874 research outputs found

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Quality of service (QoS) support for multimedia applications in large-scale networks

    Get PDF
    This dissertation studied issues pertaining to QoS provision for multimedia applications at the application layer. We initially studied Internet routing pathology and Internet routing stability by repeating experimental and analytical methods conducted by Paxson in 1996. No similar study was done in recent years. Our findings show that routing behavior of the Internet in 2006 are different from those reported in 1996 in some important aspects. Second, we investigated different stochastic models (e.g. self-similar processes, Auto-Regressive Integrated Moving-Average (ARIMA)) in order to find a suitable model that describes available bandwidth over time of an end-to-end path between two Internet hosts. Our finding of the suitable model is beneficial to predicting of future values of available bandwidth along an end-to-end path. To the best of our knowledge, no similar study was conducted. Third, we designed and evaluated a new path monitoring algorithm inferring available bandwidth of an end-to-end path without monitoring all the paths to minimize monitoring overhead. Our algorithm does not rely on underlying network-layer topology information as required in topology-aware path monitoring techniques. Finally, to complement the above study, we introduced our multicast protocol named core-set routing for transmitting multimedia data from a set of senders to a set of receivers, taking QoS into account. The protocol is suitable for interactive multi-sender multimedia applications such as video conferencing and network gaming

    Efficient service discovery in wide area networks

    Get PDF
    Living in an increasingly networked world, with an abundant number of services available to consumers, the consumer electronics market is enjoying a boom. The average consumer in the developed world may own several networked devices such as games consoles, mobile phones, PDAs, laptops and desktops, wireless picture frames and printers to name but a few. With this growing number of networked devices comes a growing demand for services, defined here as functions requested by a client and provided by a networked node. For example, a client may wish to download and share music or pictures, find and use printer services, or lookup information (e.g. train times, cinema bookings). It is notable that a significant proportion of networked devices are now mobile. Mobile devices introduce a new dynamic to the service discovery problem, such as lower battery and processing power and more expensive bandwidth. Device owners expect to access services not only in their immediate proximity, but further afield (e.g. in their homes and offices). Solving these problems is the focus of this research. This Thesis offers two alternative approaches to service discovery in Wide Area Networks (WANs). Firstly, a unique combination of the Session Initiation Protocol (SIP) and the OSGi middleware technology is presented to provide both mobility and service discovery capability in WANs. Through experimentation, this technique is shown to be successful where the number of operating domains is small, but it does not scale well. To address the issue of scalability, this Thesis proposes the use of Peer-to-Peer (P2P) service overlays as a medium for service discovery in WANs. To confirm that P2P overlays can in fact support service discovery, a technique to utilise the Distributed Hash Table (DHT) functionality of distributed systems is used to store and retrieve service advertisements. Through simulation, this is shown to be both a scalable and a flexible service discovery technique. However, the problems associated with P2P networks with respect to efficiency are well documented. In a novel approach to reduce messaging costs in P2P networks, multi-destination multicast is used. Two well known P2P overlays are extended using the Explicit Multi-Unicast (XCAST) protocol. The resulting analysis of this extension provides a strong argument for multiple P2P maintenance algorithms co-existing in a single P2P overlay to provide adaptable performance. A novel multi-tier P2P overlay system is presented, which is tailored for service rich mobile devices and which provides an efficient platform for service discovery

    Content Distribution by Multiple Multicast Trees and Intersession Cooperation: Optimal Algorithms and Approximations

    Full text link
    In traditional massive content distribution with multiple sessions, the sessions form separate overlay networks and operate independently, where some sessions may suffer from insufficient resources even though other sessions have excessive resources. To cope with this problem, we consider the universal swarming approach, which allows multiple sessions to cooperate with each other. We formulate the problem of finding the optimal resource allocation to maximize the sum of the session utilities and present a subgradient algorithm which converges to the optimal solution in the time-average sense. The solution involves an NP-hard subproblem of finding a minimum-cost Steiner tree. We cope with this difficulty by using a column generation method, which reduces the number of Steiner-tree computations. Furthermore, we allow the use of approximate solutions to the Steiner-tree subproblem. We show that the approximation ratio to the overall problem turns out to be no less than the reciprocal of the approximation ratio to the Steiner-tree subproblem. Simulation results demonstrate that universal swarming improves the performance of resource-poor sessions with negligible impact to resource-rich sessions. The proposed approach and algorithm are expected to be useful for infrastructure-based content distribution networks with long-lasting sessions and relatively stable network environment

    On the utility of network coding in dynamic environments

    Get PDF
    Many wireless applications, such as ad-hoc networks and sensor networks, require decentralized operation in dynamically varying environments. We consider a distributed randomized network coding approach that enables efficient decentralized operation of multi-source multicast networks. We show that this approach provides substantial benefits over traditional routing methods in dynamically varying environments. We present a set of empirical trials measuring the performance of network coding versus an approximate online Steiner tree routing approach when connections vary dynamically. The results show that network coding achieves superior performance in a significant fraction of our randomly generated network examples. Such dynamic settings represent a substantially broader class of networking problems than previously recognized for which network coding shows promise of significant practical benefits compared to routing
    corecore