8,595 research outputs found

    Transitions in spatial networks

    Get PDF
    Networks embedded in space can display all sorts of transitions when their structure is modified. The nature of these transitions (and in some cases crossovers) can differ from the usual appearance of a giant component as observed for the Erdos-Renyi graph, and spatial networks display a large variety of behaviors. We will discuss here some (mostly recent) results about topological transitions, `localization' transitions seen in the shortest paths pattern, and also about the effect of congestion and fluctuations on the structure of optimal networks. The importance of spatial networks in real-world applications makes these transitions very relevant and this review is meant as a step towards a deeper understanding of the effect of space on network structures.Comment: Corrected version and updated list of reference

    Dynamic structural and topological phase transitions on the Warsaw Stock Exchange: A phenomenological approach

    Full text link
    We study the crash dynamics of the Warsaw Stock Exchange (WSE) by using the Minimal Spanning Tree (MST) networks. We find the transition of the complex network during its evolution from a (hierarchical) power law MST network, representing the stable state of WSE before the recent worldwide financial crash, to a superstar-like (or superhub) MST network of the market decorated by a hierarchy of trees (being, perhaps, an unstable, intermediate market state). Subsequently, we observed a transition from this complex tree to the topology of the (hierarchical) power law MST network decorated by several star-like trees or hubs. This structure and topology represent, perhaps, the WSE after the worldwide financial crash, and could be considered to be an aftershock. Our results can serve as an empirical foundation for a future theory of dynamic structural and topological phase transitions on financial markets

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    Low-Degree Spanning Trees of Small Weight

    Get PDF
    The degree-d spanning tree problem asks for a minimum-weight spanning tree in which the degree of each vertex is at most d. When d=2 the problem is TSP, and in this case, the well-known Christofides algorithm provides a 1.5-approximation algorithm (assuming the edge weights satisfy the triangle inequality). In 1984, Christos Papadimitriou and Umesh Vazirani posed the challenge of finding an algorithm with performance guarantee less than 2 for Euclidean graphs (points in R^n) and d > 2. This paper gives the first answer to that challenge, presenting an algorithm to compute a degree-3 spanning tree of cost at most 5/3 times the MST. For points in the plane, the ratio improves to 3/2 and the algorithm can also find a degree-4 spanning tree of cost at most 5/4 times the MST.Comment: conference version in Symposium on Theory of Computing (1994

    Structural and topological phase transitions on the German Stock Exchange

    Full text link
    We find numerical and empirical evidence for dynamical, structural and topological phase transitions on the (German) Frankfurt Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash. Using the Minimal Spanning Tree (MST) technique, a particularly useful canonical tool of the graph theory, two transitions of the topology of a complex network representing FSE were found. First transition is from a hierarchical scale-free MST representing the stock market before the recent worldwide financial crash, to a superstar-like MST decorated by a scale-free hierarchy of trees representing the market's state for the period containing the crash. Subsequently, a transition is observed from this transient, (meta)stable state of the crash, to a hierarchical scale-free MST decorated by several star-like trees after the worldwide financial crash. The phase transitions observed are analogous to the ones we obtained earlier for the Warsaw Stock Exchange and more pronounced than those found by Onnela-Chakraborti-Kaski-Kert\'esz for S&P 500 index in the vicinity of Black Monday (October 19, 1987) and also in the vicinity of January 1, 1998. Our results provide an empirical foundation for the future theory of dynamical, structural and topological phase transitions on financial markets

    Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

    Full text link
    We evaluate the virial coefficients B_k for k<=10 for hard spheres in dimensions D=2,...,8. Virial coefficients with k even are found to be negative when D>=5. This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when D>=5. Further analysis provides evidence that negative virial coefficients will be seen for some k>10 for D=4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D=3.Comment: 33 pages, 12 figure

    The Traveling Salesman Problem: Low-Dimensionality Implies a Polynomial Time Approximation Scheme

    Full text link
    The Traveling Salesman Problem (TSP) is among the most famous NP-hard optimization problems. We design for this problem a randomized polynomial-time algorithm that computes a (1+eps)-approximation to the optimal tour, for any fixed eps>0, in TSP instances that form an arbitrary metric space with bounded intrinsic dimension. The celebrated results of Arora (A-98) and Mitchell (M-99) prove that the above result holds in the special case of TSP in a fixed-dimensional Euclidean space. Thus, our algorithm demonstrates that the algorithmic tractability of metric TSP depends on the dimensionality of the space and not on its specific geometry. This result resolves a problem that has been open since the quasi-polynomial time algorithm of Talwar (T-04)

    Some Results On Convex Greedy Embedding Conjecture for 3-Connected Planar Graphs

    Full text link
    A greedy embedding of a graph G=(V,E)G = (V,E) into a metric space (X,d)(X,d) is a function x:V(G)→Xx : V(G) \to X such that in the embedding for every pair of non-adjacent vertices x(s),x(t)x(s), x(t) there exists another vertex x(u)x(u) adjacent to x(s)x(s) which is closer to x(t)x(t) than x(s)x(s). This notion of greedy embedding was defined by Papadimitriou and Ratajczak (Theor. Comput. Sci. 2005), where authors conjectured that every 3-connected planar graph has a greedy embedding (possibly planar and convex) in the Euclidean plane. Recently, greedy embedding conjecture has been proved by Leighton and Moitra (FOCS 2008). However, their algorithm do not result in a drawing that is planar and convex for all 3-connected planar graph in the Euclidean plane. In this work we consider the planar convex greedy embedding conjecture and make some progress. We derive a new characterization of planar convex greedy embedding that given a 3-connected planar graph G=(V,E)G = (V,E), an embedding x: V \to \bbbr^2 of GG is a planar convex greedy embedding if and only if, in the embedding xx, weight of the maximum weight spanning tree (TT) and weight of the minimum weight spanning tree (\func{MST}) satisfies \WT(T)/\WT(\func{MST}) \leq (\card{V}-1)^{1 - \delta}, for some 0<δ≤10 < \delta \leq 1.Comment: 19 pages, A short version of this paper has been accepted for presentation in FCT 2009 - 17th International Symposium on Fundamentals of Computation Theor
    • …
    corecore