128 research outputs found

    Demand Reduction and Responsive Strategies for Underground Mining

    Get PDF
    This thesis presents a demand reduction and responsive strategy for underground mining operations. The thesis starts with a literature review and background research on global energy, coal mining and the energy related issues that the mining industry face everyday. The thesis then goes on to discuss underground mine electrical power systems, data acquisition, load profiling, priority ranking, load shedding and demand side management in mining. Other areas presented in this thesis are existing energy reduction techniques, including: high efficiency motors, motor speed reduction and low energy lighting. During the thesis a data acquisition system was designed and installed at a UK Coal colliery and integrated into the mines existing supervisory control and data acquisition (SCADA) system. Design and installation problems were overcome with the construction of a test meter and lab installation and testing. A detailed explanation of the system design and installation along with the data analysis of the data from the installed system. A comprehensive load profile and load characterisation system was developed by the author. The load profiling system is comprehensive allows the definition of any type of load profile. These load profiles are fixed, variable and transient load types. The loads output and electrical demand are all taken into consideration. The load characterisation system developed is also very comprehensive. The LC MATRIX is used with the load profiles and the load characteristics to define off-line schedules. A set of unique real-time decision algorithms are also developed by the author to operate the off-line schedules within the desired objective function. MATLAB Simulation is used to developed and test the systems. Results from these test are presented. Application of the developed load profiling and scheduling systems are applied to the data collected from the mine, the results of this and the cost savings are also presented

    Ordonnancement cyclique robuste appliqué à la gestion des conteneurs dans les ports maritimes de taille moyenne

    Get PDF
    This PhD thesis is dedicated to propose a robust cyclic scheduling methodology applied to container management of medium sized seaport which faces ever changing terminal conditions and the limited predictability of future events and their timing. The robust cyclic scheduling can be seen not just a predictable scheduling to compute a container transportation schedule, but also a reactive scheduling to eliminate the disturbances in real time. In this work, the automated intelligent vehicles (AIV) are used to transport the containers, and the P-time strongly connected event graph (PTSCEG) is used as a graphical tool to model the container transit procedures. Before the arrival of the container vessel, a cyclic container transit schedule can be given by the mixed integer programming (MIP) method in short time. The robustness margins on the nodes of the system can be computed by robustness algorithms in polynomial computing time. After the stevedoring begins, this robust cyclic schedule is used. When a disturbance is observed in system, it should be compared with the known robustness margin. If the disturbance belongs to the robustness margin, the robustness algorithm is used to eliminate the disturbance in a few cycle times. If not, the MIP method is used to compute a new cyclic schedule in short timeCette thèse présente une méthodologie d’ordonnancement cyclique robuste appliquée à la gestion des conteneurs dans les ports maritimes de taille moyenne. Ces derniers sont sujet constamment à des variations des conditions des terminaux, la visibilité réduite sur des évènements futurs ne permet pas de proposer une planification précise des tâches à accomplir. L’ordonnancement cyclique robuste peut jouer un rôle primordial. Il permettra non seulement de proposer un ordonnancement prédictif pour le transport des conteneurs, mais aussi, il proposera également une planification robuste permettant d’éliminer les perturbations éventuelles en temps réel. Dans ce travail nous utilisons les Véhicules Intelligents Automatisés (AIV) pour transporter les conteneurs et nous modélisons les procédures de transit de ces derniers par des graphes d’évènements P-temporels fortement connexes (PTSCEG). Avant l’arrivée d’un porte conteneur au port, un plan (planning) de transport des conteneurs est proposé en un temps court par la programmation linéaire mixte (MIP). Des algorithmes polynomiaux de calcul de robustesse permettent de calculer sur les différents nœuds du système les marges de robustesse. Une fois le navire à quai, l’ordonnancement cyclique robuste est appliqué. Lorsqu’une perturbation est observée (localisée) dans le système, une comparaison avec la marge de robustesse connue est effectuée. Si cette perturbation est incluse dans la marge de robustesse, l’algorithme robuste est utilisé pour éliminer ces perturbations en quelques cycles. Dans le cas où la perturbation est trop importante, la méthode MIP est utilisée pour calculer un nouvel ordonnancement cyclique en un temps rédui

    Novel approaches to cyclic job-shop problems with transportation

    Get PDF
    Scheduling problems can be found in almost any field of application in the real world. These problems may not only have different characteristics but they also imply more or less complex requirements. One specific class within this domain is the cyclic job-shop problem. It occurs in various areas reaching from industrial production planning down to the systems architecture of computers. With manufacturers in particular, one can find increasing demand for effective solution methods in order to tackle these scheduling problems efficiently. This thesis will deal with the Cyclic Job-Shop Problem with Blocking and Transportation. It arises in modern manufacturing companies, where the products move automatically between the different workstations, for instance. The problem itself is not new to the research community, but hardly any work has been done in solving it. Within this thesis we will try to close this gap and present some first approaches, discussing the structure of the problem and how it can be solved. As a result, we will provide three different solution methods, including an integer programming formulation, which is solved with a commercial solver, a branch and bound algorithm and a tabu search heuristic. All algorithms are tested on a range of data sets and compared with each other. Additionally, we have worked on a polynomial solvable subproblem, which has gained more interest in the literature. As a result, a new polynomial algorithm, that outperforms the existing ones in theory as well as in empirical tests (except for some special cases) is presented. This thesis concludes with a discussion about ideas of how to improve the presented methods and some other extensions to the investigated problem

    Automating the construction of a complier heuristics using machine learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 153-162).Compiler writers are expected to create effective and inexpensive solutions to NP-hard problems such as instruction scheduling and register allocation. To make matters worse, separate optimization phases have strong interactions and competing resource constraints. Compiler writers deal with system complexity by dividing the problem into multiple phases and devising approximate heuristics for each phase. However, to achieve satisfactory performance, developers are forced to manually tweak their heuristics with trial-and-error experimentation. In this dissertation I present meta optimization, a methodology for automatically constructing high quality compiler heuristics using machine learning techniques. This thesis describes machine-learned heuristics for three important compiler optimizations: hyperblock formation, register allocation, and loop unrolling. The machine-learned heuristics outperform (by as much as 3x in some cases) their state-of-the-art hand-crafted counterparts. By automatically collecting data and systematically analyzing them, my techniques discover subtle interactions that even experienced engineers would likely overlook. In addition to improving performance, my techniques can significantly reduce the human effort involved in compiler design.(cont.) Machine learning algorithms can design critical portions of compiler heuristics, thereby freeing the human designer to focus on compiler correctness. The progression of experiments I conduct in this thesis leads to collaborative compilation, an approach which enables ordinary users to transparently train compiler heuristics by running their applications as they normally would. The collaborative system automatically adapts itself to the applications in which a community of users is interested.by Mark W. Stephenson.Ph.D

    Mechanical Engineering

    Get PDF
    The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems

    Control of Energy Storage

    Get PDF
    Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges. This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself
    • …
    corecore