64 research outputs found

    Using Extended Tactics to Do Proof Transformations

    Get PDF
    In this thesis we develop a comprehensive human-oriented theorem proving system that integrates several different proof systems. The main theorem proving environment centers around a natural Gentzen first-order logic system. This allows construction of natural proofs, encourages user involvement in the search for proofs, and facilitates understanding of the resulting proofs. We integrate more abstract automatically generated proofs such as resolution refutations by transforming them to proofs in the Gentzen system. Expansion trees are another proof system used as an intermediate stage in transformations between the abstract and natural systems. They are a compact representation useful for transformations and other computations. We develop a programming language approach to theorem proving based on tactics and tacticals. Our extended tactics provide a method for doing proof transformations, as well as facilitate interactive theorem proving, allowing full integration of interactive and automatic theorem proving. In the system, we explicitly represent proofs in each proof system and view expansion tree proofs as types for Gentzen proof terms. This explicit proof representation allows proofs to be manipulated as meaningful data objects and used in various computations. For example, the proof terms in the natural Gentzen system can be used to obtain natural language explanations of proofs. We foresee several applications for this kind of theorem proving system, such as use as a logic tutor, a tool for doing mathematics, or an enhanced reasoner and explanation facility for existing A1 systems

    Computational Aspects of Proofs in Modal Logic

    Get PDF
    Various modal logics seem well suited for developing models of knowledge, belief, time, change, causality, and other intensional concepts. Most such systems are related to the classical Lewis systems, and thereby have a substantial body of conventional proof theoretical results. However, most of the applied literature examines modal logics from a semantical point of view, rather than through proof theory. It appears arguments for validity are more clearly stated in terms of a semantical explanation, rather than a classical proof-theoretic one. We feel this is due to the inability of classical proof theories to adequately represent intensional aspects of modal semantics. This thesis develops proof theoretical methods which explicitly represent the underlying semantics of the modal formula in the proof. We initially develop a Gentzen style proof system which contains semantic information in the sequents. This system is, in turn, used to develop natural deduction proofs. Another semantic style proof representation, the modal expansion tree is developed. This structure can be used to derive either Gentzen style or Natural Deduction proofs. We then explore ways of automatically generating MET proofs, and prove sound and complete heuristics for that procedure. These results can be extended to most propositional system using a Kripke style semantics and a fist order theory of the possible worlds relation. Examples are presented for standard T, S4, and S5 systems, systems of knowledge and belief, and common knowledge. A computer program which implements the theory is briefly examined in the appendix

    Unification Procedures in Automated Deduction Methods Based on Matings: A Survey

    Get PDF
    Unification procedures arising in methods for automated theorem proving based on matings are surveyed. We begin by reviewing some fundamentals of automated deduction, including the Skolem form and the Skolem-Herbrand-Gödel theorem. Next, the method of matings for first-order languages without equality due to Andrews and Bibel is presented. Standard unification is described in terms of transformations on systems (following the approach of Martelli and Montanari, anticipated by Herbrand). Some fast unification algorithms are also sketched, in particular, a unification closure algorithm inspired by Paterson and Wegman\u27s method. The method of matings is then extended to languages with equality. This extention leads naturally to a generalization of standard unification called rigid E-unification (due to Gallier, Narendran, Plaisted, and Snyder). The main properties of rigid E-unification, decidability, NP-completeness, and finiteness of complete sets, are discussed

    Proof Transformation with Built-in Equality Predicate

    Get PDF
    One of the main reasons why computer generated proofs are not widely accepted is often their complexity and incomprehensibility. Especially proofs of mathematical theorems with equations are normally presented in an inadequate and not intuitive way. This is even more of a problem for the presentation of inferences drawn by automated reasoning components in other AI systems. For first order logic, proof transformation procedures have been designed in order to structure proofs and state them in a formalism that is more familiar to human mathematicians. In this report we generalize these approaches, so that proofs involving equational reasoning can also be handled. To this end extended refutation graphs are introduced to represent combined resolution and paramodulation proofs. In the process of transforming these proofs into natural deduction proofs with equality, the inherent structure can also be extracted by exploiting topological properties of refutation graphs

    An Approach to Assertion Application via Generalised Resolution

    Get PDF
    In this paper we address assertion retrieval and application in theorem proving systems or proof planning systems for classical first-order logic. Due to Huang the notion of assertion comprises mathematical knowledge such as definitions, theorems, and axioms. We propose a distributed mediator module between a mathematical knowledge base KB and a theorem proving system TP which is independent of the particular proof representation format of TP and which applies generalised resolution in order to analyze the logical consequences of arbitrary assertions for a proof context at hand. Our approach is applicable also to the assumptions which are dynamically created during a proof search process. It therefore realises a crucial first step towards full automation of assertion level reasoning. We discuss the benefits and connection of our approach to proof planning and motivate an application in a project aiming at a tutorial dialogue system for mathematics

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Preprints of Proceedings of GWAI-92

    No full text
    This is a preprint of the proceedings of the German Workshop on Artificial Intelligence (GWAI) 1992. The final version will appear in the Lecture Notes in Artificial Intelligence

    Normalisation Control in Deep Inference via Atomic Flows

    Get PDF
    We introduce `atomic flows': they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a new and very general normalisation theorem, which contains cut elimination as a special case. We operate in deep inference, which is more general than other syntactic paradigms, and where normalisation is more difficult to control. We argue that atomic flows are a significant technical advance for normalisation theory, because 1) the technique they support is largely independent of syntax; 2) indeed, it is largely independent of logical inference rules; 3) they constitute a powerful geometric formalism, which is more intuitive than syntax
    corecore