transmission

	Spectrum Sensing
	Sensing with No Primary User Activities
	Sensing with Primary User Activities
	Audio/Video Application
	Webcam
	User Datagram Protocol (UDP)
	Video File Transfer via Virtual Channel
	Live Streaming Using Two USRP2 SDRs
	Audio Recording and Streaming with GStreamer
	Live Video with Test Audio
	Live Video and Live Audio

	Creating GRC Block for Spectrum Sensing and Channel Allocation
	Live Audio, Spectrum Sensing, and Dynamic Channel Allocation
	Python Script
	Main
	Get Average
	Spectrum Sense & Channel Allocation
	GStreamer Live Audio
	GNU Radio Companion

	Running Demo
	Basic Measurements for Benchmark
	Video Streaming Application

	Conclusion
	Bibliography

