
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-13-2003

Generalizing List Scheduling for Stochastic Soft Real-time Parallel Generalizing List Scheduling for Stochastic Soft Real-time Parallel

Applications Applications

Yoginder Singh Dandass

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Dandass, Yoginder Singh, "Generalizing List Scheduling for Stochastic Soft Real-time Parallel
Applications" (2003). Theses and Dissertations. 2386.
https://scholarsjunction.msstate.edu/td/2386

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2386?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2386&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

GENERALIZING LIST SCHEDULING FOR STOCHASTIC SOFT REAL-TIME

PARALLEL APPLICATIONS

By

Yoginder Singh Dandass

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State University

December 2003

Copyright © by

Yoginder Singh Dandass

2003

GENERALIZING LIST SCHEDULING FOR STOCHASTIC SOFT REAL-TIME

PARALLEL APPLICATIONS

By

Yoginder Singh Dandass

Approved:

Anthony Skjellum
Professor of Computer and Information
Sciences, University of Alabama at
Birmingham
(Director of Dissertation)

Susan M. Bridges
Professor of Computer Science and
Engineering
Committee Member and Graduate
Coordinator in the Department of
Computer Science and Engineering

Eric A. Hansen
Associate Professor of Computer Science
and Engineering
(Committee Member)

Arkady Kanevsky
Adjunct Faculty of Computer Science
and Engineering
(Committee Member)

Raghu Machiraju
Adjunct Faculty of Computer Science
and Engineering
(Committee Member)

Donna S. Reese
Professor of Computer Science
and Engineering
(Committee Member)

 A. Wayne Bennett
 Dean of the Bagley College of Engineering

Name: Yoginder Singh Dandass

Date of Degree: December 13, 2003

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Anthony Skjellum

Title of Study: Generalizing List Scheduling for Stochastic Soft Real-Time Parallel

Applications

Pages in Study: 247

Candidate for Degree of Doctor of Computer Science

Advanced architecture processors provide features such as caches and branch

prediction that result in improved, but variable, execution time of software. Hard real-

time systems require tasks to complete within timing constraints. Consequently, hard

real-time systems are typically designed conservatively through the use of tasks’ worst-

case execution times (WCET) in order to compute deterministic schedules that guarantee

task’s execution within giving time constraints. This use of pessimistic execution time

assumptions provides real-time guarantees at the cost of decreased performance and

resource utilization.

In soft real-time systems, however, meeting deadlines is not an absolute

requirement (i.e., missing a few deadlines does not severely degrade system performance

or cause catastrophic failure). In such systems, a guaranteed minimum probability of

completing by the deadline is sufficient. Therefore, there is considerable latitude in such

systems for improving resource utilization and performance as compared with hard real-

time systems, through the use of more realistic execution time assumptions.

Given probability distribution functions (PDFs) representing tasks’ execution time

requirements, and tasks’ communication and precedence requirements, represented as a

directed acyclic graph (DAG), this dissertation proposes and investigates algorithms for

constructing non-preemptive stochastic schedules. New PDF manipulation operators

developed in this dissertation are used to compute tasks’ start and completion time PDFs

during schedule construction. PDFs of the schedules’ completion times are also

computed and used to systematically trade the probability of meeting end-to-end

deadlines for schedule length and jitter in task completion times.

Because of the NP-hard nature of the non-preemptive DAG scheduling problem,

the new stochastic scheduling algorithms extend traditional heuristic list scheduling and

genetic list scheduling algorithms for DAGs by using PDFs instead of fixed time values

for task execution requirements. The stochastic scheduling algorithms also account for

delays caused by communication contention, typically ignored in prior DAG scheduling

research.

Extensive experimental results are used to demonstrate the efficacy of the new

algorithms in constructing stochastic schedules. Results also show that through the use of

the techniques developed in this dissertation, the probability of meeting deadlines can be

usefully traded for performance and jitter in soft real-time systems.

 ii

DEDICATION

I dedicate this dissertation to my mother, Suman Dandass, and to the memory of

my father, Flight Lieutenant Tanmaya Singh Dandass.

 iii

ACKNOWLEDGEMENTS

I wish to acknowledge here all those persons who have encouraged, supported,

mentored, challenged, and helped me during my years as a student at Mississippi State

University.

I respectfully offer my deepest gratitude to my major professor and dissertation

director Dr. Anthony Skjellum for helping me focus on my research goals when needed

yet giving me the freedom to let me develop my own research interests. I am also

grateful for the financial support and research opportunities he has provided through my

appointment as a research associate in the High Performance Computing Laboratory

(HPCL). His willingness to actively involve me in writing proposals, research reports,

and articles, and by providing opportunities for presenting technical talks to my peers has

taught me many of the skills I will rely on in my career as a researcher.

I also offer respectful thanks to Dr. Susan Bridges who has patiently helped me

navigate the rules and regulations of the Department of Computer Science and

Engineering and the Office of Graduate Studies at Mississippi State University. I also

gratefully acknowledge the seemingly countless times she has interrupted her work in

order to answer my questions and to provide guidance and encouragement during my

studies. Dr. Donna Reese has also been a valuable resource during my professional

development as a university-level teacher. I am grateful for the feedback and suggestions

 iv

she has provided over the years in helping me improve my teaching style and in helping

me develop skills for effectively teaching dry and difficult material.

I am also grateful to the remaining members of my dissertation committee for

their help in guiding my research and for the valuable suggestions that have served to

improve this dissertation. In particular, I would like to thank Dr. Eric Hansen for

suggesting the ideas that have resulted in the development of the estimate-based list

scheduling methods investigated in this dissertation. Dr. Arkady Kanevsky has provided

early guidance in the development of my scheduling research ideas and was instrumental

in shaping the hypothesis of this dissertation. Dr. Raghu Machiraju’s emphasis on

practical applications for my research has kept this dissertation from becoming overly

abstract.

I am also indebted to the members of the faculty in the Department of Computer

Science and Engineering for their encouragement and kind works of motivation that have

helped me remain focused on my goal of completing this degree during difficult periods.

I also offer a special thanks to Dr. Julia Hodges, who has provided financial support and

teaching opportunities by employing me as a part-time lecturer in the department.

I wish to acknowledge all my colleagues and students in the HPCL who have

contributed valuable ideas during long discussions and heated arguments about the merits

of a variety of technologies and techniques. I would like to especially acknowledge Dr.

Purushotham (Puri) Bangalore, Vinod Valsalam, and Manoj Apte in this regard. A

special “thank you” also goes out to Vijay Velusamy who helped diagnose and correct

 v

difficulties with the computer equipment while I was conducting scheduling experiments.

I acknowledge the friendship of Srigurunath (Ecap) Chakravarthi, Jothi Neelamegam,

Shane Hebert, and Gerg Henley.

The willingness of Ms. Brenda Collins and the resourceful office staff in the

Department of Computer Science and Engineering to handle all the “last-minute”

requests and paperwork deserves a special mention here. Their cooperation and friendly

assistance has been helped smooth my time at Mississippi State University.

On a personal note, I wish to express my sincere and deep gratitude to my family

for supporting my academic degree goals. I owe a special thanks to my wife, Wendy,

without whose reservoir of love, encouragement, spiritual support, and understanding

(and occasional prodding), this dissertation would never have been completed. I would

also like to thank my mother who had the foresight to inculcate in me the value of

advanced education and then had the courage and faith to allow me to leave my home in

India in order to independently pursue my educational ambitions in the US.

Finally, I would like to acknowledge the following agencies and organizations

that have partially funded my research at Mississippi State over the last few years:

• DoE – LLNL, grant 10605-001-00-35.

• US Navy – Through NASA, Stennis, grant NAS1398033DO111.

• NASA, JPL, grant 1221287 01010075.

• NSF, grant CCR9900524 00030264.

• MPI Software Technology, Inc., grant 01061201AH 01050401.

 vi

TABLE OF CONTENTS

 Page

DEDICATION .. ii

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES .. ix

LIST OF FIGURES .. xi

LIST OF SYMBOLS, ABBREVIATIONS, AND SPECIAL Nomenclature xvii

CHAPTER

I. INTRODUCTION .. 1

 1.1 Real-Time Systems ... 1
 1.2 Classification of Real-time Tasks and Systems 4
 1.3 Real-time Scheduling .. 7
 1.4 Motivation ... 10
 1.5 Hypothesis .. 13
 1.6 Scheduling Approach and Assumptions ... 21
 1.7 Experimental Plan ... 26
 1.8 Contributions of this Dissertation ... 27
 1.9 Organization of the Dissertation ... 29

II. LITERATURE REVIEW ... 30

 2.1 Introduction ... 30
 2.2 Properties of Real-time Tasks ... 32
 2.3 Scheduling Real-Time Tasks .. 35
 2.3.1 Deterministic Scheduling .. 37
 2.3.2 Stochastic Scheduling ... 46
 2.4 Real-Time Operating Systems .. 52
 2.5 Scheduling in Non Real-Time Operating Systems 56
 2.5.1 Thread Scheduling in Windows 2000 ... 56
 2.5.2 Thread Scheduling in Linux ... 58
 2.5.3 Process Scheduling in K42 ... 59

 vii

CHAPTER Page

 2.6 Real-Time Communication .. 60
 2.6.1 Admission Control and Resource Reservation 60
 2.6.2 Access Arbitration and Transmission Control 63
 2.7 Scheduling of Parallel Tasks .. 66
 2.8 Limitations of Existing Scheduling Research 72

III. STOCHASTIC TASK SCHEDULING APPROACH 76

 3.1 Aperiodic Application Model .. 76
 3.2 Periodic Application Model .. 83
 3.3 Parallel Platform Model .. 84
 3.4 Manipulating Probability Distribution Functions for Scheduling 85
 3.5 Stochastic Scheduling Overview .. 98
 3.5.1 Computing Schedule Start Times for Vertices 98
 3.5.2 Computing Schedule Start Times for Edges 100
 3.6 List Scheduling Approach .. 101
 3.6.1 Stochastic Highest Level First with Estimated Times 103
 3.6.2 Stochastic Earliest Time First ... 103
 3.6.3 Stochastic Critical Path ... 103
 3.6.4 Resource Allocation .. 106
 3.7 Genetic List Scheduling Approach ... 119
 3.8 Scheduling Options ... 124
 3.9 Reducing Stochastic Jitter ... 126
 3.10 Complexity Analysis .. 128
 3.10.1 Complexity of PDF Operators .. 129
 3.10.2 Complexity of the Exact Method List Scheduling Algorithms 130

IV. EXPERIMENT DESIGN ... 138

 4.1 Directed Acyclic Graph Classes ... 138
 4.1.1 DAG Structure .. 139
 4.1.2 Communication to Computation Ratio ... 141
 4.1.3 Task Weight Probability Distributions ... 142
 4.1.4 DAG sizes ... 146
 4.2 Directed Acyclic Graph Instances .. 147
 4.3 Experimental Parameters .. 147
 4.4 Metrics for Experiment Analysis .. 149
 4.4.1 Stochastic Schedule Length .. 149
 4.4.2 Schedule Compression .. 150
 4.4.3 QoS-Performance Tradeoff ... 151
 4.4.4 Relative Schedule Length Improvement 152
 4.4.5 Average Stochastic Jitter Factor ... 152

 viii

CHAPTER Page

 4.4.6 Stochastic Footprint .. 153
 4.4.7 Stochastic Utilization .. 155

V. EXPERIMENTAL RESULTS AND ANALYSIS 157

 5.1 Stochastic List Scheduling Approach ... 158
 5.1.1 Estimate Method ... 158
 5.1.2 Exact Method .. 170
 5.1.3 Comparison of the Estimate LS and the Exact LS Methods 182
 5.1.4 Trading QoS for Performance using LS algorithms 189
 5.1.5 Stochastic Jitter Control with LS .. 196
 5.1.6 Schedule Compression versus Jitter Control with LS 202
 5.2 Stochastic Genetic List Scheduling Approach 204
 5.2.1 Comparison of Stochastic LS and Stochastic GLS 205
 5.2.2 Trading-off Performance for QoS with GLS 207
 5.2.3 Jitter Control with GLS .. 210
 5.2.4 Schedule Compression versus Jitter Control with GLS 213

VI. CONCLUSIONS AND FUTURE WORK ... 215

 6.1 Contributions and Results ... 215
 6.2 Future Work .. 219

REFERENCES ... 222

APPENDIX

A. Summary of Additional Genetic List Scheduling Experiments 237

 A.1 Comparison of Stochastic LS and Stochastic GLS 238
 A.2 QoS-Performance Tradeoff with GLS ... 243
 A.3 Jitter Control with GLS .. 244
 A.4 Trading-off Performance for QoS with GLS 246

 ix

LIST OF TABLES

TABLE Page

1.1 Example Start and Completion Time PDFs .. 17

3.2 Example Sequence of PDF Computations in Stochastic Scheduling 119

3.3 Summary of Operations in SETF for the Linear DAG 131

3.4 Summary of Operations in SETF for the Unordered DAG 133

3.5 Summary of Operations in SHLEFT and SCP for the Unordered DAG ... 136

4.1 DAG Structure Combinations ... 147

4.2 Summary of Scheduling Experiments .. 149

5.1 Comparison of LS algorithms ... 183

5.2 Improvement of Schedule Lengths using Exact vs. Estimate LS 184

5.3 Comparison between Exact LS Algorithms ... 184

5.4 Comparison between Estimate LS Algorithms ... 184

5.5 Ratio of Average Execution Times of Exact and Estimate LS 185

5.6 Relative Execution Times of the Exact LS Algorithms 187

5.7 Relative Execution Times of the Estimate LS Algorithms 188

5.8 Comparison of GLS and LS Schedules for FFT DAGs 206

A.1 Comparison of GLS and LS Schedules for Large HFJ DAGs 238

A.2 Comparison of GLS and LS Schedules for Large MVA DAGs 239

A.3 Comparison of GLS and LS Schedules for Large OUT DAGs 240

 x

TABLE Page

A.4 Comparison of GLS and LS Schedules for Large RND DAGs 241

A.5 Comparison of GLS and LS Schedules for Large OUT DAGs 242

 xi

LIST OF FIGURES

FIGURE Page

1.1 A Representative PDF for Task Execution Time Requirements 14

1.2 A Hard Real-Time Schedule ... 15

1.3 Execution Profile for a “Tight” Soft Real-Time Schedule 16

1.4 Execution Profile for a Soft Real-Time Schedule with Jitter Control 20

2.1 Gantt Chart for Preemptive and Non-preemptive Scheduling 42

3.1 A Hypothetical DAG with Deterministic Task Weights 77

3.2 A Hypothetical DAG with Randomly Distributed Task Weights 78

3.3 Example Fine-Grained PDF of an Integer Matrix Multiplication Task 81

3.4 Example Coarse-Grained PDF of an Integer Matrix Multiplication Task .. 82

3.5 Algorithm for Computing the Maximum PDF of a Set of PDFs 93

3.6 Algorithm for Computing the minimum PDF of a Set of PDFs 95

3.7 The Fundamental List Scheduling algorithm ... 102

3.1 Algorithm for Computing the Stochastic Mobility Attribute of Vertices ... 104

3.2 Gantt Chart for the Optimal Schedule for the DAG in Figure 3.1 107

3.3 A Non-Optimal Schedule when v3 is Scheduled before v4 108

3.4 Stochastic Schedule with a Slot-Fitting Threshold of 70% 110

3.5 Pseudocode Algorithm for Selecting the Best Processor for a Vertex 111

3.6 Pseudocode Algorithm for Scheduling a Vertex on a Particular Processor 112

 xii

FIGURE Page

3.7 Pseudocode Algorithm for Scheduling an Edge on a Particular Processor 115

3.8 Partial Schedule – Scheduling Edge (v2, v4) as Part of Scheduling v4 117

3.9 Stochastic Schedule with a Slot-Fitting Threshold of 100% 119

3.10 The Fundamental GLS Algorithm .. 120

4.1 Miniature Examples of DAG Structures ... 140

4.2 Beta Probability Distribution with a Variety of Shape Parameters 144

4.3 Exponential Probability Distribution with λ = 1 ... 145

4.4 Randomized Probability Distribution ... 146

4.5 Profile of Resource Utilization of an Example Schedule with Two Tasks 154

4.6 Algorithm for Computing Stochastic Footprint .. 155

5.1 Schedule Length Improvement for Estimate SHLEFT Grouped by DAG

Structure ... 159

5.2 Schedule Length Improvement for Estimate SETF Grouped by DAG

Structure ... 160

5.3 Schedule Length Improvement for Estimate SCP Grouped by DAG

Structure ... 160

5.4 Schedule Length Improvement for All Estimate LS Algorithms Grouped

by DAG Structure .. 161

5.5 Schedule Length Improvement for Estimate SHLEFT Grouped by Weight

Distribution .. 162

5.6 Schedule Length Improvement for Estimate SETF Grouped by Weight

Distribution .. 163

5.7 Schedule Length Improvement for Estimate SCP Grouped by Weight

Distribution .. 163

 xiii

FIGURE Page

5.8 Schedule Length Improvement for All Estimate LS Algorithms Grouped
by Weight Distribution .. 164

5.9 Schedule Length Improvement for Estimate SCP Grouped by Weight

Distribution .. 165

5.10 Schedule Length Improvement for Estimate SETF Grouped by CCR 165

5.11 Schedule Length Improvement for Estimate SCP Grouped by CCR 166

5.12 Schedule Length Improvement for All Estimate LS Algorithms Grouped

by CCR .. 166

5.13 Schedule Length Improvement for Estimate SHLEFT Grouped by DAG

Size .. 167

5.14 Schedule Length Improvement for the Estimate SETF Grouped by DAG

Size .. 168

5.15 Schedule Length Improvement for Estimate SCP Grouped by DAG Size .. 168

5.16 Schedule Length Improvement for All Estimate LS Algorithms Grouped

by DAG Size .. 169

5.17 Average Schedule Length Improvement for All DAGs using the Estimate

Methods ... 170

5.18 Schedule Length Improvement for Exact SHLEFT Grouped by DAG

Structure ... 172

5.19 Schedule Length Improvement for Exact SETF Grouped by DAG

Structure ... 172

5.20 Schedule Length Improvement for Exact SCP Grouped by DAG Structure 173

5.21 Schedule Length Improvement for All Exact LS Algorithms Grouped by

DAG Structure ... 173

5.22 Schedule Length Improvement for Exact SHLEFT Grouped by Weight

Distribution .. 174

 xiv

FIGURE Page

5.23 Schedule Length Improvement for Exact SETF Grouped by Weight

Distribution .. 175

5.24 Schedule Length Improvement for Exact SCP Grouped by Weight

Distribution .. 175

5.25 Schedule Length Improvement for All Exact LS Algorithms Grouped by

Weight Distribution ... 176

5.26 Schedule Length Improvement for Exact SHLEFT Grouped by CCR 177

5.27 Schedule Length Improvement for Exact SETF Grouped by CCR 177

5.28 Schedule Length Improvement for Exact SCP Grouped by CCR 178

5.29 Schedule Length Improvement for All Exact LS Algorithms Grouped by

CCR ... 178

5.30 Schedule Length Improvement for Exact SHLEFT Grouped by DAG Size 179

5.31 Schedule Length Improvement for Exact SETF Grouped by DAG Size 180

5.32 Schedule Length Improvement for Exact SCP Grouped by DAG size 180

5.33 Schedule Length Improvement for All Exact LS Algorithms Grouped by

DAG Sizes ... 181

5.34 Schedule Length Improvement for All DAGs Using the Exact Method 182

5.35 LS Compression Grouped by DAG Structure ... 191

5.36 LS Compression Grouped by Weight Distribution 191

5.37 LS Compression Grouped by DAG CCR .. 192

5.38 LS Compression Grouped by DAG Size ... 192

5.39 LS QoS-performance Tradeoff Grouped by DAG Structure 194

5.40 LS QoS-Performance Tradeoff Grouped by Weight Distribution 194

 xv

FIGURE Page

5.41 LS QoS-Performance Tradeoff Grouped by DAG CCR 195

5.42 LS QoS-Performance Tradeoff Grouped by DAG Size 195

5.43 LS Jitter Control Factor Grouped by DAG Structure 197

5.44 LS Jitter Control Factor Grouped by Weight Distribution Types 197

5.45 LS Jitter Control Factor Grouped by DAG Size .. 198

5.46 LS Jitter Control Factor Grouped by DAG CCR ... 198

5.47 LS Utilization Grouped by DAG Structure ... 200

5.48 LS Utilization Grouped by Weight Distribution ... 200

5.49 LS Utilization Grouped by DAG Size ... 201

5.50 LS Utilization Grouped by DAG CCR .. 201

5.51 LS Compression vs. Jitter Control Factor for All DAGs 203

5.52 GLS Schedule Compression Grouped by Weight Distribution 207

5.53 GLS Schedule Compression Grouped by DAG CCR 208

5.54 GLS QoS-Performance Tradeoff Grouped by Weight Distribution 209

5.55 GLS QoS-Performance Tradeoff Grouped by DAG CCR 209

5.56 GLS Jitter Control Grouped by Weight Distribution 211

5.57 GLS Jitter Control Grouped by DAG CCR ... 211

5.58 GLS Utilization Grouped by Weight Distribution 212

5.59 GLS Utilization Grouped by DAG CCR ... 213

5.60 GLS Compression vs. Jitter Control Factor ... 214

 xvi

FIGURE Page

A.1 GLS Schedule Compression Grouped by Structure 243

A.2 GLS QoS-Performance Tradeoff Grouped by Structure 244

A.3 GLS Jitter Control Grouped by Structure ... 245

A.4 GLS Utilization Grouped by Structure ... 245

A.5 GLS Compression vs. Jitter Control Factor .. 246

 xvii

LIST OF SYMBOLS, ABBREVIATIONS, AND SPECIAL NOMENCLATURE

Symbols

) ,(,), ,(11 nn rxrx L A PDF specified by specific mappings of domain values (i.e.,
time) to range values (i.e., probabilities).

p Precedence relation; Ja p Jb, specifies that task Ja must complete
before task Ja is released.

pf Exclusion relation; Ja pf Jb specifies that instances of tasks Ja
and Jb cannot preempt each other.

⊕
The PDF translation operator. πX(x) ⊕ k implies that the
resulting PDF is computed from the original PDF by adding k
units to each domain value in πX.

⊗ PDF convolution operator; si(t) ⊗ wi(τ) indicates the
convolution of PDFs si(t) and wi(τ).

ℑ+ The set of positive integers.
ℜ+ The set of non-negative real numbers
φI Phase of a periodic or sporadic task Ji.

λpc(ϑ) The length of a planning cycle for a set of periodic tasks ϑ.

(va, vb)
An edge in a DAG designated by the originating vertex va and
destination vertex vb.

λϑ The LCM of task periods in a set of tasks ϑ.

[lfi, ufi]
The interval over which the PDF for the finish time PDF for
task Ji is defined.

[lsi, usi]
The interval over which the PDF for the starting time PDF for
task Ji is defined.

[lwi, uwi]
The interval over which the PDF for the execution time
requirement (weight) PDF for task Ji is defined.

[lX, uX] The interval over which the PDF for random variable X has
non-zero probability.

ci (t) The execution time requirement remaining for task Ji at time t.
Di Relative deadline of task Ji.
di Deadline of a task.
E The set of edges in a DAG.

E[πX(x)] or E[X] Expected value of random variable X.

Ei
Tardiness of a task; the time by which a task exceeds its
deadline.

 xviii

Symbols (continued)
ei An edge in the set of edges in a DAG.
ēi Effective execution time for task Ji in the UDA algorithm.

F-1
schedule(x) The inverse of the completion time CDF of a schedule.

fi Finish time of a task.
fi(t) The finish time PDF of task Ji.
Fi(t) The finish time CDF of task Ji.

fschedule(t) The completion time PDF of a schedule.
Fschedule(t) The completion time CDF of a schedule.

G A DAG.

Li
Lateness of a task; the difference between a task’s deadline and
finish time.

lX The lower bound of the interval over which the PDF for random
variable X is defined.

M Schedule length.
M(x) Stochastic schedule length.

P The set of processors onto which the DAG is to be scheduled.
P(A) The probability with which event A occurs.

pi
The ith processor in the set of processors onto which the DAG is
to be scheduled.

QoS(Ji)
A function used to determine the probability with which task Ji
is admitted using SRMS.

ri Release time for a task Ji.
Ri Response time for task Ji.

ri(t) The release time PDF of task Ji.
si Start time of a task.

si(t) The start time PDF of task Ji.
Si(t) The start time CDF of task Ji.
Si(t) The release time CDF of task Ji.

tc Sum of completion times of all tasks in a schedule.
Ti Period of a periodic task Ji.

rt Average response time of a schedule.
tw Weighted sum of completion times of all tasks in a schedule.

U Processor utilization for periodic schedules on uniprocessor
systems

Ũ Stochastic utilization metric

U*
A

 Breakdown processor utilization of periodic scheduling
algorithm A.

ui(x) Utilization demand function for task Ji in the UDA algorithm.

uX The upper bound of the interval over which the PDF for random
variable X is defined.

 xix

Symbols (continued)
V The set of vertices in a DAG.
vi A vertex in the set of vertices in a DAG.
wi Execution time (or weight) of task Ji.

wi(t) The execution time requirement (or weight) PDF of task Ji.
Wi(t) The execution time requirement (or weight) CDF of task Ji.
wvi Execution time requirement of vertex vi.

Xi
Laxity of a task; the amount of time a task can exceed its
planned execution time requirement before missing its deadline.

ζ(x) Schedule compression metric
Η Throughput of a schedule.
ξ(x) QoS-performance tradeoff metric

πmax(X1, X2)(x) The maximum PDF operator.
πmin(X1, X2)(x) The minimum PDF operator.

πX(x) The probability distribution for random variable X.
ΠX(x) The cumulative distribution function for the random variable X.

Ψ(sched1, sched2) Relative schedule length improvement metric
ϑ Set of n tasks, {J1, J2, …, Jn}, to be scheduled.

Nomenclature

Exact Method A method for computing tasks’ start and completion time PDFs
in a stochastic schedule that uses tasks’ execution time
requirement PDFs and PDF operators.

Exact SCP The version of the SCP algorithm that uses the PDF operators at
each scheduling step.

Exact SETF The version of the SETF algorithm that uses the PDF operators
at each scheduling step.

Exact SHLEFT The version of the SHLEFT algorithm that uses the PDF
operators at each scheduling step.

Admission Test Schedulability analysis performed before allowing at task to
execute in order to ensure that the real-time system will meet all
required deadlines. Tasks failing the admission test are not
admitted into the system.

Aperiodic task A task that is not invoked repeatedly in a system.
B-level The B-level (or bottom level) of a vertex in a DAG is the

longest path from the vertex to a terminal vertex.
Branch and Bound A systematic search technique used to solve combinatorial

optimization problems. The “branch” step expands the scope of
solution space searched while the “bound” step prunes regions
of the search space that will not lead to the optimal solution.

 xx

Nomenclature (continued)
Breakdown Processor
Utilization

The upper bound on the processor utilization within which a
scheduling algorithm can guarantee a feasible schedule for an
arbitrary set of periodic tasks.

Collision The loss of communication that occurs when the signals of
simultaneous overlapping transmissions are scrambled.

Computation-to-
communication ratio

The ratio of average vertex weight to average edge weight of a
DAG.

Confidence Level The confidence level of an assertion is the probability that the
assertion is true all the time.

Congestion A condition that occurs when the network capacity is
insufficient to handle the traffic being inserted into the
communication network by all the applications.

Constant Bandwidth
Server

A periodic scheduling scheme that isolates tasks with variable
execution time from each other by guaranteeing that each task
will be granted a pre-assigned fraction of the total processor
bandwidth.

Cumulative
Distribution Function

A function that maps a positive time value to a positive real
number representing the sum of probabilities that an event
occurs at or before each time value.

Deadline The time relative to the beginning of the schedule within which
a task or schedule must complete in order to meet real-time
constraints.

Deferrable Server A server that reserves processing capacity, as opposed to a fixed
interval of time, in a periodic schedule for executing sporadic
and aperiodic tasks.

Deterministic
Schedule

A schedule in which the starting and completion time of tasks
are fixed.

Directed Acyclic
Graph

A representation of a parallel application in the form of a graph
consisting of vertices that represent computation tasks and
edges that represent communication and precedence relations
between the vertices. The direction of the edges represents the
direction of data flow or precedence between vertices.

Dominant Sequence
Clustering

An LS heuristic that uses the b-level and t-level attributes of the
vertices in a DAG to determine the critical path of the partially
scheduled DAG and gives priority to vertices on the critical
path.

Dynamic Critical Path A LS heuristic that recomputes the critical path of the partially
scheduled DAG at each step and schedules vertices on the
critical path first. Vertices are scheduled on the processor that
minimizes communication cost with predecessor and successor
vertices.

 xxi

Nomenclature (continued)
Dynamic Scheduling A scheduling paradigm in which scheduling decisions are made

based on the varying requirements of a changing workload.
Earliest Critical
Deadline First

A modification of the EDF algorithm in which the deadline of a
task instance that has not completed within its deadline is
modified to become the deadline of the next instance of the
task.

Earliest Time First A LS heuristic that prioritizes vertices in non-decreasing order
of their earliest possible starting times.

Edge Zeroing A LS heuristic that strives to reduce communication costs by
allocating vertices connected by large edges onto the same
processor.

End Time Synonymous with “finish time.”
End-to-end deadline The deadline by which all tasks in the DAG (or the

corresponding schedule) must complete.
Estimate Method A method for computing tasks start and completion time PDFs

by constructing an initial deterministic schedule using estimated
fixed values to represent each task’s execution time
requirements, and the using the deterministic schedule to
construct the final stochastic schedule.

Estimate SCP The version of the SCP algorithm that uses fixed task weight
estimates to construct an initial schedule before using PDF
operators to construct the final schedule.

Estimate SETF The version of the SETF algorithm that uses fixed task weight
estimates to construct an initial schedule before using PDF
operators to construct the final schedule.

Estimate SHLEFT The version of the SHLEFT algorithm that uses fixed task
weight estimates to construct an initial schedule before using
PDF operators to construct the final schedule.

Expected Value The mean value of a random variable taken over an infinitely
large sample.

Finish Time The time relative to the beginning of the schedule at which a
task completes execution.

Genetic Algorithm An optimization algorithm based on the principle of natural
selection.

Genetic List
Scheduling

A hybrid GA and LS approach to scheduling DAGs in which
the GA determines the priority in which tasks are scheduled
using the LS approach.

Hard Real-time A real-time system or task that must complete within its
deadline with 100% probability in order to avoid catastrophic
failure.

 xxii

Nomenclature (continued)
Heuristic Scheduling A scheduling paradigm in which the system strives to achieve

optimality but does not guarantee it.
Highest Level First
with Estimated Times

A LS heuristic that prioritizes vertices according to non-
decreasing order of their b-level attributes.

Immediate
Predecessor Tasks

The immediate predecessor tasks of a task Ji in a DAG are those
tasks that are directly connected to Ji and are followed by Ji.

Immediate Successor
Tasks

The immediate successor tasks of a task Ji in a DAG are those
tasks that are directly connected to Ji and follow Ji

Independent Random
Variables

Random variables are mutually independent if the observation
of any particular value of one variable has no influence on the
probability of observing any value of the other variables.

Jitter The variance in the execution time requirement of tasks in a
real-time system

Lateness Difference between a task’s deadline and finish time.
Linear Clustering A LS heuristic that assigns vertices in the critical path of a DAG

to the same processor in order to reduce communication costs.
List Scheduling A class of heuristic DAG scheduling algorithms in which ready

tasks are scheduled in the order determined by one of a variety
of heuristics.

Mobility Directed A LS heuristic that prioritizes vertices in non-decreasing order
of their relative mobility attribute.

Modified Critical Path A LS heuristic that priorities vertices in non-decreasing order of
the latest time when they can be started without extending the
schedule length

Non-preemptive
scheduling

A scheduling paradigm in which the currently executing task
cannot be interrupted in order to allow another task to execute.

Offline Scheduling A scheduling paradigm in which scheduling decisions are made
before the system is executed.

Online Scheduling A scheduling paradigm in which scheduling decisions are made
while the system is executing.

Optimal Scheduling A scheduling paradigm in which a cost function is minimized or
a benefit function is maximized

Parallel and
Distributed
Real-time System

Parallel and distributed real-time systems exploit the inherent
concurrency in applications in order to reduce execution time by
apportioning the workload between several processors while
striving to retain the application’s predictability requirements.

Period The length of intervals between successive activations of a
periodic task.

Periodic schedule A schedule for a periodic system
Periodic system A system consisting of periodic tasks
Periodic task A task that is repeatedly executed at a fixed rate

 xxiii

Nomenclature (continued)
Phase The time relative to the beginning of the schedule when the first

instance of a periodic or sporadic task is released.
Planning Cycle The minimum length schedule required in order to schedule all

tasks in a periodic system. The schedule in the planning cycle
is repeatedly executed back-to-back over the lifetime of a
periodic system.

Polling Server A special periodic task that is used to reserve intervals of time
in a periodic real-time schedule for executing sporadic and
aperiodic tasks.

Predictability Predictability is a property of real-time systems that implies that
the runtime behavior of the system is repeatable.

Preemption Interrupting the currently executing task in order to execute
another task. The interrupted task may be allowed to resume at
a later time.

Preemptive scheduling A scheduling paradigm that permits an executing task to be
interrupted in order to allow another (typically higher priority)
task to execute

Priority A quantitative attribute of a task describing its importance
relative to other tasks.

Probabilistic Time
Demand Analysis

A preemptive stochastic scheduling algorithm for periodic
stochastic tasks that does not account for precedence relations
between tasks.

Probability
Distribution Function

A function that maps a positive time value to a positive real
number. The real number indicates the probability with which
an event occurs at each time value.

Processor Utilization The fraction of time in a uniprocessor schedule when a
processor is not idle.

QoS-Performance
Tradeoff Metric

This metric relates the reduction in the required probability of
meeting end-to-end deadlines to the resulting schedule
compression

Quality of Service A generic term used to describe the level of assurance a system
provides users about the predictability of offered services

Rate Monotonic
Scheduling

A dynamic online scheduling algorithm for periodic tasks that
assigns higher priority to tasks with shorter periods.

Ready time Synonymous with “release time.”
Real-time System A systems that is required to respond to external stimulus within

a guaranteed period of time.
Relative deadline The amount of time relative to the release time of a task within

which the task must complete.

 xxiv

Nomenclature (continued)
Relative Schedule
Length Improvement
Metric

This metric is the relative reduction in the stochastic schedule
length of one schedule relative to the stochastic schedule length
of another schedule.

Release time The time relative to the beginning of the schedule when a task
becomes ready to execute. Synonymous with “read time.”

Response time The difference between the finish time and release time of a
task.

Schedule Compression
Metric

The relative reduction in the width of the schedule completion
PDF when the required probability of meeting end-to-end
deadlines is reduced below 100%.

Schedule Length The number of time units relative to the start of the schedule
required for completing all tasks in the schedule.

Simulated Annealing A heuristic combinatorial optimization technique based on the
physical process of heating and then slowly cooling a substance
to obtain strong crystallization structures.

Slot-fitting Threshold The minimum probability with which a task must fit in a slot in
a schedule in order to permit the insertion of the task into the
slot.

Soft real-time A real-time system or task that can miss deadlines occasionally
without resulting in catastrophic failure.

Sporadic Task A sporadic task repeats that repeats at irregular intervals. The
length of the intervals is bounded from below, thereby
restricting the frequency at which the aperiodic task repeats.

Start Time The time relative to the beginning of the schedule at which a
task begins execution.

Static Scheduling A scheduling paradigm in which the scheduling decisions are
made based on a fixed workload.

Statistical Rate
Monotonic Scheduling

An extension to RMS that accounts for variable execution time
requirements of tasks.

Stochastic Critical
Path

The new LS-based stochastic scheduling algorithm developed in
this dissertation that uses PDF operators in order to determine
the stochastic critical path of the schedule and give priority to
vertices on the critical path. The algorithm also uses the PDF
operators to allocate resources to tasks.

Stochastic Earliest
Time First

The new LS-based stochastic scheduling algorithm developed in
this dissertation that uses PDF operators in order to prioritize
ready vertices according to their earliest expected execution
time and uses the PDF operators to allocate resources to tasks.

Stochastic Footprint
Metric

The sum of the count unit time slots per resource in the
schedule during which the resource is reserved for execution the
any of the schedule’s tasks with non-zero probability.

 xxv

Nomenclature (continued)
Stochastic Highest
Level First with
Estimated Time

The new LS-based stochastic scheduling algorithm developed in
this dissertation that uses the tasks expected b-level values to
prioritize vertices, but uses PDF operators instead of fixed value
operators to allocate resources to tasks.

Stochastic Jitter The variance in the completion time of a task in a stochastic
schedule cause by the variance in the task’s execution time
requirements and the variance in the task’s starting time caused
by the variance in the completion time of preceding tasks.

Stochastic Schedule A schedule in which the starting time and completion time of
tasks is specified in the form of probability distribution
functions, as opposed to fixed values.

Stochastic Schedule
Length

The minimum amount of time required for completing a
stochastic schedule with a given probability.

Stochastic Time
Demand Analysis

An extension to PTDA that accounts for tasks with deadlines
greater than their periods and also accounts delays caused by
contention over shared resources.

Stochastic Utilization
Metric

A measure of the resource utilization of the stochastic schedule.

Terminal Tasks Tasks in a schedule that are not followed by other tasks.
T-Level The T-level (or top level) of a vertex in a DAG is the longest

path from an entry vertex to this vertex.
Total Bandwidth
Server

A server that dynamically assigns deadlines to periodic tasks in
a periodic real-time system.

Translation Lookaside
Buffer

A special cache memory that holds frequently used page table
entries and is used for speeding the translation of logical
addresses to physical addresses in advanced architecture
processors that support paged memory.

Utilization Demand
Analysis

An admission control technique for preemptive periodic
scheduling for tasks with variable execution time requirements
based on computing the overall utilization demands of a set of
tasks.

Abbreviations

BB Branch and bound
CBS Constant bandwidth server
CCR Computation-to-communication ratio
DAG Directed acyclic graph
DCP Dynamic critical path
DMA Direct memory access

 xxvi

Abbreviations (continued)
DMS Deadline monotonic scheduling
DS Deferrable server
DSC Dominant sequence clustering
ECDF Earliest critical deadline first
EDD Earliest due date
EDF Earliest deadline first
ETF Earliest time first
EZ Edge zeroing
FFT Fast Fourier transform
GA Genetic algorithm
GLS Genetic list scheduling
HFJ Hierarchical fork join
HLEFT Highest level first with estimated times
I/O Input/output
LC Linear clustering
LCM Least common multiple
LS List scheduling
MCP Modified critical path
MD Mobility directed
MVA Mean value analysis
NIC Network interface card
OUT Out tree
PDF Probability distribution function
PS Polling server
PTDA Probabilistic time demand analysis
QoS Quality of service
RMS Rate monotonic scheduling
SA Simulated annealing
SCP Stochastic critical path
SETF Stochastic earliest time first
SFJ Simple fork join
SHLEFT Stochastic highest level first with estimated times
SRMS Statistical rate monotonic scheduling
STDA Stochastic time demand analysis
TBS Total bandwidth server
TLB Translation lookaside buffer
UDA Utilization demand analysis
WCET Worst case execution time

 1

CHAPTER I

INTRODUCTION

This chapter introduces basic real-time concepts and describes the fundamental

problem of constructing non-preemptive schedules for soft real-time parallel applications

with non-deterministic computation requirements times and arbitrary precedence

constraints. The specific problem of emphasis in this dissertation is motivated here and

the main hypothesis of the research is presented in this chapter. The approach used to

solve the problem, the plan for experiments to validate the scheduling techniques, and the

expected contributions of the research are also summarized here.

1.1 Real-Time Systems

A real-time computer system is one that guarantees that its component tasks will

begin and complete execution within a predefined interval of time [26, 31, 147].

Therefore, the correctness of a real-time system depends both on the accuracy of

computations and the time at which the system begins and completes those computations.

Real-time systems typically must react to external events within specific time constraints.

However, real-time systems are not necessarily equivalent to fast systems; fast is a

relative term that does not completely express the timing characteristics required of real-

time systems.

2

The primary distinguishing feature between high-performance (i.e., fast)

computing systems and real-time systems is that the former emphasizes throughput and

reducing average response times and the latter emphasizes timeliness and predictability

of completion times [147]. Predictability implies that the timing characteristics of tasks

are deterministic and repeatable so as to enable scheduling that meets timing constraints.

High performance systems reduce average response times by utilizing techniques such as

time slicing, memory hierarchies (e.g., caches), and speculative execution. However,

these techniques reduce the predictability of task runtimes, making it difficult to construct

schedules that guarantee that individual tasks will meet their timing constraints.

Therefore, the focus of real-time system design is on improving predictability.

However, predictability is not the only critical factor in determining the success of

a real-time system design and implementation. For example, a real-time control system

must be designed to react within the timing characteristics of the system being controlled

[147]. In particular, a real-time flight control system generally requires sub-second

response time to pilot input, whereas a meteorological forecasting system has several

minutes or hours available to it to respond to changes in atmospheric conditions. This

example illustrates that timing constraints in practical real-time systems cannot be

arbitrarily extended to ensure task completion within deadlines. Also, utilizing faster

processors also does not automatically guarantee that tasks will meet timing requirements

because interaction of tasks with each other and with the environment have to be taken

into consideration under realistic loads.

3

Improved hardware performance is also enabling system designers to timeshare

the hardware between several competing real-time tasks, thereby reducing the amount of

processing time that can be dedicated exclusively to a single task. Effective timesharing

is especially critical in applications where restrictive weight and power budgets prohibit

the dedicated allocation of hardware resources to tasks [108].

Computation requirements in many real-time application domains (e.g., signal

processing) exceed the computation capacity of a single processor, and therefore, require

parallel and/or distributed real-time processing. Parallel and distributed real-time

computing exploits the inherent concurrency in applications in order to apportion the

workload between several processors while striving to retain such applications’

predictability requirements.

In order to achieve a balance of timely and predictable performance, real-time

systems typically use specialized schedulers in order to control when tasks are executed

with the goal of meeting timing requirements. Essentially, the real-time system strives to

satisfy the quality-of-service (QoS) demands imposed by real-time tasks. In the past,

scheduling policies have been based on labor-intensive, ad hoc, low-level optimization

techniques [26, 31, 147]. These techniques have included:

• utilizing hand-optimized assembly language routines,

• utilizing priority-based interrupt handling,

• introducing simplifying (and not necessarily correct) timing assumptions, and

• performing extensive simulations to verify that timing constraints are met for a set of

expected scenarios.

4

The use of ad hoc techniques to construct a real-time system requires exhaustive

testing in order to validate the system’s correctness every time its hardware, software,

and/or constraints are modified. If this testing and verification do not cover all possible

combinations and sequences of external events and internal scheduling decisions, nor

account for all uncertainties, the system can fail under conditions that have not been

previously encountered.

1.2 Classification of Real-time Tasks and Systems

The consequences of failing to comply with timing constraints are used to broadly

classify real-time tasks and systems [26]. The failure to meet a hard real-time constraint

results in catastrophic consequences (e.g., loss of life and/or property) and invalidates the

correctness of a real-time system. Tasks and systems with hard real-time constraints are

said to be hard real-time tasks and hard real-time systems, respectively. Examples of

hard real-time systems include:

• chemical and nuclear plant control,

• automotive applications,

• medical applications, and

• flight control systems.

Techniques for constructing hard real-time systems typically utilize estimates of

the real-time tasks’ worst-case execution time (WCET) in scheduling decisions in order

to ensure timely execution. However, estimating WCET accurately is difficult because of

the complex interaction of software and hardware subsystems. For example, the time

5

taken to complete a task can vary from run to run on modern advanced architecture

processors incorporating instruction and data caches, and pipelined and out-of-order

speculative execution with branch prediction. This variance, also called jitter [26], is

further exacerbated by the interference of interrupt handling and direct memory access

(DMA) operations.

The typical approach to determining WCET involves analyzing the compute time

of sequences of instructions under simplified worst-case assumptions (e.g., instructions

and data are not resident in cache, branch prediction tables are invalidated, all expected

DMA operations and interrupts will occur, etc.) [71, 103, 105, 106, 110]. Analyzing only

the worst-case scenario, instead of the expected sequences of task executions, simplifies

schedule construction because the cost of analyzing all expected combinations of

software and hardware interactions can be prohibitive. This simplification, used to

facilitate schedule construction, however, results in significantly overestimated task

execution times relative to the actual observed execution time distribution. In systems

where worst-case situations occur infrequently, the use of WCET in scheduling decisions

results in resource under-utilization because reserved resources are left idle for a

significant fraction of the time in order to guarantee their availability when needed.

Furthermore, in order to reduce a hard real-time task’s execution time jitter

caused by interrupts and direct memory access (DMA) resulting from asynchronous

input/output (I/O) operations, hard real-time system schedulers typically isolate and

serialize computation and I/O bound tasks [30]. However, this restriction on when DMA

and interrupts are permitted to occur also results in resource under-utilization because I/O

6

devices are idled when a compute-intensive task is executing and the processor is idled

when an I/O operation is underway.

By contrast, a soft real-time constraint can be violated without resulting in

catastrophic consequences and need not jeopardize the correctness of the real-time

system [26, 31]. The value of results from a soft real-time system depends on the

system’s ability to meet constraints, and therefore, compliance with deadlines with a

specified minimum probability is required for such systems. Tasks and systems with soft

real-time constraints are said to be soft real-time tasks and soft real-time systems,

respectively. Examples of soft real-time systems include:

• mobile (cellular) telecommunications,

• multimedia applications, and

• interactive systems such as flight simulators and video games.

Because soft real-time systems can tolerate occasional late tasks, these systems

are typically designed to provide statistical timing guarantees. The use of statistical

guarantees as opposed to absolute guarantees enables the use of more optimistic timing

assumptions instead of WCET in the schedule construction process, resulting in more

efficient systems. In many soft real-time systems (e.g., variable bit rate multimedia

applications [9]), the execution time of tasks can be specified in terms of discrete

probability distributions of execution times determined either analytically or empirically

[33, 34, 61, 83, 152]. The probability distribution of a task is derived from the histogram

of expected frequencies of execution times of individual instances of the task.

7

1.3 Real-time Scheduling

Scheduling is the process of allocating limited system resources to tasks in order

to meet the timing constraints of the system. Scheduling research in Computer Science

and in Operations Research has traditionally focused on improving average values of

performance metrics such as response time, throughput, average completion times, and

cost [96]. Traditional scheduling techniques applied in Operations Research frequently

rely on results from asymptotic analysis of simplified and relatively uniform statistical

task execution models that do not reflect realistic real-time task execution requirements

(e.g., in [24]), and therefore, cannot be directly applied to guarantee real-time constraints.

Furthermore, combinatorial optimization scheduling techniques developed in Operations

Research typically do not consider recurring, synchronizing, and communicating tasks,

making these techniques impractical for real-time scheduling.

A number of deterministic uniprocessor scheduling techniques specifically

designed for periodic real-time systems have been proposed over the last few decades

[73, 78, 97, 99, 101, 109, 145]. A periodic system is one in which each task has a

periodic recurrence (i.e., instances of each task are repeatedly executed at a fixed rate).

Note that different tasks in a periodic system may have different periods. A variety of

scheduling techniques utilizing statistical behavioral characteristics of tasks have also

been proposed for soft real-time systems [10, 61, 83, 152]. These approaches provide

analytical techniques for computing the probability that tasks in a soft real-time

application will meet deadlines. The following is a classification of real-time scheduling

8

algorithms (and resulting schedules) based on the properties of the task set under

consideration and the objectives of the scheduling algorithm [26]:

• Preemptive vs. non-preemptive. A preemptive scheduling algorithm can interrupt a

running task to execute another ready task on the same processor. The interrupted

task is resumed when the interrupting task completes. Conversely, a non-preemptive

scheduling algorithm must wait for the currently executing task to complete before

executing another ready task on the same processor.

• Static vs. Dynamic. A static scheduling algorithm is one that makes scheduling

decisions based on a fixed workload wherein all the tasks and task properties are

known before the tasks are executed. In dynamic scheduling, the task set to be

scheduled at any given time is unknown a priori and can change over the system’s

lifetime.

• Offline vs. Online. In an offline scheduling algorithm, scheduling decisions for the

entire task set are made before the system is started. The resulting schedule

essentially consists of a calendar (i.e., sequence of task activation times) that ensures

that all real-time constraints are met. An online scheduling algorithm actively makes

scheduling decisions when a currently executing task completes or a new task

becomes ready for execution.

• Optimal vs. Heuristic. An optimizing scheduling algorithm minimizes a cost function

(e.g., the number of tasks violating constraints) or maximizes a benefit function

defined over the system’s tasks. A heuristic algorithm, on the other hand, strives to

achieve, but does not guarantee, optimality.

9

Real-time systems in which the exact workload characteristics are not known at

design time typically utilize dynamic online scheduling (e.g., executing tasks with the

earliest deadlines first [73]). Such algorithms are also typically preemptive in order to

accommodate newly released tasks whose deadlines are earlier than currently executing

tasks. In those real-time systems where the workload is well defined, a schedule can be

constructed offline and stored in a table before the system begins execution. Such table-

driven scheduling increases the efficiency of the real-time system because the runtime

task dispatcher only needs to look up previously made scheduling decisions instead of

performing scheduling related computations every time a scheduling decision needs to be

made. However, table-driven, offline schedules are static in nature because they assume

task sets have well-defined runtime characteristics and cannot adapt to changing runtime

requirements of the applications.

When tasks in a real-time application cannot be preempted and have non-

synchronous release times (i.e., all tasks are not ready to execute at the same time), the

problem of constructing optimal schedules becomes NP-hard, in general [100]. In the

context of real-time systems, the primary scheduling goal is to minimize the number of

tasks that miss deadlines; reducing schedule lengths is of secondary concern. Given the

intractable nature of this problem, simple heuristic techniques are often used to construct

schedules in a reasonable amount of time in online systems where scheduling decisions

must be made quickly (e.g., scheduling tasks with the earliest deadline first). However,

for many such problems, simple heuristics are known to produce sub-optimal solutions

[26]. The use of more complex techniques and heuristics in order to produce optimal or

10

near-optimal schedules increases the computation time required and this limits their

usefulness in online scheduling [22, 91, 158]. Therefore, offline techniques are typically

used to create non-preemptive schedules.

Preemptive uniprocessor real-time scheduling algorithms have also been extended

to perform scheduling for hard and soft real-time distributed and parallel processing

systems. For example, in order to provide predictable delivery of packets over packet-

switched networks, traffic volume is shaped using admission control and rate-controlling

techniques [163, 164]. Furthermore, network resources are typically either reserved in

advance, or allocated to communicating tasks using the traditional preemptive, priority-

based scheduling techniques originally developed for periodic processor scheduling [9,

58, 59, 165, 167].

1.4 Motivation

In soft real-time systems, system designers are afforded considerable flexibility in

the application of scheduling policies used to balance the need for predictability with the

need for improved performance. These systems can improve resource utilization and

performance by making scheduling decisions based on the premise that, in a given

interval of time, it is unlikely that all successively activated tasks will require their full

WCET to complete. This is particularly useful in many real-time control applications in

defense and space exploration systems where restrictions on the volume, mass, and

energy available for performing computations require the efficient scheduling of several

tasks executing concurrently in a time-shared cluster environment, rather than dedicating

processors to individual tasks.

11

Bernat, Burns, and Llamosí [17] provide three example real-time systems where

occasional deadline misses can be tolerated.

1. Computer-driven automatic control systems typically oversample the environment by

a factor of at least 5 (and up to 40). This overampling implies that deadlines can be

missed as long as a large number of back-to-back deadlines are not missed.

2. In many automated monitoring systems, the monitoring period is overestimated or

decided by a “rule of thumb.” Therefore, an occasional deadline miss can be

tolerated as long as the delay in any action that is undertaken in response to the

monitoring is bounded.

3. In multimedia systems, video frames are decoded and displayed at a fixed rate. If the

system misses a frame-decoding deadline, then either a partial frame is displayed or

the frame is skipped entirely. As long as too many frames are not lost, viewers will

tolerate the slight degradation in video quality resulting from an occasional deadline

miss.

Because addressing the tradeoff between providing QoS and enhanced

performance at lower cost through better resource utilization has useful practical

applications, the scheduling techniques developed in this dissertation strive to improve

resource utilization and performance while bounding the risk of missing deadlines to a

tolerable level.

The elimination of overhead caused by unnecessary context switching (i.e., the

context switches that result from the scheduling policy used but do not improve schedule

quality) is another performance improvement goal of parallel scheduling algorithms [6, 7,

12

37, 57, 69, 126, 141, 142]. Preemption used in most periodic real-time scheduling

algorithms can reduce performance because of additional context switching times, and

reduced locality (e.g., cache content and branch prediction table entries setup for the

original task are disturbed by the interrupting task). Consequently, the scheduling

techniques developed in this dissertation eliminate preemption in direct contrast to most

existing real-time scheduling algorithms that rely on preemption to perform scheduling.

Another motivating factor for this research is to investigate and develop

scheduling techniques for parallel real-time applications with complex inter-task

interactions that are difficult to represent as periodic tasks and are more naturally

represented in the form of directed acyclic graphs (DAGs) [91]. Data flow patterns for

such parallel applications appear as sequences of tasks that branch and merge in arbitrary

fashion. Tasks in these applications can be represented in the form of DAGs by

restricting loops to exist in single vertices, or by unrolling loops into sequences of several

vertices.

Most existing periodic real-time scheduling techniques assume that tasks

scheduled to execute on a processor are self-contained and do not interact with other

tasks (i.e., there is no provision for observing task ordering or precedence restrictions).

Furthermore, the tasks are scheduled using preemption and task priorities are determined

by task execution rates or proximity of deadlines. Schedulers in most distributed real-

time systems applications also typically require the applications to be organized in the

form of chains of tasks, with each task in a chain executing on a separate processor and

each processor preemptively executing several tasks from different chains in a time-

13

shared manner (e.g., [61] and [83]). All tasks in such chains have a single successor task

downstream.

The results of this dissertation enable the non-preemptive scheduling of a broad

class of parallel soft real-time applications with precedence constraints in a manner that

allows a useful and predictable tradeoff between QoS requirements and performance of

the applications. The two QoS characteristics of stochastic schedules studied in this

dissertation are the probability of meeting the end-to-end deadline and the average jitter

factor in the completion time of the tasks in the schedule. The probability of meeting the

end-to-end deadline of a schedule is the probability that the tasks in the schedule will

complete within the allocated time. The jitter factor of a task is the ratio of completion

time jitter and the execution time requirement jitter.

1.5 Hypothesis

The hypothesis of this dissertation is that the probabilities of soft real-time

interacting tasks with inter-task precedence constraints completing at specific points in

time, when scheduled in a non-preemptive parallel environment, can be computed. These

probabilities, in turn, can be effectively applied in combinatorial optimization processes

to construct stochastic schedules that map tasks onto identical processors connected by a

finite-performance interconnection network such that the probability of meeting end-to-

end deadline of the application can be traded off with the following cost metrics:

• application runtime,

• resource utilization, and

14

• completion time jitter.

In a simple example, Figures 1.1-1.4 together with Table 1.1 illustrate how

relaxing stringent timing requirements allows the system to utilize resources more

efficiently than possible under hard real-time constraints. In this example, four tasks with

variable computation requirements are to be non-preemptively scheduled on a single

processor. The computation requirement of a task is given by a probability distribution

function (PDF). A PDF maps a time quantity representing the execution time

requirement of the task to the probability that the task will require that much time to

complete.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Task Execution Time (ticks)

Pr
ob

ab
ili

ty

Probability 0 0 0 0.05 0.15 0.3 0.25 0.16 0.05 0.03 0.01 0

0 1 2 3 4 5 6 7 8 9 10 11

Figure 1.1 A Representative PDF for Task Execution Time Requirements

15

This example assumes identical execution time PDFs for all four tasks. The PDF

is specified in Figure 1.1. The minimum, nominal, and maximum time requirements are

3, 6, and 10 units, respectively.

Figure 1.2 shows the Gantt chart for the planned hard real-time schedule using

WCET estimates, and the actual runtime behavior of the tasks when the tasks only

require their nominal and minimum execution times. The WCET schedule requires 40

time units to complete the four tasks and because the maximum required execution time

is dedicated to each task, this schedule has a 100% guarantee of completing within the 40

time units. Note that in the WCET schedule, each task is released only after the previous

task’s maximum guaranteed time slot.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930 30 32 33 34 35 36 37 38 3940

Release
Time for J1

Release
Time for J2

Deadline for
J1

Release
Time for J3

Deadline for
J2

Release
Time for J4

Deadline for
J3

Deadline for
J4

J1 J2 J3 J4 Planned:

Nominal: J1 J2 J3 J4

Time

Minimum: J1 J2 J3 J4

Figure 1.2 A Hard Real-Time Schedule Example

However, when tasks only consume their nominal or minimum execution time,

the processor is idle 40% or 70% of the time, respectively. Furthermore, the probability

that all four tasks will require the maximum execution time is (0.01)4 or 0.00000001 (i.e.,

16

the product of the individual tasks’ probabilities of requiring their maximum execution

times). This suggests that, if instead of reserving the maximum execution time for each

process, processes are allowed to begin immediately after the preceding task has

completed, the resulting schedule may utilize resources better than the WCET schedule.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 6 11 16 21 26 31 36

Time

Pr
ob

ab
ili

ty
 o

f T
as

k
Ex

ec
ut

io
n

Idle
v4
v3
v2
v1

Figure 1.3 Execution Profile for a “Tight” Soft Real-Time Schedule

Figure 1.3 depicts the execution profile for a schedule when the tasks are allowed

to begin as soon as the previous task has completed and Table 1.1 lists the start time and

completion time PDFs of the tasks in the schedule. Note that the tasks occupy

overlapping intervals of potential execution time (i.e., tasks J1, J2, J3, and J4 may execute

during the time intervals [1, 10], [4, 20], [7, 30], and [10, 40], respectively). The

intervals represent the range of time units when the tasks may execute.

17

Table 1.1 Example Start and Completion Time PDFs

 J1 PDFs J2 PDFs J3 PDFs J4 PDFs Completion
Time Start End Start End Start End Start End Probability

1 1.0
2
3 0.05
4 0.15 0.05
5 0.3 0.15
6 0.25 0.3 0.0025
7 0.16 0.25 0.015 0.0025
8 0.05 0.16 0.0525 0.015
9 0.03 0.05 0.115 0.0525 0.000125

10 0.01 0.03 0.181 0.115 0.001125 0.000125
11 0.01 0.203 0.181 0.005625 0.001125
12 0.1765 0.203 0.01875 0.005625 6.25E-06 6.25E-06
13 0.12 0.1765 0.0462 0.01875 7.50E-05 8.13E-05
14 0.0716 0.12 0.08745 0.0462 0.000488 0.000569
15 0.037 0.0716 0.13155 0.08745 0.00215 0.002719
16 0.0171 0.037 0.160125 0.13155 0.007111 0.00983
17 0.0062 0.0171 0.161715 0.160125 0.01852 0.02835
18 0.0019 0.0062 0.13822 0.161715 0.039203 0.067553
19 0.0006 0.0019 0.102855 0.13822 0.06884 0.136393
20 0.0001 0.0006 0.0678 0.102855 0.101942 0.238334
21 0.0001 0.040186 0.0678 0.129014 0.367348
22 0.021315 0.040186 0.141415 0.508763
23 0.010149 0.021315 0.135996 0.644759
24 0.004343 0.010149 0.116292 0.761052
25 0.001677 0.004343 0.089468 0.85052
26 0.000573 0.001677 0.062531 0.913051
27 0.000165 0.000573 0.039935 0.952986
28 4.20E-05 0.000165 0.023396 0.976382
29 9.00E-06 4.20E-05 0.012603 0.988985
30 1.00E-06 9.00E-06 0.006256 0.995241
31 1.00E-06 0.002862 0.998102
32 0.001203 0.999305
33 0.000463 0.999768
34 0.000162 0.99993
35 5.15E-05 0.999981
36 1.45E-05 0.999996
37 3.52E-06 0.999999
38 7.40E-07 0.999999
39 1.20E-07 0.999999
40 1.00E-08 1.0

Note that only a single task can execute at any given time and that once a task

begins execution, it must complete before the next task can begin. Also note that at the

extremes of each interval, the probability that the current task will execute is sufficiently

18

small so as to be indiscernible in Figure 1.3. For example, the probability that task J3

executes at time 30 is 1E-006. Although these probabilities are small, they must be

accounted for in the schedule in order to ensure accuracy.

Given the PDF of the execution start time of task Ji, the completion time PDF of

Ji is computed by the convolution of the starting time PDF and the execution time PDF of

Ji [84]. Task Ji+1 is started immediately after Ji completes and its start time PDF is

essentially the completion time PDF of Ji that has been translated (i.e., shifted) to the

right by one time unit. Note that the start time PDF of J1 is given by the initial condition

that J1 starts at time 1 with 100% probability. From probability theory, the probability of

the schedule completing within an arbitrary deadline of t is given by the sum of

probabilities that J4 completes before or at time t. The sum of completion time

probabilities for J4 is 100% at 40 time units, which corresponds to the length of the

WCET schedule. Similarly, the sum of probabilities at 30 time units is 99.52%.

Therefore, if a probability of completing within a deadline of 99.52% is required, then the

end-to-end deadline for the schedule can be set to 30 time units, reducing the schedule

length by 10 time units compared to the WCET schedule. A similar approach for

computing task completion time PDFs is proposed in preemptive uniprocessor soft real-

time scheduling research for periodic tasks, without considering precedence constraints

[10, 61, 152]. The research in this dissertation extends existing approaches by providing

techniques and mechanisms for constructing non-preemptive stochastic schedules for

parallel soft real-time tasks with precedence constraints. Details of the stochastic

scheduling approaches developed in this dissertation are given in Chapter III.

19

The drawback of the approach used to construct the schedule in Figure 1.3 is that

the ranges of completion times of the tasks towards the end of the schedule are

substantially wider than the range of their corresponding execution time requirements

because of the uncertainty in the completion time of the previous tasks. In order to

prevent the previously executing task from interfering with following tasks, the planned

start time of each of the following tasks can be intentionally delayed by a small amount.

As long as the remaining execution time, after the delay, of each following task is at least

as much as the maximum execution time required by the task, the task’s completion time

jitter is mitigated without increasing the schedule length.

Figure 1.4 shows the execution profile for schedule that results when the release

time of each task has been delayed by 50% of the difference between the task’s

maximum and minimum start time in the schedule from Figure 1.3. Note that a delay of

100% of the difference between minimum and maximum start time will result in the

WCET schedule. In Figure 1.4, the total execution time for the schedule remains 40

units. However, the completion time intervals, and the concomitant task completion jitter

are also reduced. Specifically, J1 completes in the interval [3, 10] (same as the original

interval); J2 completes in the interval [9, 20] as opposed to the original interval [6, 20]; J3

completes in the interval [17, 30] as opposed to the original interval [9, 30]; and J4

completes in the interval [26, 40] as opposed to the original interval [12, 40].

20

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 6 11 16 21 26 31 36

Time

Pr
ob

ab
ili

ty
 o

f T
as

k
Ex

ec
ut

io
n

Idle
v4
v3
v2
v1

Figure 1.4 Execution Profile for a Soft Real-Time Schedule with Jitter Control

The reduction in jitter comes at a cost of translating the probabilities towards the

latter portion of the schedule, thereby decreasing the potential for trading probability of

timely completion for schedule length. Specifically, at time 30, the probability of

completion for the schedule in Figure 1.4 is 90.64%. At time 33, the probability of

completion is 99.97%, the closest probability value greater than or equal to the original

target of 99.5%. Therefore, the schedule in Figure 1.4 is slightly longer, by 2 time units,

than the schedule in Figure 1.3 if a target probability of completing all four tasks is

99.5%.

21

1.6 Scheduling Approach and Assumptions

An objective of this research is to develop non-preemptive stochastic scheduling

techniques for soft real-time parallel applications consisting of tasks with varying

execution time requirements. The tasks and inter-task precedence constraints (i.e.,

communication and synchronization requirements) of the parallel applications are

modeled as DAGs; vertices of a DAG represent computational tasks and edges represent

communication tasks. To account for uncertainty in the time to complete computation

and communication tasks, their processing time requirements are modeled as independent

random variables with bounded minimum and maximum values. Independence of

random variables implies that the observation of any particular value of one variable has

no influence on the observed values of the other variables. The assumption of

independent task execution requirements is justified because the causes of the variance in

a task’s execution time requirements are restricted to the effects of the advanced

processor architecture; variances in execution times caused by data characteristics (e.g.,

size and locality) and execution flows (e.g., different conditional branches) are excluded.

The use of bounded intervals for the values of completion times is justified because real-

time tasks, by definition, are designed to reduce execution time jitter, and therefore,

cannot have unbounded completion times.

The target hardware architecture is assumed to consist of a cluster of

homogeneous processors with modern performance enhancing architectural features such

as multiple levels of memory caches, speculative execution, branch prediction, and DMA

that produce variations in completion times of computational tasks. Because these

22

features are provided in most current processors and their performance benefits are

typically too significant to forego in applications and operating systems, the resulting

variances in completion times must be accounted for in real-time schedules.

Communication between processors in the cluster is accomplished by passing

messages. Message passing is a popular and well-known paradigm for providing

communication between high-performance parallel processes [68]. Message passing

operations between tasks scheduled to execute on the same processor are assumed to

consume negligible time. The Real-Time Message Passing Interface (MPI) [140]

standard provides buffer management mechanisms that can be exploited to reduce the

cost of message transfers between unrelated processes (i.e., copying buffers) through the

use of shared memory buffer semantics.

By contrast, inter-node message passing requires the utilization of network

resources. In packet-switched networks used in modern clusters, the queuing of packets

multiplexed to the same output port is a significant cause of communication delays at the

switches [58, 59]. Because this delay varies depending on the length of the queue and the

time required to complete communication operations are also modeled as independent

random variables. Furthermore, the scheduling algorithms developed in this dissertation

assume that each cluster node is connected to the network via full-duplex links, modeled

as a pair of simplex links. Each of these links is only capable of performing one non-

preemptive communication operation at a time. The network fabric itself is assumed to

be capable of carrying all offered network traffic without congestion.

23

Deterministic list scheduling (LS) [91] and genetic list scheduling (GLS) [72]

techniques that have been used successfully in constructing static schedules for non-real-

time parallel applications are extended in order to produce soft real-time schedules.

Existing LS and GLS approaches assume that tasks have fixed execution time

requirements and also typically ignore communication contention [91]. The stochastic

scheduling algorithms developed and investigated in this dissertation assume tasks have

variable execution time requirements and account for delays that occur when

communication operations compete for processor-to-network links.

These stochastic scheduling algorithms use results from probability theory to

compute the PDFs of an individual task’s completion time from the task’s execution time

requirement PDF and the preceding tasks’ completion time PDFs. In a schedule,

preceding tasks of task Ji are those tasks specified by the precedence constraints in the

DAG or other previously scheduled tasks using resources (e.g., processors and

communication links) required by Ji. Recall that in a non-preemptive schedule, Ji must

wait for the required resources to become available before it can begin execution.

In deterministic scheduling approaches, the completion time of task Ji is

computed by summing the execution time requirement of the task with Ji’s starting time.

The stochastic equivalent of this operation is convolution (i.e., the completion time PDF

of Ji, is computed by the convolution of Ji’s starting time PDF and execution time

requirement PDF) [18].

Task Ji can be allocated to an idle time slot in the schedule of a resource, provided

that the slot begins at or after Ji can begin execution and has sufficient length to

24

accommodate Ji’s execution time requirement. In deterministic approaches, the starting

time of a candidate slot is given by the maximum completion times of all preceding tasks

of Ji. Furthermore, the slot’s ending time is given by the minimum starting time of all

tasks previously allocated to the same resource scheduled to begin after the starting time

of the candidate slot. Equivalent PDF operators for computing the minimum and

maximum of sets of PDFs are developed in this dissertation.

Given the starting time and completion time PDFs of a candidate allocation slot in

the schedule and the task’s execution time PDF, the probability that the task completes

before the slot ends is also computed. This probability is then compared against a “slot-

fitting” probability threshold and the resource allocation is made in the slot the

probability of timely completion is at least as large as the threshold value. The starting

time PDF of each task is also used to determine the amount of time the task can be

delayed in order to reduce the task completion jitter in the schedule.

The completion time PDF of the entire schedule is computed from the maximum

of the PDFs of the terminal tasks in the schedule. Terminal tasks are those tasks that are

not followed by other tasks in the schedule. The tradeoff between the probability of

meeting the end-to-end deadline and the schedule length is computed from the

completion time PDF of the schedule. End-to-end deadline is defined as the time relative

to schedule start time by which all tasks in the schedule (i.e., all vertices and edges in the

corresponding DAG) must complete.

An important assumption of this research is that the task execution times are

independent of each other. Therefore, the task start and completion time PDFs will not

25

be accurate if task execution times are dependent on each other. Recall that

independence of task execution time requirements implies that the variations in tasks’

execution time requirements are caused by the uncertainty induced by the advanced

processor architecture features.

The PDF manipulation operations are computationally costly and the LS and GLS

approaches evaluate the suitability of several potential time slots for allocation to each

task in the DAG. Therefore, the construction of stochastic schedules can take a long time

to complete when PDF manipulations are used at every step of the scheduling algorithm.

In order to reduce the amount of time taken to compute schedules, an alternative

approach to scheduling is also investigated. Under this approach, a fixed estimate of the

execution time requirements of each task is used instead of the tasks’ execution time PDF

to construct an initial schedule. The task-resource allocations and task sequences from

the initial schedule are used to construct the final stochastic schedule using task execution

time PDFs.

The approach of using PDF manipulations at every scheduling step is designated

as the exact method and the approach of using estimates for initial scheduling is

designated as the estimate method in this dissertation. The estimate method has the

potential for substantially reducing computation time compared to the exact method

because most of the scheduling decisions have already been made by the time PDF

manipulation operations are used in the estimate method. Consequently, the total number

of PDF computation is significantly reduced in the algorithms using the estimate method.

However, the estimate method algorithms are unable to exploit the slot-fitting threshold.

26

Therefore, the performance of the two approaches in terms of schedule lengths is

compared in this dissertation.

1.7 Experimental Plan

In order to validate the hypothesis and in order to test the scheduling approaches

developed in this research, schedules for a number of sample DAGs are constructed using

these approaches. The characteristics of these schedules (e.g., schedule length,

probability of meeting end-to-end deadlines, task completion jitter, resource utilization,

and time to construct the schedule) are analyzed and compared with each other.

In order to examine the properties of schedules for a wide range of problems,

sample DAGs with a variety of characteristics are generated. The primary distinguishing

characteristic of a DAG is its overall structure type, determined by the connectivity of the

vertices and edges. DAGs with structures commonly observed in typical parallel

applications (e.g., the “fork-join” structure of client/server applications, and parallel FFT

structure) are generated. DAGs with random acyclic structures are also generated in

order to represent applications that have irregular, but known, computation and

communication patterns. Task and edge weights in these DAGs are modeled as random

variables with a variety of distributions (e.g., exponential, beta, and random

distributions).

Other DAG characteristics that are also varied are the computation-to-

communication ratio (CCR) (i.e., the ratio of average vertex weight to average edge

weight) and the size of the DAG in terms of the total number of vertices and edges.

27

For each sample DAG, schedules are constructed and analyzed using a number of

different approaches with varying control parameters. In particular, schedules resulting

from the LS approach using the estimate method and the exact method for PDF

computation are compared with each other. The extent to which reducing the required

probability of completing within the deadline reduces the schedule’s length is

investigated for the shortest schedule for each DAG. The effect of varying the jitter

control parameter on resource utilization and the tradeoff between QoS and schedule

lengths is also investigated.

A similar series of scheduling experiments and analysis is also performed for the

FFT structured DAGs using the GLS approach. The GLS approach is also compared

with the LS approach in terms of overall schedule lengths and time taken to compute the

schedules.

1.8 Contributions of this Dissertation

A primary contribution of this research is the generalization and extension of the

traditional LS and GLS approaches in order to schedule soft real-time tasks with varying

task execution time requirements. Traditional LS and GLS approaches assume that tasks

have fixed execution time requirements. Conversely, the execution time requirements of

soft real-time tasks are typically modeled as PDFs. However, a fixed execution time for

a task is essentially a special case of a PDF in that the single fixed execution time occurs

with 100% probability. In LS, the execution time requirements are manipulated using

addition, subtraction, minimum, and maximum operations in order to compute task start

and completion times. This dissertation uses convolution to sum PDFs and develops new

28

operations for computing the difference, minimum, and maximum of PDFs required in

LS and GLS. The use of these PDF operations for LS and GLS is also a new contribution

of this dissertation (convolution has been used extensively in previous research for

performing preemptive periodic scheduling [18, 61, 152]).

Another significant contribution of this research is the empirical demonstration of

the veracity of the hypothesis. Experimental results clearly show that through the use of

PDF manipulations, the end-to-end completion time PDF of a schedule can be computed

accurately. This PDF can then be used to systematically reduce the length of the

schedule if a less than 100% probability of meeting end-to-end deadlines is acceptable.

The results show that a small reduction in the required end-to-end probability of meeting

deadlines can result in a significant reduction of schedule length as compared to the

schedule that assumes the WCET requirements.

New heuristic parameters that exploit the task start and completion time PDFs to

control the placement of tasks during schedule construction and to control task

completion jitter are also developed and investigated in this research. Results show that

the use of the slot-fitting threshold heuristic can significantly reduce schedule lengths for

many DAGs. Results also show that the use of the jitter control parameter effectively

reduces the task completion jitter in schedules, albeit at the cost of reduced ability to

trade probability of meeting end-to-end deadlines for schedule length.

This dissertation provides the PDF manipulation algebra and scheduling

approaches that can be combined to construct schedules for soft real-time parallel

applications consisting of tasks with varying execution time requirements. Schedules for

29

pragmatic soft real-time systems, where QoS requirements must be balanced with

performance, resource utilization, and jitter, can be constructed using the techniques

developed in this dissertation.

1.9 Organization of the Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 introduces

the fundamental concepts, terminology, and state of the art in the research, design, and

engineering of real-time and non-real-time scheduling, real-time communication, and

real-time operating systems design. Chapter 3 presents the model for the parallel soft

real-time applications, the model for the real-time hardware, and the scheduling

approaches addressed in this dissertation. Chapter 4 describes the experimental setup

used to validate the hypothesis. Chapter 5 presents and analyzes the result of the

experiments. Chapter 6 concludes with a summary of research results, contributions, and

a description of potential extensions to this research.

 30

CHAPTER II

LITERATURE REVIEW

This chapter introduces basic terminology, concepts, and properties of real-time

systems and real-time scheduling. This chapter also summarizes related work in

scheduling, deterministic real-time scheduling, and probabilistic real-time scheduling.

Selected real-time operating systems and real-time communication techniques are also

surveyed here. This chapter ends with a discussion of limitations of existing real-time

scheduling research.

2.1 Introduction

A number of advances have been made in the fields of scheduling, operating

system kernels, communication, and design and analysis techniques for real-time systems

over the last two decades and are summarized in this chapter. Theoretical studies in

scheduling of tasks under a variety of constraints have produced significant results

describing the complexity of the scheduling problems [24, 100, 153]. These complexity

results play an important role in the selection of scheduling algorithms that best match the

problem at hand. Theoretical analysis of online dynamic scheduling has produced

important results such as bounds on worst-case execution time (WCET), and achievable

resource utilization [26, 61, 78, 96, 98, 99, 101, 158, 109].

31

Applied research in scheduling has resulted in techniques for generating static

schedules that provide hard real-time guarantees [26, 118, 158]. Practical extensions to

dynamic scheduling algorithms have been proposed in order to account for shared

resources, in addition to the traditional focus on deadlines and periods [26, 136]. A

number of practical techniques addressing the problems of admission control in real-time

system have also been studied [10, 15, 58, 59, 95, 159, 166].

Research in the area of real-time operating systems (RTOS) kernels has resulted

in a number of Unix-like kernels that strive to minimize overheads by limiting context

switch time, reducing interrupt latency, and pre-allocating system resources to tasks.

These kernels also provide priority-oriented task dispatching, timeout mechanisms, and

real-time clocks [5, 16, 95, 118, 123, 124, 131, 151].

A variety of theoretical models for real-time system area networks (SANs) and

local area networks (LANs) have been proposed that provide connection-oriented and

connectionless communication facilities [112]. Additionally, a number of practical real-

time protocols that reduce or avoid collisions in order to provide deterministic

communication facilities appropriate for distributed real-time systems have been studied

[4, 33, 39, 49, 70, 76, 82, 85, 88, 89, 102, 122, 150, 154].

An accurate understanding of the temporal behavior and resource access patterns

of real-time tasks is critical in the construction of real-time schedules and many

scheduling algorithms rely on the knowledge of WCET of tasks. Therefore, a number of

techniques for determining WCET of tasks, based on the timing analysis of instructions

32

and control flow in real-time tasks, have been studied and reported in the literature [71,

103, 105, 106, 110].

This chapter surveys current-practice and research in scheduling, RTOS kernel

design, communication protocols, and timing analysis techniques that form the

foundation of this dissertation.

2.2 Properties of Real-time Tasks

This section presents a unified notation derived from the literature for

representing properties such as constraints, requirements, and relations of real-time tasks.

A real-time system is typically composed from a set ϑ = {J1, J2, … , Jn} of n periodic,

sporadic, and aperiodic tasks. A sporadic task is a periodic task that may not be triggered

by the systems environment to execute in every period. The kth instance of a recurring

(i.e., periodic or sporadic) task Ji is represented by Ji
k where 1 ≤ k < ∞. Because

aperiodic tasks are modeled to have only a single instance (i.e., k = 1), the superscript

designating the instance is typically omitted. Following are properties commonly used in

the literature to characterize instances of real-time tasks [24, 26, 96, 158]:

• Execution time is the time required by task Ji to complete. Compute time is modeled

to be invariant across all instances Ji
k and is denoted by wi. Typically, wi represents

the WCET of Ji.

• Period is the length of the intervals between successive activations of task Ji and is

denoted by Ti. Period is relevant only for recurring tasks.

33

• Frequency is the maximum frequency of activations of task Ji the system is expected

to support and is denoted by υi. Frequency is relevant only for sporadic tasks. The

period of a sporadic task can be determined from its frequency using the relation Ti =

1/υi.

• Release time (synonymous with ready time and arrival time) is the time relative to the

schedule’s start time when a task instance becomes available for execution. Release

time is denoted by ri
k. For recurring tasks, the release time is given by the following:

ri
k = φi + (k – 1)Ti. (2.1)

• Phase is the time relative to the schedule’s start time when the first instance of a

recurring task Ji is released and is denoted by φi. Note that φi ≡ ri
1.

• Relative deadline is the amount of time relative to release time within which task

instances must complete. The relative deadline is invariant across all instances of the

same task and is denoted by Di.

• Deadline is the absolute time by which a task instance must complete in order to meet

real-time performance requirements and is given by the following:

di
k = ri

k + Di. (2.2)

• Start time is the absolute time when the task instance begins execution and is denoted

by si
k.

• Finish time is the absolute time when the task completes and is denoted by fi
k.

• Lateness is the difference between a task instance’s deadline and finish times.

Lateness is computed as follows:

34

Li
k = fi

k – di
k. (2.3)

Negative lateness results when the instance completes before its deadline.

• Tardiness is the time by which a task’s instance exceeds its deadline and is computed

as follows:

Ei
k = max(0, Li

k). (2.4)

• Laxity (also known as slack time) is the amount of time a task can exceed its compute

time before missing its deadline and is computed as follows:

Xi
k = di

k – ri
k – Ci

k. (2.5)

• Precedence, denoted by the non-reflexive binary relation Ja p Jb, specifies that task

instance Jb
q cannot begin execution until task instance Ja

p has completed where the

pair (p, q) ∈ {(x, y) | if Ta = cTb then y = cx or if Tb = cTa then x = cy and c ≥ 1}.

• Exclusion, denoted by the binary relation Ja pf Jb, means that instances of tasks Ja

and Jb cannot preempt each other. However, other tasks are not restricted from

preempting either Ja or Jb (unless they also have an exclusion relationship with either

Ja or Jb). Note that the exclusion relationship is only relevant in systems allowing

preemption.

• Preemption is a Boolean property that indicates whether or not the task can be

preempted by another task. A task’s preemption property is invariant across all

instances.

• Criticality is a Boolean property that indicates whether or not timely execution of the

task is essential for system correctness. Typically, hard real-time tasks are considered

35

critical and are given preference over non-critical (or soft real-time) tasks under

overload conditions. A task’s criticalness is typically invariant across all instances.

• Priority is a numerical quantity describing the importance of this task relative to other

tasks and is denoted by ρi. A task’s priority is typically invariant across all instances.

However, the system may temporarily adjust the priority of any task instance in order

to adjust schedulability and hence to meet system objectives.

2.3 Scheduling Real-Time Tasks

Task scheduling is the problem of assigning resources to tasks over time intervals

such that all constraints are satisfied and some evaluation, or quality, criterion is

optimized. Scheduling algorithms employed in traditional interactive operating systems

strive to minimize response and turnaround times. Essentially, the operating system (OS)

strives to maximize the number of tasks completed in a given unit of time and to

maximize resource utilization [146]. Objective functions typically used to evaluate the

quality of scheduling in operating systems given a set ϑ = {J1, J2, …, Jn} of n aperiodic

(i.e., non-recurring) jobs with arbitrary arrival and compute times are as follows [24, 26,

146]:

• Average response time is computed as follows:

()∑
=

−=
n

i
iir rf

n
t

1

1 . (2.6)

• Total completion (or flow) time is computed as follows:

36

∑
=

=
n

i
ic ft

1
)(. (2.7)

• Weighted sum of completion (flow) times is computed as follows:

∑=
=

n

i
ii ft

1
ωω , (2.8)

where ωi ∈ ℜ.

• Makespan (i.e., schedule length) is computed as follows:

)(max iim ft = . (2.9)

• Throughput is computed as

)(max
1

ii

n

i
i

f

w∑
==η . (2.10)

By contrast, in real-time scheduling, minimizing maximum lateness or

minimizing the number of late tasks is more important than reducing average response

times or maximizing resource utilization. Furthermore, real-time systems are typically

comprised of periodic and sporadic tasks combined with aperiodic and best-effort tasks.

Best-effort tasks are those that do not have real-time requirements and are executed

whenever system resources are not allocated to real-time tasks. Best effort tasks may

also be periodic, sporadic, and aperiodic. A primary objective of real-time schedules is to

execute best-effort tasks in a manner that minimizes their impact on the predictability and

timely completion of the real-time system components.

37

When performing schedulability analysis of a set of periodic real-time tasks, the

set’s processor utilization factor plays an important role. Processor utilization is the

fraction of time spent executing the tasks. For periodic tasks in a uniprocessor

environment, processor utilization is computed as follows:

∑
=

=
n

i i

i

T
wU

1

. (2.11)

Clearly, a task set with U > 1 cannot be successfully scheduled using any algorithm. The

breakdown utilization, *
AU , is the upper bound on the utilization factor within which a

given periodic scheduling algorithm A can guarantee a feasible schedule for an arbitrary

set ϑ of periodic tasks (i.e., *
AUU < guarantees that A can successfully schedule all tasks

in ϑ). If 1* ≤< UU A , then A may fail to construct a feasible schedule, depending on the

timing characteristics of the various tasks in J.

2.3.1 Deterministic Scheduling

Many real-time applications require the flexibility to schedule dynamic workloads

wherein arrival and computation times of the tasks are variable and cannot be assumed to

be deterministic at system design time. Such systems are said to be event-driven because

tasks are activated in response to environmental stimuli [26, 31]. Event-driven systems

typically utilize dynamic scheduling algorithms during runtime whenever new tasks

arrive or existing tasks terminate in order to adapt to variations in workload. When a new

38

task arrives, the scheduling algorithm performs schedulability analysis, also known as an

admission test [26, 31], to determine whether or not the task will be admitted (i.e.,

accepted for execution). If the algorithm can construct a feasible schedule from the

newly arrived and all previously admitted tasks, the new task is also admitted.

Otherwise, the new task is rejected.

A number of dynamic algorithms based on a variety of heuristics have been

reported in the literature. Jackson’s Earliest Due Date (EDD) algorithm minimizes the

maximum lateness of a set of independent tasks with identical arrival times by executing

the tasks in order of non-decreasing absolute deadlines [78]. The complexity of EDD is

Θ(nlog2(n)) because the tasks must be sorted by deadlines. Horn’s Earliest Deadline First

(EDF) algorithm minimizes the maximum lateness of a set of independent tasks with

arbitrary arrival times [73]. Whenever a new task arrives or an executing task completes,

EDF selects the ready task with the earliest deadline for execution first. EDF performs

preemptive scheduling and has a complexity of O(n2). Furthermore, EDF is guaranteed

to find a feasible schedule for a task set J if such a schedule exists [43].

Rate Monotonic Scheduling (RMS) is used to schedule periodic tasks with

deadlines equal to task periods [109]. RMS assigns higher priority to tasks with shorter

periods than to tasks with longer periods (i.e., frequently occurring tasks have higher

priority). For RMS, the breakdown utilization factor for a set of n arbitrary tasks is given

by)12(1* −= n
RMS nU and for large n, *

RMSU = loge(2) ≈ 69%. Results from stochastic

simulation studies show that when RMS is applied to large uniformly distributed random

39

task sets, *
RMSU is dependent on task periods, instead of task computation times, and

converges to 88% [98].

Deadline Monotonic Scheduling (DMS) is an extension to RMS that considers

sets of tasks with deadlines shorter than their respective periods. DMS grants higher

priority to tasks with the shorter relative deadlines than to tasks with longer relative

deadlines [101]. For task Ji ∈ ϑ to be successfully scheduled by DMS, the sum of Ci and

the interference caused by higher priority tasks must be less than or equal to Di. This

sum is called the response time of Ji and is denoted by Ri. Therefore, if tasks in ϑ are

sorted in non-decreasing relative deadline order, then task Ji is schedulable if and only if

Ri ≤ Di. The response time is computed as follows:

∑
−

=
⎥
⎥

⎤
⎢
⎢

⎡
+=

1

1

i

k
k

k

i
ii w

T
RwR . (2.1)

Because Ri appears on both sides of the equation, an iterative approach is used to

determine the feasibility of scheduling Ji [11].

In situations where hard real-time periodic and soft real-time aperiodic tasks must

be scheduled together, the periodic tasks are scheduled using the methods described

above and the aperiodic tasks are executed when there are no periodic tasks to execute.

However, this background scheduling of aperiodic tasks can significantly extend their

response times when the periodic load is high.

In order to reduce the response times of aperiodic tasks or to guarantee execution

of hard real-time sporadic or aperiodic tasks, servers are used, where a server in this

context is a periodic task that is used to service sporadic and aperiodic requests. A

40

Polling Server (PS) [99] is activated at regular intervals of period Ts and has capacity

(i.e., compute time) of Cs. (Note that Ts > Cs.) After activation, the PS handles any

pending aperiodic and sporadic requests up to a maximum time of Cs. If no aperiodic or

sporadic requests are pending, the PS is suspended and the remaining PS capacity is used

to execute periodic tasks.

Deferrable Server (DS) [99] scheduling is based on the observation that

completing a hard real-time task earlier than necessary does not improve its value. In DS

scheduling, if no aperiodic tasks are pending, a periodic task is scheduled. However, the

capacity (i.e., the reserved execution time) of DS is preserved. Therefore, when an

aperiodic task arrives, the executing hard real-time periodic task is preempted to execute

the DS as long as DS capacity remains.

In those periodic real-time systems where there is no advantage to be gained from

completing tasks earlier than their respective deadlines, the Slack Stealing algorithm [97]

can be used instead of DS. The Slack Stealing algorithm uses the slack from periodic

tasks to service aperiodic tasks. Slack at time t for a periodic task Ji
k, is given by the

following equation:

)()(tctdtslack k
i

k
i

k
i −−= , (2.2)

where ci
k(t) is the computation time for task Ji

k that remains at time t. When no aperiodic

tasks are pending, RMS is used for scheduling the periodic tasks. Slack Stealing has

better response times for aperiodic tasks as compared to the PS and DS algorithms.

41

The Total Bandwidth Server (TBS) [145] also strives to reduce response times for

aperiodic tasks in an EDF periodic scheduling environment. When an aperiodic task

arrives, it is assigned the following deadline:

s

i
iii U

wdrd += −),max(1 , (2.3)

where ri and wi are the release time and execution time requirements for the ith aperiodic

task, respectively; and Us is the percent of total system utilization capacity that can be

allocated by the system designers for servicing aperiodic tasks.

Preemption is the key to successful dynamic scheduling because the scheduler can

interrupt the currently executing task in order to accommodate more critical tasks. Figure

2.1 illustrates the scenario where task Jb arrives after and overlaps Ja (i.e., ra < rb <

ra + wa), and Ja has a sufficiently long deadline to accommodate interference from Jb (i.e.,

wb+ wa < Da). When Ja arrives, the online dynamic scheduling algorithm has no

knowledge of Jb and begins executing Ja. In the case where preemption is permitted, the

scheduler interrupts Ja in order to execute Jb and both tasks complete before their

respective deadlines expire. In the case where preemption is not permitted, Jb must wait

for Ja to complete and consequently Jb misses its deadline.

42

ra rb db da

Ja

Jb

Ja Jb Ja (resumed)

Ja Jb (late)

Jb Ja

Time

Task parameters

Preemptive scheduling without a-priori knowledge

Non-preemptive scheduling without a-priori knowledge

Non-preemptive scheduling with a-priori knowledge

Figure 2.1 Gantt Chart for Preemptive and Non-preemptive Scheduling

When the scheduler has prior knowledge of the timing characteristics of Ja and Jb,

it can delay the activation of Ja until Jb has completed, thereby ensuring that both tasks

meet their deadlines even when preemption is disallowed. Static scheduling algorithms

use prior knowledge of a fixed set of tasks to compute optimal schedules by enumerating

and implicitly or explicitly evaluating all possible feasible scheduling alternatives.

However, a variety of scheduling problems are known to be NP-hard in general [100,

153]. Therefore, static scheduling algorithms are typically executed offline.

The literature from Operations Research is replete with techniques for solving

scheduling problems. Of these, the job-shop scheduling problem has received much

43

attention because of its general applicability and complexity. One approach to solving

scheduling problems is to reduce the problems to combinatorial optimization problems

that can be solved using mixed integer linear programming [113, 149]. In linear

programming, the scheduling problem to be solved is restated in terms of minimizing (or

maximizing) a linear function subject to linear constraint functions. However, the

number of variables required to solve practical job-shop problems grows exponentially

and success with linear programming has been restricted to small problems [20, 79].

Other approaches to solving job-shop problems involve utilizing variants of

branch-and-bound (BB) techniques [25, 114, 158]. In BB, the search is characterized by

a tree where interior nodes represent partial solutions and leaf nodes represent schedules.

In the “branch” step, the partial schedules at parent nodes are refined. In the “bound”

step, nodes are discarded if the estimated lower bound on their cost is larger than the

currently known upper bound on the optimal schedule cost. The optimal upper bound

decreases monotonically as better schedules are found during the search. In order to

increase the search space pruning effectiveness of the bounding step, the lower bound on

the cost of the node must be as tight as possible. An admissible heuristic is one that does

not overestimate the schedule cost at a node. The use of admissible heuristics ensures

that BB will find an optimal schedule, whereas an overestimated cost can potentially

cause a sub-tree containing an optimal solution to be incorrectly pruned from the search.

However, a heuristic that underestimates cost by a significant margin diminishes the

pruning ability of BB, resulting in longer search times.

44

Instead of focusing on producing optimal schedules, a number of researchers have

proposed “approximation algorithms” that produce schedules with lengths within

guaranteed bounds relative to the optimal schedule length [35, 80, 138]. Similarly, good

results have been obtained through the use of Lagrangian Multipliers to relax constraints

in linear programming formulations of scheduling problems [36, 50, 51]. Techniques

based on splitting a large problem into smaller sub-problems and obtaining optimal

solutions to the smaller linear programming problems has also shown limited success [8,

137].

Many search algorithms from AI (e.g., variants of constraint satisfaction

techniques [32, 52, 116], simulated annealing [94, 29], and genetic algorithms [19, 115,

117]) use imprecise heuristics to prune large unpromising portions of the search space.

These approaches avoid examining the entire solution space (either explicitly or

implicitly), and therefore, sacrifice optimality in order to find high-quality schedules

relatively quickly. These approaches are described next.

Solutions to constraint satisfaction problems require the assignment of values to a

set of variables where the value assignments are subject to a set of constraints. In order

to find near-optimal schedules quickly, the requirements of minimizing makespan and

meeting all constraints are relaxed [32, 52, 116].

Simulated annealing (SA) [94, 29] is a Monte Carlo approximation technique

used to obtain near-optimal solutions to large combinatorial optimization problems. It is

based upon the analogy between solving optimization problems and the physical process

of heating and then slowly cooling a substance to obtain a strong crystalline structure.

45

The quality of the schedules produced by SA depends on the “energy” of the initial

solution representing the molten state, the “annealing schedule”, and the “temperature”

values at each stage of the annealing schedule. In SA, the value of the objective function

is analogous to energy. The probability with which a random change to the solution

producing a higher energy solution is accepted is analogous to temperature. The number

of iterations at each temperature level and amount by which the temperature is lowered at

each stage is analogous to an annealing schedule. Because SA utilizes little problem

specific knowledge, the number of iterations required to solve large scheduling problems

is large. Therefore, a number of techniques, (e.g., in [44] and [130]) for accelerating the

SA process have been proposed.

Genetic algorithms (GAs) search large, multi-dimensional combinatorial spaces

by emulating the evolutionary processes found in nature [19, 115, 117]. Based on their

relative fitness (i.e., value of the optimization criteria), individuals are selected from a

population of potential solutions to contribute their characteristics to the next generation

via a set of recombination operations (e.g., crossover and mutation). This process is

repeated until the solution is found. GA implementations that maintain several

populations isolated form each other to a certain degree are more resistant to premature

convergence to local optima as compared to implementations with a single

implementation [27, 107, 162]. Furthermore, GAs are particularly attractive scheduling

approaches because they are easily parallelized. However, GAs’ proclivity to converge

to local optima limits their applicability to schedule construction. Therefore, basic GA

46

techniques are extended through the use of complex data structures and evolutionary

operators. Such extensions are referred to as evolutionary programming (EP) [115].

2.3.2 Stochastic Scheduling

In many soft real-time applications, tasks have highly variable execution time

requirements. For such applications, meeting deadlines with some minimum guaranteed

probability is required (i.e., missing occasional deadlines is acceptable). Therefore, these

applications do not require schedules that plan for the worst-case scenario. Instead,

schedules for such applications improve system performance and utilization by only

guaranteeing that deadlines will be met with a given minimum probability.

Statistical Rate Monotonic Scheduling (SRMS) [10] extends the analysis of RMS

for scheduling periodic tasks with variable runtimes and statistical real-time guarantees.

As in RMS, SRMS assigns a fixed priority to each task and preemptively schedules tasks

based on their priorities. Higher priority is assigned to tasks with shorter periods.

Variability in a task’s execution time is accounted for by allocating a time budget for

successive instances of the task. The scheduler ensures that each task is granted

resources according to the tasks’ time budget on average. An admission control

procedure ensures that only those tasks that are not prevented from meeting their

deadlines by higher priority tasks and having sufficient budgets are scheduled for

execution.

The Basic SRMS algorithm applies to harmonic task sets [10]. A task set is

considered harmonic if the periods for all tasks are integral multiples of the periods of all

47

tasks with smaller periods. For a harmonic task set, the probability that an instance of

task Ji will be admitted is given by the following “QoS” function:

∑
+

=+

==
iT

T

k
ki

i

i
i

i

SP
T
TJQoS

ˆ
ˆ

1
,

1

1

)1(ˆ
ˆ

)(, (2.4)

where 1
ˆ

+iT is the superperiod of Ji, and P(Si,k = 1) is the probability that the task instance

Ji will be admitted in the kth phase of the superperiod. A superperiod of a task is the

period of the next lower priority task. P(Si,k = 1) is computed by summing the

probabilities of all possible combinations of task instances of Ji being accepted or

rejected in the prior k-1 phases.

Probabilistic Time-Demand Analysis (PTDA) [152] computes the probability that

a task instance Ji
k will complete within its deadline. This is done by computing the lower

bound, ci, on the total amount of time required to complete Ji
k and all other higher priority

task instances that are released in the interval [ri
k, ri

k + t), for any t > 0. When the

computational requirements for tasks are variable, ci itself is variable. Assume that

CDFi(x) is the cumulative probability density function [45] of ci (i.e., the probability that

ci ≤ x), then the probability that Ji
k completes at or before its deadline is given by

CDFi(Di). CDFi(x) is computed by convolving the PDFs of the computation time

requirements of Ji
k and all other higher priority task instances that are released before Ji

k

completes. In PTDA, the relative deadline of a task is assumed to be less than or equal to

the task’s period.

48

Stochastic Time Demand Analysis (STDA) [61] extends PTDA to include tasks

whose relative deadlines are greater than their periods. STDA also accounts for the time

that tasks can block each other while accessing shared resources. Note that a higher

priority task cannot preempt a lower priority task that is in a critical section. A critical

section is a section of code in which a task needs exclusive access to shared resources.

STDA is also applied to distributed systems by assuming that a periodic task is

composed of a chain of “subjobs” with each subjob executing sequentially on a different

processor [61]. Static priority assignment is used to determine subjob priorities. The

period of each subjobs is assumed to be the same as the period of the task and the inter-

release time for two consecutive instances of a subjob is assumed to be at least as long as

the task’s period.

Abeni and Buttazzo [1, 2] present an approach for constructing schedules for

periodic tasks with variable execution time requirements and variable inter-arrival times

by using a bandwidth reservation strategy. Under this strategy, each task is assigned to a

dedicated, periodic, Constant Bandwidth Server (CBS) that guarantees that the task will

be executed for a pre-assigned fraction of the total CPU bandwidth. The completion of

any task that requires more time than is available in the current period of its CBS, is

delayed until the next period of its CBS. This mechanism isolates tasks and prevents

tasks from delaying the completion of other tasks and the schedules are guaranteed to

meet deadlines with a given probability. Schedulability analyses for the following two

scenarios are also presented: 1) task sets with variable execution time requirements and

49

constant inter-arrival times; and 2) task sets with constant execution time requirements

and variable inter-arrival times.

The work of Diaz et al. [46] extends the analytical approaches introduced in

STDA and PTDA to include both fixed priority (e.g., RM and DM), and dynamic priority

(e.g., EDF) periodic real-time systems. Furthermore, analytical approach is also

developed to include periodic tasks with “arbitrary relative deadlines (including relative

deadlines greater then the periods) and arbitrary execution time distributions.”

Ryu and Kim present techniques for scheduling with statistical deadline

guarantees, a mixed set of periodic and aperiodic tasks [129]. In their scheduling

approach, each task is assigned a fixed amount of processor time, called the effective

execution time. A task that exceeds its effective execution time or exceeds it deadline is

discarded from the system. This simple strategy enables the scheduler to efficiently

control the probabilities of the tasks missing their deadlines. Essentially, this strategy

isolates tasks from each other and a single misbehaving task cannot adversely affect the

probability of another task from completing in time.

The effective execution time, ē, of a task Ji is computed from the following

equation:

∫ −=
ie

wi dxx
0

,1)(επ (2.5)

where πwi(x) is the probability distribution function of the completion time of task Ji, and

ε is the required deadline miss probability. The effective execution time is then used in a

deterministic admission control technique, utilization demand analysis (UDA), to

50

construct schedules. Under UDA, the utilization demand, ui(t), of task Ji at time t is

given by the following equation:

td

ee
xu

i

JtQK
Ki

i
i

−

+
=

∑
∈),()(, (2.6)

where Q(t, Ji) is the set of tasks with higher priority than Ji. Recall that di is Ji’s deadline.

Given this definition for utilization demand, a set of aperiodic tasks is schedulable if and

only if the maximum utilization demand of the set is less than or equal to 1.0.

Furthermore, Ryu and Kim also show that a set of periodic and aperiodic tasks is

schedulable by an EDF scheduler if the sum of the utilization of the periodic tasks and the

maximum utilization demand of the aperiodic tasks is less than or equal to 1.0.

Because scheduling using the absolute WCET for tasks is overly pessimistic, a

number of research efforts have focused on constructing a probabilistic model of the

worst-case behavior of the system. A sampling of such efforts is summarized below.

Bernat, Colin, and Petters [18] introduce techniques for constructing the

“execution profiles” of tasks by measuring the variable execution time for “basic blocks”

of program code of which the tasks are composed. Probabilistic analysis techniques are

used to combine the variable worst-case behaviors of the blocks to obtain the overall

probabilistic WCET estimates of each task in a soft real-time system. In particular,

techniques for combining the probability distributions functions of different basic blocks

that are executed in sequence, in an “if-then-else” structure, and in loops are developed

and presented. Two separate sets of techniques are developed in order to cover the cases

51

where the execution times of the basic blocks are independent of each other and are

dependent on each other.

In a simple approach for estimating the WCET of a real-time task, the execution

time of a task is measured on a real processor and the largest execution time from a

number of repeated observations is used as the WCET. However, the probing codes used

to take the measurements can introduce variations that will not occur in the final real-time

system. Furthermore, the maximum execution time determined from a sample of

executions is not guaranteed to be greater than or equal to the WCET that may be

observed in a deployed system. In order to account for the lack WCET guarantees

estimated from experimentation, Edgar and Burns present an approach for using the

confidence level of the estimated WCET for deriving the confidence level of the schedule

that uses the estimated WCET [47]. The confidence level of an assertion “the WCET of

task J is 200ms” is the probability that the assertion is indeed true for all possible

executions of task J. Note that this is subtly different from the probability that execution

time for task J is 200ms.

Edgar and Burns also present techniques for deriving the confidence level of

WCET for tasks from sample observations and for trading the confidence level for

improving system performance (i.e., reducing the WCET of tasks – and their associated

confidence level – in order to achieve schedulability) [47]. They show that a real-time

schedule has a confidence level of at least (1 – ε) of completing within the deadline as

long as each task in the schedule has WCET with confidence level (1 – ε) and the sum of

the following probabilities is greater than or equal to 1.0:

52

1. a guaranteed schedule can be constructed with a confidence level of (1 – ε) given that

the WCET of the first (n – 1) tasks are overestimated and the WCET of the nth task is

underestimated, and

2. a guaranteed schedule can be constructed with a confidence level of (1 – ε) given that

the WCET of the first (n – 1) tasks are underestimated and the WCET of the nth task

is overestimated.

2.4 Real-Time Operating Systems

There are a number of real-time operating systems offered by a variety of

commercial vendors and research groups. The survey in this section is restricted to a few

well-known real-time operating systems (see [62] for a more extensive survey).

Commercial operating systems such as pSOS [155], VxWorks [156], and LynxOS

[111] typically target embedded systems and are designed to be easily portable and

support a variety of embedded hardware systems. These operating systems focus on

providing low interrupt latency combined with low context switching overheads in order

to provide real-time response to external events. Dynamic online scheduling policies

such as FIFO, round robin, RMS, and EDF are provided; calendar-based scheduling is

generally not supported. Real-time processing is provided through fine user-control of

thread priorities, priority inheritance mechanisms, and preemptive thread scheduling.

In the Spring [118] system, designed for multiprocessor real-time computing,

tasks are classified as being critical, essential, and non-essential. Sufficient resources are

reserved by the Spring scheduler so as to guarantee that critical tasks complete within

53

their deadlines. This scheduler uses WCET of tasks, task deadlines, and resource

requirements to construct non-preemptive schedules. Executing tasks are protected from

external interrupts through the use of dedicated I/O processors and the operating system

itself. Another processor is dedicated to performing administrative and scheduling

functions. The Spring kernel also includes facilities for explicit control of translation

lookaside buffer (TLB) contents in order to reduce the unpredictability caused by TLB

misses [124]. The overhead introduced by this explicit TLB management adversely

affects context-switching time.

In the Maruti [131] system, resources are reserved, a priori, to ensure timely task

execution. Maruti has evolved from using static calendars to using parametric scheduling

in order to increase scheduling flexibility when task execution times are variable [132].

In Maruti’s parametric scheduling, a task’s start time is determined by the execution

times of previous tasks. In order to perform timing analysis of executable modules at

compile time, module development in Maruti is performed using the Maruti

Programming Language (MPL), a subset of ANSI C. MPL disallows features such as the

goto keyword, unbounded loop variables, and recursion. The Maruti Configuration

Language (MCL) is used to compose applications from individual modules.

The HARTIK [95] system uses EDF scheduling to execute real-time periodic and

aperiodic tasks. Real-time task are further classified as being critical and non-critical.

Critical tasks are given priority over non-critical tasks. Non real-time tasks are executed

when no real-time tasks are active. Admission control based on WCET is used to ensure

54

schedule feasibility. HARTIK also uses the Stack Resource Policy (SRP) [14] to bound

priority inversion and blocking time, and to prevent deadlocks.

RT-Mach [151] provides real-time services to periodic and aperiodic hard and

soft real-time tasks through the use of round-robin fixed-priority scheduling policies.

Real-time threads are allocated to processors a priori and do not migrate at runtime. An

executing thread whose scheduling quantum has expired is preempted by another thread

with equal priority. A higher priority thread always preempts a lower priority thread.

Schedulability analysis is performed in order to determine and reserve the processing

capacity required by the hard real-time periodic and sporadic tasks. Remaining

processing capacity is allocated to soft real-time tasks.

A number of real-time executives based on Linux have been developed. The

primary difficulty in using Linux as a real-time OS is that the non-reentrant kernel is

locked during kernel calls and interrupts may be arbitrarily disabled. This can cause

unbounded delays in task invocations and exacerbates interrupt latencies. RT-Linux [16]

inserts a small-footprint real-time kernel between Linux and the hardware. The RT-

Linux kernel executes the Linux kernel (and consequently Linux processes) as non real-

time tasks and real-time tasks are executed in RT-Linux kernel space. RT-Linux

intercepts interrupts, intercepts interrupt enabling and disabling kernel functions, and

forwards interrupts to the Linux interrupt handlers only when Linux does not have

interrupt handling disabled. RT-Linux implements preemptive priority and EDF

scheduling mechanisms.

55

Turtle [5], designed in the High Performance Computing Laboratory at

Mississippi State University, is based on RT-Linux and uses the RT-Linux’s ability to

intercept all hardware interrupts intended for the Linux kernel and to deliver them to the

kernel only when the kernel is scheduled to run on the processor. Turtle uses the Intel

Pentium Pro and following processors’ integrated advanced programmable interrupt

controller (APIC) [77] for fine-grained timing and interrupt control. Turtle provides a

preemptive scheduling for periodic tasks using the Earliest Critical Deadline First

(ECDF) algorithm. Under ECDF, each task periodic task specifies its period, maximum

computation time, and relative deadline requirements. The scheduler prioritizes periodic

task instances according to their deadlines, similar to the EDF algorithm. However, once

a task instance has been allocated its maximum requested time and has not yet completed,

the deadline of the next instance of the task is used in computing the task’s priority (as

opposed to the current instance’s deadline). This allows other tasks with earlier deadline

to preempt the task that has exceeded its computational requirements.

The KU real-time (KURT) [123] project modifications made to Linux enables

explicit time-based control of Linux tasks. This is achieved primarily by increasing the

frequency of Linux’s timer. KURT’s timing routines call the Linux timekeeping routines

at the expected frequency in order to correctly maintain Linux time. Furthermore, in

order to ensure that real-time tasks are invoked at the correct time, the scheduler’s timer

interrupt is programmed to occur 50 microseconds before the task’s start time and the

scheduler busy-waits until the actual start time occurs.

56

2.5 Scheduling in Non Real-Time Operating Systems

A Beowulf cluster [148] is a cluster constructed from commodity hardware (i.e.,

personal computers) and popular operating systems such as Windows 2000 and Linux.

However, these operating systems are designed for improving the responsiveness for

interactive threads on individual nodes, and not for enhancing the performance of parallel

applications.

2.5.1 Thread Scheduling in Windows 2000

Windows 2000 implements priority-driven preemption with round-robin

scheduling at the thread level [144]. The highest priority ready thread is always given

preference. An executing thread runs for a time interval determined by its current

quantum value before being interrupted and replaced by another thread with the same

priority. A thread can be preempted whenever a higher priority thread becomes

executable. The quantum of a thread is an integer value initially set to 6 (12 on

Windows 2000 Server version) when the thread is scheduled. At each timer interrupt, the

quantum of the current thread is reduced by 3. If its quantum becomes equal to or less

than zero, the current thread is preempted by another thread of equal priority. If no other

threads of equal priority are executable, the current thread’s quantum is reset and the

thread resumes execution.

Whenever a thread enters a wait state (i.e., calls WaitForSingleObject or

WaitForMultipleObjects), its quantum is reduced by 1. This quantum decay process is

utilized in order to ensure that threads that enter wait states have their quantum values

reduced. Without quantum decay, a thread that repeatedly enters a wait state before the

57

timer interrupt occurs and resumes after the interrupt has been processed will never have

its quantum reduced.

Windows 2000 boosts the quantum of all threads of the foreground process (i.e., a

process whose window has the input focus). This boost in quantum favors the

foreground task while still giving the background tasks with the same priority a chance to

execute.

The priority levels of threads can also be temporarily boosted after events such as

I/O completion and if a thread has not been scheduled for a long time. Furthermore,

threads can be interrupted at any time (although, the portions of interrupt handlers will

not proceed until the current thread’s interrupt request level (IRQL) is reduced to below

the interrupt priority [125]). Windows 2000 does not provide real-time thread scheduling

guarantees such as guaranteed interrupt latencies or guaranteed execution times. Threads

with “real-time” Windows 2000 priorities are in similar to threads with conventional

priority levels with the exception of having their quantum reset after they are preempted.

The threads’ quantum and priority adjustments can cause significant variances in

the execution time intervals of threads. Furthermore, the decisions to make priority and

quantum adjustments are made by the individual instance of the OS running at each node

without regard to the impact of such decisions on threads of a parallel application

executing on other nodes. Therefore, executing a single parallel application with several

competing and interacting threads or executing several parallel applications

simultaneously on a Beowulf can result in lack of coscheduling and the concomitant loss

of performance caused by context thrashing and resource contention.

58

2.5.2 Thread Scheduling in Linux

Linux also provides priority-driven, preemptive, round-robin thread scheduling

[21]. Instead of directly using thread’s quantum values to make scheduling decisions,

Linux divides time into epochs. At the beginning of an epoch, a quantum value is

computed and assigned to all threads. The quantum value determines the maximum

amount of time the thread can execute in the epoch. An epoch ends when all executable

threads (blocked threads are not considered) have used up their time quanta; at this point,

the next epoch is initiated. Each process is initially assigned a base time quantum of 20

clock ticks. If a thread consumes its entire quantum during an epoch, the thread is given

a new base time quantum at the beginning of the next epoch. If a thread does not use its

entire quantum (i.e., the thread was blocked when the epoch expired), the remaining

quantum is used to compute a boost to the thread’s quantum for the next epoch. This

favors I/O bound threads.

Similar to Windows 2000, Linux cannot guarantee interrupt latencies and

execution runtimes. Threads with “real-time” priority in Linux simply have a higher base

priority than the conventional threads and may not receive a priority boost depending on

the real-time scheduling policy class (e.g., SCHED_RR) selected for the thread’s process.

When looking for a new thread to schedule, the Linux scheduler uses the sum of

the ready threads’ base quantum value and the number of clock ticks remaining in the

quantum to compute priorities. Therefore, thread priorities in Linux are dynamic and can

lead to context thrashing and resource contention parallel applications in Beowulf

applications.

59

2.5.3 Process Scheduling in K42

K42 [81] is a kernel based on the Tornado OS [60]. Tornado is an operating

system specifically designed to improve OS performance on large-scale shared memory

multiprocessor systems. Its design objective is to optimize performance by reducing

cache coherency overheads and reducing data sharing. In order to enable an OS request

to be serviced by the same processor on which the request was issued (and thereby

preserving locality), OS data structures are distributed across the processors. For

example, the various processors can simultaneously handle page fault requests to

different pages. The use of distributed structures also enables the implementation of

localized locks. This reduces the need for global shared locks across processors because

locks are typically localized within single processors.

K42 is an extension of Tornado that enhances system performance by performing

portions of the scheduling process in user-level code. Certain other OS services (e.g., file

systems) are also performed at the user level. This reduces application-kernel interaction

overheads.

The kernel-level scheduler is only responsible for scheduling processes belonging

to various applications for a limited time quantum. Within the process, the application is

responsible for scheduling its own threads, and can optimize thread scheduling according

to its own needs. When the quantum of a process expires, K42 first attempts a soft-

preemption. In a soft-preemption, the executing process is interrupted and given some

time to perform housekeeping. Essentially, the interrupted process maintains its own

machine state. If the executing process has lower priority than the ready process, or has

60

not yielded the processor within the allowed time, K42 performs hard-preemption in

which the executing process’s machine state is saved in kernel space.

2.6 Real-Time Communication

In parallel real-time systems, on-time execution of communication operations is

required in order to ensure the timely execution of real-time parallel applications’

component tasks. Therefore, considerable research has been devoted to investigating

techniques for admission control with resource reservation and developing protocols for

mitigating contention for shared communication resources between competing real-time

and non real-time tasks.

2.6.1 Admission Control and Resource Reservation

Admission control is the process of controlling the number of simultaneous

connections or real-time channels between processors in a cluster. A real-time channel is

a connection-oriented reservation of resources along the path between cooperating

processes. Without admission control, the volume of network traffic offered at any given

time is not controlled by a deterministic policy and this can result in congestion and large

variances in communication delays that are unacceptable for real-time systems.

Tenet [59] uses a two-pass approach to reservation establishment. A reservation

message containing the desired end-to-end delay is sent along the path from the receiver

to the sender. Each switch along the path reserves resources and adds its delay into a

field in the reservation message. If the cumulative delay is greater than the desired end-

to-end delay, the sender rejects the request and all reservations associated with the

61

reservation request are released. If the cumulative delay is less than the desired end-to-

end delay, the sender sends a relax message back along the original path in reverse. The

relax message contains the excess delay and each switch along the path relax the

reservations, increasing the delay to the extent possible consistent with meeting end-to-

end delay bounds.

Ferrari has further refined the approach he proposed for Tenet [58]. This method

is based on a simplex unicast real-time channel model that consists of a sequence of one

or more queuing servers (e.g., the CPU—NIC—NIC—CPU channel path to connect two

cluster nodes consists of four servers). The admission test of processing capacity, buffer

capacity, and delay bounds is performed on all nodes along the path before the channel is

established and communication can proceed. This admission control method is an

extension of an earlier approach proposed by Ferrari and adopted by Tenet.

The Resource ReSerVation Protocol (RSVP) [166, 167] uses a simpler one-pass

approach to network reservation establishment. When the reservation message is sent

from the receiver to the sender, the switches along the path make admission control

decisions locally and do not record their locally induced delays onto the message. Fine-

tuning of reservations is not performed because a confirmation or relax message is not

sent along the reverse path as in Tenet. An error message is send along the reverse path

only if a switch denies the reservation request. In this simple approach, the end-points of

a complex network topology cannot specify end-to-end delay requirements to the

network because the network does not record the delays introduced at each switch.

62

Further research conducted in the High Performance Computing Laboratory at

Mississippi State University by Zhenqian Cui [40] provides theoretical and experimental

analysis of the performance of RSVP. This analysis shows that while RSVP provides

good average delay characteristics, it is unable to provide a tight bound on delay jitter.

This is because the high-level RSVP protocol is unable to effectively control the lower-

level link layers. Furthermore, the analysis shows that the processing overhead

introduced by RSVP channel scheduling is significantly higher that a TCP connection in

a high-speed network. His alternative approach using a global admission control policy

that tracks global resource availability and utilization reduces delays caused by conflicts

within switches, reduces scheduling overheads, and provides guaranteed end-to-end

delays as long as the end systems provide sufficient processing times to the packet

scheduling algorithms.

Xuan et al. [159] present an algorithm that makes run-time admission control

decisions based on the current utilization of bandwidth and the bandwidth requirements

of the connection being established. The configuration phase executed at system startup

determines the maximum safe level of bandwidth utilized at each node. Maximum delay

constraints of all traffic along all paths are guaranteed to be satisfied as long as utilization

is at or below the safe level. The configuration phase uses the network topology, sender-

receiver pairs together with traffic and maximum delay constraints to derive maximum

safe utilization levels. At runtime, the admission control algorithm simply verifies that

bandwidth is available along the path of a new connection.

63

Estimating network capacity at any given time is key to successful admission

control and to estimate the end-to-end communication delays in parallel real-time

environments. Banerjee and Agrawala [15] present a technique for estimating available

network capacity (i.e., the amount of data that can be inserted into the network at any

given time) of an end-to-end connection using measurements taken at the endpoints only.

2.6.2 Access Arbitration and Transmission Control

When two or more nodes in a multi-access network simultaneously begin

transmitting data over a single shared communication medium, all overlapping

transmissions are lost when their signals collide. After a collision occurs, the failed

communication operations must be retried, and repeated collisions can arbitrarily delay

their successful completion. Media access control (MAC) techniques for mitigating

delays caused by collisions have taken the form of access arbitration, transmission

control, or both [112]. Access arbitration in real-time parallel systems is the process of

granting communicating nodes access to the media in such a manner that collisions are

avoided. Transmission control is the regulation of the length of time any one node can

continue to exclusively transmit messages once it has access to the medium and is

required in order to afford other nodes equal opportunity to transmit their own real-time

messages.

Ethernet (IEEE 802.3) [23] uses a 1-persistent Carrier Sense Multiple Access with

Collision Detection (CSMA/CD) with Exponential Binary Backoff protocol that can

introduce large delays under high-load conditions, making it unsuitable for real-time

computing. In order to avoid collisions, Venkatramani and Chiueh [154] have proposed,

64

RETHER, a token-based protocol implemented over Ethernet. This protocol imposes a

token-based access arbitration policy in software when real-time service is required at

any node. In this protocol, a special token packet circulates among the nodes in the

network and only the node currently possessing the token is allowed to transmit. Nodes

that have made bandwidth reservation are given priority over others. An admission

control policy is used to prevent new nodes from establishing real-time sessions if there is

insufficient remaining network capacity.

In order to avoid the occurrence of high load conditions, Kweon, Shin, and Zheng

[88] present a static traffic “smoothing” approach based on the leaky bucket algorithm

[38] to enforce a fixed rate of packet arrivals at the Ethernet MAC layer of a network

node. Only non real-time packets are subjected to delays; real-time packets are

forwarded to the MAC as soon as they appear. Kweon, Shin, and Workman [89], extend

their previous approach by allowing nodes with higher outgoing traffic volume to

adaptively increase rates of transmission when other nodes have reduced outgoing traffic.

Instead of absolute real-time guarantees, these approaches provide statistical real-time

channels over Ethernet. A statistical real-time channel guarantees that the probability of

late packet delivery is less than a given constant.

Chou and Shin have also proposed a token-based approach for multi-access bus

networks [33] that uses a centralized node to for admission control and token allocation

in order to provide statistical real-time communication channels. This protocol can be

readily adapted for use in Ethernet environments.

65

Real-time communication channels have also been implemented on token-based

MAC protocols such as Token Ring (IEEE 802.5) [76] and Fiber Distributed Data

Interface (FDDI) [4]. The Token Ring protocol implements a priority policy that allows

nodes with higher priority to transmit first. Furthermore, transmission control is provided

through the use of a maximum token hold time that limits the amount of time a node can

transmit packets once it has acquired the token. FDDI is similar to Token Ring but does

not provide for priorities; all nodes receive the token and transmit packets in a round-

robin fashion. Kamat and Zhao [82] provide a detailed analysis of the real-time

performance of Token Ring and FDDI networks using RMS for assigning priorities to

nodes. Strosnider and Marchok [150] analyze real-time performance of Token Ring

networks using DS scheduling.

Asynchronous Transfer Mode (ATM) [85] networks are also a popular choice for

implementing real-time channels because ATM cells (i.e., small – 53 bytes long – fixed

length packets) are easy to switch and do not block other cells for very long. For the sake

of efficiency and simplicity, most ATM switches implement simple FIFO or static

priority scheduling schemes. Li, Bettati, and Zhao [102] investigate delay characteristics

in priority scheduled ATM networks with arbitrary topologies in the face of possible

cyclic dependencies among connections. Cyclic dependency is the results when the

traffic on one connection interacts with another, causing unbounded delay in cell delivery

[39]. Hansson, Ermedahl, and Tindell [70] and Ermedahl, Hansson, Sjődin [49] provide

a method for admission control in ATM networks, and Ng, Song, and Zhao [122] propose

a method for estimating the worst case cell delay in an ATM switch.

66

2.7 Scheduling of Parallel Tasks

Tasks and data dependencies in a parallel non-real-time application are often

represented as vertices and edges, respectively, in a directed acyclic graph (DAG) [63,

91, 90]. A DAG G = {V, E} consists of a set V = {v1, v2, …, vn} of n vertices and a set E

= {e1, e2, …, ek} of k directed edges connecting the vertices. The vertices represent

computational tasks in a parallel application and the edges represent communication and

precedence relations between the tasks. The ordered pair ei = (vsrc, vdest) indicates that the

direction of edge ei is from vertex vsrc to vdest, implying that vsrc must be completed before

vdest can begin. In a DAG, vertices without incoming edges are called entry vertices and

vertices without outgoing edges are called exit vertices.

Given a DAG specifying a parallel application, the fundamental problem is to

construct a series of assignment of tasks to processors such that the total time to complete

the application is minimized without violating precedence or timing constraints.

However, constructing optimal schedules from DAGs is NP-hard in general [48, 153].

Therefore, the successful application of systematic search techniques such as dynamic

programming towards optimal DAG scheduling is impractical because of time and space

constraints. A few cases of polynomial complexity DAG scheduling algorithms have

been reported (e.g., [74] and [135]) under simplifying conditions. However, these

algorithms are of limited practical value because they are restricted to simple classes of

DAGs and typically ignore communication costs.

Because of the intractability of DAG scheduling in general, a number of heuristic

algorithms based on the list scheduling (LS) paradigm have been proposed that strive to

67

construct schedules that minimize makespan in polynomial time [67, 75, 86, 87, 91-92,

134, 157, 160]. List scheduling consists of repeatedly constructing an ordered list, called

the ready list, of ready tasks and assigning the first task in this ready list to any available

processor that can complete the task soonest. Ready tasks are as-yet-unscheduled tasks

whose precedence constraints have been satisfied. Completion of executing tasks

generates additional ready tasks that are inserted into the ready list. This scheduling

process repeats until all tasks are completed. A variety of heuristics are used to

determine the sequence of tasks in the ready list and to select the processor assignment

for the task at the head of the ready list.

Kwok and Ahmad provide a comprehensive survey and taxonomy of heuristic list

scheduling algorithms for statically scheduling DAGs [91]. The following is a brief

description of popular list scheduling techniques.

The Edge-zeroing (EZ) algorithm [134] strives to minimize communication costs

by coalescing vertices into clusters. Essentially, all edges are examined in descending

order of weight and the two clusters connected by the largest edge are merged (and the

weights of all interconnecting edges are reduced to zero) as long as the merger will not

increase the starting time of the last vertex in the cluster beyond its top-level (t-level).

The t-level of a vertex is the length of the longest path to the vertex from an entry vertex

and specifies the earliest possible time this vertex can be scheduled. If the merger

increases the starting time of the last vertex in the cluster beyond its t-level, one of the

original clusters is scheduled to execute on a different processor. Within a cluster,

68

vertices are ordered by decreasing bottom-levels (b-level). The b-level of a vertex is the

longest path from the vertex to a terminal vertex.

The Linear Clustering (LC) algorithm [86] determines the critical path (CP) of

the DAG and merges the vertices on the CP into a cluster. The CP of a DAG is the

longest path in the DAG form an entry vertex to an exit vertex. Any edges originating

from or terminating at a vertex in the cluster are eliminated from further examination.

The process is repeated by constructing the CP from the remaining vertices and edges

until all edges are eliminated. Each cluster is scheduled to execute on a distinct

processor.

Dominant Sequence Clustering (DSC) [160] uses the t-level and b-level metrics

of the vertices to dynamically determine the critical path of the partially scheduled DAG

during the scheduling process. This algorithm also schedules nodes to start as early as

possible. Furthermore, Yang and Gerasoulis [161] prove that schedule length of DSC is

bounded as follows:

optDSC M
g

M ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≤

11 , (2.7)

where MDSC is the length of the schedule produced by the DSC algorithm, MOPT is the

optimal schedule length for the DAG, and g represents the granularity of the DAG.

Granularity is derived from the computation-to-communication ratio of the vertices and

edges of the DAG. For coarse-grained DAGS (i.e., with g ≥ 1) the makespan of the

scheduled created by DSC is less than or equal to twice the makespan of the optimal

schedule.

69

The Mobility Directed (MD) algorithm [157] is a complex scheduling algorithm

that does not fix the starting times of scheduled vertices until all nodes have been

scheduled. Furthermore, vertices are scheduled in increasing order of their relative

mobility. The relative mobility of a vertex provides an indication of the amount by which

the vertex can be shifted to start at a later time so as to meet precedence constraints and

start before its b-level. The relative mobility of vertex vi is given by:

)(
))(_)(_(__)(_

i

ii
i vw

vleveltvlevelbLengthCPCurrvmobilityrelative +−
= , (2.8)

where Curr_CP_Length is the length of the critical path of the partial schedule.

The Dynamic Critical Path (DCP) algorithm [93] outperforms other list

scheduling algorithms in terms of reducing schedule lengths and processors used for

many DAGs. At every LS step, DCP computes the CP from the partial schedule, and

selects the ready vertex on the CP to be scheduled first. If none of the ready vertices is

on the dynamic CP, the vertex with the least mobility is selected for scheduling. Mobility

of a vertex is defined by:

))(_)(_(__)(iii vleveltvlevelbLengthCPCurrvmobility +−= . (2.9)

DCP assigns vertex vi to the process such that the sum of the start time of vi and

the start time of vi’s critical child is minimized over all processors that are scheduled to

execute vi’s parent or child tasks. The critical child of vi is that child vertex that

maximizes the sum w(vi, vc) + w(vc) where vc is in the set of child vertices of vi.

The Highest Level First with Estimated Times (HLEFT) algorithm [3] orders the

ready list in terms of the vertices’ b-level computed once before scheduling begins. The

70

Insertion Scheduling Heuristic (ISH) algorithm [87] extends HLEFT by filling any

“holes” left in the partial schedule after a vertex is scheduled by scheduling other vertices

in the ready list (in order of priority) into the holes.

The Modified Critical Path (MCP) algorithm [157] uses the vertices’ ALAP value

to prioritize the ready list. Vertices with the smallest ALAP are scheduled first. A vertex

is scheduled on a processor with the earliest available slot within which the node can be

accommodated within precedence constraints.

The Earliest Time First (ETF) algorithm [75] uses a greedy heuristic that

prioritizes vertices according to their earliest start times. The algorithm essentially

examines every ready-vertex—processor pair exhaustively and schedules the ready

vertex that can start the earliest on the processor that allows this earliest start time.

The Dynamic Level Scheduling (DLS) algorithm [139] recomputes the dynamic

levels on all processors for every node in the ready list before each scheduling decision.

The dynamic level (DL) of a processor-vertex pair is given by the difference between the

b-level of the node and the earliest start time of the vertex on the processor. The

processor-vertex pair with the largest DL is added to the final schedule.

A number of researchers have studied the efficacy of using genetic algorithms

[72] for scheduling [19, 65, 66, 67, 107, 92, 116, 120, 133]. Genetic algorithms (GAs)

search large, high dimensionality combinatorial spaces by emulating the evolutionary

processes found in nature. Individuals are selected from a population of potential

solutions to contribute their qualities to the next generation via a set of recombination

operations (e.g., crossover and mutation). Individuals with better characteristics as

71

determined by the optimization criteria are more likely to procreate. This process is

repeated until a high-quality solution is found. The crossover operator determines how

genetic (i.e., schedule quality) information is exchanged between parents to construct

better offspring. The mutation operator introduces randomness into the search that helps

to escape from emerging local optima.

Kwok and Ahmad [92] have proposed an effective technique for combining a GA

with LS. The combination of GA and LS is known as genetic list scheduling (GLS). In

their GLS algorithm, a chromosome represents the order in which the tasks are

scheduled. A schedule is constructed from a chromosome by scheduling each vertex in

the order of appearance in the chromosome on the processor that allows the earliest start

time. They also investigate the effectiveness of several crossover operators, the mutation

operator, and adaptive genetic algorithm control parameters (e.g., crossover rate,

mutation rate, initial population size, and number of generations). Their parallel

implementation outperforms the traditional heuristic algorithms described above in terms

of both makespan and schedule construction time.

Grajcar [67] has presented a GLS algorithm for scheduling computation and

communication in a heterogeneous multiprocessor system with shared communication

busses. This algorithm also outperforms many of the traditional approaches described in

literature. Grajcar has also described a physical heterogeneous hardware structure and a

DAG structure for which most list schedulers produce poor-quality schedules [65].

72

2.8 Limitations of Existing Scheduling Research

Scheduling research for probabilistic soft real-time systems has been restricted to

the assumption of periodicity and preemption. However the overhead cost of preemption

is typically ignored in these analytical techniques. The PDFs for tasks’ computation time

requirements model the variability in the processing needs of the tasks and the variability

of runtime caused by modern hardware features. The overhead introduced by preemption

is essentially rolled into the PDF for task computation requirements. However, the total

overhead of preemption for a task depends on the number of times the task is preempted,

and therefore cannot be simply rolled into the tasks’ computation time PDF a priori.

Periodic real-time scheduling research has also typically ignored the precedence

relationships that exist between the various tasks in a real-time application. Task

priorities and phasing (i.e., different release times relative to each other within similar

periods) are assumed to ensure that tasks are executed in the proper order. Furthermore,

related sequences of tasks with identical periods, and consequently with identical

priorities and deadlines, are typically coalesced into threads that are preemptively

scheduled according to their priorities.

Another limitation of most existing analytical approaches to distributed soft real-

time scheduling is the assumption that distributed tasks are organized as chains of

subtasks that have been pre-allocated to processors. These chains of tasks are assumed

not to split or merge. While a number of real-time communication techniques have been

proposed that provide statistical guarantees on packet delivery latencies, there are two

73

fundamental shortcomings of this approach that limit its applicability to scheduling

parallel and distributed applications.

The first shortcoming is that in complex parallel and distributed real-time

applications, tasks often provide inputs to and receive inputs from multiple tasks. This

implies that task chains split and merge in complex patterns. The second shortcoming is

that the task clustering and processor allocation is left to the system designer. This can

lead to an ad hoc design based on the system designers experience and bias that could

require significant revision when system software, hardware, or constraints are modified.

The LS, GA, and GLS algorithms that have been developed for clustering and

scheduling tasks in DAGs representing parallel applications provide a basis for the

scheduling algorithms used in this dissertation. However, the existing research is limited

to deterministic scheduling using WCET assumptions and has focused on reducing

schedule lengths. Therefore, these previously developed algorithms cannot directly be

employed in scheduling real-time systems where the schedule length minimization

objective is secondary to meeting all deadlines.

Another LS, GA, GLS assumption that prevent their direct application to

scheduling real-time systems is that the processors are assumed to be fully connected via

point-to-point links. Therefore, it is assumed that multiple outgoing or multiple incoming

communication operations over single processor-to-network links can occur without

impacting each other. This is clearly not a realistic assumption unless a non-work-

conserving time-division multiplexing scheme is used for communication. Most modern

networks provide a single full-duplex link connecting the processor to the network. This

74

implies that communication operations corresponding to incoming/outgoing edges

to/from vertices must be serialized, and the impact of this serialization must be

considered during schedule construction.

The existing LS, GA, and GLS algorithms are also deterministic in nature and

suitable for scheduling hard real-time systems where only WCET are assumed. There is

no provision for using these techniques in situations where tasks have variable runtime

requirements.

This dissertation presents scheduling techniques that over come the limitations of

existing scheduling research in the following ways (these are explained in more detail in

Chapter 3):

• New LS and GLS algorithms are proposed that strive to schedule tasks with non-

deterministic runtime assumptions in order to produce schedules that trade off the

probability of tasks completing within deadlines and the completion time jitter for

reduced schedule lengths.

• Non-preemptive scheduling techniques are used to minimize the cost in terms of

reduced performance and increased uncertainty cause by preemption.

• The scheduling algorithms strive to automatically organize the various parallel tasks

into chains of tasks and to allocate these task chains to processors so as to produce

optimal schedules.

• The scheduling algorithms are able to operate on applications that are represented in

the form of DAGs with complex task chain patterns and precedence constraints.

75

• The scheduling algorithms assume a more realistic packet switched communication

infrastructure as opposed to the fully connected point-to-point network assumed in

most LS and GLS approaches.

 76

CHAPTER III

STOCHASTIC TASK SCHEDULING APPROACH

This chapter describes the approach used to construct the stochastic schedules in

this dissertation. The scheduling problem, modeled as a Directed Acyclic Graph (DAG)

representation of real-time applications and a specification of the parallel platform model,

is presented here. A theoretical framework for manipulating independent probability

distribution functions (PDFs) in the context of scheduling is also developed. This

theoretical framework is then used to describe how schedules that account for variable

task execution times are constructed using a variety of novel heuristics for list scheduling

and genetic list scheduling techniques. Other contributions include techniques for

stochastic jitter control and techniques for systematically trading off probability of

meeting end-to-end deadlines with schedule length and task completion time jitter.

3.1 Aperiodic Application Model

In traditional, deterministic non-preemptive scheduling of tasks with precedence

constraints, the sets of tasks to be scheduled are often represented in the form of DAGs

[91]. Figure 3.1 illustrates a simple hypothetical deterministic DAG. The amount of

work to be performed in task vi is represented as node weight wvi. For example, in Figure

3.1, wv0 = 2. In homogeneous systems, the choice of processor used to execute a task

does not affect the execution time of that task, and therefore, wvi is used to represent the

77

execution time of the task. Similarly, edge weight wei represents the total work to be

performed for edge ei. In a homogeneous network environment, the choice of the source

and destination processors does not affect the time taken to complete the communication

operation. Therefore, wei is used to represent the communication time required by edge

ei.

1

9
1

1

2 3

v0

2

v1
8

v2

6
v3

2
v4
2

v5

1

v6
2

1 1
1

Figure 3.1 A Hypothetical DAG with Deterministic Task Weights

In this dissertation, if the source and destination processors are the same, the

communication time is considered to be negligibly small (i.e., wei is reduced to 0 when

psrc(ei) = pdest(ei), where psrc(ei) and pdest(ei) are the source and destination processors of

the edge, respectively). The time taken to transfer data between tasks assigned to the

same processor can be reduced significantly through the use of techniques such as

78

passing pointers to buffers between tasks as opposed to copying buffer contents. The

Real-Time Message Passing Interface Standard [140] document provides specification

for such advanced buffer management functionality.

DAGs can also be used to represent tasks with precedence constraints and varying

execution requirements, as illustrated in Figure 3.2. The weight of the vertices and edges

are assumed to be discrete, non-negative integer-valued, independent random variables.

Task Weight
Distribution

Weight: 4 5 6 v0 Probability: ⅓ ⅓ ⅓
Weight: 7 8 9 v1 Probability: ⅓ ⅓ ⅓
Weight: 1 2 3 v2 Probability: ⅓ ⅓ ⅓
Weight: 2 3 4 v3 Probability: ⅓ ⅓ ⅓
Weight: 2 3 4 v4 Probability: ⅓ ⅓ ⅓
Weight: 1 2 3 (v0, v3) Probability: ⅓ ⅓ ⅓
Weight: 7 8 9 (v1, v3) Probability: ⅓ ⅓ ⅓
Weight: 1 2 3 4 5 (v2, v4) Probability: 0.5 0.35 0.05 0.05 0.05
Weight: 7 8 9

 v0 v1 v2

v3

v4

(v3, v4) Probability: ⅓ ⅓ ⅓

Figure 3.2 A Hypothetical DAG with Randomly Distributed Task Weights

The probability that a random variable X has value x, where x ∈ ℑ+ is represented

by the notation P(X = x). In general probability theory, random variables can take any

value. However, in the context of this dissertation, execution time requirements, starting

times, and completion times of real-time tasks can be restricted to be non-negative

integers without loss of generality because of the following three reasons:

1. tasks cannot have negative execution time requirements,

79

2. all system events (e.g., task start and completion) occur after the system start epoch

that has a time value of 0 units, and

3. time measurements can be scaled to a finer resolution in order to result in integer

values (e.g., 1.5 seconds can be represented as 1500 milliseconds).

In DAGs with randomly distributed weights, every possible weight value for each

task has an associated probability with which that weight occurs. In DAGs with

deterministic weights, there is a single weight value for each task that occurs with 100%

probability. Therefore, DAGs with deterministic weights are essentially special cases of

DAGs with randomly distributed task weights.

Definition 1: The probability distribution function (PDF), also denoted as, πX(x),

collectively specifies the probability that variable X will have the value x and can be

viewed as an array of real numbers indexed by all possible values x of the random

variable X. The real-valued array element specifies the probability of observing the array

element’s index value in an experiment. In order to meet the standard definition of

probability distribution functions, ∀x: πX(x) ≥ 0 (i.e., πX(x) must be non-negative for all

values of x) and 0.1)(∑ =
x

xπ (i.e., the sum of πX(x) must be 1.0 over all values of x) [45].

In real-time systems, the domain of the π function is a time value (e.g., the time at

which a task begins, the time at which a task finishes, or the time required to complete a

task). Furthermore, because real-time tasks are designed to complete in a finite amount

of time, the PDF need only be defined over an interval [lX, uX] for x. By definition, the

range of the π function is a real number in the interval [0.0, 1.0]. Formally,

80

⎩
⎨
⎧ ≤≤=

=
otherwise. 0

 if)(
)(XX

X
uxlxXP

xπ (3.1)

In this dissertation, the following notation is also used to denote a PDF:

) ,(,), ,(), ,(2211 nnX rxrxrx L=π (3.2)

where xi ∈ ℑ+ and ri ∈ ℜ+, and 1 ≤ i ≤ n. Using this notation, the pair (xi, ri) is used to

explicitly state that the probability that the random variable X will have a value of xi is

given by ri.

Figures 3.3 and 3.4 depict example PDFs of the computational requirements of a

simple matrix multiplication code using three nested loops. The PDFs were computed by

measuring the number of CPU clock cycles required to complete the multiplication. The

code was executed on a 450MHz Pentium III processor with disabled interrupts and no

DMA operations. The matrices were all resident in memory (i.e., virtual memory was

disabled). However, paging and caching were enabled. Therefore, the variances in

completion times are a result of processor features such as cache and TLB misses, and

branch prediction failures. Interrupt handling and DMA cycle stealing did not play a role

in determining the variances in completion times.

In Figure 3.3, a total of 65,536 runs were used to construct a histogram of the

number of clock cycles required to complete the multiplication. The range of cycles

required is [181,378,392, 182,030,457]. The probability for a task requiring a given

number of cycles, t, is computed by dividing the number of times the program required t

cycles to complete by 65,536 (the total number of samples).

81

In Figure 3.4, the PDF was scaled to a coarser-grain using microseconds as the

unit of measurement, as opposed to clock cycles. This PDF was constructed by grouping

completion times into 450-cycle “bins” (because for a 450MHz processor, an elapsed

time of one microsecond is equivalent to 450 clock cycles). The range of microseconds

required is [403,063, 403,163]. The probability for a task requiring a given number of

microseconds, t, is computed by dividing the number of times the program required t

microseconds by 65,535.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

18
13

78
35

0

18
13

82
85

0

18
13

87
35

0

18
13

91
85

0

18
13

96
35

0

18
14

00
85

0

18
14

05
35

0

18
14

09
85

0

18
14

14
35

0

18
14

18
85

0

18
14

23
35

0

Completion Time (CPU clock cycles)

Pr
ob

ab
ili

ty

Figure 3.3 Example Fine-Grained PDF of an Integer Matrix Multiplication Task

82

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

403063 403073 403083 403093 403103 403113 403123 403133 403143 403153 403163

Completion Time (microseconds)

Pr
ob

ab
ili

ty

Figure 3.4 Example Coarse-Grained PDF of an Integer Matrix Multiplication Task

Definition 2: The cumulative distribution function (CDF) of random variable X is

given by the following expression:

∑=
≤≤ xyl

XX
X

yxΠ)()(π , (3.3)

where lX is the lower bound of the interval within which PDF πX is defined. In other

words, ΠX(x) is the sum of all probabilities in the PDF array up to an including the

probability at index value x. Furthermore, ΠX(x) = P(X ≤ x). By definition, ΠX(uX) = 1.

Also, by definition, P(X > x) = 1 – ΠX(x).

Definition 3: The expected value of a random variable X is given by the following

expression [45]:

83

∑ ⋅=
≤≤ XX uyl

XX yyxE)()]([ππ , (3.4)

where [lX, uX] defines the interval over which PDF πX is defined. The expected value

represents the mean value of the random variable that will be obtained after running a

number of experiments.

Definition 4: The translation operation on a PDF translates the domain of the

PDF along the integer number line without affecting the range of the PDF. The ⊕

symbol is used to represent the translation operation. Formally,

〈(i1, r1), (i2, r2), …, (in, rn)〉 ⊕ k = 〈(i1 + k, r1), (i2 + k, r2), …, (in + k, rn)〉, (3.5)

where k ∈ ℑ. The translation operation on a PDF also translates the expected value of the

PDF by k units.

3.2 Periodic Application Model

 The DAG model can also be used to represent periodic real-time applications

comprised of a set of periodic tasks ϑ. The 4-tuple (wi, φi, di, Ti) specifies the timing

properties of periodic real-time task Ji ∈ ϑ, where wi, φi, di, and Ti specify the

computational requirements, phase, deadline, and period, respectively, of Ji. Given that

periodic tasks imply an infinite sequence of repeated invocations, their scheduling is

performed by analyzing task behavior within a hyperperiod (also called the planning

cycle) [26]. Let L be the least common multiple (LCM) of the task periods (i.e., λϑ =

LCM{Ti : Ji ∈ ϑ}. For a set of periodic tasks with identical arrival times (i.e., having

identical φi), the length of the planning cycle is given by λpc(ϑ) = λϑ. For a set of tasks

84

with arbitrary arrival times and φmax = max{φi : Ji ∈ ϑ}, the length of the planning cycle

is given by λpc(ϑ) = φmax + 2λϑ. Within the planning cycle, task Ji will be invoked

λpc(ϑ)/Ti times. Individual invocations of the periodic tasks within the planning cycle can

be viewed as distinct aperiodic tasks and the entire task set can be represented in the form

of a DAG. The schedule constructed from the DAG is then executed repeatedly over the

lifetime of the periodic application.

3.3 Parallel Platform Model

A parallel environment consisting of homogeneous processors and a

homogeneous network is assumed for executing the parallel application. Therefore, the

time taken to execute a computational task is the same on any processor. Also, a uniform

network capacity is assumed over the entire parallel system. This implies that the time

needed to complete a particular point-to-point communication operation is the same over

any combination of source and destination processors.

Each processor is assumed to have a full duplex interface to the homogeneous

virtual point-to-point network. A full duplex interface was selected for analysis in this

dissertation because popular networking technologies such as Myrinet [120] and Ethernet

[128] provide full duplex links. A full duplex interface allows a processor to

simultaneously send and receive data over separate send and receive links. However, at

each interface, the send and receive links operate in simplex mode. This restricts

simultaneous communication to at most one incoming operation and one outgoing

communication operation at each processor-network interface. While the PCI bus itself

85

is not full duplex [143], it is assumed that the fine-grained DMA bursts over the PCI bus

combined with the available bandwidth for the DMA transfers results in minimal

interference between simultaneously occurring send and receive communication

operations.

Conversely, the switched network fabric is assumed to be contention free (i.e.,

there are sufficient resources available to ensure that the various communication

operations do not interfere with each other). This is a reasonable assumption because of

the widespread availability of real-time communication services over a variety of

networking technologies that can provide bounded latency on packet delivery [33, 58, 59,

70, 82, 88, 122, 150, 154, 159, 166, 167].

It is also assumed that computation and communication can be overlapped. In

pragmatic systems, contention over shared system resources such as the system bus used

by the network interface card (NIC) for both the outgoing and incoming DMA

operations, and the shared system memory accessed by the CPU and the NIC can cause

variances in completion times. However, these variances are assumed to be incorporated

into the computation and communication tasks’ PDFs.

3.4 Manipulating Probability Distribution Functions for Scheduling

During scheduling, the starting time of tasks depends on the completion time of

any preceding tasks and the completion time of tasks depends on the starting time and

computational requirements of the task. This section describes a variety of operations on

PDFs that are useful for performing stochastic scheduling. The operations described in

theorems 1-5, and lemmas 3 and 4 are new contributions of this dissertation.

86

Lemma 1: Let si(t) be the PDF of the starting time of task Ji and let [ls, us] be the

interval over which PDF si(t) is defined. Let wi(τ) be the PDF of the execution time

requirements of task Ji and let [lwi, uwi] be the interval over which PDF wi(τ) is defined.

The time interval within which Ji will complete is given by [lf, uf] such that

lfi = lsi+ lwi − 1, and (3.6)

ufi = usi+ uwi − 1. (3.7)

Proof: Clearly, the earliest completion time of Ji occurs when it starts as early as

possible and requires the least possible time to complete, resulting in equation (3.6).

Similarly, the latest completion time of Ji occurs when it starts as late as possible and

requires the maximum possible time to complete, resulting in equation (3.7). □

Corollary: Let fi(t) be the given PDF of the completion times of task Ji and let

[lf, uf] be the interval over which fi(t) is defined. Also, let wi(τ) be the PDF of the

computational requirements of task Ji and let [lwi, uwi] be the interval over which wi(τ) is

defined. The interval over which the PDF si(x) of the starting times for Ji is defined is

given by [lsi, usi] such that

lsi = lfi − lwi + 1, and (3.8)

usi = ufi − uwi + 1. (3.9)

Proof: From equation (3.6), the earliest completion time of Ji is given by

lfi = lsi + lwi − 1. Rearranging terms results in lsi = lfi − lci + 1, which is equation (3.8).

Similarly, equation (3.7) gives the latest completion time of Ji as ufi = usi+ uwi − 1.

Rearranging terms results in usi = ufi − uwi + 1, which is equation (3.9). □

87

Lemma 2: Let si(t) be the PDF of the starting time of task Ji and let wi(τ) be the

PDF of the computational requirements of task Ji. The PDF of the completion time of Ji

can be computed by the convolution of si(t) and wi(τ) as follows [18, 84]:

)1()()(∑ +−=
=

s

s

u

lt
iii tXwtsXf . (3.10)

Proof: From fundamental probability theory, task Ji will complete at time X when

Ji begins at time t and when Ji requires exactly X – t + 1 time units to complete. Because

t can be in the range [lsi, usi], there are usi – lsi + 1 different combinations of start time and

computation requirement times that can result in a completion time of X. The probability

that a particular combination occurs of start time T and computation time (X – T + 1) to

result in a completion time of X is the product of the probability that Ji starts at time T

and the probability that Ji requires (X – T + 1) time to complete. Therefore, the overall

probability that Ji completes at time X is given by the sum of probabilities of the

individual combinations of start time and computation time requirements that result in a

completion time of X. □

In this dissertation, the PDF convolution operator is denoted by the ⊗ symbol

(i.e., fi(x) = si(t) ⊗ wi(τ)).

The upper bound for the summation in equation (3.10) can be further refined

based on the observation that when t > X – lw + 1 (i.e., t = X – lw + τ + 1 for all τ ≥ 1), the

corresponding summation terms from equation (3.10) are given by the following:

88

0
)()1(

)11()1(
]1)1([)1()1()(

=
−−+−=

+−−+−−+−=
+++−−++−=+−

ττ
ττ
ττ

wiwi

wiwi

wiwiii

lwlXs
lXXwlXs
lXXwlXstXwts

 (3.11)

The term wi(lw – τ) in equation (3.11) evaluates to a zero because lw – τ is less than

lw, the lower bound of the weight PDF, for all τ ≥ 1. Therefore, the sum of products in

equation (3.10) for values of t > X – lw + 1 is zero. This implies that equation (3.10) can

be rewritten as the following:

)1()()(
1

∑
+−

=

+−=
w

s

lX

lt
iii tXwtsXf . (3.12)

Theorem 1: Given wi, the PDF of completion times and the PDF of execution

times of task Ji, the PDF of the starting times of Ji can be recursively computed as

follows:

. ;
)(

)()()1(
)(

1

sis
wii

T

lt
wiiiwii

i uTl
lw

tlTwtslTf
Ts si ≤≤

−+−−+
=

∑
−

= (3.13)

Proof: The proof is by induction. For clarity, the subscript i identifying task Ji

has been omitted in the following proof.

Basis: let T = ls. By substitution, equation (3.13) gives the following:

.
)(

)1(
)(

)()()1(
)(

1

w

ws

w

l

lt
wsws

s

lw
llf

lw

tllwtsllf
ls

s

s

−+
=

−+−−+
=

∑
−

=

 (3.14)

Expanding fi(ls + lc) from (3.14) using equation (3.12) results in the following:

89

).()(
)()(

)()(

)()()1(
1)1(

ws

swss

l

lt
ws

lll

lt
wwws

lwls
lllwls

tllwts

tllwtsllf

s

s

wws

s

=
−+=

−+=

−+=−+

∑

∑

=

+−−+

=

 (3.15)

Substituting s(ls)w(lw) for f(ls + lw) into equation (3.14) results in the following

equation proving the validity of the basis:

)(
)(

)()(
)(

)()(

s

w

ws

w

ws
s

ls
lw

lwls
lw

llfls

=

=

+
=

 (3.16)

Inductive step: Assume equation 3.2 is true for n such that ls ≤ n < us. Therefore,

. ;
)(

)()()1(
)(

1

us
w

n

lt
ww

lnl
lw

tlnwtslnf
ns s <≤

−+−−+
=

∑
−

=

The proof by mathematical induction requires that the following equation be true.

.
)(

)1()()(

)(

])1[()(]1)1[(
)1(

1)1(

w

n

lt
ww

w

n

lt
ww

lw

tlnwtslnf

lw

tlnwtslnf
ns

s

s

∑

∑

=

−+

=

−++−+
=

−++−−++
=+

 (3.17)

Expanding f(n + lw) from equation (3.17) above gives the following equation:

90

∑

∑

∑

∑

=

=

+

=

+−+

=

+−+++=

+−++++−++=

+−+=

+−+=+

n

lt
ww

n

lt
ww

n

lt
w

lln

lt
ww

s

s

s

ww

s

tlnwtslwns

tlnwtsnlnwns

tlnwts

tlnwtslnf

)1()()()1(

)1()(]1)1([)1(

)1()(

)1()()(

1

1)(

 (3.18)

Substituting the result of equation (3.18) into equation (3.17) results in the following

equation:

)1(
)(

)()1(
)(

)1()()1()()()1(

)(

)1()()(
)1(

+=

+
=

−++−+−+++
=

−++−+
=+

∑∑

∑

==

=

ns
lw

lwns
lw

tlnwtstlnwtslwns

lw

tlnwtslnf
ns

w

w

w

n

lt
w

n

lt
ww

w

n

lt
ww

ss

s

Therefore, equation (3.17) is valid, which in turn proves the validity of equation (3.13). □

Definition 5: Immediate predecessor tasks: The immediate predecessor tasks of a

task Ji in a DAG are those tasks that are directly connected to Ji and are followed by Ji. If

task Ji is a vertex, then its immediate predecessors are the edges incident on Ji. For

example, in Figure 3.1, the immediate predecessors of the computational task represented

by vertex v6 are the communication tasks represented by the edges (v5, v6), (v3, v6), and

(v4, v6). If task Jx is an edge, then its only immediate predecessor task is the vertex at

which the edge originates. For example, in Figure 3.1, the immediate predecessor of the

91

communication task represented by edge (v0, v1) is the computation task represented by

vertex v0.

Lemma 3: Let X1 and X2 be two independent random variables with respective

PDFs of πX1(t) and πX2(t) and respective CDFs of ПX1(t) and ПX2(t). The PDF of the

maximum of the two variables is computed from the following expression:

πmax(X1, X2)(x) = πX1(x)πX2(x) + πX1(x)ПX2(x − 1) + ПX1(x − 1)πX2(x), (3.19)

where x ∈[max(lX1, lX2), max(uX1, uX2)].

Proof: Let X = max(X1, X2). The random variable X cannot have a value less than

the maximum of the lowest values possible for variables X1 and X2 because the larger of

the two values will be selected and returned by the max operation. Furthermore, the

largest value of X is the largest value possible of X1 and X2 because neither random

variable can contribute a larger value. Therefore, the interval over which X is defined is

given by [max(lX1, lX2), max(uX1, uX2)].

Clearly, the value of X can be x if and only if one of the following three mutually

exclusive events occurs:

1. both X1 and X2 simultaneously have a value of x, or

2. X1 has a value of x and X2 has a value less than x, or

3. X1 has a value less than x and X2 has a value of x.

Therefore, the probability that X has a value of x can be written as the following (noting

that X1 and X2 are independent):

P(X = x) = P(X1 = x)P(X2 = x) + P(X1 = x)P(X2 < x) + P(X1 < x)P(X2 = x). (3.20)

92

Note that P(X = x) ≡ πmax(X1, X2)(T), P(X1 = x) ≡ πX1(T), P(X2 = x) ≡ πX2(T),

P(X1 < x) ≡ ПX1(x − 1), and P(X2 < x) ≡ ПX2(x − 1). Making appropriate substitutions

results in equation (3.19). □

Theorem 2: Let X be the maximum of a set of n independent random variables

{X1, X2, …, Xn}. Let X1, X2, …, and Xn have PDFs πX1(t), πX2(t), …, and πXn(t), respectively

and CDFs ПX1(t), ПX2(t), …, and ПXn(t), respectively. The PDF of the maximum of the n

variables can be computed recursively as follows:

πmax(X1, X2, …, Xn)(x) = πmax(X1, X2, …, Xn-1)(x)πXn(x) + πmax(X1, X2, …, Xn-1)(x)ПXn(x − 1) +
Пmax(X1, X2, …, Xn-1)(x − 1) πXn(x). (3.21)

Proof: The proof is by induction. Lemma 3 provides the basis for the inductive

proof. Under the inductive step, equation (3.21) is assumed true, and the validity of the

following expression must be demonstrated:

πmax(X1, X2, …, Xn+1)(x) = πmax(X1, X2, …, Xn)(x)πXn+1(x) + πmax(X1, X2, …, Xn)(x)ПXn+1(x − 1) +
Пmax(X1, X2, …, Xn)(x − 1) πXn+1(x). (3.22)

Let Y = max{X1, X2, …, Xn}. Y is also a random variable independent from Xn+1. Let Z =

max{Y, Xn+1}. From equation (3.19),

πZ(x) = πY(x)πXn+1(x) + πY(x)ПXn+1(x − 1) + ПY(x − 1)πXn+1(x). (3.23)

Substituting max{X1, X2, Xn} for Y in equation (3.23) results in equation (3.22). □

Theorem 2 suggests the iterative algorithm in Figure 3.5 for computing the PDF

of the random variable resulting from taking the maximum of n independent random

variables.

93

 1. Let X = {X1, X2, … , Xn} be the set of n random independent variables.
2. Initialize πX := πX1.
3. loop ∀Xi ∈ X − {X1}
4. lX := max(lX, lXi)
5. uX := max(uX, uXi)
6. loop ∀x ∈ [lX, uX]
7. πX(x):= πX(x)πXi(x) + πX(x)ПXi(x − 1) + ПX(x − 1)πi(x)

Figure 3.5 Algorithm for Computing the Maximum PDF of a Set of PDFs

Note that because πmax(X1, X2, …, Xn)(x) is essentially a sum of products and because

multiplication and addition are commutative, the n random variables in the set can be

processed in any order to produce the final PDF.

Definition 6: Immediate successor tasks: The immediate successor tasks of a task

Ji in a DAG are those tasks that are directly connected to Ji and follow Ji. If task Jx is a

vertex, then its immediate successors are the edges leading out of Jx. For example, in

Figure 3.1, the immediate successors of the computational task represented by vertex v0

are the communication tasks represented by the edges (v0, v1), (v0, v2), (v0, v3), and (v0,

v4). If task Jx is an edge, then its only immediate successor task is the vertex at which the

edge terminates. For example, in Figure 3.1, the immediate successor of the

communication task represented by edge (v0, v1) is the computation task represented by

vertex v1.

Lemma 4: Let X1 and X2 be two independent random variables with respective

PDFs of πX1(t) and πX2(t) and respective CDFs of ПX1(t) and ПX2(t). The PDF of the

minimum of the two variables is computed from the following expression:

πmin(X1, X2)(x) = πX1(x)πX2(x) + πX1(x)[1 − ПX2(x)] + [1 − ПX1(x)]πX2(x), (3.24)

94

where x∈[min(lX1, lX2), min(uX1, uX2)].

Proof: Let X = min(X1, X2). The smallest value of X is the smallest value possible

of X1 and X2 because neither random variable can contribute a smaller value.

Furthermore, the random variable X cannot have a value greater than the minimum of the

largest values possible for variables X1 and X2 because the smaller of the two values will

be selected and returned by the min operation. Therefore, the interval over which X is

defined is given by [min(lX1, lX2), min(uX1, uX2)].

Clearly, the value of X can be x if and only if one of the following three mutually

exclusive events occurs:

1. both X1 and X2 simultaneously have a value of x, or

2. X1 has a value of x and X2 has a value greater than x, or

3. X1 has a value greater than x and X2 has a value of x.

Therefore, the probability that X has a value of x can be written as the following (noting

that X1 and X2 are independent):

P(X = x) = P(X1 = x)P(X2 = x) + P(X1 = x)P(X2 > x) + P(X1 > x)P(X2 = x). (3.25)

Note that P(X = x) ≡ πmax(X1, X2)(T), P(X1 = x) ≡ πX1(T), P(X2 = x) ≡ πX2(T),

P(X1 > x) ≡ 1 − P(X1 ≤ x) ≡ 1 − ПX1(x), and P(X2 < x) ≡ 1 − P(X2 < x) ≡ 1 − ПX2(x).

Making appropriate substitutions results in equation (3.24). □

Theorem 3: Let X be the minimum of a set of n independent random variables

{X1, X2, …, Xn}. Let X1, X2, …, and Xn have PDFs πX1(t), πX2(t), …, and πXn(t), respectively

and CDFs ПX1(t), ПX2(t), …, and ПXn(t), respectively. The PDF of the minimum of the n

variables can be computed recursively as follows:

95

πmin(X1, X2, …, Xn)(x) = πmin(X1, X2, …, Xn-1)(x)πXn(x) + πmin (X1, X2, …, Xn-1)(x)[1 − ПXn(x)] +
[1 − Пmin (X1, X2, …, Xn-1)(x)] πXn(x). (3.26)

Proof: The proof is by induction. Lemma 4 provides the basis for the inductive

proof. Under the inductive step, equation (3.26) is assumed true, and the validity of the

following expression must be demonstrated:

πmin(X1, X2, …, Xn+1)(x) = πmin(X1, X2, …, Xn)(x)πXn+1(x) + πmin(X1, X2, …, Xn)(x)[1− ПXn+1(x)] +
[1− Пmin(X1, X2, …, Xn)(x)] πXn+1(x). (3.27)

Let Y = min{X1, X2, …, Xn}. Y is also a random variable independent from Xn+1. Let

Z = min{Y, Xn+1}. From equation (3.24),

πZ(x) = πY(x)πXn+1(x) + πY(x)ПXn+1(x − 1) + ПY(x − 1)πXn+1(x). (3.28)

Substituting max{X1, X2, Xn} for Y in equation (3.28) results in equation (3.27). □

Theorem 3 suggests the iterative algorithm in Figure 3.6 for computing the PDF

of the random variable resulting from taking the minimum of n independent random

variables. Note that because πmin(X1, X2, …, Xn)(x) is essentially a sum of products and

because multiplication and addition are commutative, the n random variables in the set

can be processed in any order to produce the final PDF.

 1. Let X = {X1, X2, … , Xn} be the set of n random independent variables.
2. Initialize πX := πX1.
3. loop ∀Xi ∈ X − {X1}
4. lX := min(lX, lXi)
5. uX := min(uX, uXi)
6. loop ∀x ∈ [lX, uX]
7. πX(x):= πX(x)πXi(x) + πX(x)[1 − ПXi(x)] + [1 − ПX(x)]πi(x)

Figure 3.6 Algorithm for Computing the minimum PDF of a Set of PDFs

96

Theorem 4: Given the release time PDF, ri(t), and the corresponding CDF, Ri(t),

of task Ji, if the starting time of Ji is further restricted to be no earlier than some

arbitrary time T, the starting time PDF of Ji is given by the following equation:

⎪
⎩

⎪
⎨

⎧

>
=

<
=

. if)(
, if)(

, if 0
)(

Tttr
TttR

Tt
ts

i

ii (3.29)

Proof: The proof is by construction. There are three distinct cases as follows:

1. When t < T: because Ji’s release is delayed until time T, any probability Ji has of

being started before time T under PDF ri(t) is reduced to zero (i.e., Ji cannot be

started before T). Therefore, si(t) = 0 if t < T.

2. When t = T: if Ji were to be released before T under ri(t), then Ji will be delayed

and started at T. Therefore, all probabilities under ri(t) that Ji is released before T

are summed into the probability that Ji is started at T under si(t). By definition,

P(Ji is released before t under ri) + P(Ji is released at t under ri) = Ri(t). Therefore,

si(t) = Ri(t) if t < T.

3. When t > T: if Ji is to be released after T under ri(t) then the restriction on start

time has no effect, and Ji will be started as permitted by the release time PDF.

Therefore, si(t) = ri(t) if t > T.

The three cases combined result in equation (3.29). □

Corollary: Task Ji’s start time jitter is reduced when its start time is restricted to

occur no sooner than time T > lri, where [lri, uri] is the interval of release times for Ji.

97

Under this restriction, the interval for start times for Ji becomes [lsi, usi] =

[max(lri, T), max(uri, T)]. If T < lri, then according to theorem 2, there is no impact on the

start time PDF (i.e., πsi ≡ πri), and concomitantly, there is no change in the release time

intervals. If lri < T < uri, the start time PDF’s new interval becomes [T, uri], and because

lri < T, the new interval range is smaller than the original range, thereby reducing the

release time jitter. If T ≥ uri, the new start time interval becomes, [T, T], reducing the

jitter to 0.

Theorem 5: Given the completion time PDF, fx(t), and starting time CDF, Sy(τ),

of two successive tasks in a schedule, Jx and Jy, respectively. The probability that Jx will

complete before Jy is scheduled to start is given by the following expression:

∑
=

−=
fx

fx

u

lt
yx tStf))(1)((π , (3.30)

where [lfx, ufx] is the interval over which fx is defined.

Proof: let A and B be the random variables representing the completion time for

Jx and the scheduled starting time for Jy, respectively. Therefore,

.)()()(∑
=

>==<
fx

fx

u

lt

tBPtAPBAP

By definition, P(B > t) = (1 – P(B ≤ t)) . Therefore,

.))(1)(()(∑
=

≤−==<
fx

fx

u

lt

tBPtAPBAP (3.31)

Also by definition, P(A = t) ≡ fx(t) and P(B ≤ t) ≡ CDF(B) ≡ Sy(t). Making appropriate

substitutions in equation (3.31) results in equation (3.30). □

98

3.5 Stochastic Scheduling Overview

In the context of this dissertation, a stochastic schedule is the temporal allocation

of resources to tasks; CPUs to vertices and communication links to edges, in particular.

In other words, each task in a DAG is mapped onto a particular resource and is

“dispatched” for execution within at a predetermined range of time specified by the task’s

start time PDF. Furthermore, the task is expected to complete within a predetermined

range of times specified by the task’s completion time PDF. Note that tasks are started as

soon as the preceding tasks have completed; a task’s the start time PDF merely specifies

the probability with which the task will be started at any given time. This section

describes how the start time and completion time PDFs are computed in the stochastic

DAG scheduling algorithms investigated in this dissertation. Sections 3.6 and 3.7

describe how the tasks’ start and completion times influence the mapping of tasks onto

resources using list scheduling and genetic list scheduling approaches, respectively.

3.5.1 Computing Schedule Start Times for Vertices

The start time PDF of a task in the DAG is computed from the completion time

PDFs of the immediately preceding tasks using the algorithm in Figure 3.5 derived from

Lemma 3 and Theorem 2. Essentially, the start time PDF of a vertex vi on processor p is

determined by the following expression:

1}))(),(:{}{})0.1 ,0(max({ ⊕≠∧∈== U U pepEvveffs srciyevpvi , (3.32)

where fvp is the completion time for vertex, vp, the immediate schedule predecessor of vi

scheduled on p, and fe is the completion time PDF of an edge e with that is incident on

99

vertex vi. A vertex vp is an immediate schedule predecessor of vi if vi follows vp in the

schedule for processor p and no other vertex is scheduled on p between the completion of

vp and the starting of vi. The PDF 〈(0, 1.0)〉 in equation (3.32) accounts for the case that a

vertex with no preceding edges can be scheduled on a processor at time unit 1 if there are

no vertices already scheduled to start at time unit 1 on that processor. Furthermore, only

those edges incident on vertex vi originating from processors other than the processor on

which vi is to be scheduled are included in the computation of the start time for vi. This is

because the execution time requirements for edges whose originating vertices are also

scheduled on processor p are reduced to zero, making their finish time PDFs be the same

as the finish time PDFs of the originating vertices. The finish time of the sequence of all

preceding vertices of vi that are scheduled on processor p are incorporated into fvp.

For example, consider the DAG in Figure 3.2, and its schedule in Figure 3.4;

vertex v3 can only start after all three of the following occur:

1. The completion of any vertex vk that may be already using the processor on which v3

is scheduled at the time v3 becomes ready. In this example, vk ≡ v1.

2. The completion of edge (v0, v3).

3. The completion of edge (v1, v3).

In this example, the weight of edge (v1, v3) is considered to be negligible because

v1 and v3 are allocated to the same processor. Therefore, the completion PDF of (v1, v3) is

identical to the completion PDF of v1. It is important to note that Lemma 3 and Theorem

2 only apply to independent random variables. Therefore, the completion time PDF of v1

100

can only be used once in equation (3.32). This implies that the starting time PDF of v3 is

as follows:

sv3 = max{fv1, f(v0, v3) } ⊕ 1, (3.33)

and the completion time of v3 is computed using Lemma 2 as follows:

f v3 = sv3 ⊗ wv3. (3.34)

3.5.2 Computing Schedule Start Times for Edges

Consider edge (vi, vj) to be scheduled between processors psrc and pdest (i.e., vertex

vi is scheduled on processor psrc and vertex vj is to be scheduled on processor pdest). The

edge will occupy a time slot in the schedule for the send link on psrc and a time slot in the

schedule for the receive link on pdest. Furthermore, these time slots will have identical

starting and completion time PDFs. Let ea and eb be the edges whose completion

determines the starting point of the idle time slot in the send link on psrc and receive link

on pdest into which edge (vi, vj) is to be scheduled. The start time PDF of (vi, vj) is

determined using the following expression:

otherwise 1}),{}max({

and , if 1}){}max({
, if

),(
⎪
⎩

⎪
⎨

⎧

⊕
=⊕

=
=

U

U

ebeavi

baeavi

destsrcvi

vjvi

fff
eeff

ppf
s (3.35)

where fvi is the completion time for vertex, vi, the immediate predecessor for (vi, vj) and fea

and feb are the completion time PDFs of edges ea and eb. The first part of equation (3.35)

accounts for the case when the edge does not need to be scheduled because vertices vi and

vj are scheduled on the same processor. The second part of equation (3.35) accounts for

the special case when ea and eb are the same edge (i.e., a single edge determines the

101

starting point of the idle slot in the send and receive links of psrc and pdest, respectively).

In this case, the starting PDFs of the idle slots in the send and receive links are identical,

and therefore, dependent. Consequently, the idle slot starting PDF is used only once in

the max operation.

As an example, consider the DAG in Figure 3.2 and the corresponding schedule

in Figure 3.4; edge (v0, v3) can only start after the following events occur:

1. The completion of vertex v0, the source vertex of (v0, v3).

2. The completion of edge (v2, v4) because (v0, v3) and (v2, v4) are scheduled to be

received on processor 1 over the same receive link and (v2, v4) is scheduled to occur

before (v0, v3) can begin.

Note that because no other edges are scheduled on the send link on processor 0 (the

source of (v0, v3)), the starting time of (v0, v3) is given by the following:

s(v0, v3) = max{fv0, f(v2, v3) } ⊕ 1, (3.36)

and the completion time of (v0, v3) is computed using Lemma 2 as follows:

f(v0, v3) = s(v0, v3) + w(v0, v3). (3.37)

3.6 List Scheduling Approach

An important contribution of this dissertation is the generalization of deterministic

list scheduling approaches for non-preemptive scheduling of soft real-time applications

with variable task execution time requirements and inter-task precedence constraints. In

this section, three different heuristics for stochastic list scheduling are developed.

102

The fundamental LS algorithm consists of the steps outlined in Figure 3.7. The

key steps in this algorithm are the prioritization of the vertices in the ready list and the

scheduling of vertices and associated preceding edges on the processors. Prioritization of

vertices is performed according to a variety of heuristics (e.g., prioritize vertices in non-

increasing order of paths leading from the vertices to the terminal vertex, or prioritize

vertices in order of their earliest start times on any available processor). The

prioritization heuristic selected can have a profound impact on the length of the schedule

and the total amount of time required in constructing the schedule (as is show in [90 - 93]

and in the experimental results of this dissertation in Chapter IV).

 1. Construct a ready list of vertices with no preceding vertices.
2. Loop while vertices remain in the ready list:
3. Prioritize the ready list.
4. Remove the highest priority vertex from the ready list and schedule it

on the processor that will allow the earliest start time for this vertex.
5. Add the newly readied vertices to the ready list.

Figure 3.7 The Fundamental List Scheduling algorithm

The three novel vertex prioritization heuristics based on random task execution

time requirements that were developed as part of this dissertation are discussed below.

New algorithms for mapping resources to tasks based on stochastic task release times

while accounting for contention over communication links are also describe in detail

below.

103

3.6.1 Stochastic Highest Level First with Estimated Times

The Stochastic Highest Level First with Estimated Times (SHLEFT) heuristic is a

direct adaptation of the HLEFT heuristic [3] used in deterministic scheduling. In the

HLEFT heuristic, the fixed WCET of each vertex and edge is used to compute the

b-levels for the vertices and the vertices in the ready list are scheduled in a non-

decreasing order of their b-levels. In the SHLEFT approach, the expected values of the

weight PDFs of all tasks in the DAG are used to compute the stochastic b-levels for the

vertices. As in HLEFT, the vertices in the ready list are scheduled in a non-decreasing

order of their stochastic b-levels.

3.6.2 Stochastic Earliest Time First

The Stochastic Earliest Time First (SETF) heuristic is based on the greedy ETF

heuristic used in deterministic scheduling [75]. Under ETF, every ready vertex is

tentatively scheduled on every available processor. The ready vertex that can be started

the earliest on any available processor is selected for scheduling first. The SETF is

identical to the ETF approach except that the expected values of the PDFs of the starting

times of the ready vertices are used to prioritize the ready vertices (i.e., the ready vertex

with the earliest expected start time on any processor is selected for scheduling first).

3.6.3 Stochastic Critical Path

Definition 7: The list of vertices of a DAG is said to be in topological order if for

all pairs of vertices (vi, vj) in the DAG such that vi appears before vj in the list, there is no

path in the DAG leading from vj to vi [90].

104

The Stochastic Critical Path (SCP) heuristic is roughly based on the MD heuristic

[157] used for deterministic scheduling. Under the SCP heuristic, the stochastic mobility

of each vertex is computed from the weight PDFs of the tasks in the DAG and ready

vertices are scheduled in the order of non-decreasing stochastic mobility. The algorithm

for computing the stochastic mobility attribute of a vertex is given in Figure 3.1.

 1. Let V := list of vertices in the DAG
2. Let critical_path_length := 0
3. Loop ∀v ∈ V taken in topological order
4. Let Epv := list of immediate predecessor edges of v
5. v.earliest_start_PDF := max({〈(0, 1.0〉)} ∪ {e.earliest_end_PDF : e ∈ Epv}) ⊕ 1
6. v.earliest_end_PDF := v.earliest_start_PDF ⊗ v.weight_PDF
7. Let Esv := list of immediate successor edges of v
8. Loop ∀e′ ∈ Esv
9. e′.earliest_start_PDF := v.earliest_end_PDF ⊕ 1
10. e′.earliest_end_PDF := e′.earliest_start_PDF ⊗ e′.weight_PDF
11. if Esv = ∅ ∧ v.earliest_end_pdf.expected_value > critical_path_length
12. critical_path_length : = v.earliest_end_pdf.expected_value

13. Loop ∀v ∈ V taken in reverse topological order
14. Let Esv := list of immediate successor edges of v
15. if Esv = ∅
16. v.latest_end_time := critical_path_length
17. else
18. v.latest_end_time := min{E[e′.earliest_end_PDF]: e′ ∈ Esv} − 1
19. v.latest_start_time := v.latest_end_time − E[v.weight_PDF] + 1
20. Let Epv := list of immediate predecessor edges of v
21. Loop ∀e ∈ Epv
22. e.latest_end_time := v.latest_start_time − 1
23. e.latest_start_time := e.latest_end_time − E[e.weight_PDF] + 1

24. v.mobility := v.latest_start_time − E[v.earliest_start_PDF]

Figure 3.1 Algorithm for Computing the Stochastic Mobility Attribute of Vertices

105

The stochastic mobility of a vertex is essentially the difference between the

expected value of the vertex’s earliest start time PDF and the vertex’s latest start time

attribute. The earliest start time PDF of each vertex is computed in a forward pass

through the DAG in topological order. The earliest start time PDF of a vertex is

computed by taking the maximum of the earliest end time PDFs of the vertex’s

immediate predecessor edges and translating the result to the right (i.e., increasing the

PDF domain) by one time unit. The earliest end time PDF of a vertex is computed by

convoluting the earliest start time PDF of the vertex by the vertex’s weight PDF. The

earliest start time PDF of an edge is computed by translating the earliest end time PDF of

the source vertex of the edge by one unit to the right. The earliest end time PDF of the

edge is computed by convoluting the earliest start time PDF of the edge with the edge’s

weight PDF. The length of a critical path in the DAG is given by the maximum of the

expected values of the terminal vertices in the DAG. A terminal vertex is one that does

not have any outgoing edges.

During the forward pass, the vertices and edges of the DAG are not scheduled on

the processors, and the edges are not serialized (i.e., edge execution times may be

overlapped with each other and resource utilization restrictions are ignored). Therefore,

the earliest starting time PDFs of vertices and edges are not suitable for use in scheduling

and are used only indirectly as a heuristic to guide the scheduling process.

 The latest end time attribute and the stochastic mobility attribute of vertices are

computed in a backwards pass through the DAG in reverse topological order. The latest

end time attribute of a terminal vertex is the same as the DAG’s critical path length. The

106

latest end time attribute of a non-terminal vertex is computed by selecting the minimum

of the latest start time attributes of the vertex’s immediate predecessor edges and

subtracting one from the result. Subtracting 1 from the latest start time attribute of the

edge’s immediate predecessor vertex results in the latest end time attribute of an edge.

The latest start time attribute of edges and vertices are computed by subtracting the

expected value of their weights from the corresponding latest end time attributes.

3.6.4 Resource Allocation

The process of scheduling a vertex requires first allocating all preceding

communication tasks (edges) and then locating an idle time interval, in the schedule of

the processor, beginning at or after the task’s release time, that is of sufficient length to

accommodate the task. Note that the preceding communication tasks are scheduled

immediately after the candidate processor for the computation task is selected.

The process of scheduling an edge requires locating time intervals in the

schedules of the communication links at the source and destination processors such that

the intersection of the idle intervals is of sufficient length to accommodate the

communication task. Any portion of the idle interval that lies before the release time of

the communication task is not considered available for scheduling. This ensures that the

communication task is not scheduled to begin before its release time. Because

communication between two computation tasks scheduled on the same processor

consumes no time and network resources, no interval lookup is required (i.e., the

communication is assumed to occur instantaneously).

107

For reasons of simplicity, resource allocation using deterministic task weights is

discussed first. Figure 3.2 illustrates the Gantt chart for the optimal deterministic

schedule constructed for the DAG in Figure 3.1. Note that communication tasks occupy

matching intervals in the corresponding link schedules (i.e., the intervals have the same

start time and duration).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p0

p1

v1

v3

v2

v6 v5
(v0, v2):
(v0, v4):

(v2, v5):
(v4, v6):
(v3, v6): v4

v0
Edges

Scheduled:

(v0, v3):

Schedule Length = 14

s0
r0

s1
r1
p2
s2
r2

pn: processor n
sn: outgoing communication link at processor n
rn: incoming communication link at processor n

Time

Figure 3.2 Gantt Chart for the Optimal Schedule for the DAG in Figure 3.1

The key to efficient scheduling with LS is to prioritize the vertices in the ready

list correctly and to prioritize the order in which the preceding edges are scheduled. For

example, Figure 3.3 illustrates the non-optimal schedule for the DAG in Figure 3.1 when

108

vertex v3 is scheduled before vertex v4. The schedule is longer in Figure 3.3 because edge

(v4, v6) must wait until time unit 11 to begin (after the previously scheduled edge (v2, v5)

completes). Note that although the sending communication link is available to (v4, v6)

starting at time unit 9, (v4, v6) must wait until time unit 11 because the receiving

communication link is busy with (v2, v5) at time unit 10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p0

p1

v1

v4

v2

v6 v5
(v0, v2):
(v0, v4):

(v2, v5):
(v4, v6):
(v3, v6): v3

v0
Edges

Scheduled:

(v0, v3):

Schedule Length = 15

s0
r0

s1
r1
p2
s2
r2

pn: processor n
sn: outgoing communication link at processor n
rn: incoming communication link at processor n

Time

Figure 3.3 A Non-Optimal Schedule when v3 is Scheduled before v4

In the LS approaches used this dissertation, edges are always scheduled in order

of non-decreasing weight. While this “first fit decreasing” heuristic does not guarantee

optimality, it has been shown to perform well in general for “bin packing” problems [12].

109

In the genetic list scheduling (GLS) approach discussed in Section 3.7, the GA procedure

dynamically determines edge-scheduling priorities, as opposed to using a static non-

decreasing order.

The steps described above in constructing deterministic schedules from tasks with

fixed execution time requirements can be generalized to solve the problem of stochastic

schedule construction for tasks with varying execution time requirements. It is important

to note that constructing schedules for tasks with fixed execution time requirements is a

special case of constructing schedules with tasks with varying runtime requirements; a

task Ji ∈ G with a fixed runtime requirement can be viewed to have the PDF of

〈(wJi, 1.0)〉.

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p0
s0
p1

r1

p2
s2

pn: processor n
sn: outgoing communication link at processor n
rn: incoming communication link at processor n

v0

v1
v3

v4

v2

(v0, v3)

(v0, v3)
(v2, v4)

(v2, v4)

Time

Figure 3.4 Stochastic Schedule with a Slot-Fitting Threshold of 70%

Figure 3.4 shows the Gantt chart for the stochastic schedule for the DAG with

variable task weights in Figure 3.2. Note that unlike in the Gantt chart for the

deterministic schedule in Figure 3.2, the vertices and edges overlap. This overlap occurs

when tasks do not have a 100% probability of utilizing a resource, thereby permitting

other tasks to execute if the resource is idle.

Figure 3.5 outlines the algorithm (in pseudocode form) for the selection of the

most appropriate processor on which to schedule the highest priority vertex in the ready

list. Essentially, the vertex (and all of its immediate predecessor edges) is tentatively

scheduled on every processor. The processor that allows the earliest expected start time

111

for the vertex is permanently allocated to the vertex. Note that after every tentative

scheduling action, the resulting start time is noted and the scheduling is reversed in order

to enable the scheduling of the vertex on another processor. Reversing a schedule

essentially entails reverting the partial schedule to the exact state it was in before the

vertex (and the vertex’s immediately preceding edges) was added to the schedule.

 Subroutine schedule_vertex(vertex v)
1. Let best_processor := NULL
2. Let best_expected_start_time := ∞

 /* try all processors */
3. Loop ∀ p : p∈{available processors}
4. v.start_PDF := call schedule_vertex_on_processor(p, v)
 /* see if the best starting time has been found */
5. if (E[v.start_PDF] < best_expected_start_time)
6. best_expected_start_time := E[v.start_PDF]
7. best_processor := p

 /* reverse any actions taken to schedule the vertex and any preceding
 edges so the schedule on a different processor can be investigated */
8. call unscheduled_vertex_on_processor(p, v);

 /* commit the schedule on the best processor */
9. call schedule_vertex_on_processor(best_processor, v);

Figure 3.5 Pseudocode Algorithm for Selecting the Best Processor for a Vertex

112

 Subroutine schedule_vertex_on_processor(processor p, vertex v)
 /* initialize the vertex ready time PDF */
1. Let vertex_ready_PDF := 〈(0, 1.0)〉;

 /* process all incoming edges of v, schedule the edge and updating v’s ready PDF */
2. Loop ∀e: e∈{preceding edges of v}
3. edge_end_PDF := call schedule_edge_on_processor(p, e)
4. vertex_ready_PDF := max(vertex_ready_PDF, edge_end_PDF)

 /* shift v’s ready PDF to the right (it must start after the last edge has completed) */
5. vertex_ready_PDF := vertex_ready_PDF ⊕ 1

 /* locate the first idle slot in processor p that ends after v’s ready time PDF begins
6. candidate_interval := call find_first_idle_interval(p, vertex_ready_PDF)

 /* keep processing idle slots in p until an appropriate slot is found */
7. found_interval := false;
8. loop while (found_interval = false)
 /* the idle slot may begin after the v’s ready time */
9. vertex_start_PDF := max(vertex_ready_PDF, candidate_interval.start_PDF)

 /* compute v’s potential completion PDF */
10. vertex_end_PDF := vertex_start_PDF ⊗ v.weight_PDF

 /* see if v will fit in the idle slot, if not process next idle slot */
11. if (P(edge_end_PDF ≤ candidate_interval.end_PDF) ≥ slot_fitting_threshold)
12. found_interval := true

13. else
14. candidate_interval := call find_next_idle_interval(p, vertex_ready_PDF)

 /* assign the v to p at the appropriate slot in the schedule */
15. call insert_vertex(p, candidate_interval, vertex_start_PDF, vertex_end_PDF, v);
16. if (vertex_end_PDF overlaps candidate_interval.end_PDF)
17. call ripple_adjust_PDFs(vertex_end_PDF)

Figure 3.6 Pseudocode Algorithm for Scheduling a Vertex on a Particular Processor

Figure 3.6 outlines the algorithm for the scheduling of a vertex v on a specific

processor. Essentially each of the v’s immediately preceding edges are scheduled (as

outlined in Figure 3.7) and then an idle slot in the processor’s schedule is located that can

accommodate v. Note that v can start only after all of the preceding edges and any

vertices with start times earlier than v’s start time have completed. As each of v’s

113

preceding edges is scheduled, v’s ready time PDF is updated (in 4 of Figure 3.6). Lines 6

– 15 in Figure 3.6 describe how a time slot is chosen for executing v. After a candidate

idle time slot in the processor’s schedule is found in which v can begin execution, the end

time PDF of the candidate slot is compared against the end time PDF of v. Vertex v is

permitted to be scheduled in the candidate slot if the probability that v ends before the

idle slot ends is at least as much as a pre-specified slot-fitting threshold value. The slot-

fitting threshold is essentially a real-valued probability parameter that is given to the

scheduling procedure, along with the DAG and the processor configuration, at the

beginning of the scheduling operation.

Use of the slot-fitting threshold enables the stochastic scheduling algorithms to

overlap the completion of one vertex with the starting of another vertex. Without the

slot-fitting threshold, one of two following situation occur:

1. Vertex v is not overlapped with the next vertex in the schedule. This can result in an

underutilization of resources because tasks typically have low probabilities of using

resources near the extremes of their starting and ending times.

2. Vertex v is forced into the idle slot that is too small to accommodate v causing the

start time of the next vertex in the schedule to be adjusted to make room for v. This

forcible insertion of the vertex into a schedule can disrupt the beneficial effects of the

heuristic used in the scheduling procedure (i.e., the preferred location of the higher

priority ready vertex is lost to a lower priority ready vertex).

Using large values of the slot-fitting threshold (i.e., requiring that the probability

of v completing before the next vertex in the schedule starts be relatively large) ensures

114

that the disruption caused by inserting v into the schedule is kept to a minimum.

Furthermore, using a slot-fitting threshold of less than 100% allows the scheduling

process to better utilize resource. Therefore, the slot-fitting threshold provides another

heuristic parameter to control the scheduling process.

After v is inserted into a processor’s schedule such that v’s execution time

overlaps the next vertex, vnext, in the processor schedule, the start and end time PDFs of

vnext must be recomputed in order to account for the overlap. This adjustment leads to a

ripple effect of adjustments over the entire partial schedule. Essentially, the start and end

time PDFs of all vertices and edges that are topological successors of vnext and have

already been allocated to the schedule are adjusted. Furthermore, the start and

completion time PDFs of even those previously scheduled vertices and edges that are not

topological successors of vnext, but follow and overlap the topological successors of vnext

must also be adjusted. This process continues until the start and end time PDFs of all

vertices and edges affected by the insertion of v into the schedule are adjusted.

The algorithm for scheduling an edge onto a specific processor is highlighted in

Figure 3.7. The procedure is similar to that of scheduling a vertex onto a specific

processor except that an edge needs to be simultaneously allocated to two resources: the

send and receive links on two different processors. The simultaneous allocation entails

looking for idle slots in the schedules of both links whose intersection results in a

candidate interval that can accommodate the edge.

115

 Subroutine schedule_edge_on_processor(processor p, edge e)
 /* initialize the edge’s ready time PDF to begin after the source vertex ends*/
1. edge_ready_PDF := e.source_vertex.end_PDF
2. edge_ready_PDF ⊕ 1
 /* determine the processor on which the originating vertex is scheduled */
3. psrc := e.source_vertex.scheduled_processor
 /* if the source and destination processors are the same, there is nothing more to do */
 if (psrc = p)
 return edge_ready_PDF

 /* determine the send and recv communication links for the edge */
4. send_link := source_p.send_link
5. recv_link := p.recv_link

 /* find the first idle slots in the send & recv links after e’s ready time */
6. send_link_interval := call find_first_idle_interval(send_link, edge_ready_PDF)
7. recv_link_interval := call find_first_idle_interval(recv_link, edge_ready_PDF);

8. found_interval := false
 /* keep processing until matching slots are found */
9. Loop while (found_interval = false)
 /* see if the idle slot can accommodate the edge, otherwise try other idle slots */
10. candidate_interval.start_PDF := max(edge_ready_PDF,

 send_link_interval.start_PDF,
 recv_link_interval.start_PDF)

11. candidate_interval.end_PDF := min(send_link_interval.end_PDF,
 recv_link_interval.end_PDF)

12. edge_end_PDF := candidate_interval.start_PDF ⊗ e.weight_PDF
13. if (P(edge_end_PDF ≤ candidate_interval.end_PDF) ≥ slot_fitting_threshold)
14. found_interval := true;
15. else if (send_link_interval starts before recv_link_interval)
16. send_link_interval := call find_next_idle_interval(send_link,
 edge_ready_PDF,
 send_link_interval)
17. else if (send_link_interval starts after recv_link_interval)
17. recv_link_interval := call find_next_idle_interval(recv_link,
 edge_ready_PDF,
 recv_link_interval)
19. else
20. send_link_interval := call find_next_idle_interval(send_link,
 edge_ready_PDF,
 send_link_interval)
21. recv_link_interval := call find_next_idle_interval(recv_link, edge_ready_PDF,
 recv_link_interval)

 /* assign e to the send & recv links at the appropriate processors */
22. call insert_edge(psrc, send_link, send_link_interval, edge_start_PDF,
 edge_end_PDF, e)
23. if (edge_end_PDF overlaps candidate_interval.end_PDF)
24. ripple_adjust_PDFs(edge_end_PDF)

23. return edge_end_PDF

Figure 3.7 Pseudocode Algorithm for Scheduling an Edge on a Particular Processor

116

The start time PDF of the candidate interval is computed from the maximum of

the start time PDFs of the idle slots in the two links and the edge’s ready time PDF. The

end time PDF of the candidate interval is computed from the minimum of the end time

PDFs of the idle slots in the two links. Next, the edge’s proposed completion time PDF

is computed by convoluting the candidate interval’s start time PDF with the edge’s

weight PDF. If the probability that the edge completes before the interval ends is greater

than the slot-fitting threshold, the edge is inserted into the schedules of the send and

receive links. Otherwise a new candidate interval occurring later in the schedules of the

two links is located and the procedure is performed again.

If the completion of the inserted edge overlaps the starting times of other

previously scheduled edges in either of the two links, rippling adjustment of start and end

time PDF recomputations occur, similar to that discussed above in the description of the

vertex scheduling procedure. The ripple effect of PDF adjustments is also illustrated in

Figure 3.8 and in Table 3.2. In the partial schedule depicted in the figure, vertices v0, v1,

v2, and v3 have already been scheduled along with the edge (v0, v3); edge (v1, v3) has a

negligible weight because v1 and v3 are scheduled on the same processor. The table

highlights the scheduling steps taken (i.e., steps 1-4(b)) and the resulting PDFs to

construct the partial schedule in Figure 3.8.

During the scheduling of vertex v4, it is determined that process p1 is the best

process to allocate to v4 because this will eliminate the lengthy edge (v3, v4) from the

schedule. It is also determined that edge (v2, v4) can be scheduled before the previously

scheduled edge (v0, v3) and will complete before the (v0, v3) on the receive link of process

117

p1 with a probability of 76.11. Because this probability is greater than the chosen slot-

fitting threshold value of 70%, (v2, v4) is inserted into the schedule before (v0, v3), and this

insertion results in the recomputation of the start and end time PDFs of (v0, v3) and v3.

After the ripple adjustment is performed, vertex v4 is scheduled.

Insert edge (v2, v4) into the schedule
before edge (v0, v3) because (v2, v4) will complete
before (v0, v3) begins with a probability of 76.11%
(which is greater than the slot-fitting threshold of
70% used in this example)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p0
s0
p1

r1

p2
s2

Time

pn: processor n
sn: outgoing communication link at processor n
rn: incoming communication link at processor n

v0

v1
v3

v4

v2

(v0, v3)

(v0, v3)
(v2, v4)

(v2, v4)

(v2, v4)

Figure 3.8 Partial Schedule – Scheduling Edge (v2, v4) as Part of Scheduling v4

118

Table 3.1 Example Sequence of PDF Computations in Stochastic Scheduling

Step 1: schedule v0 on p0 Step 2: schedule v1 on p1
Start PDF Wt. PDF End PDF Start PDF Wt. PDF End PDF

Time Prob. Time Prob. Time Prob. Time Prob. Time Prob. Time Prob.
1 1.0 4 1/3 4 1/3 1 1.0 7 1/3 7 1/3
 5 1/3 5 1/3 8 1/3 8 1/3
 6 1/3 6 1/3

 9 1/3 9 1/3

Step 3: schedule v2 on p2 Step 4(a): schedule (v0, v3) between p0 and p1
Start PDF Wt. PDF End PDF Start PDF Wt. PDF End PDF

Time Prob. Time Prob. Time Prob. Time Prob. Time Prob. Time Prob.
1 1.0 1 1/3 1 1/3 5 1/3 1 1/3 5 1/9
 2 1/3 2 1/3 6 1/3 2 1/3 6 2/9
 3 1/3 3 1/3 7 1/3 3 1/3 7 3/9
 8 2/9

 9 1/9

Step 4(b): schedule v3 on p1 Step 5(a): schedule (v2, v4) between p2 and p1
Start PDF Wt. PDF End PDF Start PDF Wt. PDF End PDF

Time Prob. Time Prob. Time Prob. Time Prob. Time Prob. Time Prob.
8 0.222 1 1/2 8 0.111 2 1/3 1 0.5 2 0.167
9 0.371 2 1/2 9 0.296 3 1/3 2 0.45 3 0.317
10 0.407 10 0.389 4 1/3 3 0.05 4 0.333
 11 0.204 5 0.167

 6 0.016

Step 5(b): adjust (v0, v3) Step 5(c): adjust v3
Start PDF Wt. PDF End PDF Start PDF Wt. PDF End PDF

Time Prob. Time Prob. Time Prob. Time Prob. Time Prob. Time Prob.
5 0.272 1 1/3 5 0.091 8 0.214 1 1/2 8 0.107
6 0.383 2 1/3 6 0.219 9 0.376 2 1/2 9 0.295
7 0.345 3 1/3 7 0.333 10 0.410 10 0.393
 8 0.243 11 0.205
 9 0.114

Step 5(d): schedule v4 on p1
Start PDF Wt. PDF End PDF

Time Prob. Time Prob. Time Prob.
9 0.107 2 1/3 10 0.036
10 0.295 3 1/3 11 0.134
11 0.393 4 1/3 12 0.265
12 0.205 13 0.298
 14 0.199
 15 0.068

119

Table 3.2 Figure 3.9 depicts the Gantt chart that results when a slot-fitting threshold

greater than 76.11% (e.g., 100%) is used. In this case, edge (v2, v4)

cannot be inserted into the schedule before edge (v0, v3) and must,

instead, be scheduled to begin at time unit 6. This delay in the execution

of (v2, v4) causes a delay in the starting and completion of v4 and a

consequent increase in the schedule length as compared to the schedule

produced with a more liberal slot-fitting threshold value.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p0
s0
p1

r1

p2
s2

pn: processor n
sn: outgoing communication link at processor n
rn: incoming communication link at processor n

v0

v1
v3

v4

v2

(v0, v3)

(v0, v3)
(v2, v4)

(v2, v4)

Time

Figure 3.9 Stochastic Schedule with a Slot-Fitting Threshold of 100%

3.7 Genetic List Scheduling Approach

The genetic list scheduling (GLS) algorithm developed in this dissertation uses a

GA to determine the order in which ready nodes are processed by the LS algorithm. The

GA techniques described below are adapted from a variety of sources in order to

120

construct stochastic schedules. The original contribution of this section is the use of

stochastic resource allocation techniques for evaluating chromosomes in the GA.

The outline of the steady state GLS algorithm investigated in this dissertation is

described in Figure 3.10 below.

 1. Generate the initial population.
2. Use list scheduling to construct a schedule in order to evaluate each of the

initial chromosomes.
3. Loop while the termination criteria are not satisfied:

4. Select a genetic operator.
5. Select chromosome(s) from the local population and apply the

operator to produce the offspring chromosome.
6. Use LS to construct a schedule in order to evaluate the offspring

chromosome.
7. Select chromosome from the local population to be replaced by the

offspring chromosome.
8. Use the fittest chromosome to construct the solution schedule.

Figure 3.10 The Fundamental GLS Algorithm

Each chromosome in the GLS developed in this research consists of two vectors

of genes. The vertex vector contains a gene for each vertex in the DAG and the edge

vector contains a gene for each edge in the DAG. Essentially, each gene uniquely

identifies its corresponding vertex or edge and there are |V| + |E| genes in each

chromosome. The position of the vertex and edge genes in their respective vectors

determines the priority of the corresponding vertices and edges used by the list scheduler.

The use of both vertices and edges in the chromosome enables the GA to optimize both

vertex and edge scheduling.

121

Two different crossover operators, ordered crossover (OX) [42] and vector

crossover (VX) are used in this GSL algorithm. In OX, a single crossover point is

randomly selected in the vertex vector. The sequence of genes prior to the crossover

point is copied from the first parent to the front of the vertex vector in the offspring

chromosome. The remaining genes in the first parent (i.e., following the crossover point)

are copied into the offspring gene in the order they appear in the second parent. The

same operation is also performed on the edge vectors to construct the offspring

chromosome. In VX, the first parent contributes a complete copy of its vertex vector and

the second parent contributes a complete copy of its edge vector to construct the offspring

chromosome.

The mutation operator swaps the location of a pair of genes within the vertex

vector, the edge vector, or a pair each from both vertex and edge vectors. One of these

three options is selected with equal probability. Experimentation is required to select the

optimal probabilities of selecting the various crossover and mutation operators at each

GA step. Initial empirical results suggest that this GLS produces good results when the

probabilities of selecting the OX, VX, and mutation operators are πox = 0.75, πvx = 0.20,

and πm = 0.05, respectively.

Other researchers (e.g., [13]) have observed that making direct use of the

objective function (i.e., schedule length in this case) to compute the fitness of

chromosomes can lead to premature convergence. This occurs when a single

chromosome with a significantly better than average objective function value is

repeatedly selected for breeding, leading to reduced genetic diversity in the population.

122

In order to prevent this situation, the rank of chromosomes, rather than their objective

function values are used to compute their fitness. The rank of chromosome c is the

number of chromosomes in population Ω that produce worse schedules than c.

In order to further reduce the ability of high-ranking individuals to dominate the

population, Grajcar proposed in [67], that the fitness of a chromosome be made inversely

proportional to the number of offspring it has produced. This results in the following

fitness function for chromosome c:

1|)(|
)()(

+
=

coffspring
crankcϕ , (3.1)

where offspring(c) is the number of offspring produced by chromosome c to date.

The chromosome with the largest fitness value in a random subset of Ω is selected

for reproduction. Similarly, the chromosome with the least fitness value from another

random subset of Ω is selected for replacement. In early experiments, selection subset

sizes ranging from 2% to 10% of |Ω| worked well for populations ranging from 200 to

800 chromosomes.

A parallel implementation of the GLS using the synchronous connected island

model [64] is used in this dissertation. In this implementation, 15 parallel GLS processes

operate on separate local populations and communicate synchronously to exchange the

fittest chromosomes with each other periodically. Essentially, each of the 15 processes

synchronously transmits the best chromosome in its local populations to all the other

processes. Each process then adds the best chromosome received into its local

population. This “migration” of chromosomes enhances the exploitation of high quality

123

solutions in parallel GAs, while the relative isolation of the subpopulation enhances

genetic diversity and prevents premature convergence.

In the parallel GLS implementation used for this dissertation, the number of

iterations between migrations is as follows: 4,000, 4,000, 4,000, 4,000, 2,000, 1,000, 500,

250, 250, 125, 125, …, 125. This strategy emphasizes exploration of the solution space

at the beginning of the evolutionary process and emphasizes exploitation of good genetic

information towards the latter stages. A total of 24,000 iterations are performed in each

process and the local population size is 1,000 chromosomes. The fittest chromosome

from a pool of 50 randomly selected chromosomes is used for participation in the

crossover and mutation operators. The worst chromosome from a different pool of

randomly selected chromosomes is discarded and replaced by the new chromosome

resulting from the crossover or mutation operator. The local population size remains at

1,000 chromosomes.

As suggested by Potts, Giddens, and Yadav [127], varying the GA control

parameters in each of the N parallel GLS processes can lead to increased genetic

diversity. Therefore, the mutation, vector crossover, and ordered crossover rates used in

a parallel GLS process ni ∈ {0, 1, …, N - 1} are given by the following:

πm(ni) = 0.05 + 0.05 × ni/N, (3.2)

πvx(ni) = 0.20 + 0.10 × ni/N, and (3.3)

πxo(ni) = 0.75 − 0.15 × ni/N, (3.4)

respectively. This implies that the mutation rates range between 0.50 and 0.10, the

feature crossover rates range between 0.20 and 0.30, and the order crossover rates vary

124

between 0.75 and 0.60. These probability ranges for the recombination operators worked

well in the deterministic GLS scheduling experiments reported in [41], and therefore,

have been adapted for the GLS experiments conducted as part of this dissertation.

3.8 Scheduling Options

Two methods for constructing schedules can be used for each of the three distinct

LS approaches and the GLS approach developed in this dissertation. The first method,

designated as the exact method, is to directly utilize the weight PDFs as described in

detail in the previous sections of this chapter to determine the starting time and end time

PDFs for all tasks, and to use those PDFs in making scheduling decisions. The exact

approach is the primary focus of this research. However, the repeated PDF computations

(i.e., convolution, minimum, and maximum) can be time consuming as evidenced in

Chapter V.

In order to reduce the time taken to construct schedules, the second option,

suggested by Dr. Eric Hansen (dissertation committee member) in private

communication, is to use a fixed estimate of the weight for each task during schedule

construction. This method is designated as the estimate method. The estimate method

essentially reduces the number of points in every task’s PDF to one (i.e., task Ji’s the

PDF essentially becomes 〈(Ei, 1.0)〉: lwi ≤ Ei ≤ uwi, where Ei is the estimate value of Ji’s

weight PDF). Note that using an estimated value Ei = uwi for all Ji ∈ G results in a WCET

schedule. Similarly, using an estimated value of Ei = lwi results in best case execution

125

time schedule and using the expected values for estimated values will result in a schedule

using the average task weights.

Clearly, schedules using WCET will result in resource utilization and reduced

performance for soft real-time applications that can tolerate occasional missed deadlines.

Conversely, schedules using the best-case execution time will only rarely meet deadlines

because the probability that all tasks take the minimum amount of time to execute is

relatively small. Using average execution time estimate or some other estimate (e.g.,

99% of WCET) also does not provide an accurate means for establishing the probability

with which the schedule will meet its deadline. It is also difficult to predict what percent

of WCET should be used as an estimate in order to construct schedules that provide a

required probability of meeting deadlines.

In order to overcome these problems with applying deterministic schedules to soft

real-time applications requiring statistical guarantees, an additional step in the scheduling

process is used to construct accurate start and completion time PDFs from the

deterministic schedule. The purpose of the deterministic schedule is to establish a

resource allocation and a strict ordering between the tasks. This resource allocation and

ordering is used in the second stage to compute the start time and completion time of

each task using the convolution and maximum PDF operations.

The use of the estimate method to construct stochastic schedules is potentially

faster than the exact method because the construction of the initial deterministic schedule

avoids the computation of the numerous start time and completion time PDFs that must

be performed while the scheduling routines look to the best slot in the best resource for

126

each task. In the estimate method, the start time and completion time PDFs are computed

only once for each task. However, the estimate method is unable to take advantage of the

slot-fitting technique available to the exact method. This is because in the estimate

method, a task must fit in a candidate slot; there is no technique available to accurately

determine the probability that the inserted task will complete before the end of the

candidate slot. The advantages and disadvantages of the two methods are empirically

evaluated in Chapter V.

3.9 Reducing Stochastic Jitter

Consider a stochastic schedule in which a set of n tasks {J1, J2, …, Jn} are

scheduled one after another in sequence such that task Ji+1 is scheduled to execute as soon

as task Ji completes. Let [ls0, us0] be the interval over which the start time PDF of J1 is

defined. Also, let [lwi, uwi], where 1 ≤ i ≤ n, be the interval over which the weight of task

Ji is defined. According to Lemma 1, task J1’s completion time PDF is defined over the

interval [ls0 + lw1 − 1, us0 + uw1 − 1]. Because task J2 begins immediately after J1

completes, the start time PDF of J2 is computed by translating J1’s completion time PDF

by one time unit to the right. This results in [ls0 + lw1, us0 + uw1] as the interval over

which J2’s start time PDF is defined. After convoluting J2’s start time PDF with J2’s

weight PDF, J2’s end time PDF is defined over the interval [ls0 + lw1 + lw2 − 1,

us0 + uw1 + uw2 − 1]. After this process continues for all n tasks, the final end time PDF of

the sequence of tasks is given by the following expression:

[lfn, ufn] = [ls0 + lw1 + … + lwn − 1, us0 + uw1 + … + uwn − 1] (3.5)

127

The difference between ufn and lfn specified in equation (3.5) gives the jitter in

completion time for the sequence of tasks as follows:

wnwnwwss

wnwswnws

wnwswnws

lululu
llluuu
llluuu

lu

−++−+−=
+−−−−++++=
−+++−−+++=

−=

L

LL

LL

1100

1010

1010

)11
)1(1

δ

 (3.6)

From equation (3.6) it is clear that the completion time jitter of the completion

time of the sequence of tasks is the sum of the jitter in execution time requirements of

each task in the sequence. This implies that the long sequences of tasks in schedule will

result in a significant amount of jitter introduced by the stochastic nature of the tasks.

This jitter is referred to as the stochastic jitter in this dissertation.

The presence of task completion jitter is undesirable in many real-time control

systems [28, 121], and therefore, a technique for systematically reducing the stochastic

jitter resulting from stochastic scheduling of DAGs is proposed in this section.

The stochastic jitter for task Ji in the sequence of tasks from the previous

discussion above is given by the following expression:

δi = us0 − ls0 + uw1 − lw2 + … + uwi − lwi. (3.7)

In equation (3.7), uwi − lwi is the contribution of the inherent variability of the

execution time requirements of Ji to the overall completion time jitter of Ji.

However, us0 − ls0 + uw1 − lw2 + … + uwi−1 − lwi−1 is the contribution in jitter caused by the

earlier tasks. Clearly, the stochastic jitter in the completion of Ji can be reduced if instead

of starting as soon as possible, the start time of Ji is delayed by some period of time. In

128

order to be useful, this delay must be bounded such that Ji still completes no later that the

latest possible time that would have resulted had the start of Ji not been delayed.

From the discussion leading to equation (3.5) above, the interval of the start time

PDF of Ji is [lsi, usi] = [ls0 + lw1 + … + lwi−1, us0 + uw1 + … + uwi−1] and the interval of the

completion time PDF of Ji is [lfi, ufi] = [ls0 + lw1 + … + lwi − 1, us0 + uw1 + … + uwi − 1].

Note that ufi = usi + uwi – 1. Therefore, as long as Ji begins no later than time usi, Ji will

always complete at or before time ufi because Ji can never take more the uwi time units to

execute.

Theorem 4 provides a technique for computing the new start time PDF of a

delayed task given the original start time PDF and a delay quantity. This technique can

be used to reduce the completion jitter of all the tasks in the schedule. However, the

tradeoff is that a greater proportion of the task execution burden is placed on the later

portions of the overall schedule. This implies that the probability of missing deadlines

when the schedule length is reduced is greater in the schedules with reduced stochastic

jitter as compared to the probability of missing deadlines in the schedule with no jitter

control.

3.10 Complexity Analysis

This section presents an analysis of the complexity of the PDF manipulation

operators and the scheduling algorithms presented in this chapter.

129

3.10.1 Complexity of PDF Operators

The convolution operator, as implemented in this research is of O(n2) complexity

[61], where n is the average width of each of the PDFs in the convolution. It is possible

to implement an O(nlog2n) complexity PDF, as shown in [61]. However, this reduction

in complexity also results in reduced accuracy.

Lemma 5: The PDF resulting from the convolution of two PDFs of width n has

width (2n-1).

Proof: Assume the two PDFs A and B are defined within the intervals [lA, lA + n –

1] and [lB, lB + n – 1], respectively. According to Lemma 1, the lower bound of the PDF

resulting from the convolution of A and B is lA + lB – 1. The upper bound of the resulting

PDF is given by the following:

32
111

−++=
−−++−+=⊗

nll
nlnll

bA

bABA . (3.8)

The width of the resulting interval is given by the following:

12
1132

1)1(32
1

−=
++−−−++=

+−+−−++=
+−= ⊗⊗

n
llnll
llnll

luwidth

BABA

BABA

BABA

. (3.9)

Computing the maximum PDF from k PDFs of width n has complexity of O(n).

From Figure 3.5, it is evident that line 7 is executed n times for each of the k – 1 PDFs

after the first PDF is used to initialize the resulting PDF. Similarly, computing the

minimum PDF also has a complexity of O(n).

130

3.10.2 Complexity of the Exact Method List Scheduling Algorithms

There are two primary factors that influence the amount of time taken by the

algorithms. The first factor is the average width of the weight PDFs of the tasks in the

DAG. Manipulation of wider PDFs requires more time to compute than the manipulation

of narrower PDFs. The second factor is the number of tasks in the DAG; increasing the

number of tasks increases the amount of time required to construct the schedules. This

section will focus on developing the complexity characteristics of the scheduling

algorithms based on these two parameters.

Two DAG structures can be used to analyze the complexity of the LS algorithms

presented in this chapter. The first DAG structure is the Linear DAG in which the

vertices are arranged in linear order with each successive vertex connected to a single

predecessor vertex by an edge. The second DAG structure is the Unordered DAG in

which there are no edges (i.e., there are no precedence constraints between vertices and

all vertices can be executed simultaneously). The vertices in the linear structure DAG are

scheduled to execute on a single processor sequentially, causing the completion time

PDFs of successive vertices to grow rapidly, while keeping the number of processors

examined is kept to a minimum because essentially only the processor on which the

previous vertex is scheduled and an idle processor have to be examined in order to

determine the processor that will allow the vertex to be scheduled as early as possible

(note that the vertex will begin the earliest when scheduled to execute on the processor on

which the preceding vertex is scheduled). The unordered DAG enables the vertices to be

scheduled on any processor but only an idle processor will allow the earliest start time.

131

This results in an increased amount of search while minimizing the width of the resulting

PDFs because only single vertices are scheduled on any processor, assuming an unlimited

number of available processors.

Theorem 6: The complexity of the Exact SETF algorithm for the linear DAG is

O(n2v2) where v is the number of vertices in the DAG and n is the average width of the

intervals over which the weight PDFs of the vertices are defined.

Proof: Table 3.3 presents a summary of the floating point operations that are

performed during the scheduling process. In step 1, there is only one ready vertex and all

processors are idle. The ready vertex is scheduled on an idle processor and the

completion time PDF of this vertex is determined by the convolution of the width of the

ready vertex’s weight PDF with the start time PDF of 〈(1, 1.0)〉. This convolution results

in n operations in step 1.

Table 3.3 Summary of Operations in SETF for the Linear DAG

Step No. of
Ready

vertices

No. of
Processors

with
Scheduled
Vertices

Width of
Completion
Time PDF of

Last Vertex on
Processor

Total Number of
Operations on

Non-idle
Processors

Number of
Operations

on Idle
Processor

1 1 0 0 0 n
2 1 1 n n(n – 0) n
3 1 1 2n – 1 n(2n – 1) n
… … … … … …
v 1 1 (v – 1)n – (v – 2) n[(v – 1)n – (v – 2)] n

In step 2, there is one ready vertex and the algorithm examines the scheduling of

the ready vertex on the processor with the previously scheduled vertex and an idle

132

processor. The ready vertex is finally scheduled on the processor with the previously

scheduled vertex because this eliminates the edge weight between the ready vertex and

the previous vertex. The completion time PDF of the previously scheduled vertex is of

width n. The start time PDF of the ready vertex is a translated completion time PDF of

the previous vertex. The Convolution of the start time PDF with the width PDF of the

ready vertex results in n2 operations and the completion time PDF resulting from the

convolution has a width of 2n – 1. The tentative scheduling of the vertex on an idle

processor requires n operations, as explained in step 1.

In step 3, there is again a single ready vertex that will be tentatively scheduled on

the processor with the previous two vertices and an idle vertex. As before, the ready

vertex is finally scheduled on the processor with the previous vertices, and this requires

n(2n – 1) operations. The tentative scheduling of the vertex on an idle processor requires

n operations, as explained in steps 1 and 2.

This process continues until all v vertices have been scheduled. Summing the

total number of operations results in the following complexity upper bound:

)(

22
2

)1(2
2

)1()(

12)(

2)]1([

22

2222

2

1

1

1

1

2

1

1

2
1

1

vnO

nnvnvnvvnvnn

vnvvnnn

ninnn

nininnniinnn

v

i

v

i

v

i

v

i

=

−−
+−−

+=

−+
−−

+=

+−+=

+−+=+−−+

∑∑

∑∑
−

=

−

=

−

=

−

=

(3.10)

This completes the proof for theorem 6. □

133

Theorem 7: The complexity of the Exact SETF algorithm for the unordered DAG

is O(n2v3) where v is the number of vertices in the DAG and n is the average width of the

intervals over which the weight PDFs of the vertices are defined.

Proof: Table 3.4 presents a summary of the floating point operations that are

performed during the scheduling process. In step 1, all vertices are ready and all

processors are idle. Each ready vertex is tentatively scheduled on an idle processor. The

completion time PDFs of these vertices are determined by the convolution of the width of

the vertices weight PDFs with the start time PDF of 〈(1, 1.0)〉. This convolution results in

n operations for each of the v vertices in step 1. One of the ready vertices is arbitrarily

selected to be scheduled on an arbitrarily selected idle processor.

Table 3.4 Summary of Operations in SETF for the Unordered DAG

Step No. of
Ready

vertices

No. of
Processors

with
Scheduled
Vertices

Width of
Completion

Time PDF of All
Scheduled
Vertices

Total Number of
Operations on

Non-idle
Processors

Number of
Operations

on Idle
Processor

1 v 0 0 0 (v – 0)n
2 v – 1 1 n (v – 1)1n2 (v – 1)n
3 v – 2 2 n (v – 2)2n2 (v – 2)n
… … … … … …
v 1 v – 1 n 1(v – 1)n2 1n

In step 2, there are (v – 1) ready vertices and the algorithm examines the

scheduling of all the ready vertices on the processor with the previously scheduled vertex

and an idle processor. An arbitrary ready vertex is finally scheduled on an arbitrary idle

processor. The completion time PDF of the previously scheduled vertex is of width n and

134

the start time PDF of a ready vertex scheduled to follow the previously scheduled vertex

is a translated completion time PDF of the previously scheduled vertex. The Convolution

of the start time PDF with the width PDF of each of the ready vertices results in n2

operations and the completion time PDF resulting from the convolution has a width of

2n – 1. The tentative scheduling of the vertices on an idle processor requires n operations

for each vertex.

In step 3, there are (v – 2) ready vertices that will be tentatively scheduled on the

two processor with the previous two vertices and an idle vertex. As before, an arbitrary

ready vertex is finally scheduled on an arbitrary idle processor. This process continues

until all v vertices have been scheduled. Summing the total number of operations results

in the following complexity upper bound:

)(
26

22
26

2233
26

22
2

2
)1()1(

6
]1)1(2)[11)(1(

2
)1(

1

)()(

32

2
2

22223

2
2

222322223

2
2

222322223

22

1

0

1

0

1

0

1

0

222

1

0

222

1

0

2

vnO

nvnvvnnvnvnvnvnv

nvnvvnnvnvnvvnvnnvnv

nvnvvnnvnvnvvnvnnvnv

vvnvvnvvvnvvvn

invninivn

invnnivin

niviniv

v

i

v

i

v

i

v

i

v

i

v

i

=

−
−−+

−+−
=

−
−−+

−++−−
=

−
−−+

+−−
−

−
=

−
+−+

+−+−−
−

−
=

−+−=

−+−=

−+−

∑ ∑ ∑∑

∑

∑

−

=

−

=

−

=

−

=

−

=

−

=

 (3.11)

This completes the proof for theorem 7. □

135

Theorem 8: The complexity of the Exact SHLEFT and Exact SCP algorithms for

the linear DAG is O(n2v2) where v is the number of vertices in the DAG and n is the

average width of the intervals over which the weight PDFs of the vertices are defined.

Proof: The scheduling steps in the Exact SHLEFT and Exact SCP algorithms for

the linear DAG follow the same pattern as exhibited by the Exact SETF algorithm for the

linear DAG. At each step there is exactly one ready vertex. All vertices are scheduled on

the same processor and the algorithms tentatively schedule ready vertices on the

processor with the previous vertices and an idle processor. Therefore, the complexity of

the scheduling steps in the Exact SHLEFT and Exact SCP algorithms is the same as the

complexity of the scheduling steps in the Exact SETF algorithm of O(n2v2).

Unlike Exact SETF however, the Exact SHLEFT and Exact SCP algorithms

require a preprocessing step in order to determine each vertex’s scheduling priority.

Exact SHLEFT requires the computation of the stochastic b-level attribute for each

vertex. Computing the b-level for all vertices in the DAG is linear in terms of the number

of vertices and edges in the DAG. Therefore, the complexity of the scheduling steps

dominates the complexity of the b-level computation. This makes the overall complexity

of the Exact SHLEFT algorithm O(n2v2).

The vertex priority assignment algorithm in Exact SCP algorithm is a two pass

algorithm. The forward pass uses a simplified version of the scheduling steps, and

therefore, has complexity of O(n2v2). The backwards pass essentially reverses the

scheduling steps and also has complexity of O(n2v2). This makes the overall complexity

of the Exact SCP algorithm O(n2v2). □

136

Theorem 9: The complexity of the Exact SHLEFT and Exact SCP algorithms for

the unordered DAG is O(n2v2) where v is the number of vertices in the DAG and n is the

average width of the intervals over which the weight PDFs of the vertices are defined.

Proof: Table 3.5 presents a summary of the floating point operations that are

performed during the scheduling process. Note that all vertices are ready to be scheduled

simultaneously. In step 1, the highest priority ready vertex is scheduled on an idle

processor and the completion time PDF of this vertex is determined by the convolution of

the width of the ready vertex’s weight PDF with the start time PDF of 〈(1, 1.0)〉. This

convolution results in n operations in step 1.

Table 3.5 Summary of Operations in SHLEFT and SCP for the Unordered DAG

Step No. of
Ready

vertices

No. of
Processors

with
Scheduled
Vertices

Width of
Completion

Time PDF of All
Scheduled
Vertices

Total Number of
Operations on

Non-idle
Processors

Number of
Operations

on Idle
Processor

1 1 0 0 0 n
2 1 1 N n2 n
3 1 2 N 2n2 n
… … … … … …
v 1 (v – 1) N (v – 1)n2 n

In step 2, there are (v – 1) ready vertices remaining and the algorithm examines

the scheduling the highest priority ready vertex on the processor with the previously

scheduled vertex and an idle processor. The highest priority ready vertex is finally

scheduled on an idle processor. The completion time PDF of the previously scheduled

vertex is of width n and the start time PDF of a ready vertex scheduled to follow the

137

previously scheduled vertex is a translated completion time PDF of the previously

scheduled vertex. The Convolution of the start time PDF with the width PDF of each of

the ready vertices results in n2 operations. The tentative scheduling of the vertices on an

idle processor requires n operations for each vertex.

In step 3, there are (v – 2) ready vertices and of these the vertex with the highest

priority will be tentatively scheduled on the two processor with the previous two vertices

and an idle vertex. As before, the highest priority ready vertex is finally scheduled on an

idle processor. This process continues until all v vertices have been scheduled. Summing

the total number of operations results in the following complexity upper bound:

)(
2

2
)(

)1(
2

)1(

1

22

222

22

2

1

0

1

0

2
1

0

2

vnO

nnvvnvn

nnvvvn

vnvvn

ninnin
v

i

v

i

v

i

=

−+
−

=

−+
−

=

−+
−

=

+=+ ∑∑∑
−

=

−

=

−

=

 (3.12)

The priority assignment step in SHLEFT is linear in terms of the number of

vertices in the DAG, this makes the complexity of the exact SHLEFT algorithm O(n2v2).

Because there are no precedence relationships between the vertices in the unordered

DAG, the forward and backwards passes in the SCP algorithm have a complexity of

O(n2) for each vertex, resulting in an overall priority assignment complexity of O(n2v).

Therefore, the complexity of the Exact SCP algorithm is also O(n2v2). □

 138

CHAPTER IV

EXPERIMENT DESIGN

A number of stochastic schedules are created for a variety of directed acyclic

graphs (DAGs) in order to evaluate the veracity, applicability, benefits, and costs of the

probability distribution functions (PDF) manipulation operations developed in Chapter

III. The empirical results are also used to test the effectiveness of the stochastic

scheduling techniques developed in Chapter III in reducing schedule lengths and

reducing jitter at the cost of increased probability of missing end-to-end deadlines. This

chapter describes the experiments that were conducted as part of this dissertation,

presents experimental data, and provides an analysis of the results.

4.1 Directed Acyclic Graph Classes

In order to support the hypothesis, schedules for a variety of DAGs with varying

structures, sizes, weight distributions, and communication vs. computation requirements

are created and analyzed. These DAGs present a wide range of scheduling problems to

the stochastic scheduling techniques developed in this dissertation. Analysis of the

schedules produced by these techniques for a variety of scheduling problems provide

insights into the ability of the various novel stochastic scheduling heuristics and schedule

control parameters to influence the quality of service (QoS) and performance

139

characteristics of schedules. This section describes these DAG characteristics in more

detail.

4.1.1 DAG Structure

Each of the following six distinct structural forms were used to create several

DAGs:

1. Fast Fourier Transform (FFT),

2. Hierarchical Fork-Join (HFJ)

3. Mean Value Analysis (MVA),

4. Out Tree (OUT),

5. Random, and

6. Simple Fork-Join (SFJ).

These structure types were selected because of their pedagogically interesting

features as well as to provide DAGs for a representative set of realistic parallel

applications. Similar DAG structures have also been used in evaluating list scheduling

heuristics developed and applied for scheduling tasks with fixed execution time

requirements [92, 93].

The HFJ and SFJ DAG structures, illustrated in Figure 4.1(a) and Figure 4.1(e),

emphasize the branching and joining data flows that have largely been ignored by the

existing probabilistic scheduling research, where interest has focused primarily on

periodic scheduling. These structures also represent the class of trivially parallel tasks

wherein a single task performs sequential preprocessing and distributes the workload

140

between several parallel tasks, and then, another sequential task gathers the results from

the parallel tasks.

(a) Simple Fork-Join

(c) Fast Fourier Transform

(b) Out Tree

(e) Hierarchical Fork Join

(d) Mean Value Analysis

Figure 4.1 Miniature Examples of DAG Structures

141

The FFT DAG structure, illustrated in Figure 4.1(c), represents a commonly used

parallel task performed in many real-time image and signal processing applications. The

MVA structure, illustrated in Figure 4.1(d), represents the structure of a parallel

application and also provides a pedagogically interesting structure with several branching

and joining flows. The OUT DAG structure, illustrated in Figure 4.1(b), is interesting

because it exercises the ability of the scheduling techniques to effectively schedule a

large number of data and flow control branches. The random DAG structure presents a

significantly more irregularity in form as compared to the other structures.

4.1.2 Communication to Computation Ratio

Definition 8: The computation-to-communication ratio (CCR) for a DAG is

defined as the ratio of average expected vertex weight to the average expected edge

weight. Formally, the CCR of DAG, G, is computed as follows:

E

ewE
V

vwE

GCCR
Ee

i

Vv
i

i

i

∑

∑

=

∈

∈

)]([

)]([

)((4.1)

In order to analyze the ability of the new scheduling mechanisms to handle

applications with a variety of CCRs, DAGs with the following CCRs are constructed:

1. DAGs with CCR = 0.5 represents applications whose communication tasks take

100% more time as compared to computation tasks, on average (i.e., communication

tasks take twice long as computation tasks).

142

2. DAGs with CCR = 0.67 represent applications whose communication tasks take 50%

more time as compared to computation tasks, on average.

3. DAGS with CCR = 1.0 represent applications whose communication and

computation tasks take the same amount of time, on average.

4. DAGs with CCR = 1.5 represent applications whose computation tasks take 50%

more time as compared to communication tasks, on average.

5. DAGS with CCR = 2.0 represent application whose computation tasks take 100%

more time as compared to communication tasks, on average.

This range of choices should provide an indication of what influence, if any, CCR has on

the ability of the schedulers to trade probability of missing deadlines for shorter

schedules.

4.1.3 Task Weight Probability Distributions

Assigning weight probability distributions to a task in a DAG is a three-step

process. In the first step, the required expected weight of the task is selected from a

normally distributed random variable. The expected value of the task’s weight

distribution is established first in order to remain within the CCR constraints of the

particular DAG. Next, the task’s weight random probability distribution is generated

such that the number of distinct domain points in the PDF is 15% of the expected weight

value. Specifically, the weight distribution, πw, is defined over the following interval:

]15.0 ,1[] ,[Wul ww =ππ , (4.2)

where W is the required expected weight of the task.

143

Next, the PDF domain interval is translated in order to result in a PDF with the

required expected value as follows:

⎡ ⎤ ⎡ ⎤]][,1][[],[wwwww uEWEWul πππ +−+−= , (4.3)

where E[πw] is the expected weight of the original PDF πw. For example, let the required

expected weight of a task be 200 time units. A weight PDF defined over the interval

[1, 30] is generated initially. Let the PDF have an expected value of 9.5. The domain of

this PDF is translated by x units such that the PDF is now defined over the interval

[190, 220] (i.e., [200 – 10 + 1, 200 – 10 + 30]).

In order to test the efficacy of the PDF operations in the stochastic scheduling

techniques developed in this dissertation, several DAGs using three distinct probability

distributions were created.

The first type of distribution used is the Beta distribution [45]. Beta distributions

are well suited for modeling real-time applications because these distributions are defined

(i.e., have positive non-zero values) only over a finite interval [l, u]. This restriction

resembles the behavior of real-time tasks that are designed to complete within a relatively

narrow range of times.

The beta probability distributions are computed using following equation:

0,;
)1()(

)()()(1

0

111

11
>≤≤

∫ −−

−−
=

−−−+

−−
βαπ

βαβα

βα
uxl

dtttlu

xulxx ,
(4.4)

where α and β are shape parameters [45].

144

Figure 4.2 plots the shape of four beta probability distribution curves resulting

from four different pairs of shape parameters, specifically α = 2, β = 4; α = 3, β = 9; α =

4, β = 16; and α = 5, β = 25. In DAGs with beta distribution task weights, the shape of

the weight distribution for each of the tasks is selected randomly (with equal probability)

from these four pairs of shape parameters.

Beta PDF

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Domain

Pr
ob

ab
ili

ty

a=2, b=4
a=3, b=9
a=4, b=16
a=5, b=25

Figure 4.2 Beta Probability Distribution with a Variety of Shape Parameters

The second type of probability distribution used to generate task weight PDFs is

the exponential distribution [45]. This distribution is commonly used to model task

execution times in stochastic scheduling of periodic tasks [10, 61]. The exponential

distribution is computed using the following equation:

145

⎩
⎨
⎧ ≥=

−

otherwise
xex

x

0
0)(

λλπ , (4.5)

where λ is the shape parameter and λ > 0. The shape of the exponential distribution with

λ = 1, and 0 ≤ x ≤ 100 is plotted in Figure 4.3.

Exponential PDF

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60 70 80 90 100

Domain

Pr
ob

ab
ili

ty

Figure 4.3 Exponential Probability Distribution with λ = 1

The third type of probability distribution used to generate task weight PDFs is the

randomized distribution. This distribution is a variant of the uniform distribution [45].

However, unlike the smooth line of the uniform distribution, the randomized distribution

closely models the peaks and valleys found in realistic PDFs (e.g., in figures 3.3 and 3.4).

This distribution is generated by selecting a random number from a uniform distribution

146

for each point in the weight PDF and dividing each point in the weight PDF with the sum

of the selected random numbers. Figure 4.4 plots an example of the randomized

probability distribution.

Random PDF

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 10 20 30 40 50 60 70 80 90 100

Domain

Pr
ob

ab
ili

ty

Figure 4.4 Randomized Probability Distribution

4.1.4 DAG sizes

For each of the HFJ, MVA, OUT, Random, and SFJ DAG structures, several

DAGs with a total number of tasks (i.e., sum of vertices and edges) in the ranges [290,

325], [390, 425], and [490, 525] were created. The FFT structured DAGS have exactly

605 tasks (i.e., 223 vertices and 382 edges) resulting from 32-way butterfly concurrency.

These DAG sizes were selected in order to provide an additional degree of variability in

147

the DAGs and in order to investigate the effectiveness of the stochastic scheduling

techniques for DAGs of different sizes.

4.2 Directed Acyclic Graph Instances

The combination of DAG structures, CCR options, probability distribution

options, and size options results in a total of 240 DAGs as summarized in Table 4.1.

Table 4.1 DAG Structure Combinations

Structure Number of
CCR Options

Number of Weight
Distribution Options

Number of
Size Options

Total DAGs

FFT 5 3 1 15
HFJ 5 3 3 45
MVA 5 3 3 45
OUT 5 3 3 45

Random 5 3 3 45
SFJ 5 3 3 45

Total DAGs: 240

4.3 Experimental Parameters

This section describes the parameters used to control the stochastic schedule

construction experiments performed as part of this dissertation. The two fundamental

experimental options are the problem posed by the DAG and stochastic scheduling

techniques used to construct a schedule for the DAG. Schedules are constructed for each

of the 240 DAGs using the three LS approaches using both the exact and estimate

methods. For the exact method, separate schedules using nine slot-fitting threshold

values of 100%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, and 60% were constructed.

148

For the estimate method, separate schedules using 11 different task weight

estimates were constructed. The task weights estimates were set to the weight at which

the CDF of the task weight is 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%,

and 0%. Observe that the weight at which the task weight CDF is x% specifies the

maximum execution time requirements for x% of the invocations of the task.

Both the exact method and estimate methods can also be used in the GLS

stochastic scheduling approach. However, the strength of the GLS approach lies in

constructing and evaluating thousands of different schedules for a given DAG. This

requires the use of relatively fast schedule construction techniques in order to achieve

good quality schedule quickly. Early results indicated that the computational costs of the

exact method would result in a prohibitive increase in the schedule construction time as

compared to the estimate method. Therefore, only the estimate method is used for

computing start time and completion time PDFs in the GLS approach.

Furthermore, because of the relatively long time taken by the GLS to construct a

schedule for a DAG, only the 15 FFT structured DAGS were used to construct schedules

using GLS. The number of GLS experiments was further restricted by only using the

WCET as the weight estimate for constructing the initial schedule before the tasks’ start

time and completion time PDFs are computed.

The various combinations of DAGs, scheduling techniques, and control

parameters result in a total of 304,290 schedules as summarized in Table 4.2. The

characteristics of each of these schedules are evaluated in order to establish the validity of

149

the hypothesis and to evaluate the effectiveness of the various scheduling parameters in

controlling the quality of schedules produced.

Table 4.2 Summary of Scheduling Experiments

Heuristic PDF Computation
Method

No. of Slot-Fitting
Threshold Values

Weight Estimate
CDF Percent

No. of
DAGs

No. of
Schedules

Exact 9 N/A 240 2,160 SHLEFT Estimate N/A 11 240 2,640
Exact 9 N/A 240 2,160 SETF Estimate N/A 11 240 2,640
Exact 9 N/A 240 2,160 SCP Estimate N/A 11 240 2,640

GLS Estimate N/A 1 90 90
Total Number of Precursor Schedules: 14,490

Number of Jitter Control Options per Precursor Schedule: 21
Total Number of Schedules Constructed: 304,290

4.4 Metrics for Experiment Analysis

The primary focus of this research is to construct stochastic schedules for soft

real-time systems. Therefore, the two most important characteristics of the schedules

produced are schedule lengths and the probability that the schedule will meet end-to-end

deadlines. A secondary objective is to study how well jitter can be controlled and what

impact jitter control has on the probability of meeting deadlines. Another schedule

characteristic that is of interest is how well resources are utilized. These metrics for

schedule evaluation are presented in more detail in this section.

4.4.1 Stochastic Schedule Length

Stochastic schedule length, M(x), is the minimum amount of time required to

complete the schedule with a probability of x%. M(x) is determined from the end-to-end

completion PDF of the schedule. The end-to-end completion PDF is the maximum of the

150

completion PDFs of all the terminal vertices in the DAG. Let VT ⊂ V be the set of

terminal vertices in the DAG and let fvi be the completion time PDF of vertex vi ∈ VT.

The end-to-end completion time PDF of the schedule is given by the following

expression:

fschedule = max{ fvi : vi ∈ VT}. (4.6)

The PDF fschedule is defined over the interval [lfschedule, ufschedule], and therefore, ufschedule is

the maximum schedule length (i.e., when 100% probability of success is required).

Similarly, any amount of time less than lfschedule will result in a 0% probability of meeting

the deadline. In general, if deadlines must be met x% of the time, then the schedule

length can be reduced and is given by the minimum point in time in the schedule when

the CDF (i.e., Fschedule) of the end-to-end completion time PDF has a value of x%.

Therefore, the schedule length is given by the inverse end-to-end completion time CDF

of the schedule at x%. Formally,

M(x) = Fschedule
 -1(x); 0 ≤ x ≤ 1. (4.7)

4.4.2 Schedule Compression

The schedule compression metric is the relative reduction in the width of the

completion time PDF of the schedule that occurs when less than 100% probability of

meeting end-to-end deadlines is acceptable. Consider the end-to-end completion time

PDF of a schedule fschedule bounded by the interval [lfschedule, ufschedule]. Clearly, allocating

less than lfschedule time units to the schedule will result in a 0% probability of meeting the

deadline. Conversely, allocating more than ufschedule time units will essentially waste the

151

time units beyond ufschedule. Therefore, the range of time by which the schedule length can

be usefully reduced is [lfschedule, ufschedule]. Let M(x) be the length of the schedule that

results when the required probability of meeting end-to-end deadlines is x%. The

schedule compression metric is computed as follows:

1
1)(

1)0.0()0.1(
1)()0.1()(

+−
+−

=
+−

+−
=

fschedulefschedule

fschedule

lu
xMu

MM
xMMxζ , (4.8)

where 0 ≤ x ≤ 1. Note, however, that for this metric to be of value, x must be restricted to

useful probabilities for meeting deadlines. In other words, while the maximum possible

compression metric value of 100% is achievable, it requires close to 0% probability of

meeting end-to-end deadlines be 0, which is absurd for practical real-time systems.

4.4.3 QoS-Performance Tradeoff

The QoS-performance tradeoff relates the reduction in required probability of

meeting end-to-end deadlines to the resulting schedule compression. The QoS-

performance tradeoff metric of a schedule is computed as follows:

10 ;
0.1

log)(1)0.0()0.1(
1)()0.1(

<≤
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
= +−

+−

x
x

x MM
xMM

eξ . (4.9)

The QoS-performance tradeoff metric is computed on a logarithmic scale because a small

reduction in required end-to-end probability can result in relatively large reductions in

schedule as is evident in Chapter V. Scaling the metric values on the logarithmic scale

makes the comparison between different metric values more intuitively meaningful.

152

4.4.4 Relative Schedule Length Improvement

The relative schedule length improvement metric provides a means for performing

a comparative evaluation of the lengths of schedules produced by different scheduling

heuristics and different scheduling control parameters. Relative schedule length

improvement of two schedules is computed as follows. Let M1 and M2 be the maximum

schedule lengths of two schedules schedule1 and schedule2, respectively. The relative

schedule length improvement of the two schedules is computed as follows

1

21
21),(

M
MMschedulescheduleΨ −

= . (4.10)

Note that Ψ is negative when M2 is greater than M1 (i.e., schedule2 is worse than

schedule1).

4.4.5 Average Stochastic Jitter Factor

The stochastic jitter factor for a task in a schedule is the ratio of the jitter in the

completion time of a task and the jitter in execution time requirements. The stochastic

jitter factor for a task Ji with non zero weight is given by the following expression:

1
1

+−
+−

=∆
fiwi

fifi
i lu

lu
, (4.11)

where fi(t) is the completion time PDF of task Ji defined in the interval [lfi, ufi].

The average stochastic jitter factor is the average of the jitter factor over all tasks

in the schedule. In computing the average stochastic jitter factor, tasks with zero weights

(e.g., edges that connect vertices scheduled for execution on the same processor) are not

considered.

153

Let E′ ⊂ E be the set of edges in the DAG that have non-zero weights in the

schedule and let V be the set of vertices in the DAG. The average stochastic jitter factor

is computed as follows:

EV

lu
lu

EVJ wJwJ

fJfJ

′+

+−
+−

=∆
∑

′∈ U 1
1

,
(4.12)

where the completion time PDF of task J is defined over the interval [lfJ, ufJ] and the

execution time requirement PDF of J is defined over the interval [lwJ, uwJ].

4.4.6 Stochastic Footprint

The stochastic footprint is the sum of the count of the unit time slots in the

schedule during which resources are reserved for execution by the schedule’s tasks. This

metric counts all time slots during which the slot may be used with any non-zero

probability but does not include those time slots that are always idle (i.e., gaps in the

schedule).

Figure 4.5 depicts the resource utilization profile of a partial schedule of two tasks

J1 and J2. Task J1 is has a start time PDF of 〈(11, 0.4), (12, 0.4), (13, 0.2)〉 and a

completion time PDF of 〈(14, 0.2), (15, 0.2), (16, 0.2), (17, 0.2), (18, 0.2)〉. Task J2 is has

a start time PDF of 〈(17, 0.6), (18, 0.2), (19, 0.2)〉 and a completion time PDF of

〈(20, 0.1), (21 0.1), (22, 0.1), (23, 0.1), (24, 0.1), (25, 0.1), (26, 0.1), (27, 0.1), (28, 0.1),

(29, 0.1) 〉. The footprint of the two tasks is 19 time-units. Note that time units 11, 12,

15, 16, and 21 - 30, are all included in the footprint, even though they are used with less

154

than 100% probability. Conversely, time units 10 and 30 are not included in the footprint

because they are not used by the schedule at all.

0.4

11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.8

1.0

1.0

J1

0.8

0.6

0.4

0.6

0.2

0.8

1.0

1.0

0.9

0.8

J2

0.7

0.6

0.5

0.4

0.3

0.2

0.1

25 26 27 28 29 30

Time

Util: 0.4 0.8 1.0 1.0 0.8 0.6 1.0 1.0 1.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Footprint = 19

Utilization
Profile for J2

Utilization
Profile for J1

ΣUtil = 13.1

10

Figure 4.5 Profile of Resource Utilization of an Example Schedule with Two Tasks

It is significant that the stochastic footprint metric not include the count of 100%

idle time slots in the schedule because the schedule, guarantees that these slots will not be

used by the application and are available for use by other tasks (e.g., tasks of other

applications, system support and maintenance tasks, etc.). The algorithm for computing

the footprint of a stochastic schedule is given in Figure 4.6.

155

 1. footprint := 0
2. start := 0
3. let Ř:= set of resources in the schedule (i.e., all processors and send and receive

 links)
4. Loop do ∀ř ∈ Ř:
5. let ϑ:= set of tasks allocated to resource ř
6. Loop do ∀J ∈ ϑ taken in increasing start time order
7. let sJ be the start time PDF of J defined over the interval [lsJ, usJ]
8. let fJ be the end time PDF of J defined over the interval [lfJ, ufJ]
9. if start < lsj
10. footprint := ufJ – lsJ + 1
11. start := ufJ
12. else if start < ufJ
13. footprint := ufJ – start
14. start := ufJ

Figure 4.6 Algorithm for Computing Stochastic Footprint

4.4.7 Stochastic Utilization

Stochastic utilization provides an insight into how effectively the stochastic

schedule uses the available resources (i.e., processors and communication links).

Let E′ ⊂ E be the set of edges in the DAG that have non-zero weights in the

schedule and let V be the set of vertices in the DAG. Let sJ(t) and fJ(t) represent the start

time and completion time of PDFs of task J, respectively. Stochastic utilization is given

by the following expression:

()

footprint

tfts

U
EVJ

u

l
JJ

Jf

Js

∑ ∑
′∈ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

= U
)()(

~ ,
(4.13)

where lsJ is the lower bound of the interval over which sJ(t) is defined, ufJ is the upper

bound of the interval over which fJ(t) is defined, and footprint is the stochastic footprint

156

of the schedule. For the example in Figure 4.6, equation (4.13) evaluates to 13.1 ÷ 19 ≈

68.95%.

 157

CHAPTER V

EXPERIMENTAL RESULTS AND ANALYSIS

This chapter presents the results and analyses of the experiments conducted as

part of this research. The first series of experiments evaluates the effects of using

specific edge weight estimates on the stochastic schedule length and stochastic utilization

when the estimate method is used to construct the stochastic schedules. The second

series of experiments evaluates the effects of using specific slot-fitting thresholds when

the exact method is used to construct the stochastic schedules. Next the estimate method

is compared with the exact method for the three different LS heuristics in terms of

stochastic schedule length.

Given the best combination of LS heuristic, PDF computation method, and

scheduling control parameter, the ability to tradeoff probability of meeting end-to-end

deadlines for schedule lengths is evaluated. Similarly, the ability to tradeoff probability

of meeting deadlines for improved jitter is also studied for the best combination of

scheduling parameters.

The final set of experiments evaluates the performance of the GLS approach.

First, the stochastic schedule lengths of the schedules produced by the GLS are compared

with those of the best schedules produced by the LS approaches. Next, the ability to

tradeoff the probability of meeting end-to-end deadlines for schedule lengths in the

158

schedules produced by the GLS approach is evaluated. Similarly, the ability to tradeoff

the probability of meeting deadlines for improved jitter is also analyzed for the GLS

approach.

5.1 Stochastic List Scheduling Approach

This section presents and analyzes the performance of the three LS algorithms

when the estimate method and the exact methods of computing task start time and

completion time PDFs are used. The combination of three heuristics and two PDF

computation methods results in a total of six LS algorithms. The six algorithms are

designated as Estimate SHLEFT, Estimate SETF, Estimate SCP, Exact SHLEFT, Exact

SETF, and Exact SCP.

5.1.1 Estimate Method

Figures 5.1 - 5.3 depict the improvement (or degradations – shown as negative

improvement) in the maximum schedule length relative to the length of the WCET

schedule that results when a variety of task weight scaling probabilities are specified to

the estimate LS algorithms. These charts plot the average change in maximum schedule

length grouped by DAG structure type, broken out by the three estimate algorithms. The

All curve in the figures shows the averages across all the DAG structures. These figures

show that the DAGs with different structure types respond differently to the scaling down

of weights (relative to the WCET values) for the different algorithms. Figure 5.4 plots

the improvement in maximum schedule length averaged across all estimate algorithms,

159

grouped by DAG structure type. This figure shows that, on average, scaling task weight

estimate has little impact on schedule lengths when using the estimate LS algorithms.

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

FFT HFJ MVA OUT RND SFJ All

Figure 5.1 Schedule Length Improvement for Estimate SHLEFT Grouped by DAG
Structure

160

-6.00%

-5.00%

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

FFT HFJ MVA OUT RND SFJ All

Figure 5.2 Schedule Length Improvement for Estimate SETF Grouped by DAG Structure

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

FFT HFJ MVA OUT RND SFJ All

Figure 5.3 Schedule Length Improvement for Estimate SCP Grouped by DAG Structure

161

-2.50%

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

FFT HFJ MVA OUT RND SFJ All

Figure 5.4 Schedule Length Improvement for All Estimate LS Algorithms Grouped by
DAG Structure

Figures 5.5 - 5.7 plot the improvement in maximum schedule length grouped by

weight probability distribution type, broken out by the three LS estimate algorithms.

From this perspective also there is no significant trend in improvement or degradation of

maximum schedule lengths. The improvement curves averaged over the three

distribution types remain within a range of ±1.5%.

Figure 5.8 plots the improvement in maximum schedule length averaged across

all estimate algorithms, grouped by weight distribution type. This graph shows that, in

general, using a weight estimate that meets the execution time requirement of tasks

approximately 60% of the time has the worst impact on schedule improvement

(especially for DAGS with beta weight distributions). Furthermore, best-case execution

162

time produces a slightly better improvement (less than 1%) in schedule length compared

with using WCET.

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

Beta Exponential Random All

Figure 5.5 Schedule Length Improvement for Estimate SHLEFT Grouped by Weight
Distribution

163

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

Beta Exponential Random All

Figure 5.6 Schedule Length Improvement for Estimate SETF Grouped by Weight
Distribution

-0.60%

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

Beta Exponential Random All

Figure 5.7 Schedule Length Improvement for Estimate SCP Grouped by Weight
Distribution

164

-1.20%

-1.00%

-0.80%

-0.60%

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

Beta Exponential Random All

Figure 5.8 Schedule Length Improvement for All Estimate LS Algorithms Grouped by
Weight Distribution

Figures 5.9 - 5.11 plot the improvement in maximum schedule length grouped by

the DAGs’ CCR, broken out by the three LS estimate algorithms. Figure 5.12 plots the

improvement in schedule length averaged over all LS estimate algorithms, grouped by

the DAGs’ CCR. From these charts it is evident that the DAG’s CCR has no significant

impact on the lack of response of the estimate LS algorithms to varying the weight

scaling probability parameter. The maximum schedule length improvement curves

averaged over the three estimate algorithms remain within an interval of ±0.5%.

165

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

0.5 0.67 1 1.5 2 All

Figure 5.9 Schedule Length Improvement for Estimate SHLEFT Grouped by CCR

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

0.5 0.67 1 1.5 2 All

Figure 5.10 Schedule Length Improvement for Estimate SETF Grouped by CCR

166

-3.00%

-2.50%

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

0.5 0.67 1 1.5 2 All

Figure 5.11 Schedule Length Improvement for Estimate SCP Grouped by CCR

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

0.5 0.67 1 1.5 2 All

Figure 5.12 Schedule Length Improvement for All Estimate LS Algorithms Grouped by
CCR

167

Figures 5.13 - 5.15 plot the improvement in maximum schedule length grouped

by the DAGs’ size, broken out by the three LS estimate algorithms. Figure 5.16 plots the

improvement in schedule length averaged over all LS estimate algorithms, grouped by

the DAGs’ size. These charts also show that the DAG’s size does not significantly

improve or degrade the length of the schedules produced by the estimate algorithms when

the weight scaling probability parameter is varied. The improvement curves averaged

over the three estimate LS algorithms remain within an interval of ±0.4%. These graphs

also show that, in general, using a weight estimate that meets the execution time

requirement of tasks approximately 60% of the time has the worst impact on schedule

improvement (this result is similar to what is seen in Figure 5.8).

-1.00%

-0.80%

-0.60%

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

Small Medium Large All

Figure 5.13 Schedule Length Improvement for Estimate SHLEFT Grouped by DAG Size

168

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

Small Medium Large All

Figure 5.14 Schedule Length Improvement for the Estimate SETF Grouped by DAG Size

-0.60%

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

Small Medium Large All

Figure 5.15 Schedule Length Improvement for Estimate SCP Grouped by DAG Size

169

-0.80%

-0.60%

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

Small Medium Large All

Figure 5.16 Schedule Length Improvement for All Estimate LS Algorithms Grouped by
DAG Size

Figure 5.17 plots the improvement in maximum schedule length grouped by the

three estimate LS algorithms taken over all DAGs. This chart provides clear evidence

that the estimate algorithms will produce schedules with roughly the same length

regardless of the how much tasks’ weights are scaled down using the scaling probability

parameter. However, using a weight estimate that meets the execution time requirement

of tasks approximately 60% of the time will produce longer schedules than using WCET

as an estimate. Although, on average, the schedule length is increased or decreased by

less than 1% compared to using WCET, implying that the WCET, the best-case execution

time, or the average weight can be used as the weight estimate to guide the first phase of

the estimate scheduling algorithms. Note that the weight of all tasks in a DAG must be

estimated uniformly (i.e., using the same estimate scaling probability parameter). The

170

final schedule with accurate start and completion PDF of tasks is created in the second

phase of the algorithm. This second phase ensures that sufficient time is allocated to each

task in order to meet all possible execution time requirements even when the best case,

average case, or other less than worst case weights are used as execution time

requirement estimates during the first phase of estimate LS.

-0.80%

-0.60%

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Weight Scaling Factor

Im
pr

ov
em

en
t

SHLEFT SETF SCP All

Figure 5.17 Average Schedule Length Improvement for All DAGs using the Estimate
Methods

5.1.2 Exact Method

In the following series of charts, the improvement (or degradation – shown as

negative improvement) in the maximum schedule length is depicted when a variety of

slot-fitting threshold values are specified to the LS algorithms using the exact method for

PDF computations. The improvement in maximum schedule length is relative to the

171

maximum schedule length that results when a slot-fitting threshold of 100% is specified.

Recall that a threshold of 100% specifies that the task will not be inserted into an idle slot

whose end time PDF bounding interval overlaps with the tasks’ completion time PDF

interval (i.e., there is a chance that the task being considered for insertion will extend

beyond the end of the idle slot). A threshold of less than 100% will allow tasks to extend

beyond the end of the idle slot. Note that the minimum threshold value used is 60% in

order to ensure that the task is guaranteed to fit in the idle slot when the task’s weight is

at least as much as the task’s expected weight.

Figures 5.18 - 5.20 plot the relative improvement in the maximum schedule length

grouped by DAG structure type, broken out by the exact LS algorithms. Figure 5.21

plots the improvement in the maximum schedule length for all exact LS algorithms,

grouped by DAG structure type. The All curve in these charts shows the averages across

all the exact LS algorithms. From these charts it is clear that the use of slot-fitting

threshold probabilities less than 100% has a significant positive impact on the maximum

schedule length for a variety of DAG-structure and LS heuristic combinations. Random

structured DAGs, in particular, receive the most benefit from using a slot-fitting threshold

of 95% or less. FFT and OUT DAGs scheduled using the exact SHLEFT algorithm are

the only combinations that produced negative improvements. DAGs with the OUT

structure scheduled using the exact SETF algorithm and DAGs with the SFJ structure

scheduled using the exact SCP algorithm show no improvement or degradation (i.e., have

the same schedule length) regardless of the slot-fitting threshold value.

172

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

FFT HFJ MVA OUT RND SFJ All

Figure 5.18 Schedule Length Improvement for Exact SHLEFT Grouped by DAG
Structure

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

FFT HFJ MVA OUT RND SFJ All

Figure 5.19 Schedule Length Improvement for Exact SETF Grouped by DAG Structure

173

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

FFT HFJ MVA OUT RND SFJ All

Figure 5.20 Schedule Length Improvement for Exact SCP Grouped by DAG Structure

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

FFT HFJ MVA OUT RND SFJ All

Figure 5.21 Schedule Length Improvement for All Exact LS Algorithms Grouped by
DAG Structure

174

Figures 5.22 - 5.24 plot the relative improvement in the maximum schedule length

grouped by task weight distribution type, broken out by the exact LS algorithms. Figure

5.25 plots the improvement in the maximum schedule length for all exact LS algorithms,

grouped by task weight distribution type. In these charts, the maximum schedule length

improvement averaged over all the exact LS algorithms is over 6% for DAGs with beta

and exponential distributions, and over 9% for DAGs with random distributions. In

general, DAGs with random task weight distributions derive the most benefit from

reduced slot-fitting threshold values.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

Beta Exponential Random All

Figure 5.22 Schedule Length Improvement for Exact SHLEFT Grouped by Weight
Distribution

175

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

Beta Exponential Random All

Figure 5.23 Schedule Length Improvement for Exact SETF Grouped by Weight
Distribution

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

Beta Exponential Random All

Figure 5.24 Schedule Length Improvement for Exact SCP Grouped by Weight
Distribution

176

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

Beta Exponential Random All

Figure 5.25 Schedule Length Improvement for All Exact LS Algorithms Grouped by
Weight Distribution

Figures Figure 5.26 - Figure 5.28 plot the relative improvement in the maximum

schedule length grouped by DAG CCR, broken out by the exact LS algorithms. Figure

5.29 plots the improvement in the maximum schedule length for all exact LS algorithms,

grouped DAG CCR. In these charts, the exact SCP algorithm shows greater

improvement in schedule lengths compared to the exact SHLEFT and exact SETF

algorithms, in general. On average DAGs with CCR of 0.5 and 0.67 have below average

maximum improvement in schedule length, DAGs with CCR of 1.0 have average

maximum improvement, and DAGs with CCR of 1.5 and 2.0 have above average

maximum improvement.

177

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

0.5 0.67 1 1.5 2 All

Figure 5.26 Schedule Length Improvement for Exact SHLEFT Grouped by CCR

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

0.5 0.67 1 1.5 2 All

Figure 5.27 Schedule Length Improvement for Exact SETF Grouped by CCR

178

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

0.5 0.67 1 1.5 2 All

Figure 5.28 Schedule Length Improvement for Exact SCP Grouped by CCR

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

0.5 0.67 1 1.5 2 All

Figure 5.29 Schedule Length Improvement for All Exact LS Algorithms Grouped by
CCR

179

Figures 5.30 - 5.32 plot the relative improvement in the maximum schedule length

grouped by DAG size, broken out by the exact LS algorithms. Figure 5.33 plots the

improvement in the maximum schedule length for all exact LS algorithms, grouped DAG

size. These charts show that, in general, small, medium, and large DAGs have below

average, approximately average, and above average maximum improvement,

respectively. Furthermore, the maximum average improvement of the small, medium,

and large DAGs is over 6%, over 7.5%, and over 8%, respectively.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

Small Medium Large All

Figure 5.30 Schedule Length Improvement for Exact SHLEFT Grouped by DAG Size

180

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

Small Medium Large All

Figure 5.31 Schedule Length Improvement for Exact SETF Grouped by DAG Size

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

Small Medium Large All

Figure 5.32 Schedule Length Improvement for Exact SCP Grouped by DAG size

181

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

Small Medium Large All

Figure 5.33 Schedule Length Improvement for All Exact LS Algorithms Grouped by
DAG Sizes

Figure 5.34 depicts the relative improvement in the maximum schedule length

grouped by the three exact LS algorithms taken over all DAGs. In this chart, the

maximum schedule length improvement averaged over all the exact LS algorithms for all

DAGs is over 7.0%. As expected, given the schedule length improvement charts above,

the exact SCP algorithm shows significantly better improvement in schedule length as

compared with the exact SETF and exact HLEFT algorithms.

182

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Slot-Fitting Threshold

Im
pr

ov
em

en
t

SHLEFT SETF SCP All

Figure 5.34 Schedule Length Improvement for All DAGs Using the Exact Method

5.1.3 Comparison of the Estimate LS and the Exact LS Methods

Recall that 11 different schedules (with the jitter control parameter fixed at 0.0)

were produced for each of the 240 DAGs by each of the estimate-based LS algorithms

using a variety of estimate parameters. Similarly, nine different schedules were produced

for each DAG by each of the exact LS algorithms using a variety of slot-fitting threshold

values. For each DAG-algorithm pair, the schedule with the least maximum schedule

length was used as the basis of comparison between algorithms.

Table 5.1 summarizes the number of DAGs for which each LS algorithm

produced the schedule with the shortest maximum schedule length when the probability

of meeting the end-to-end deadline is 100%. The LS algorithms based on the exact PDF

computation methods produce shorter schedules for 61.25% of the DAGs tested.

183

Furthermore, Table 5.2 shows that for the 54 DAGs for whom the exact SHLEFT

algorithm produced the best schedules, the schedules were 47.97% shorter, on average,

than the best schedule for the same DAGs using any of the estimate-based algorithms.

Similarly, for 60 DAGs the exact SETF algorithm produced the shortest schedules that

were 42.88% shorter, on average, than the best estimate-based schedules. And for 33

DAGs, the exact SCP algorithm produced the shortest schedules that were 37.49%

shorter, on average, than the best estimate-based schedules.

The estimate LS algorithms produced the best schedules for 93 DAGs. For these

DAGs, however, the improvement in schedule lengths of the estimate LS algorithms over

the best exact LS algorithms is, on average, less than improvement in schedule lengths of

the remaining 148 DAGs shown by the exact LS algorithms over the estimate LS

algorithms.

Table 5.1 Comparison of LS algorithms

Algorithm Best for Number of DAGs Best for Percent of DAGs
Exact SHLEFT 54 22.50%
Exact SETF 60 25.00%
Exact SCP 33 13.75%
Estimate SHLEFT 10 4.17%
Estimate SETF 26 10.83%
Estimate SCP 57 23.75%

184

Table 5.2 Improvement of Schedule Lengths using Exact vs. Estimate LS

Best Overall
Algorithm

Avg. % Schedule Length
Improvement over Best

Estimate Algorithm

Avg. % Schedule Length
Improvement over Best

Exact Algorithm
Exact SHLEFT 47.97% N/A
Exact SETF 42.88% N/A
Exact SCP 37.49% N/A
Estimate SHLEFT N/A 12.57%
Estimate SETF N/A 21.60%
Estimate SCP N/A 21.51%

Table 5.3 Comparison between Exact LS Algorithms

Algorithm Best Exact Algorithm for
Number of DAGs

Best Exact Algorithm for
% of DAGs

Exact SHLEFT 70 29.17%
Exact SETF 83 34.58%
Exact SCP 87 36.25%

Table 5.4 Comparison between Estimate LS Algorithms

Algorithm Best Estimate Algorithm
for Number of DAGs

Best Estimate Algorithm
for % of DAGs

Estimate SHLEFT 78 32.50%
Estimate SETF 44 18.33%
Estimate SCP 118 49.17%

Table 5.3 compares the performance of the three LS algorithms using exact PDF

computations with each other. The exact SCP algorithm outperforms the other exact LS

algorithms for 87 DAGs. However, because exact SETF outperforms the other exact LS

algorithms for 84 DAGs, there is no clear best choice between the exact SCP and exact

SETF LS algorithms. Table 5.4 compares the performance of the three estimate-based

LS algorithms with each other. Here the SCP algorithm clearly outperforms the other

185

estimate-based algorithms for 118 DAGs. These results appear to indicate the SCP

heuristic is superior to the others. However, because SCP does not outperform the other

heuristics for a majority of the DAGs, the superiority of SCP cannot be established

conclusively. Also note from Table 5.1 that SCP, SETF, and SHLEFT are best for 90,

86, and 64 DAGs, respectively. This indicates that SCP and ETF outperform each other

in roughly equal number of cases, with SCP having a small advantage over ETF. It is

clear that the simple SHLEFT heuristic does not perform as well as the other two

heuristics.

Table 5.5 Ratio of Average Execution Times of Exact and Estimate LS

 Execution Time Ratio of:
DAG

Structure:
Size: Exact SHLEFT

and
Estimate SHLEFT

Exact SETF
and

Estimate SETF

Exact SCP
and

Estimate SCP
FFT Large 18.19 295.06 28.27

Small 17.76 66.96 22.01
Medium 19.56 114.67 25.75 HFJ
Large 18.72 132.48 26.27
Small 12.10 49.05 15.53
Medium 13.54 39.54 17.58 MVA
Large 16.65 52.45 18.27
Small 19.64 475.78 23.74
Medium 23.88 637.30 30.08 OUT
Large 22.59 618.46 33.62
Small 19.01 54.72 18.73
Medium 23.23 71.70 25.10 RND
Large 28.09 105.74 29.25
Small 17.58 55.08 15.83
Medium 16.70 83.54 16.83 SFJ
Large 17.79 127.69 17.22
Small 17.04 97.24 18.05
Medium 18.20 141.62 20.66 All
Large 19.36 181.58 22.75

186

The execution times for the accuracy-based and estimate-based algorithms are

compared for the various structures and sizes of DAGs in Table 5.5. The exact SHLEFT

algorithm takes over 17 times, 18 times, and 19 times as much time as the estimate

SHLEFT algorithm for the small, medium, and large sized DAGs, on average. Similarly,

the exact SCP algorithm takes over 18 times, 20 times, and 22 times as much time as the

estimate SCP algorithm for the small, medium, and large sized DAGs, on average. The

exact ETF algorithm, on the other hand, takes over 97 times, 141 times, and 181 times as

much time its estimate counterpart because SETF evaluates a much larger number of

vertex-processor combinations that SHLEFT and SCP as explained below.

Let Vr be the set of ready vertices and P be the set of available processors on

which ready vertices can scheduled. At each step of the LS algorithm, SHLEFT and SCP

select the highest priority vertex and tentatively schedule it on each of the processors in P

while looking for the processor that allows the selected ready vertex the earliest start

time. After the best processor is found, the vertex is permanently scheduled. Therefore,

at each step, SHLEFT and SETF compute 1+P schedules for the selected ready vertex.

 On the other hand, SETF tentatively schedules every ready vertex on every

processor in order to find the vertex-processor pair with the earliest start time, and then

permanently schedules the earliest vertex-processor pair. Therefore, at each step, SETF

computes a total of 1+× rVP schedules to allocate a single vertex. This accounts for

the relatively large difference in schedule construction time for the exact SETF and

estimate SETF algorithms.

187

Table 5.6 Relative Execution Times of the Exact LS Algorithms

Relative Execution Times of Exact

Method Algorithms
DAG Structure Size: SHLEFT SETF SCP

FFT Large 1.000 15.128 1.178
Small 1.000 4.283 1.047

Medium 1.000 5.719 1.052HFJ
 Large 1.000 6.748 1.041

Small 1.000 4.146 1.280
Medium 1.000 4.175 1.388MVA

Large 1.000 4.297 1.296
Small 1.000 31.604 1.015

Medium 1.003 41.954 1.000OUT
Large 1.000 37.353 1.067
Small 1.000 3.763 1.013

Medium 1.000 4.862 1.149RND
Large 1.000 5.364 1.088
Small 1.063 4.568 1.000

Medium 1.058 6.140 1.000SFJ
Large 1.038 8.880 1.000
Small 1.000 7.084 1.027

Medium 1.000 9.598 1.050All
Large 1.000 10.949 1.075

Table 5.6 compares the execution times of the exact method LS algorithms

relative to the exact method LS algorithm with the smallest execution time, broken out by

DAG structure and size. The SHLEFT algorithm has the shortest execution time for most

of the sample DAGs. The SCP algorithm has nearly the same execution time as the

SHLEFT algorithm. As expected, the SETF algorithm has the longest execution time,

especially for the out-tree DAG structure.

Table 5.7 compares the execution times of the estimate method LS algorithms

relative to the estimate method LS algorithm with the smallest execution time, broken out

by DAG structure and size. From this table, it is evident that the estimate SCP algorithm

188

has shorter execution time compared to the estimate SHLEFT algorithm for a majority of

the DAGs. However, the execution times of the estimate SCP and estimate SHLEFT are

similar to each other for the mean value analysis, random, and simple fork-join DAGs.

The estimate HLEFT and SCP have shorter execution times than the SETF algorithm.

Note, however, that the execution time of the estimate SETF is less than twice the

execution time of the fastest estimate LS algorithm compared.

Table 5.7 Relative Execution Times of the Estimate LS Algorithms

Relative Execution Times of
Estimate Method Algorithms

DAG Structure Size: SHLEFT SETF SCP
FFT Large 1.319 1.230 1.000

Small 1.184 1.344 1.000
Medium 1.251 1.220 1.000HFJ

 Large 1.348 1.285 1.000
Small 1.003 1.026 1.000

Medium 1.000 1.429 1.069MVA
Large 1.000 1.364 1.181
Small 1.191 1.553 1.000

Medium 1.264 1.980 1.000OUT
Large 1.395 1.903 1.000
Small 1.000 1.307 1.028

Medium 1.000 1.575 1.063RND
Large 1.000 1.425 1.045
Small 1.000 1.371 1.044

Medium 1.066 1.237 1.000SFJ
Large 1.005 1.198 1.000
Small 1.032 1.281 1.000

Medium 1.081 1.334 1.000All
Large 1.093 1.276 1.000

189

5.1.4 Trading QoS for Performance using LS algorithms

In this section, the extent to which reductions in required probability of meeting

end-to-end deadlines translates into reduction in schedule lengths is analyzed for the best

LS algorithm for each DAG. Figures 5.35 - 5.38 plot the average schedule compression

metric grouped by DAG structure type, task weight distribution type, DAG CCR, and

DAG size, respectively. These figures show that, on average, if missed deadlines can be

tolerated even for a relatively small percentage of time, 1E-10 in particular, the length of

the completion time interval can be reduced by over 50%. Tolerating missed deadlines

1E-4 percent of the time results in a compression of over 60% in general.

Reducing the required probability of meeting deadlines further has diminishing

benefit in terms of resulting compression. This is because the probabilities that the

schedule will require the time slots near the upper bound of the end-to-end completion

time PDF are very small and gradually increase with distance (i.e., time slots) below the

upper bound. An examination of the schedules reveals that the probabilities near the

upper bound of the completion PDF to be 1E-300 or lower. In some cases, the

probabilities are sufficiently small so as to be reduced to 0.0 by the compiler and/or

processor. Therefore, as long as small probability of missing deadlines can be tolerated,

the time slots with infinitesimally small probabilities of being required can be removed

from the schedule.

The figures also show that while the structure of the DAG does not have a

significant impact on the achieved compression, the probability distribution of the task

weights affects the amount of compression. Because the exponential and beta

190

distribution have shapes such that the probabilities near the upper limit of the weight PDF

are small, the completion time PDF of schedules for DAGs with these probability

distributions also have small probabilities near its upper limit. This results in relatively

large compression from small reductions in required probability of meeting end-to-end

deadlines.

Conversely, because the shape of the random distribution type is more uniformly

weighted, the compression amounts resulting from small reductions in the probability of

meeting end-to-end deadlines for DAGs with random task weight distributions are more

modest. In general, the maximum compression achievable for the DAGs with

exponential, beta, and random distributions is approximately 91%, 75%, and 40%,

respectively, given a required probability of meeting end-to-end deadlines of 95%.

Figures 5.37 and 5.38 show that the CCR and size of the DAG have relatively

little impact on the shape of the compression metric curve for the DAGs tested for the

lower probabilities of meeting end-to-end deadlines (i.e., the compression metric is nearly

identical for all probability values across all the DAG sizes).

Note that for these experiments the probability for meeting the deadline is

bounded from below by 70% because real-time systems typically require a higher

probability of meeting deadlines than 95% to be useful [18].

191

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99
1.0

0

Required Probability of Meeting End-to-End Deadlines

Sc
he

du
le

 C
om

pr
es

si
on

FFT HFJ MVA OUT RND SFJ All

Figure 5.35 LS Compression Grouped by DAG Structure

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99 1.0
0

Required Probability of Meeting End-to-End Deadlines

Sc
he

du
le

 C
om

pr
es

si
on

Beta Exponential Random All

Figure 5.36 LS Compression Grouped by Weight Distribution

192

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99 1.0
0

Required Probability of Meeting End-to-End Deadlines

Sc
he

du
le

 C
om

pr
es

si
on

0.5 0.67 1 1.5 2 All

Figure 5.37 LS Compression Grouped by DAG CCR

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99
1.0

0

Required Probability of Meeting End-to-End Deadlines

Sc
he

du
le

 C
om

pr
es

si
on

Small Medium Large All

Figure 5.38 LS Compression Grouped by DAG Size

193

Figures 5.39 - 5.42 plot the QoS-performance tradeoff metric for the DAGs

grouped by DAG structure type, task weight distribution type, DAG CCR, and DAG size,

respectively. These charts reinforce the notion that reducing the required probability of

meeting end-to-end deadlines relative the WCET requirements can result in significant

dividends in terms of reduced schedule lengths. Furthermore, as expected, the tradeoff

metric rapidly declines to a value approaching 1.0 when the required probability of

meeting the deadline is reduced below 99%. Recall that the probabilities (of being used)

of the individual time slots at or near the upper limit of the schedule’s completion time

PDF are much smaller that the probabilities of time slots near the middle of the PDF’s

defining interval. Note that there is virtually no variance in the QoS-performance

tradeoff value across the various DAG characteristics for a specific end-to-end

completion probability.

194

0

5

10

15

20

25

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99

Required Probability of Meeting End-to-End Deadlines

Q
oS

-P
er

fo
rm

an
ce

 T
ra

de
of

f

FFT HFJ MVA OUT RND SFJ All

Figure 5.39 LS QoS-performance Tradeoff Grouped by DAG Structure

0

5

10

15

20

25

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99

Required Probability of Meeting End-to-End Deadlines

Q
oS

-P
er

fo
rm

an
ce

 T
ra

de
of

f

Beta Exponential Random All

Figure 5.40 LS QoS-Performance Tradeoff Grouped by Weight Distribution

195

0

5

10

15

20

25

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99

Required Probability of Meeting End-to-End Deadlines

Q
oS

-P
er

fo
rm

an
ce

 T
ra

de
of

f

0.5 0.67 1 1.5 2 All

Figure 5.41 LS QoS-Performance Tradeoff Grouped by DAG CCR

0

5

10

15

20

25

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99

Required Probability of Meeting End-to-End Deadlines

Q
oS

-P
er

fo
rm

an
ce

 T
ra

de
of

f

Small Medium Large All

Figure 5.42 LS QoS-Performance Tradeoff Grouped by DAG Size

196

5.1.5 Stochastic Jitter Control with LS

The following series of figures plots the reduction in the schedules’ completion

time stochastic jitter for specific values of the jitter control parameter specified to the best

LS algorithm for each DAG. Recall that the jitter control parameter prevents the

scheduler from starting tasks as early as possible, and instead, delays the tasks so as to

prevent the task completion PDF of the previously executing task from lengthening the

defining interval of the completion time PDF of the new task.

Figures 5.43 - 5.46 plot the stochastic jitter factor averaged over all DAGs

grouped by DAG structure type, task weight distribution type, DAG CCR, and DAG size,

respectively. These figures show the relatively high stochastic jitter inherent in the

schedules produced for the various DAGs. Specifically, the HFJ and SFJ DAGs exhibit

significant amount of completion time jitter whereas the FFT, OUT, and Random DAGs

exhibit below average jitter. The MVA DAGs exhibit average jitter.

Other DAG characteristics (i.e., task weight distributions, CCRs and sizes), on

average, have relatively little impact on the jitter inherent in the schedules, compared

with the impact of DAG structure. Therefore, the average stochastic jitter factor curves

observed across these characteristics are close to each other. Note that using a jitter

control parameter of 25% results in a jitter factor of less than 5. Increasing the jitter

control parameter beyond 25% has limited impact on the schedule’s stochastic jitter.

197

0

10

20

30

40

50

60

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

Ji
tte

r F
ac

to
r

FFT HFJ MVA OUT RND SFJ All

Figure 5.43 LS Jitter Control Factor Grouped by DAG Structure

0

5

10

15

20

25

30

35

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

Ji
tte

r F
ac

to
r

Beta Exponential Random All

Figure 5.44 LS Jitter Control Factor Grouped by Weight Distribution Types

198

0

5

10

15

20

25

30

35

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

Ji
tte

r F
ac

to
r

Small Medium Large All

Figure 5.45 LS Jitter Control Factor Grouped by DAG Size

0

5

10

15

20

25

30

35

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

Ji
tte

r F
ac

to
r

0.5 0.67 1 1.5 2 All

Figure 5.46 LS Jitter Control Factor Grouped by DAG CCR

199

Figures 5.47 - 5.50 plot the stochastic utilization that results from changing the

jitter control parameter averaged over all DAGs grouped by the DAGs’ structure types,

weight distribution types, sizes, and CCRs, respectively. These figures show that the

stochastic utilization increases with an increase in the jitter control parameter. The

increase in utilization occurs because an increase in the jitter control parameter decreases

the footprint of the resulting schedule.

These figures indicate that the schedules for the HFJ and SFJ structure types have

inherently low stochastic utilization (i.e., less than 50% when no jitter control is applied)

whereas the other structure types have higher stochastic utilization. Note the close

correspondence with the Jitter Factor chart in 5.43 where the schedules for the HFJ and

SFJ structures display higher jitter than the scheduled of the other DAG structure types.

The CCR and weight distribution characteristics of DAGs have a small impact on the

stochastic utilization metric of the schedules. Conversely, a DAG’s size has a relatively

small impact on the stochastic utilization metric of the resulting schedules.

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

St
oc

ha
st

ic
 U

til
iz

at
io

n

FFT HFJ MVA OUT RND SFJ All

Figure 5.47 LS Utilization Grouped by DAG Structure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

St
oc

ha
st

ic
 U

til
iz

at
io

n

Beta Exponential Random All

Figure 5.48 LS Utilization Grouped by Weight Distribution

201

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

St
oc

ha
st

ic
 U

til
iz

at
io

n

Small Medium Large All

Figure 5.49 LS Utilization Grouped by DAG Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

St
oc

ha
st

ic
 U

til
iz

at
io

n

0.5 0.67 1 1.5 2 All

Figure 5.50 LS Utilization Grouped by DAG CCR

202

5.1.6 Schedule Compression versus Jitter Control with LS

Reducing stochastic jitter by delaying the start time of tasks is a simple approach

for controlling the width of the schedule’s completion time PDF interval. Intuitively,

however, it would appear that delaying tasks should negatively impact the ability of the

scheduling algorithms to reduce the required probability of meeting the end-to-end

deadlines in order to reduce schedule lengths.

Figure 5.51 plots the schedule compression metric in response to changes in the

required probabilities for meeting end-to-end deadlines for specific jitter control

parameter values averaged over all DAGs. The figure shows that the maximum

compression increases when moderate amount of jitter control is applied. However,

compression decreases when the jitter control parameter is increased to values above

0.50.

The increase in schedule compression when moderate jitter control is applied is

explained as follows. Delaying tasks by a small amount of time has minimal impact on

the completion time PDF of the task (especially near the upper bound of the completion

PDF interval) because the individual probabilities that the task will begin at the time units

in the vicinity of the lower bound of the interval defining the start time PDF of the task

are relatively small.

Therefore, even after applying a small amount of delay, reducing the required

probability of meeting end-to-end deadlines results in the reduction of the schedule length

by approximately the same number of time units compared to when there is no delay. In

other words, the numerator of equation (4.8) (i.e., 1)(+− xMu fschedule) remains

203

relatively constant whether or not a small amount of jitter is applied in combination with

a specific probability of meeting end-to-end deadline.

0.
70

0.
80

0.
95

0.
96

0.
97

0.
98

0.
99

0.
99

9
0.

99
99

0.
99

99
9

0.
99

99
99

0.
99

99
99

99
0.

99
99

99
99

9
1.

00

JC
=0

.0
0,

 J
F=

28
.0

60
2

JC
=0

.1
0,

 J
F=

9.
35

71
1

JC
=0

.2
0,

 J
F=

5.
34

83
7

JC
=0

.3
0,

 J
F=

3.
65

19
JC

=0
.4

0,
 J

F=
2.

72
49

6
JC

=0
.5

0,
 J

F=
2.

15
41

7

JC
=0

.6
0,

 J
F=

1.
78

11
3

JC
=0

.7
0,

 J
F=

1.
50

57
9

JC
=0

.8
0,

 J
F=

1.
29

64
5

JC
=0

.9
0,

 J
F=

1.
13

56
4

JC
=1

.0
0,

 J
F=

1

0

0.2

0.4

0.6

0.8

1

C
om

pr
es

si
on

Deadline Probability

Jitter

Figure 5.51 LS Compression vs. Jitter Control Factor for All DAGs

However, because the lower bound of the completion time interval is increased

because of the delay introduced by jitter control, the total width of the completion time

PDF interval is shortened. In other words, the denominator of equation (4.8) (i.e.,

1+− fschedulefschedule lu) is reduced. Therefore, when a small amount of jitter control is

applied, the compression metric reports greater compression as compared to the case

when no jitter control is applied.

204

Applying relatively large amounts of jitter control (i.e., significantly delaying

tasks), on the other hand, deforms the completion time PDF such that the individual

probabilities of the time slots near the upper bound of the completion time PDF being

needed are increased. This deformation can be viewed a partial translation of the PDF

towards the higher domain values of the PDF. This deformation implies that decreasing

the required probability of meeting end-to-end deadlines will not result in as significant a

reduction in the completion time of the schedules as compared to when no jitter control

or small amount of jitter control is applied. Therefore, specifying a large value of the

jitter control parameter results in lower schedule compression values.

5.2 Stochastic Genetic List Scheduling Approach

This section presents and analyzes the performance of the GLS algorithm and

compares the schedules created by the GLS approach with the schedules created by the

best LS schedules. The GLS algorithm takes a large amount of time to construct the

schedule. Therefore, in the interest of completing this research within a reasonable

amount of time, schedules for only those DAGs with the FFT structure having a CCR of

1.0 are constructed and analyzed below. This implies that schedules for a total of 15

DAGs were created using the GLS approach. Also recall that in order to decrease the

schedule construction time, the GLS uses the two phased scheduling approach similar to

that of the estimate LS algorithms.

The GLS approach investigated here uses the tasks’ WCET for the estimate value.

This choice of estimate value is justified by the results summarized in Figure 5.4. Recall

that this figure plots the improvement in maximum schedule length averaged across all

205

estimate algorithms, grouped by DAG structure type, and shows that the FFT DAG type

has an improvement of at most 0.75% when estimate values other than WCET are used.

5.2.1 Comparison of Stochastic LS and Stochastic GLS

Table 5.8 lists and compares the performance of the GLS and LS approaches for

the various FFT DAGs. The values in the “Length of Best LS Schedule” columns are the

maximum schedule lengths for the best schedule for each of the DAGs using any

combination of LS heuristic and algorithm control parameter (i.e., weight estimate or

slot-fitting threshold value). The GLS approach produced shorter schedules than the LS

approach for 11 of the 15 DAGs. Furthermore, for 7 of these 11 DAGs, GLS produced

significantly shorter schedules than the best corresponding LS schedule (i.e., shorter by at

least 9.69%). The average improvement in the maximum schedule lengths resulting from

the use of the GLS approach as compared to the LS approach over all the DAGs is

approximately 12.4%. By contrast, in the four cases that LS outperforms GLS, the GLS

schedule is at most 1.62% longer than the LS schedule.

206

Table 5.8 Comparison of GLS and LS Schedules for FFT DAGs

Distribution
Type CCR Length of GLS

Schedule
Length of Best
LS Schedule

Improvement in
Schedule Length

0.5 23,231 41,556 44.10%
0.67 18,587 22,612 17.80%
1.0 13,111 14,518 9.69%
1.5 15,101 15,037 -0.43%

Beta

2.0 18,875 19,257 1.98%
0.5 23,024 35,597 35.32%
0.67 18,554 23,908 22.39%
1.0 13,373 13,528 1.15%
1.5 16,471 17,144 3.93%

Exponential

2.0 18,861 19,709 4.30%
0.5 22,857 34,260 33.28%
0.67 17,472 20,686 15.54%
1.0 13,581 13,432 -1.11%
1.5 15,349 15,298 -0.33%

Random

2.0 17,949 17,663 -1.62%
Average Improvement: 12.4%

The GLS algorithm, however, takes several hours to construct a schedule on a

cluster of modern processors (eight 2.4MHz Xeon processors with 1GB RAM

interconnected using gigabit Ethernet) as opposed to the few seconds it takes the exact

SHLEFT and SCP algorithms, or the few minutes it takes the exact SETF algorithm. If

time is a premium, it may not be possible to use the GLS to produce shot schedules.

However, when time permits, the GLS approach should be utilized along with the LS

approach. The LS approach will consume only a fraction of time as compared to GLS,

but may provide better schedules than GLS for some small portion of the problem space.

207

5.2.2 Trading-off Performance for QoS with GLS

Figure 5.52 plots the schedule compression achieved by using the GLS approach

for the FFT DAGs grouped by the task weight distribution types. This chart shows that

significant schedule compression can be achieved when the GLS approach is used to

construct schedules. Similar to the compression observation with LS approach (and for

the same reasons) in Figure 5.36, DAGs with the exponential and beta task weight

distributions exhibit large compression values of over 90% and over 79%, respectively.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99 1.0
0

Required Probability of Meeting End-to-End Deadlines

Sc
he

du
le

 C
om

pr
es

si
on

Beta Exponential Random All

Figure 5.52 GLS Schedule Compression Grouped by Weight Distribution

Figure 5.53 plots the schedule compression achieved by using the GLS approach

for the FFT DAGs grouped by DAG CCR. This chart is similar to the LS compression

result grouped by CCR, in Figure 5.37. The DAG CCR has relatively little impact on

schedule compression.

208

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99 1.0
0

Required Probability of Meeting End-to-End Deadlines

Sc
he

du
le

 C
om

pr
es

si
on

0.5 0.67 1 1.5 2 All

Figure 5.53 GLS Schedule Compression Grouped by DAG CCR

Figures 5.54 and 5.55 plot the QoS-performance tradeoff metric for the schedules

produced by the GLS approach for the FFT DAGs, grouped by task weight distribution

type and DAG CCR. These charts support the idea that reducing the required probability

of meeting end-to-end deadlines relative to the WCET requirements can result in

significant dividends in terms of reduced schedule lengths. Furthermore, as expected, the

tradeoff metric rapidly declines to a value approaching 1.0 when the required probability

of meeting the deadline is reduced below 99%.

209

0

5

10

15

20

25

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99

Required Probability of Meeting End-to-End Deadlines

Q
oS

-P
er

fo
rm

an
ce

 T
ra

de
of

f

Beta Exponential Random All

Figure 5.54 GLS QoS-Performance Tradeoff Grouped by Weight Distribution

0

5

10

15

20

25

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99

Required Probability of Meeting End-to-End Deadlines

Q
oS

-P
er

fo
rm

an
ce

 T
ra

de
of

f

0.5 0.67 1 1.5 2 All

Figure 5.55 GLS QoS-Performance Tradeoff Grouped by DAG CCR

210

5.2.3 Jitter Control with GLS

Figures 5.56 and 5.57 plot the average stochastic jitter factor grouped by task

weight distribution type and DAG CCR, respectively, resulting from specifying various

amounts of jitter control to the GLS algorithm for the FFT DAGs. The resulting jitter

factor values across corresponding jitter control parameter points are nearly identical to

each other for the three task weight distribution types. The jitter factor curves for the

various DAG CCRs are also relatively close to each other. This indicates that different

weight distribution types and different DAG CCRs have similar effects on the jitter

characteristics of the schedules produced by the GLS algorithm.

A comparison of the jitter factor curves in Figure 5.56 with FFT jitter factor

curves in Figure 5.43 indicates that the schedules produced by the GLS algorithm have

nearly identical inherent jitter characteristics (i.e., a jitter factor value of 20 when the

jitter control parameter value is 0) compared with the best schedules produced for the

corresponding FFT DAGs by the LS approach.

211

0

5

10

15

20

25

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

Ji
tte

r F
ac

to
r

Beta Exponential Random All

Figure 5.56 GLS Jitter Control Grouped by Weight Distribution

0

5

10

15

20

25

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

Ji
tte

r F
ac

to
r

0.5 0.67 1 1.5 2 All

Figure 5.57 GLS Jitter Control Grouped by DAG CCR

212

Figures 5.58 and 5.59 plot the stochastic utilization of resources in the schedules

produced for the FFT DAGs by the GLS algorithm. These charts show that the weight

distribution and DAG CCR have little impact on the stochastic utilization in the

schedules produced by the GLS algorithm.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Jitter Control Parameter

St
oc

ha
st

ic
 U

til
iz

at
io

n

Beta Exponential Random All

Figure 5.58 GLS Utilization Grouped by Weight Distribution

213

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Jitter Control Parameter

St
oc

ha
st

ic
 U

til
iz

at
io

n

0.5 0.67 1 1.5 2 All

Figure 5.59 GLS Utilization Grouped by DAG CCR

5.2.4 Schedule Compression versus Jitter Control with GLS

Figure 5.60 plots the schedule compression metric in response to changes in the

required probabilities for meeting end-to-end deadlines for specific jitter control

parameter values averaged over all DAGs. The figure shows that the maximum

compression increases when moderate amount of jitter control is applied. However,

compression decreases when the jitter control parameter is increased to values above

0.50. This result is similar to the result in Figure 5.51 showing the compression in

response to the jitter control parameter for LS algorithms.

214

0.
70

0.
80

0.
95

0.
96

0.
97

0.
98

0.
99

0.
99

9
0.

99
99

0.
99

99
9

0.
99

99
99

0.
99

99
99

99
0.

99
99

99
99

9
1.

00

JC
=0

.0
0,

 J
F=

19
.9

40
5

JC
=0

.1
0,

 J
F=

9.
37

01
2

JC
=0

.2
0,

 J
F=

5.
53

54
5

JC
=0

.3
0,

 J
F=

3.
79

59
2

JC
=0

.4
0,

 J
F=

2.
83

08
7

JC
=0

.5
0,

 J
F=

2.
22

95
3

JC
=0

.6
0,

 J
F=

1.
83

22
6

JC
=0

.7
0,

 J
F=

1.
53

84
5

JC
=0

.8
0,

 J
F=

1.
31

50
5

JC
=0

.9
0,

 J
F=

1.
14

37
6

JC
=1

.0
0,

 J
F=

1

0

0.2

0.4

0.6

0.8

1

C
om

pr
es

si
on

Deadline Probability

Jitter

Figure 5.60 GLS Compression vs. Jitter Control Factor

 215

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions and results of this dissertation and

presents a variety of potential extensions to this research.

6.1 Contributions and Results

This dissertation research makes several contributions to the state of the art in

real-time scheduling. The primary contribution is the generalization of the traditional

deterministic LS and GLS approaches in order to create non-preemptive soft real-time

schedules for parallel applications consisting of tasks with varying task execution time

requirements and with inter-task precedence constraints. The parallel real-time

applications are modeled as DAGs with vertices and edges representing computation

tasks and communication/synchronization tasks, respectively. Task weight PDFs model

the variable execution time requirements of the tasks in the application. In this research,

the variations in the task weights are assumed to be independent between tasks.

Deterministic LS and GLS algorithms typically manage contention for processor

resources while ignoring communication contention. The stochastic LS and GLS

algorithms and heuristics developed in this research are novel in that they also account

for contention that occurs when communication tasks compete with each other for access

to finite-capacity processor-to-network links. Essentially, scheduling decisions for

216

vertices and edges play an equally important role in determining the QoS and

performance characteristics of the stochastic schedules produced by the techniques

developed here.

Innovative algebra for using task weight PDFs, as opposed to fixed weights, for

constructing schedules is developed as part of this dissertation. These operators are used

to compute the maximum and minimum PDFs from sets of independent PDFs in order to

compute the starting time and ending time PDFs of idle slots in the schedule into which

tasks are allocated. Convolution is used to compute a task’s completion time PDF from

the task’s start time PDF and weight PDF.

In order to determine whether a task can be inserted before another, previously

scheduled task, without causing substantial perturbation to the existing scheduling

decisions, the innovative slot-fitting threshold heuristic is introduced. This heuristic

requires the computation of the probability that the task to be inserted can complete

before the planned start time of the subsequent task. An algorithm to reflect the effect of

delay on the start time PDF of tasks is also developed in order to mitigate the stochastic

jitter that occurs in the soft real-time schedules.

The appropriate use of these PDF operations in LS and GLS algorithms is also

another significant contribution of this dissertation. Because the convolution, minimum,

and maximum operators, as developed here, are valid only over independent PDFs, this

dissertation clearly describes scheduling situations when the PDF manipulations are

applicable, and situations where alternative techniques are to be applied.

217

In order to reduce the time taken to construct schedules, the dissertation develops

the idea of using fixed estimated task weights while making initial scheduling decisions

and then computing the final schedule completion PDF from the initial schedule, as

opposed to using exact PDFs at every scheduling step. While the estimate approach is

faster than the exact approach, the estimate approach produces poorer schedules than the

exact approach for nearly 62% of the sample DAGs. However, because the algorithms

based on the estimate method are significantly faster than the algorithms based on the

exact method, both methods can be used to construct schedules for a DAG and the

shortest schedule can be used as the solution.

Experimental results show that using WCET and best-case execution time for task

weight estimates produce schedules with roughly equal lengths. Using the weights at

which the tasks’ probabilities of completion range from 50% to 70% as weight estimates

(i.e., near the expected value of the edge weights) results in schedules that are over 20%

longer, in general, than the schedules that are produced when the tasks’ WCET are used

as weight estimates.

The primary reason why the LS algorithms using the exact method are able to

produce significantly shorter schedules than the estimate method algorithms is the ability

of the exact algorithms to exploit the slot-fitting heuristic. Experimental results show that

a slot-fitting threshold of 95% produces an average improvement in overall schedule

length of over 6% compared to using a slot-fitting threshold of 100% (i.e., disallowing

the exploitation of the slot-fitting heuristic). Experiments also show that reducing the

slot-fitting threshold further has diminishing returns in terms of reducing schedule

218

lengths. Using a slot-fitting threshold of 60% produces an average of slightly over 7%

reduction in schedule lengths.

An implementation of a steady state, parallel, genetic list scheduling algorithm

using the island communication model is also developed and investigated as part of this

dissertation. The GLS algorithm is used to construct even shorter schedules that those

produced by the LS algorithm. As in the LS algorithms, the GLS algorithm also uses the

PDF manipulation operators to evaluate potential schedules. In order to reduce the

execution time of the GLS algorithm, the estimate method is used to construct the

candidate schedules from the chromosomes. The genetic representation, genetic

operators, and chromosome migration patterns are an amalgamation of techniques

developed by a variety of researchers and many of the parameters controlling the GLS

were derived from precursor research into constructing deterministic schedules for DAGs

[41]. These GA techniques and GLS parameters were adapted specifically for producing

stochastic schedules for this dissertation.

The dissertation shows empirically that the hypothesis is valid. The computation

of the completion time PDF of the schedule allows real-time systems designers to

systematically tradeoff QoS (probability of meeting end-to-end deadline and jitter) for

schedule length. For the wide variety of DAGs tested, results show that, on average, the

length of the schedule completion time interval can be reduced by 30% if the required

probability of meeting end-to-end deadlines is reduced from 100% to 99.99999999%

(i.e., a reduction in probability of 1E-10). Similarly, reducing the required probability of

219

meeting end-to-end deadlines to 99.99% results in a 60% reduction, on average, of the

length of the completion time interval.

Experimental results also show how the completion time PDF and schedule

resource utilization are affected when tasks’ start times are delayed in order to reduce

stochastic jitter. In general, stochastic utilization improves to over 88% when a jitter

control parameter of 75% is specified. However, tight control of jitter reduces the ability

to tradeoff the schedule’s probability of meeting end-to-end deadlines for reduced

schedule length. In general, using a jitter control parameter greater than 25% has an

increasingly significant impact on this ability to trade QoS for schedule length.

6.2 Future Work

A number of extensions are possible to the research conducted as part of this

dissertation. The most restrictive assumption made in the PDF manipulation operators

and the scheduling algorithms is that the task computation requirement time PDFs are

independent. In many applications, execution times of successive tasks are related to

each other because task behavior depends on the characteristics of the data being

processed (e.g., data size and/or locality). In other words, observation of a particular

execution time requirement of one task has a distinct influence on the observed execution

time of subsequent tasks. Therefore, construction of stochastic schedules for these

applications will require new PDF manipulation algebra to account for inter-dependent

task execution times.

Another possible extension to the stochastic scheduling techniques and algorithms

developed as part of this dissertation is to consider applications in which different tasks

220

have different QoS requirements. In other words, instead of only considering the

probability of completing the entire schedule within an end-to-end deadline, the

completion time deadlines for individual tasks (some or all) in the application can be

considered when making scheduling decisions. Similarly, different jitter requirements for

different tasks can also be considered.

In the algorithms developed for this dissertation, jitter control manipulations are

performed after all scheduling decisions are made. However, it is possible that the

modifications made to the scheduled tasks’ starting and completion time PDFs by the

jitter control mechanisms are of sufficient magnitude as to influence the performance of

the slot-fitting heuristic. Therefore, an investigation into the interplay between jitter

control and the slot-fitting heuristic is required.

The PDF manipulation operators developed in this dissertation can take a long

time to compute for large PDFs. Furthermore, memory requirement for manipulating

large PDFs is also large. Therefore, in order to mitigate time and storage requirements

during construction of stochastic schedules, techniques to manipulate reduced resolution

PDFs can be investigated and developed. These techniques can store a lower resolution

representation of the PDF and use interpolation techniques to generate the probability

values for specific time values. These techniques must also provide techniques for

minimizing and estimating the overall margin of error in the stochastic schedule so

produced.

In order to speed the GLS algorithm, the estimate method for schedule

construction is used during chromosome evaluations. Analysis of the LS algorithms

221

shows that the algorithms using the exact method often outperform the algorithms using

the estimate methods. This suggests that an investigation into the performance of GLS

algorithms based on the exact method for schedule construction is required. This

investigation will determine if the reduction in schedule lengths (if any) resulting from

the use of exact PDF manipulations in the GLS algorithms justify the increased cost in

terms of schedule construction time.

Another possible extension specific to the GLS approach is to modify the

selection operator to use utilization, or compression, or QoS-Performance tradeoff

metrics instead of using schedule length and processors required as the chromosome

ranking criteria. This modification may result in schedules with significantly different

characteristics than those produced by the GLS algorithm in this dissertation.

 222

REFERENCES

[1] Luca Abeni and Giorgio Buttazzo, “Integrating Multimedia Applications in Hard

Real-Time Systems,” in Proceedings of the IEEE Real-Time Systems Symposium,
pp 3-13, 1998.

[2] Luca Abeni and Giorgio Buttazzo, “QoS Guarantee Using Probabilistic
Deadlines,” in Proceedings of the IEEE Euromicro Conference on Real-Time
Systems, pp. 242-249, 1999.

[3] Thomas L. Adam, K. Mani Chandy, J. R. Dickson, “A Comparison of List
Schedules for Parallel Processing Systems,” Communications of the ACM, vol 17,
no. 12, pp. 685-690, 1974.

[4] ANSI Standard X3T9.5, Fiber Distributed Data Interface (FDDI): Token Ring
Medium Access Control (MAC), 1987.

[5] Manoj Apte, Srigurunath Chakravarti, and Anthony Skjellum, “Time-based
Linux for Real-Time NOWs and MPI/RT,” In Proceedings of the IEEE Real Time
Systems Symposium, Phoenix, Arizona, December 1999.

[6] Andrea C. Arpaci-Dusseau, David E. Culler, and Alan M. Mainwaring,
“Scheduling with Implicit Information in Distributed Systems,” Proceedings of
the SIGMETRICS Conference on the Measurement and Modeling of Computer
Systems, pp. 333-243, 1998.

[7] Andrea C. Arpaci-Dusseau, “Implicit Coscheduling: Coordinated Scheduling with
Implicit Information in Distributed Systems,” ACM Transactions on Computer
Systems, vol 19, no. 3, 2001.

[8] S. Ashour, A Decomposition Approach for the Machine Scheduling Problem,
International Journal of Production Research, vol 6, no. 2, pp 109-122, 1967.

[9] Alia Atlas and Azer Bestavros, “Multiplexing VBR Traffic Flows with
Guaranteed Application-Level QoS Using Statistical Rate Monotonic
Scheduling,” in Proceedings of the 8th IEEE International Conference on
Computer Communications and Networks, 1999.

[10] Alia Atlas and Azer Bestavros, “Statistical Rate Monotonic Scheduling,” in
Proceedings of the 19th IEEE Real-Time Systems Symposium, pp. 123-132, 1998.

223

[11] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Hard Real-Time
Scheduling: The Deadline Monotonic Approach,” Proceedings: IEEE Workshop
on Real-Time Operating Systems, 1992.

[12] Sara Baase, Computer Algorithms, Second Edition, Addison-Wesley Publishing
Company, 1988.

[13] T. Bäck and F. Hoffmeister, “Extended Selection Mechanisms in Genetic
Algorithms,” In Proceedings of the 4th International Conference on Genetic
Algorithms, pp. 92-99, 1991.

[14] Theodore P. Baker, “A Stack-Based Resource Allocation Policy for Realtime
Processes,” The Real-Time Systems Journal, vol 3, no 1, pp 67-100, 1991.

[15] Suman Banerjee and Ashok K. Agrawala, “Estimating Available Capacity of a
Network Connection,” in Proceedings of the IEEE International Conference on
Networks, Singapore, 2000.

[16] Michael Barbanov and Victor Yodaikin, “Real-time Linux”, Linux Journal,
March 1996.

[17] Guillem Bernat, Alan Burns, and Albert Llamosí, “Weakly Hard Real-Time
Systems,” IEEE Transactions on Computers, vol. 50, no. 40, 2001, pp. 308-321.

[18] Guillem Bernat, Antoine Colin, and Stefan M. Petters, “WCET Analysis of
Probabilistic Hard Real-Time System,” in Proceedings of the IEEE Real-Time
Systems Symposium, pp. 279-288, 2002.

[19] Christian Bierwirth and Dirk C. Mattfeld, “Production Scheduling and
Rescheduling with Genetic Algorithms,” Evolutionary Computation, vol 7, no. 1,
pp. 1-17, 1999.

[20] J. Blazewicz, M. Dror, and J. Welgarz, “Mathematical Formulations for Machine
Scheduling: A Survey,” European Journal of Operations Research, vol 51, no. 3,
1991, pp. 283-300.

[21] Daniel P. Bovet and Marco Cesati, Understanding the Linux Kernel, O’Reilly,
2000.

[22] P. Bratley, M. Florian, and P. Robillard, Scheduling with Earliest Start and Due
Date Constraints, Naval Research Quarterly, vol. 18, no. 4, 1971.

[23] R. Breyer and S. Riley, Switched, Fast, and Gigabit Ethernet, New Riders,
Indianapolis, Indiana, 1999.

224

[24] Peter Brucker, Scheduling Algorithms, Springer-Verlag, Berlin, Germany, 1998.

[25] Peter Brucker, B. Jurish, and A. Krämer, “The Job-Shop Problem and Immediate
Selection,” Annals of Operations Research, vol 50, 1994, pp. 73-114.

[26] Giorgio C. Buttazzo, Hard Real-time Computing Systems: Predictable Scheduling
Algorithms and Applications, Kluwer Academic Publishers, Boston,
Massachusetts, 1997.

[27] Erick Cantu-Paz, “A survey of Parallel Genetic Algorithms,” Calculators
Pralleles, Vol 10, no. 2, pp. 141-171, 1998.

[28] Todd Carpenter, Kevin Driscoll, Ken Hoyme, and Jim Carciofini, “ARINC 659
Scheduling: Problem Definition, ” In Proceedings of the Real-Time Systems
Symposium, 1994.

[29] Oliver Catoni, “Solving Scheduling Problems by Simulated Annealing,” SIAM
Journal on Control and Optimization, vol 36, no 5, pp. 1539-1575, 1998.

[30] Srigurunath Chakravarthi, Predictability and Performance Factors Influencing
the Design of Real-Time Messaging Layers, MS Thesis, Department of Computer
Science, Mississippi State University, 2000.

[31] Albert M. K. Cheng, Real-Time Systems: Scheduling, Analysis, and Verification,
John Wiley & Sons, Inc., Hoboken, New Jersey, 2002.

[32] Cheng-Chung Cheng and Steven. F. Smith, Applying Constraint Satisfaction
Techniques to Job Shop Scheduling (The Long Version), Technical Report CMU-
RI-TR-95-03, Robotics Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 1995.

[33] Chih-Che Chou and Kang G. Shin, “Statistical Real-Time Channels on
Multiaccess Bus Networks,” IEEE Transactions on Parallel and Distributed
Systems, Vol 8, No 8, pp. 769-780, 1997.

[34] Chih-Che Chou and Kang G. Shin, “Statistical Real-Time Video Channels over a
Multiaccess Network,” in Proceedings of High-Speed Networking and
Multimedia Computing, pp 86-96, 1994.

[35] Lon-Chan Chu and Benjamin W. Wah, “Optimization in Real Time,”
Proceedings: The 1991 IEEE Real Time Systems Symposium, pp. 150-159, 1991.

[36] F. Della Croce, G. Menga, R. Tadei, M. Cavalotto, and L. Petri, “Cellular Control
of Manufacturing Systems,” European Journal of Operations Research, vol 69,
pp. 498-509, 1993.

225

[37] Mark Crovella, Prakash Das, Czarek Dubnicki, Tomas LeBlanc, and Evangelos
Markatos, “Multiprogramming on Multiprocessors,” Proceedings of the Third
IEEE Symposium on Parallel and Distributed Processing, pp. 590-597, 1991.

[38] R. L. Cruz, “A Calculus for Network Delay, Part I: Network Elements in
Isolation,” IEEE Transactions on Information Theory, Vol 37, No. 1, pp. 114-131,
1991.

[39] R. L. Cruz, “A Calculus for Network Delay, Part II: Network Analysis,” IEEE
Transactions on Information Theory, Vol 37, No. 1, pp. 132-141, 1991.

[40] Zhenqian Cui, Quality of Service Communication and Analysis of RSVP
Applicability on Sub-Network, MS Thesis, Department of Computer Science,
Mississippi State University, 1999.

[41] Yoginder S. Dandass, “A Genetic Algorithm for Scheduling Directed Acyclic
Graphs in the Presence of Communication Contention, ” to appear in Proceedings
of the 17th Annual International Symposium on High Performance Computing
Systems and Applications, 2003.

[42] L. Davis, “Applying Adaptive Algorithms to Epistatic Domains,” in Proc. of the
9th International Joint Conference on Artificial Intelligence, pp. 162-164, 1985.

[43] M. L. Dertouzos, “Control Robotics: The Procedural Control of Physical
Processes,” Information Processing, vol 74, 1974.

[44] Rutvik Desai and Rajendra Patil, “SALO: Combining Simulated Annealing and
Local Optimization for Efficient Global Optimization,” Proceedings: The 9th
Florida AI Research Symposium (FLAIRS-'96), pp. 233-237, 1996.

[45] Jay L. Devore, Probability & Statistics for Engineering and the Sciences,
Brooks/Cole Publishing Company, Monterey, California, 1982.

[46] José Luis Diaz, Daniel F. Garcia, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello,
José María López, Sang Lyul Min, and Orazio Mirabella, “Stochastic Analysis of
Periodic Real-Time Systems,” in Proceedings of the IEEE Real-Time Systems
Symposium, pp 289-300, 2002.

[47] Stewart Edgar and Alan Burns, “Statistical Analysis of WCET for Scheduling,” in
proceedings of the IEEE Real-Time Systems Symposium, pp. 215-224, 2001.

[48] Hesham El-Rewini, Ted G. Lewis, and Hesham H. Ali, Task Scheduling in
Parallel and Distributed Systems, Prentice Hall, Englewood Cliffs, New Jersey,
1994.

226

[49] Andreas Ermedahl, Hans Hansson, Mikael Sjődin, “Response-Time Guarantees in
ATM Networks,” in Proceedings of the Real-Time Systems Symposium, pp. 274-
284, 1997.

[50] M. L. Fisher, “Optimal Solution of Scheduling Problems using Lagrange
Multipliers: Part I,” Operations Research vol 21, pp. 1114-1127, 1973.

[51] M. L. Fisher, “Optimal Solution of Scheduling Problems using Lagrange
Multipliers: Part II,” Proceedings: Symposium on the Theory of Scheduling and
its Applications, Springer, Berlin, 1973.

[52] Eugene C. Freuder and Richard J. Wallace, “Partial Constraint Satisfaction,”
Artificial Intelligence, vol 58, no. 1-3, pp. 21-70, 1992.

[53] Dror G. Feitelson, Job Scheduling in Multiprogrammed Parallel Systems
(Extended Version), IBM Research Report RC 19790 (87657) Second Revision,
http://citesseer.nj.nec.com/feitelson97job.html, 1997.

[54] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevick, and
Parkson Wong, “Theory and Practice in Parallel Job Scheduling,” Job Scheduling
Strategies for parallel Processing, Lecture Notes in Computer Science Volume
1291, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, pp. 1-34, 1997.

[55] Dror G. Feitelson and Larry Rudolph, “Parallel Job Scheduling: Issues and
Approaches,” Job Scheduling Strategies for parallel Processing, Lecture Notes in
Computer Science Volume 949, D. G. Feitelson and L. Rudolph (eds.), Springer-
Verlag, pp. 1-18, 1995.

[56] Dror G. Feitelson and Larry Rudolph, “Gang Scheduling Performance Benefits
for Fine Grain Synchronization,” Journal of Parallel and Distributed Computing,
vol 14, no. 4, pp 306-318, 1992.

[57] Dror G. Feitelson and Morris A. Jette, “Improved Utilization and Responsiveness
with Gang Scheduling,” Job Scheduling Strategies for parallel Processing,
Lecture Notes in Computer Science Volume 1291, Springer-Verlag, pp. 238--261,
1997.

[58] Domenico Ferrari, “A New Admission Control Method for Real-Time
Communication in an Internetwork,” Advances in Real-Time Systems, Sang H.
Son (ed.), Chapter 5, pp. 105-116, 1995.

[59] Domenico Ferrari, “Real-Time Communications in an Internetwork,” Journal of
High Speed Networks, Vol 1, no 1, pp. 79-103, 1992.

227

[60] Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm,
“Tornado: Maximizing Locality and Concurrency in a Shared Memory
Multiprocessor Operating System,” in Proceedings of the Operating Systems
Design and Implementation Symposium, pp. 87-100, 1999.

[61] Mark K. Gardner, Probabilistic Analysis and Scheduling of Critical Soft Real-
Time Systems, Ph.D. Thesis, Department of Computer Science, University of
Illinois Urbana-Champaign, 1999.

[62] Kaushik Ghosh, Bodhisattwa Mukherjee, and Karsten Schwan, A Survey of Real-
Time Operating Systems, Technical Report GIT-CC-93/18, Georgia Institute of
Technology, Atlanta, Georgia, 1994.

[63] Steve Goddard and Kevin Jeffay, “The Synthesis of Real-Time Systems from
Processing Graphs,” In Proceedings of the Fifth IEEE International Symposium
on High Assurance Systems Engineering, Albuquerque, New Mexico, pp. 177-
186, 2000.

[64] V. S. Gordon and D. Whitley, “Serial and Parallel Genetic Algorithms as
Function Optimizers,” Technical Report CS-93-114, Colorado State University,
1993.

[65] Martin Grajcar, “Strengths and Weaknesses of Genetic List Scheduling for
Heterogeneous Systems,” in Proceedings of the International Conference on
Application of Concurrency to System Design, pp. 123-132, 2001.

[66] Martin Grajcar, “Conditional Scheduling for Embedded Systems Using Genetic
List Scheduling,” in Proceedings of the 13th International Symposium on System
Synthesis, pp. 123-128, 2000.

[67] Martin Grajcar, “Genetic List Scheduling Algorithm for Scheduling and
Allocation on a Loosely Coupled Heterogeneous Multiprocessor System,” in
Proceedings of the 36th Design Automation Conference, pp. 280-285, 1999.

[68] William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI: Portable
Parallel Programming with the Message-Passing Interface, The MPI Press,
Cambridge, Massachusetts, 1994.

[69] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara, “The Impact of
Operating System Scheduling Policies and Synchronization Methods on the
Performance of Parallel Applications,” Proceedings: ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, 1991.

228

[70] Hans Hansson, Andreas Ermedahl, K. W. Tindell, “Guaranteeing Real-Time
Traffic Through an ATM Network,” in Proceedings of the 30th Hawaii
International Conference on System Sciences, Volume 5, pp. 44-53, 1997.

[71] Christopher A. Healey, David B. Whalley, and Marion G. Harmon, “Integrating
the Timing Analysis of Pipelining and Instruction Caching,” in Proceedings of the
16th IEEE Real-Time Systems Symposium, pp 288-297, 1995.

[72] John H. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, Michigan, 1975.

[73] W. Horn, “Some Simple Scheduling Algorithms,” Naval Research Logistics
Quarterly, vol 21, 1974

[74] T. C. Hu, “Parallel Sequencing and Assembly Line Problems,” Operations
Research, vol 19, no. 6, pp.841-848, 1961.

[75] J. J. Hwang, Y. C. Chow, F. D. Anger, and C. Y. Lee, “Scheduling Precedence
Graphs in Systems with Interprocessor Communication Times,” SIAM Journal of
Computing, vol 18, no. 2, pp. 244–257, 1989.

[76] IEEE Standard 802.5-1989, Token Ring Access Method and Physical Layer
Specifications, Institute of Electrical and Electronic Engineers, New York, 1989.

[77] Intel Corporation, IA-32 Intel® Architecture Software Developer’s Manual
Volume 3: System Programming Guide, 2002.

[78] J. R. Jackson, Scheduling a Production Line to Minimize Maximum Tardiness,
Management Science Research Project 43, University of California, Los Angeles,
1955.

[79] Anant Singh Jain and Sheik Meeran, A State-of-the-Art Review of Job-Shop
Scheduling Techniques, Technical Report, Department of Applied Physics,
Electronic and Mechanical Engineering, University of Dundee, Dundee, Scotland,
1998.

[80] Jan Jonsson and Kang G. Shin, “A Parameterized Branch-and-Bound Strategy for
Scheduling Precedence-Constrained Tasks on a Multiprocessor System,”
Proceedings: The International Conference on Parallel Processing (ICPP'97),
pp. 158-165, 1997.

[81] K42 Team, “Scheduling in K42,” white paper,
http://www.research.ibm.com/K42/white-papers/Scheduling.pdf, modified on
August 2002.

229

[82] Sanjay Kamat and Wei Zhao, “Real-Time Performance of Two Token Ring
Protocols,” in Proceedings of the 13th International Conference on Distributed
Computing Systems, Pittsburgh, Pennsylvania, pp. 347-354, 1993.

[83] Dong-In Kang; Richard Gerber, and Manas Saksena, “Parametric Design
Synthesis of Distributed Embedded Systems,” IEEE Transactions on Computers,
vol. 49, no. 11, pp. 1155–1169, 2000.

[84] Samuel Karlin and Howard M. Taylor, A First Course in Stochastic Processes,
Academic Press, New York, 1975.

[85] J. B. Kim, T. Suda, and M. Yoshimura, “International Standardization of B-
ISDN,” Computer Networks and ISDN Systems, Vol 27, pp. 5-27, 1994.

[86] S. J. Kim and James C. Browne, “A General Approach to Mapping of Parallel
Computation on Multiprocessor Architectures,” In Proceedings of the
International Conference on Parallel Processing, vol. II, pp. 1-8, 1988.

[87] B. Kruatrachue and Ted G. Lewis, “Duplication Scheduling Heuristics (DSH): A
New Precedence Task Scheduler for Parallel Processor Systems,” Technical
Report, Oregon State University, Corvallis, OR, 1987.

[88] Seok-Kyu Kweon, Kang G. Shin, and Q. Zheng, “Statistical Real-Time
Communication over Ethernet for Manufacturing Automation Systems,” in
Proceedings IEEE Real-Time Technology and Applications Symposium, 1999.

[89] Seok-Kyu Kweon, Kang G. Shin, and Gary Workman, “Achieving Real-Time
Communication over Ethernet with Adaptive Traffic Smoothing,” in Proceedings
IEEE Real-Time Technology and Applications Symposium, 2000.

[90] Yu-Kwong Kwok and Ishfaq Ahmad, “Parallel Program Scheduling
Techniques,” Chapter 23 in High Performance Cluster Computing Volume 1,
Rajkumar Buyya (ed.), Prentice Hall, Englewood Cliffs, New Jersey, pages 553–
578, 1999.

[91] Yu-Kwong Kwok and Ishfaq Ahmad, “Static Scheduling for Allocating Directed
Task Graphs to Multiprocessors,” ACM Computing Surveys, vol 31, no. 4, pp.
406-471, http://citeseer.nj.nec.com/314946, 1998.

[92] Yu-Kwong Kwok and Ishfaq Ahmad, “Efficient Scheduling of Arbitrary Task
Graphs to Multiprocessors using a Parallel Genetic Algorithm,” Journal of
Parallel and Distributed Computing, vol 47, no. 1, pp. 58-77, 1997.

230

[93] Yu-Kwong Kwok and Ishfaq Ahmad, “Dynamic Critical-Path Scheduling: An
Effective Technique for Allocating Task Graphs to Multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol 7, no. 5, pp 506-521, 1996.

[94] P. J. M. Van Laarhoven, E. H. L Aarts, and J. K. Lenstra, “Job Shop Scheduling
by Simulated Annealing,” Operations Research, vol 40, no 1, pp. 113-125, 1992.

[95] Gerardo Lamastra, Guiseppe Lipari, Giorgio Buttazzo. Antonio Casile, Fabio
Conticelli, “HARTIK 3.0: a portable system for developing real-time
applications,” In Proceedings of the Fourth International Workshop on Real-Time
Computing Systems and Applications, pp. 43-50, 1997.

[96] Eugene L. Lawler, “Recent Results in the Theory of Machine Scheduling,”
Mathematical Programming: The State of the Art, A. Becham et al. (eds),
Springer-Verlag, New York, pp. 202-233, 1993.

[97] John P. Lehoczky, and S. Ramos-Thuel, “An Optimal Algorithm for Scheduling
Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems,” In Proceedings of
the IEEE Real-Time Systems Symposium, 1992.

[98] John P. Lehoczky, Lui Sha, and Ye Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,” Proceedings:
IEEE Real-Time Systems Symposium, pp. 166-171, 1989.

[99] John P. Lehoczky, Lui Sha, Jay K. Strosnider, “Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments,” In Proceedings of IEEE Real-
Time Systems Symposium, 1987.

[100] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, “Complexity of Machine
Scheduling Problems,” Annals of Discrete Mathematics, vol 1, pp. 343-362, 1977.

[101] J. Leung and J. W. Whitehead, “On The Complexity of Fixed Priority Scheduling
of Periodic real-time Tasks,” Performance Evaluation, vol 2, no. 4, 1982.

[102] Chengzhi Li, Riccardo Bettati, and Wei Zhao, “Static Priority Scheduling for
ATM Networks,” in Proceedings of the Real-Time Systems Symposium, pp. 264-
273, 1997.

[103] Yau-Tsun Steven Li, Sharad Malik, Andrew Wolfe, “Efficient Microarchitecture
Modeling and Pathway Analysis for Real-Time Software,” in Proceedings of the
16th IEEE Real-Time Systems Symposium, pp 298-307, 1995.

[104] David A. Lifka, “The ANL/IBM SP Scheduling System,” Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science Volume
949, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, pp. 295-303, 1995.

231

[105] Sung-Soo Lim; Jung Hee Han; Jihong Kim; Sang Lyul Min, “A Worst Case
Timing Analysis Technique for Multiple-Issue Machines,” in Proceedings of the
19th IEEE Real-Time Systems Symposium, pp334-345, 1998.

[106] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul
Min, Chang Yun Park, Heonshik Shin, Kunsoo Park, Choug Sang Kim, “An
Accurate Worst Case Timing Analysis Technique for RISC Processors,” in
Proceedings of the 15th IEEE Real-Time Systems Symposium, pp. 97-108, 1994.

[107] Shyh-Chang Lin, Erik D. Goodman William F. Punch, III, “Investigating Parallel
Genetic Algorithms on Job Shop Scheduling Problems,” Evolutionary
Programming VI: Proceedings of the 6th Annual Conference on Evolutionary
Programming, Peter J. Angeline et al. (eds.), Springer-Verlag, Lecture Notes in
Computer Science Vol 1213, pp. 383-394, 1997.

[108] Jinfeng Liu, Pai H. Chou, Nader Bagherzadeh, and Fadi Kurdahi, “Power-Aware
Scheduling under Timing Constraints for Mission-Critical Embedded Systems,”
in Proceedings of the 38th Design Automation Conference, pp. 840-845, 2001.

[109] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment,” Journal for the Association of Computing
Machinery vol 20, no. 1, pp. 46-61, 1973.

[110] T. Lundqvist and P. Stenström, “An Integrated Path and Timing Analysis Method
Based on Cycle-Level Symbolic Execution,” Real-Time Systems, vol. 17 no. 2-3,
pp. 183-207, 1999.

[111] Lynux Works, Inc. LynuxWorks Patented Technology Speeds Handling of
Hardware Events: Meeting real-time performance requirements, white paper,
http://www.lynuxworks.com/products/whitepapers/patentedio.php3, 2002.

[112] Nicholas Malcolm and Wei Zhao, “Hard Real-Time Communication in Multiple-
Access Networks, Real-Time Systems, Vol 9, pp. 79-107, 1995.

[113] Alan S. Manne, “On the Job-Shop Scheduling Problem,” Operations Research,
vol 8, no 2, 1960.

[114] G. B. McMahon and M. Florian, “On Scheduling with Ready Times and Due
Dates to Minimize Maximum Lateness,” Operations Research, vol 23, no. 3, pp.
475-482, 1975.

[115] Zbigniew Michalewicz, Genetic algorithms + data structures = evolution
programs, Springer-Verlag, New York, 1992.

232

[116] Steven Minton, Mark D. Johnston, Adrew B. Phillips, Phillip Laird, “Minimizing
Conflicts: A Heuristic Repair Method for Constraint-Satisfaction and Scheduling
Problems,” Artificial Intelligence, vol 58, no. 1-3, pp. 161-205, 1992.

[117] Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge,
Massachusetts, 1996.

[118] L. Molesky, K. Ramamritham, C. Shen, J. Stankovic, and G. Zlokapa,
Implementing a Predictable Real-Time Multiprocessor Kernel - The Spring
Kernel, IEEE Workshop on Real-Time Operating Systems and Software, May
1990.

[119] Yannick Monnier, Jean-Pierre Beauvais, and Anne-Marie Déplanche, “A Genetic
Algorithm for Scheduling Tasks in a Real-Time Distributed System,” in
Proceedings of the 24th EUROMICRO Conference, vol II, pp. 708-714, 1998.

[120] Myricom, Inc., Myrinet Overview,
http://www.myrinet.com/myrinet/overview/index.html, 2002

[121] Marco Di Natale and John A. Stankovic, “Scheduling Distributed Real-Time
Tasks with Minimum Jitter,” IEEE Transactions on Computers, vol. 49, no. 4, pp.
303-316, 2000.

[122] Joseph Kee-Yin Ng, Shibin Song, and Wei Zhao, “Integrated Delay Analysis of
Regulated ATM Switch,” in Proceedings of the Real-Time Systems Symposium,
pp. 285-296, 1997.

[123] Douglass Niehaus, William Dinkel, and Sean B. House, “Effective real-time
system implementation with KURT Linux,” In Proceedings of the Real-Time
Linux Workshop, 1999.

[124] Douglas Niehaus, Erich M. Nahum, John A. Stankovic, Kirthi Ramamritham,
Architecture and OS Support for Predictable Real-Time Systems, Spring internal
document, http://www-ccs.cs.umass.edu/spring/internal/arch_os_support.ps,
March 1992.

[125] Walter Oney, Programming the Microsoft Windows Driver Model, Microsoft
Press, Redmond, Washington, 1999.

[126] J. K. Ousterhout, “Scheduling Techniques for Concurrent Systems,” Proceedings:
3rd International on Distributed Computing Systems, pp. 22-30, 1982.

233

[127] J. C. Potts, T. D. Giddens, and S. B. Yadav, “The Development and Evolution of
an Improved Genetic Algorithm Based on Migration and Artificial Selection,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, no. 1, pp. 73-86,
1994.

[128] Liam B. Quinn and Richard G. Russell, Fast Ethernet, John Wiley & Sons, Inc.,
New York, 1997.

[129] Minsoo Ryu and Seung-Jean Kim, “Deterministic and Statistical Deadline
Guarantees for a Mixed Set of Periodic and Aperiodic Tasks,” in Proceedings of
the International Conference on Real-Time and Embedded Computing Systems
and Applications, pp 232-247, 2003.

[130] N. Sadeh and Y. Nakakuki, “Focused Simulated Annealing Search – An
Application to Job-Shop Scheduling,” Annals of Operations Research, vol 63,
pp. 77-103, 1996.

[131] Manas Saksena, James da Silva and Ashok K. Agrawala, “Design and
Implementation of Maruti-II,” Advances in Real-Time Systems, Sang H. Son (ed.),
Chapter 4, pp. 72-101, 1995.

[132] Manas Saksena, Parametric Scheduling for Hard Real-Time Systems, Ph.D.
Dissertation, Department of Computer Science, University of Maryland, 1994.

[133] F. E. Sandnes and Graham M. Megson, “Improved Static Multiprocessor
Scheduling using Cyclic Task Graphs: A Genetic Approach,” in Proceedings of
Parallel Computing (PARCO’97), pp. 703-710, 1997.

[134] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors,
MIT Press, Cambridge, MA, 1989.

[135] R. Sethi, “Scheduling Graphs on Two Processors,” SIAM Journal of Computing,
vol 5, no 1, pp73-82, 1976.

[136] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization,” IEEE Transactions on Parallel and
Distributed Computing, vol. 39, no. 3, 1990.

[137] N. V. Shakhlevich, Y. N. Sotskov, K. Krueger, F. Werner, “A Decomposition
Algorithm for Scheduling Problems on Mixed Graphs,” Journal of the
Operational Research Society, vol 46, pp. 1481-1497, 1995.

[138] David B. Shmoys, Clifford Stein, and Joel Wein, “Improved Approximation
Algorithms for Shop Scheduling Problems,” SIAM Journal of Computing vol 23,
pp. 617-632, 1994.

234

[139] Gilbert C. Sih and Edward. A. Lee, “A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architectures,” IEEE
Transactions on Parallel and Distributed Systems, vol 4, no. 2, pp 175-187, 1993.

[140] Anthony Skjellum, Arkady Kanevsky, Yoginder S. Dandass, Jerrell Watts, Steve
Paavola, Dennis Cottel, Greg Henley, L. Shane Hebert, Zhenqian Cui, Anna
Rounbehler, and The Real-Time Message Passing Interface Forum, “The Real-
Time Message Passing Interface,” Concurrency and Computation: Practice and
Experience, accepted, in press, 2003.

[141] Patrick G. Sobalvarro and William E. Weihl. “Demand-based Coscheduling of
Parallel Jobs on Multiprogrammed Multiprocessors,” Job Scheduling Strategies
for parallel Processing, Lecture Notes in Computer Science Volume 949, D. G.
Feitelson and L. Rudolph (eds.), Springer-Verlag, 1995.

[142] Patrick G. Sobalvarro, Scott Pakin, William E. Weihl, and Andrew A. Chien,
“Dynamic Coscheduling on Workstation Clusters,” Proceedings of the
International Parallel Processing Symposium (IPPS’98), 1998.

[143] Edward Solari and George Willse, PCI Hardware and Software, Annabooks, San
Diego, California, 1998.

[144] David A. Solomon and Mark E. Russinovich, Inside Microsoft Windows 2000,
Third Edition, Microsoft Press, Redmond, Washington, 2000.

[145] Marco Spuri and Giorgio C. Buttazzo, “Efficient Aperiodic Service under Earliest
Deadline Scheduling,” in Proceedings IEEE Real-Time Systems Symposium, pp.
12-21, 1994.

[146] William Stallings, Operating Systems: Internals and Design Principals, 3rd
Edition, Prentice Hall, New Jersey, 1997.

[147] John A. Stankovic, “Misconceptions About Real-Time Computing,” IEEE
Computer, pp. 10-19, Oct. 1988.

[148] Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel F. Savarese, How
to Build a Beowulf: A Guide to the Implementation and Application of PC
Clusters, The MIT Press, Cambridge, Massachusetts, 1999.

[149] James K. Strayer, Linear Programming and its Applications, Springer-Verlag,
New York, 1989.

[150] Jay K. Strosnider and Thomas E. Marchok, “Responsive, Deterministic IEEE
802.5 Token Ring Scheduling,” Real-Time Systems, Vol 1, No 2, pp. 133-158,
1989.

235

[151] Hideyuki Tokuda, Tatsuo Nakajima and Prithvi Rao, “Real-Time Mach: Towards
a Predictable Real-Time System,” Proceedings of USENIX Mach Workshop,
October 1990.

[152] T. S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. C. Wu, and J. W. S. Liu,
“Probabilistic Performance Guarantee for Real-Time Tasks with Varying
Computation Times,” in Proceedings of the IEEE Real-Time Technology and
Applications Symposium, pp. 164-173, May 1995.

[153] J. Ullman, “NP-Complete Scheduling problems,” Journal of Computer and
System Sciences, vol 10, pp. 384-393, 1975.

[154] Chitra Venkatramani and Tzi-cker Chiueh, “Design, Implementation, and
Evaluation of a Software-based Real-Time Ethernet Protocol,” Computer
Communication Review, Vol. 24, No. 4, 1995.

[155] Wind River Systems, Inc. pSOSystem 3 Datasheet,
http://www.windriver.com/products/psosystem_3/psosystem_3.pdf, 2002.

[156] Wind River Systems, Inc. VxWorks 5.x Datasheet,
http://www.windriver.com/products/vxworks5/vxworks_54.pdf, 2002.

[157] Min-You Wu and Daniel D. Gajski, “Hypertool: A Programming Aid for
Message Passing Systems,” IEEE Transactions on Parallel and Distributed
Systems, vol 1, no. 3, pp. 330–343, 1990.

[158] Jia Xu and David L. Parnas, “Scheduling Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations,” IEEE Transactions on Software
Engineering, vol 16, no. 3, pp. 360-369, 1990.

[159] Dong Xuan, Chengzhi Li, Riccardo Bettati, Jianer Chen, and Wei Zhao,
“Utilization-Based Admission Control for Real-Time Applications,” in
Proceedings of the 2000 International Conference on Parallel Processing, pp.
251-260, 2000.

[160] Tao Yang and Apostolos Gerasoulis, “DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors,” IEEE Transactions on Parallel and
Distributed Systems, vol 5, no. 9, pp. 951-967, 1994.

[161] Tao Yang and Apostolos Gerasoulis, “On the Granularity and Clustering of
Directed Acyclic Task Graphs,” IEEE Transactions on Parallel and Distributed
Systems, vol 4, no. 6, pp 686-701, 1993

236

[162] Marat Zhaksilikov and Frederick Harris, Jr., “Comparison of Different
Implementations of Parallelization of Genetic Algorithms,” Proceedings: ISCA’s
International Conference on Intelligent Systems, Reno, NV, 1996.

 [163] Hui Zhang and Domenico Ferrari, “Rate-Controlled Service Disciplines,” Journal
of High-Speed Networks, vol. 3, no. 4, pp. 389-412, 1994.

[164] Hui Zhang and Domenico Ferrari, “Rate-Controlled Static-Priority Queuing,” in
Proceedings of IEEE INFOCOM’93 Conference on Computer Communications,
1993.

[165] Hui Zhang and Edward W. Knightly, “A New Approach to Support Delay-
Sensitive VBR Video in Packet-Switched Networks,” in Proceedings of the 5th
International Workshop on Network and Operating Systems Support for Digital
Audio and Video, pp. 275-286, 1995.

[166] L. Zhang, R. Braden, D. Estrin, S. Herzog, and S. Jamin, Resource ReSerVation
Protocol (RSVP), RFC, 1995.

[167] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A New
Resource ReSerVation Protocol,” IEEE Network Magazine, September 1993.

 237

APPENDIX A

SUMMARY OF ADDITIONAL GENETIC LIST

SCHEDULING EXPERIMENTS

238

This appendix presents results of schedule construction for the large size (with

approximately 500 tasks) DAGs for all structure types using the stochastic GLS

approach.

A.1 Comparison of Stochastic LS and Stochastic GLS

Table A.1 compares the performance of the GLS and LS approaches for the large

HFJ DAGs. GLS produced shorter schedules for 10 of the 15 DAGs. The schedule

improvement of GLS compared with LS averaged over all large HFJ DAGs is nearly 4%.

Table A.1 Comparison of GLS and LS Schedules for Large HFJ DAGs

Distribution
Type CCR Length of GLS

Schedule
Length of Best
LS Schedule

Improvement in
Schedule Length

0.5 47107 54702 13.88%
0.67 40848 49621 17.68%
1.0 35884 37844 5.18%
1.5 46406 46502 0.21%

Beta

2.0 56581 51739 -9.36%
0.5 45369 54723 17.09%
0.67 43097 49472 12.89%
1.0 35047 37314 6.08%
1.5 47635 45472 -4.76%

Exponential

2.0 58111 49808 -16.67%
0.5 43922 51627 14.92%
0.67 38439 43900 12.44%
1.0 32624 36173 9.81%
1.5 44217 42752 -3.43%

Random

2.0 56350 48132 -17.07%
Average Improvement: 3.93%

239

Table A.2Comparison of GLS and LS Schedules for Large MVA DAGs

Distribution
Type CCR Length of GLS

Schedule
Length of Best
LS Schedule

Improvement in
Schedule Length

0.5 33377 43929 24.02%
0.67 31483 34882 9.74%
1.0 26089 29296 10.95%
1.5 33332 35307 5.59%

Beta

2.0 40446 40548 0.25%
0.5 35488 42856 17.19%
0.67 32715 34997 6.52%
1.0 26606 30745 13.46%
1.5 33268 35324 5.82%

Exponential

2.0 41409 41453 0.11%
0.5 34723 39577 12.26%
0.67 31013 34056 8.94%
1.0 25524 28064 9.05%
1.5 31740 34203 7.20%

Random

2.0 39976 39976 0.00%
Average Improvement: 8.74%

Table A.2 compares the performance of the GLS and LS approaches for the large

MVA DAGs. GLS produced shorter schedules for all 15 DAGs. The schedule

improvement of GLS compared with LS averaged over all large MVA DAGs is nearly

8.74%.

240

Table A.3 Comparison of GLS and LS Schedules for Large OUT DAGs

Distribution
Type CCR Length of GLS

Schedule
Length of Best
LS Schedule

Improvement in
Schedule Length

0.5 47107 54702 13.88%
0.67 40848 49621 17.68%
1.0 35884 37844 5.18%
1.5 46406 46502 0.21%

Beta

2.0 56581 51739 -9.36%
0.5 45369 54723 17.09%
0.67 43097 49472 12.89%
1.0 35047 37314 6.08%
1.5 47635 45472 -4.76%

Exponential

2.0 58111 49808 -16.67%
0.5 43922 51627 14.92%
0.67 38439 43900 12.44%
1.0 32624 36173 9.81%
1.5 44217 42752 -3.43%

Random

2.0 56350 48132 -17.07%
Average Improvement: 14.95%

Table A.3 compares the performance of the GLS and LS approaches for the large

OUT DAGs. GLS produced shorter schedules for 10 of the 15 DAGs. The schedule

improvement of GLS compared with LS averaged over all large OUT DAGs is nearly

15%.

241

Table A.4 Comparison of GLS and LS Schedules for Large RND DAGs

Distribution
Type CCR Length of GLS

Schedule
Length of Best
LS Schedule

Improvement in
Schedule Length

0.5 29673 41934 29.24%
0.67 20680 30028 31.13%
1.0 15810 20421 22.58%
1.5 16803 20612 18.48%

Beta

2.0 17254 19653 12.21%
0.5 34475 54162 36.35%
0.67 23502 33903 30.68%
1.0 17656 21917 19.44%
1.5 14319 15841 9.61%

Exponential

2.0 19986 24751 19.25%
0.5 24591 29201 15.79%
0.67 22816 29923 23.75%
1.0 16165 19960 19.01%
1.5 15179 19506 22.18%

Random

2.0 17188 20407 15.77%
Average Improvement: 21.70%

Table A.4 compares the performance of the GLS and LS approaches for the large

RND DAGs. GLS produced shorter schedules for all 15 DAGs. The schedule

improvement of GLS compared with LS averaged over all large RND DAGs is 21.7%.

242

Table A.5 Comparison of GLS and LS Schedules for Large OUT DAGs

Distribution
Type CCR Length of GLS

Schedule
Length of Best
LS Schedule

Improvement in
Schedule Length

0.5 71426 79707 10.39%
0.67 65339 71193 8.22%
1.0 57943 64710 10.46%
1.5 72611 75452 3.77%

Beta

2.0 120268 91659 -31.21%
0.5 72339 80488 10.12%
0.67 67275 74021 9.11%
1.0 55913 62648 10.75%
1.5 76124 79219 3.91%

Exponential

2.0 101908 89210 -14.23%
0.5 70268 77523 9.36%
0.67 67517 75760 10.88%
1.0 55375 60660 8.71%
1.5 74086 77899 4.89%

Random

2.0 99346 87963 -12.94%
Average Improvement: 2.81%

Table A.5 compares the performance of the GLS and LS approaches for the large

SFJ DAGs. GLS produced shorter schedules for 3 of the 15 DAGs. The schedule

improvement of GLS compared with LS averaged over all large SFJ DAGs is 2.81%.

These tables show that, in general, the stochastic GLS approach produces shorter

schedules than the stochastic LS approach. However, for many cases, the stochastic Ls

approach was better. Because the execution time of the GLS approach is significantly

greater than that of the LS approach, it is evident that both approaches be utilized in order

to find a high-quality schedule.

243

A.2 QoS-Performance Tradeoff with GLS

Figure A.1 plots the schedule compression achieved by using the GLS approach

for all DAGs grouped by structure type. This chart shows that significant schedule

compression can be achieved when the GLS approach is used to construct schedules.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99
1.0

0

Required Probability of Meeting End-to-End Deadlines

Sc
he

du
le

 C
om

pr
es

si
on

FFT HFJ MVA OUT RND SFJ All

Figure A.1 GLS Schedule Compression Grouped by Structure

Figure A.2 plots the QoS-performance tradeoff metric for the schedules produced

by the GLS approach for all DAGs grouped by structure type. This chart supports the

idea that reducing the required probability of meeting end-to-end deadlines relative to the

WCET requirements can result in significant dividends in terms of reduced schedule

lengths.

244

0

5

10

15

20

25

0.7
0

0.8
0

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

0.9
99

0.9
99

9

0.9
99

99

0.9
99

99
9

0.9
99

99
99

9

0.9
99

99
99

99

Required Probability of Meeting End-to-End Deadlines

Q
oS

-P
er

fo
rm

an
ce

 T
ra

de
of

f

FFT HFJ MVA OUT RND SFJ All

Figure A.2 GLS QoS-Performance Tradeoff Grouped by Structure

A.3 Jitter Control with GLS

Figure A.3 plots the average stochastic jitter factor grouped by structure type

resulting from specifying various amounts of jitter control to the GLS algorithm for all

large DAGs. Schedules for the SFJ DAGs have the larges amount of inherent jitter.

However, an application of 5% jitter control significantly reduces the jitter in the SFJ

DAGs. Figure A.4 plots the stochastic utilization of resources in the schedules produced

for all large DAGs by the GLS algorithm. This chart shows that increasing jitter control

improves utilization.

245

0

10

20

30

40

50

60

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Jitter Control Parameter

Ji
tt

er
 F

ac
to

r

FFT HFJ MVA OUT RND SFJ All

Figure A.3 GLS Jitter Control Grouped by Structure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

Jitter Control Parameter

St
oc

ha
st

ic
 U

til
iz

at
io

n

FFT HFJ MVA OUT RND SFJ All

Figure A.4 GLS Utilization Grouped by Structure

246

A.4 Trading-off Performance for QoS with GLS

Figure A.5 plots the schedule compression metric in response to changes in the

required probabilities for meeting end-to-end deadlines for specific jitter control

parameter values averaged over all large DAGs when using the GLS approach. The

figure shows that the maximum compression increases when moderate amount of jitter

control is applied. However, compression decreases when the jitter control parameter is

increased to values above 0.50. This result is similar to the result in Figure 5.51 showing

the compression in response to the jitter control parameter for LS algorithms.

0.
70

0.
80

0.
95

0.
96

0.
97

0.
98

0.
99

0.
99

9
0.

99
99

0.
99

99
9

0.
99

99
99

0.
99

99
99

99

0.
99

99
99

99
9

1.
00

JC
=0

.0
0,

 J
F=

25
.6

07
7

JC
=0

.1
0,

 J
F=

9.
13

15
5

JC
=0

.2
0,

 J
F=

5.
28

57

JC
=0

.3
0,

 J
F=

3.
63

64
2

JC
=0

.4
0,

 J
F=

2.
72

88
7

JC
=0

.5
0,

 J
F=

2.
16

34

JC
=0

.6
0,

 J
F=

1.
78

94
2

JC
=0

.7
0,

 J
F=

1.
51

16
7

JC
=0

.8
0,

 J
F=

1.
30

01
3

JC
=0

.9
0,

 J
F=

1.
13

72
6

JC
=1

.0
0,

 J
F=

1

0

0.2

0.4

0.6

0.8

1

Tr
ad

eo
ff

Deadline Probability

Jitter

Figure A.5 GLS Compression vs. Jitter Control Factor

247

The results in this appendix show that GLS approach, when applied to large

DAGs with a variety of structures, produces schedules with characteristics that are

consistent with the schedules produced for the FFT DAGs.

	Generalizing List Scheduling for Stochastic Soft Real-time Parallel Applications
	Recommended Citation

	Microsoft Word - Master-final-appex.doc

