7,608 research outputs found

    Scheduling MapReduce Jobs under Multi-Round Precedences

    Full text link
    We consider non-preemptive scheduling of MapReduce jobs with multiple tasks in the practical scenario where each job requires several map-reduce rounds. We seek to minimize the average weighted completion time and consider scheduling on identical and unrelated parallel processors. For identical processors, we present LP-based O(1)-approximation algorithms. For unrelated processors, the approximation ratio naturally depends on the maximum number of rounds of any job. Since the number of rounds per job in typical MapReduce algorithms is a small constant, our scheduling algorithms achieve a small approximation ratio in practice. For the single-round case, we substantially improve on previously best known approximation guarantees for both identical and unrelated processors. Moreover, we conduct an experimental analysis and compare the performance of our algorithms against a fast heuristic and a lower bound on the optimal solution, thus demonstrating their promising practical performance

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Project network models with discounted cash flows. A guided tour through recent developments.

    Get PDF
    The vast majority of the project scheduling methodologies presented in the literature have been developed with the objective of minimizing the project duration subject to precedence and other constraints. In doing so, the financial aspects of project management are largely ignored. Recent efforts have taken into account discounted cash flow and have focused on the maximalization of the net present value (npv) of the project as the more appropriate objective. In this paper we offer a guided tour through the important recent developments in the expanding field of research on deterministic and stochastic project network models with discounted cash flows. Subsequent to a close examination of the rationale behind the npv objective, we offer a taxonomy of the problems studied in the literature and critically review the major contributions. Proper attention is given to npv maximization models for the unconstrained scheduling problem with known cash flows, optimal and suboptimal scheduling procedures with various types of resource constraints, and the problem of determining both the timing and amount of payments.Scheduling; Models; Model; Discounted cash flow; Cash flow; Project scheduling; Project management; Management; Net present value; Value; Problems; Maximization; Optimal;

    Generalizing List Scheduling for Stochastic Soft Real-time Parallel Applications

    Get PDF
    Advanced architecture processors provide features such as caches and branch prediction that result in improved, but variable, execution time of software. Hard real-time systems require tasks to complete within timing constraints. Consequently, hard real-time systems are typically designed conservatively through the use of tasks? worst-case execution times (WCET) in order to compute deterministic schedules that guarantee task?s execution within giving time constraints. This use of pessimistic execution time assumptions provides real-time guarantees at the cost of decreased performance and resource utilization. In soft real-time systems, however, meeting deadlines is not an absolute requirement (i.e., missing a few deadlines does not severely degrade system performance or cause catastrophic failure). In such systems, a guaranteed minimum probability of completing by the deadline is sufficient. Therefore, there is considerable latitude in such systems for improving resource utilization and performance as compared with hard real-time systems, through the use of more realistic execution time assumptions. Given probability distribution functions (PDFs) representing tasks? execution time requirements, and tasks? communication and precedence requirements, represented as a directed acyclic graph (DAG), this dissertation proposes and investigates algorithms for constructing non-preemptive stochastic schedules. New PDF manipulation operators developed in this dissertation are used to compute tasks? start and completion time PDFs during schedule construction. PDFs of the schedules? completion times are also computed and used to systematically trade the probability of meeting end-to-end deadlines for schedule length and jitter in task completion times. Because of the NP-hard nature of the non-preemptive DAG scheduling problem, the new stochastic scheduling algorithms extend traditional heuristic list scheduling and genetic list scheduling algorithms for DAGs by using PDFs instead of fixed time values for task execution requirements. The stochastic scheduling algorithms also account for delays caused by communication contention, typically ignored in prior DAG scheduling research. Extensive experimental results are used to demonstrate the efficacy of the new algorithms in constructing stochastic schedules. Results also show that through the use of the techniques developed in this dissertation, the probability of meeting deadlines can be usefully traded for performance and jitter in soft real-time systems

    Optimization of sulfur production in the Kittilä mine via Deswik software

    Get PDF
    Abstract. The Kittilä Mine is an underground mine in northern Finland where sulfur content of the ore often restricts gold production. In order to optimize gold production, sulfur content of the ore fed to the mill must remain below a certain limit as to not overload the autoclave process. An analytical look of the mining process was taken to ensure a solid understanding of the planning process for the mine’s particular mining method. Various sulfur prediction methods were analyzed and using statistical analysis it was determined that the Primary Block Model grade estimates were the most effective grades to use in the remainder of the research. Deswik, the software in use for the mine’s planning and production, was then examined and reviewed from a user’s standpoint. Several aspects of Deswik were tested in attempts to create improved production plans regarding the sulfur limits or improved NPV. Throughout the trials, plans which included improved short term results delayed important development through the mine and disrupted steady production through the long term schedule. Other issues were found through trials, including the tendency of the optimization algorithms to take advantage of broken links throughout the task-progression network. The various methods and the corresponding results were compared and the advantages and disadvantages of the Deswik system were assessed

    Tools for Real-Time Control Systems Co-Design : A Survey

    Get PDF
    This report presents a survey of current simulation tools in the area of integrated control and real-time systems design. Each tool is presented with a quick overview followed by a more detailed section describing comparative aspects of the tool. These aspects describe the context and purpose of the tool (scenarios, development stages, activities, and qualities/constraints being addressed) and the actual tool technology (tool architecture, inputs, outputs, modeling content, extensibility and availability). The tools presented in the survey are the following; Jitterbug and TrueTime from the Department of Automatic Control at Lund University, Sweden, AIDA and XILO from the Department of Machine Design at the Royal Institute of Technology, Sweden, Ptolemy II from the Department of Electrical Engineering and Computer Sciences at Berkeley, California, RTSIM from the RETIS Laboratory, Pisa, Italy, and Syndex and Orccad from INRIA, France. The survey also briefly describes some existing commercial tools related to the area of real-time control systems

    Design of Mixed-Criticality Applications on Distributed Real-Time Systems

    Get PDF
    • …
    corecore