Quality of service (QoS) support for multimedia applications in large-scale networks

Abstract

This dissertation studied issues pertaining to QoS provision for multimedia applications at the application layer. We initially studied Internet routing pathology and Internet routing stability by repeating experimental and analytical methods conducted by Paxson in 1996. No similar study was done in recent years. Our findings show that routing behavior of the Internet in 2006 are different from those reported in 1996 in some important aspects. Second, we investigated different stochastic models (e.g. self-similar processes, Auto-Regressive Integrated Moving-Average (ARIMA)) in order to find a suitable model that describes available bandwidth over time of an end-to-end path between two Internet hosts. Our finding of the suitable model is beneficial to predicting of future values of available bandwidth along an end-to-end path. To the best of our knowledge, no similar study was conducted. Third, we designed and evaluated a new path monitoring algorithm inferring available bandwidth of an end-to-end path without monitoring all the paths to minimize monitoring overhead. Our algorithm does not rely on underlying network-layer topology information as required in topology-aware path monitoring techniques. Finally, to complement the above study, we introduced our multicast protocol named core-set routing for transmitting multimedia data from a set of senders to a set of receivers, taking QoS into account. The protocol is suitable for interactive multi-sender multimedia applications such as video conferencing and network gaming

    Similar works