1,146 research outputs found

    State-Augmentation Transformations for Risk-Sensitive Reinforcement Learning

    Full text link
    In the framework of MDP, although the general reward function takes three arguments-current state, action, and successor state; it is often simplified to a function of two arguments-current state and action. The former is called a transition-based reward function, whereas the latter is called a state-based reward function. When the objective involves the expected cumulative reward only, this simplification works perfectly. However, when the objective is risk-sensitive, this simplification leads to an incorrect value. We present state-augmentation transformations (SATs), which preserve the reward sequences as well as the reward distributions and the optimal policy in risk-sensitive reinforcement learning. In risk-sensitive scenarios, firstly we prove that, for every MDP with a stochastic transition-based reward function, there exists an MDP with a deterministic state-based reward function, such that for any given (randomized) policy for the first MDP, there exists a corresponding policy for the second MDP, such that both Markov reward processes share the same reward sequence. Secondly we illustrate that two situations require the proposed SATs in an inventory control problem. One could be using Q-learning (or other learning methods) on MDPs with transition-based reward functions, and the other could be using methods, which are for the Markov processes with a deterministic state-based reward functions, on the Markov processes with general reward functions. We show the advantage of the SATs by considering Value-at-Risk as an example, which is a risk measure on the reward distribution instead of the measures (such as mean and variance) of the distribution. We illustrate the error in the reward distribution estimation from the direct use of Q-learning, and show how the SATs enable a variance formula to work on Markov processes with general reward functions

    Influence-Optimistic Local Values for Multiagent Planning --- Extended Version

    Get PDF
    Recent years have seen the development of methods for multiagent planning under uncertainty that scale to tens or even hundreds of agents. However, most of these methods either make restrictive assumptions on the problem domain, or provide approximate solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such upper bounds for problems with non-factored value functions. To allow for meaningful benchmarking through measurable quality guarantees on a very general class of problems, this paper introduces a family of influence-optimistic upper bounds for factored decentralized partially observable Markov decision processes (Dec-POMDPs) that do not have factored value functions. Intuitively, we derive bounds on very large multiagent planning problems by subdividing them in sub-problems, and at each of these sub-problems making optimistic assumptions with respect to the influence that will be exerted by the rest of the system. We numerically compare the different upper bounds and demonstrate how we can achieve a non-trivial guarantee that a heuristic solution for problems with hundreds of agents is close to optimal. Furthermore, we provide evidence that the upper bounds may improve the effectiveness of heuristic influence search, and discuss further potential applications to multiagent planning.Comment: Long version of IJCAI 2015 paper (and extended abstract at AAMAS 2015

    Maximizing the Conditional Expected Reward for Reaching the Goal

    Full text link
    The paper addresses the problem of computing maximal conditional expected accumulated rewards until reaching a target state (briefly called maximal conditional expectations) in finite-state Markov decision processes where the condition is given as a reachability constraint. Conditional expectations of this type can, e.g., stand for the maximal expected termination time of probabilistic programs with non-determinism, under the condition that the program eventually terminates, or for the worst-case expected penalty to be paid, assuming that at least three deadlines are missed. The main results of the paper are (i) a polynomial-time algorithm to check the finiteness of maximal conditional expectations, (ii) PSPACE-completeness for the threshold problem in acyclic Markov decision processes where the task is to check whether the maximal conditional expectation exceeds a given threshold, (iii) a pseudo-polynomial-time algorithm for the threshold problem in the general (cyclic) case, and (iv) an exponential-time algorithm for computing the maximal conditional expectation and an optimal scheduler.Comment: 103 pages, extended version with appendices of a paper accepted at TACAS 201

    Chance-Constrained Control with Lexicographic Deep Reinforcement Learning

    Get PDF
    This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes, in which the controller seeks to ensure that the probability of satisfying the constraint is above a given threshold. Standard DeepRL approaches require i) the constraints to be included as additional weighted terms in the cost function, in a multi-objective fashion, and ii) the tuning of the introduced weights during the training phase of the Deep Neural Network (DNN) according to the probability thresholds. The proposed approach, instead, requires to separately train one constraint-free DNN and one DNN associated to each constraint and then, at each time-step, to select which DNN to use depending on the system observed state. The presented solution does not require any hyper-parameter tuning besides the standard DNN ones, even if the probability thresholds changes. A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations

    Risk Aversion in Finite Markov Decision Processes Using Total Cost Criteria and Average Value at Risk

    Full text link
    In this paper we present an algorithm to compute risk averse policies in Markov Decision Processes (MDP) when the total cost criterion is used together with the average value at risk (AVaR) metric. Risk averse policies are needed when large deviations from the expected behavior may have detrimental effects, and conventional MDP algorithms usually ignore this aspect. We provide conditions for the structure of the underlying MDP ensuring that approximations for the exact problem can be derived and solved efficiently. Our findings are novel inasmuch as average value at risk has not previously been considered in association with the total cost criterion. Our method is demonstrated in a rapid deployment scenario, whereby a robot is tasked with the objective of reaching a target location within a temporal deadline where increased speed is associated with increased probability of failure. We demonstrate that the proposed algorithm not only produces a risk averse policy reducing the probability of exceeding the expected temporal deadline, but also provides the statistical distribution of costs, thus offering a valuable analysis tool
    • …
    corecore