

Citation for published version:
Guglielmi, A & Gundersen, T 2008, 'Normalisation control in deep inference via atomic flows', Logical Methods in
Computer Science, vol. 4, no. 1, 9, pp. 1-36. https://doi.org/10.2168/LMCS-4(1:9)2008

DOI:
10.2168/LMCS-4(1:9)2008

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Publisher Rights
CC BY-ND

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161909941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.2168/LMCS-4(1:9)2008
https://researchportal.bath.ac.uk/en/publications/normalisation-control-in-deep-inference-via-atomic-flows(fc1d34c4-0b1a-4411-8158-e17c676bb0b6).html

Logical Methods in Computer Science
Vol. 4 (1:9) 2008, pp. 1–36
www.lmcs-online.org

Submitted Aug. 2, 2007
Published Mar. 31, 2008

NORMALISATION CONTROL IN DEEP INFERENCE

VIA ATOMIC FLOWS ∗

ALESSIO GUGLIELMI AND TOM GUNDERSEN

University of Bath, Bath BA2 7AY, UK
e-mail address: {A.Guglielmi,T.E.Gundersen}@Bath.Ac.UK

Abstract. We introduce ‘atomic flows’: they are graphs obtained from derivations by
tracing atom occurrences and forgetting the logical structure. We study simple manipu-
lations of atomic flows that correspond to complex reductions on derivations. This allows
us to prove, for propositional logic, a new and very general normalisation theorem, which
contains cut elimination as a special case. We operate in deep inference, which is more
general than other syntactic paradigms, and where normalisation is more difficult to con-
trol. We argue that atomic flows are a significant technical advance for normalisation
theory, because 1) the technique they support is largely independent of syntax; 2) indeed,
it is largely independent of logical inference rules; 3) they constitute a powerful geometric
formalism, which is more intuitive than syntax.

1. Introduction

We are interested in normalising derivations in proof systems of propositional logic. As
for natural deduction and the sequent calculus [Gen69], we intend normalisation as elim-
inating cuts, or, more in general, ‘detours’, from derivations. Normalisation is performed
by algorithms that, given a non-normal derivation, produce a normal derivation, free of
detours. A typical detour can be depicted, in an abstract representation of a portion of a
derivation, as on the left in

a
ā

a
→ a ,

where the atom ā is created and destroyed, respectively, by an axiom and a cut, represented
as two horizontal bars. In many cases, the diagram on the left can be streamlined as on the
right, and this is what happens in a typical normalisation step. However, inside concrete
proof systems, this abstract, geometric simplicity is almost always severely obscured by
syntactic bureaucracy.

1998 ACM Subject Classification: F.4.1.
Key words and phrases: Normalisation, deep inference, cut elimination, atomic flows.
This work was in part funded by an Overseas Research Scholarship and a Research Studentship, both

from the University of Bath, and by the British Council Alliance Programme.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (1:9) 2008
c© Alessio Guglielmi and Tom Gundersen
CC© Creative Commons

http://creativecommons.org/about/licenses

2 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Originally stimulated by Girard’s [Gir87], we share with several colleagues the research
objective of getting rid of bureaucracy in proof systems. We believe that, ultimately, deriva-
tions are geometric objects of some sort, for which current syntactic formalisms only offer
imperfect, bureaucratic representations. Our hopes rely, in part, on the success of proof nets
for multiplicative linear logic. Those proof nets are a geometric, largely bureaucracy-free
proof system, where normalisation can be directly performed as depicted above.

In classical propositional logic, the situation is more complicated. There are proof nets
for classical propositional logic, but they are not a proof system (as defined by Cook and
Reckhow in [CR79]), because checking their correctness requires exponential time in their
size. There is not much hope for improvement, because obtaining a proof system for classical
propositional logic based on proof nets would imply that coNP is equal to NP. So, proof
nets are a source of inspiration, and especially those devised by Lamarche and Straßburg-
er in [LS05b], but they are not a solution to our quest of bureaucracy-free formalisms for
logics as expressive as classical logic.

This paper is about a geometric, bureaucracy-free formalism, called atomic flows. An
atomic flow is a directed graph obtained from a derivation by only retaining information
about the creation and destruction of atom occurrences. Atomic flows are, essentially,
specialised Buss flow graphs [Bus91]. Notably, the atomic flow of a derivation completely
disregards all the logical relations and associated inference steps; so, an atomic flow is not
a derivation, but only a very abstract representation of it. Since atomic flows and the
techniques they induce are largely independent of syntax, we think that they will help us
defining a bureaucracy-free formalism. In fact, they yield a geometric and bureaucracy-free
understanding of normalisation, which is the most important proof-theoretic aspect of proof
systems.

We show that the information contained in an atomic flow is sufficient to control several
normalisation algorithms for its associated derivation. This means that a normalisation al-
gorithm extracts from a derivation its atomic flow, and then decides the normalisation steps
only based on the structure of the atomic flow. In particular, atomic flows provide conve-
nient induction measures for termination. The advantage of atomic flows is their simplicity,
compared to derivations, as Figure 6 (page 30) eloquently shows. They allow us to prove, in
this paper, a new and more general normalisation result than cut elimination. Proving the
same without atomic flows is conceivable, but perverse; finding the normalisation algorithm
without atomic flows is, in our opinion, inconceivable.

We consider derivations in the proof system SKS of the calculus of structures [BT01],
which is a very general formalism based on deep inference [Gug07]. Because of their com-
paratively larger expressive power, normalisation in pure, unconstrained proof systems in
the calculus of structures is much more challenging than in more disciplined formalisms,
like the sequent calculus or natural deduction. In fact, deep-inference rules disregard the
notion of root connective of a formula, which is a crucial asset for normalisation in non-deep
inference formalisms.

We show that every SKS derivation can be streamlined, i.e., we can remove all causal
dependencies between axioms and cuts of the kind depicted above on the left. This result
generalises cut elimination for two reasons: 1) SKS can faithfully embed derivations in
most other proof systems of different formalisms, like the sequent calculus, hypersequents,
natural deduction, resolution and others; 2) a cut-free proof is a special case of a streamlined
derivation. Intuitively, this result is sort of a Craig’s interpolation for derivations instead

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 3

of formulae. We note that, contrary to traditional cut elimination, our result is symmetric
along the axis premiss-conclusion of a derivation (as is traditional in deep inference).

The core idea of our algorithms, as controlled by atomic flows, consists in slightly
altering a derivation around a couple of matching axiom and cut, and composing it with
itself. In principle, this is very similar to normalisation in natural deduction. This idea
is due to Tiu and then used by Brünnler, in [Brü03], to simplify his previous proof of cut
elimination in the calculus of structures. In our case, the idea allows us to dispense entirely
with the usual case analysis and permutation of rules, which is the standard routine in cut
elimination proofs in the sequent calculus and elsewhere.

The observed independence from syntax leads us to believe that successful normalisation
stems less than is usually believed from the mutual ‘harmony’ between logical rules. In fact,
in this paper, there is no concern whatsoever for this issue. Rather, the choice in designing
logical rules seems to be essentially free, provided that they are linear and that they support
atomic structural rules. Our technique relies on substituting formulae for occurrences of
atoms, which is only manageable if the structural part of the proof system is atomic. As a
matter of fact, complete and analytic proof systems with atomic structural rules and linear
logical ones can only be designed in deep inference, for most logics.

Finally, we note that several normalisation algorithms can be designed and several nor-
mal forms can be obtained by employing atomic flows. We are seeing a robust normalisation
phenomenon: variations in the algorithms are possible and interesting, we are not dealing
here with a delicate property of derivations that requires extra care and attention to the
tiniest syntactic detail. Once the basics of the technique are mastered, derivations can be
manipulated with ease. We think that atomic flows get closer than ever to the essence of
normalisation in classical propositional logic.

After a brief introduction to deep inference, we introduce atomic flows and their reduc-
tions, and then the streamlining algorithms. The two crucial, simple ideas to understand
in this paper are shown in Remark 4.16 (page 19) and in Definition 5.1 (page 22).

2. Background on Deep Inference

Deep inference is a relatively recent development in proof theory. It is a methodology
according to which several formalisms can be defined with excellent structural properties.
The calculus of structures [Gug07] is one of them and is now well developed for classi-
cal [Brü03, Brü06a, Brü06d, BT01, Brü06b], intuitionistic [Tiu06a], linear [Str02, Str03b],
modal [Brü06c, GT07, Sto07] and commutative/non-commutative logics [Gug07, Tiu06b,
Str03a, Bru02, DG04, GS01, GS02, GS07, Kah06, Kah07b]. The basic proof complex-
ity properties of the calculus of structures are known [BG08]. The calculus of struc-
tures promoted the discovery of a new class of proof nets for classical and linear logic
[LS05a, LS05b, LS06, SL04] (see also [Gui06]). There exist implementations in Maude of
deep-inference proof systems [Kah07a]. For a better introduction than this, we refer the
reader to [Brü03].

Definition 2.1. Formulae, α, β, γ, δ are freely built from: units, f (false), t (true); atoms,
a, b, c, d, e; disjunction and conjunction, [α ∨ β] and (α ∧ β). On the set of atoms a
(non-identical) involution ·̄ is defined, and dual atom occurrences, as a and ā, can appear
in formulae. We denote contexts, i.e., formulae with a hole, by ξ{ } and ζ{ }; we also
use multiple contexts, ξ{ } · · · { }, i.e., formulae with many holes; for example, if ξ{a}

4 ALESSIO GUGLIELMI AND TOM GUNDERSEN

is b ∧ [a ∨ c], then ξ{ } is b ∧ [{ } ∨ c], ξ{b} is b ∧ [b ∨ c] and ξ{a ∧ d} is b ∧ [(a ∧ d) ∨ c]; if
ξ{a}{b}{c} is b ∧ [(a ∧ d) ∨ c] then ξ{b}{c}{a} is c ∧ [(b ∧ d) ∨ a].

Remark 2.2. Negation is only defined for atoms, which is not a limitation thanks to De
Morgan laws.

Note that when we write ξ{a}, we mean that an occurrence of a exists in the formula,
we singled it out and we refer specifically to that occurrence. It is important to distinguish
between an atom a and a set of occurrences of atom a inside a formula or a derivation.
In the following, we mark in various ways occurrences of atoms, and we perform several
substitutions of formulae in the place of atom occurrences.

Definition 2.3. Inference rules, ρ, have one premiss and one conclusion, and their instances
are used in inference steps to rewrite inside formulae. A derivation, Φ, from α (premiss) to
β (conclusion) is a chain of inference steps with α at the top and β at the bottom, and is

usually indicated by

α

Φ
‖
‖ S

β

, where S is the name of the deductive system or a set of inference

rules; a proof is a derivation from t; besides Φ, we denote derivations with Ψ. We denote
with ξ{Φ} the result of including every formula of Φ into the context ξ{ }: since we adopt
deep inference, ξ{Φ} is a valid derivation. We denote with Φ{a�α}, Φ{f �α} and Φ{t�α}
the operation of substituting α into a set of occurrences of an atom a or unit in Φ; the
result is not necessarily a valid derivation, because some instances of rules might break;
which occurrences to replace is always made clear by suitable decorations of a, f and t, like
a1 and f•.

Now we define the two standard deductive systems for classical propositional logic
in deep inference that are used throughout the paper. KS is analytic, in the sense that
premisses only contain subformulae of conclusions, and SKS is not [Brü03, Brü06a, Brü06d,
BT01].

Definition 2.4. System SKS in the calculus of structures is defined by the following struc-
tural rules:

t
ai↓

a ∨ ā

f
aw↓

a

a ∨ a
ac↓

a

interaction weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a

cointeraction coweakening cocontraction

,

and by the two logical rules:

α ∧ [β ∨ γ]
s

(α ∧ β) ∨ γ

(α ∧ β) ∨ (γ ∧ δ)
m

[α ∨ γ] ∧ [β ∨ δ]

switch medial

.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 5

The rule cointeraction is also called an (atomic) cut. In addition to the rules shown, there

is a rule
γ

=
δ

, such that γ and δ are opposite sides in one of the following equations:

α ∨ β = β ∨ α , α ∨ f = α ,

α ∧ β = β ∧ α , α ∧ t = α ,

[α ∨ β] ∨ γ = α ∨ [β ∨ γ] , t ∨ t = t ,

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) , f ∧ f = f .

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. System KS is the same as SKS, but without the rules
ai↑, aw↑ and ac↑. A cut-free derivation is a derivation where ai↑ is not used. All derivations
in this paper are in SKS, unless indicated otherwise.

Note that all the structural rules only apply to atoms. As shown later, equivalent
structural rules applying to formulae instead of atoms can be derived from the atomic ones
together with the logical rules. The fact that we can work only with atomic structural rules
is essential later on.

Instead of the term ‘axiom’ we use ‘interaction’; the reason is that, in deep inference,
axioms do not close derivation branches. However, it is not misleading to think of interaction
instances as axiom instances in the sequent calculus. In several papers, including [Brü03],
the reader can find explanations of how reducing a proof in SKS to a proof in KS is a
cut-elimination process in the traditional sense. In other words, the rules ai↑, aw↑ and ac↑
are, together, morally equivalent to a cut in the sequent calculus.

There are many SKS derivations in this paper, providing examples for the above def-
initions. Mastering the following, standard constructions of the calculus of structures is

crucial: 1) moving a formula outside of a context, as in

ξ{α}
‖
‖ {s}

ξ{f} ∨ α

; 2) bringing a formula

inside a context, as in

ξ{t} ∧ α
‖
‖ {s}

ξ{α}

. In the next remark, we appeal to both. The constructions

in the rest of this subsection are needed later in the paper.

Remark 2.5. For any ξ{ }, ζ{ } and α, by working inductively on the contexts ξ{ } and
ζ{ }, we can build

ξ{t} ∧ ζ{α}
‖
‖ {s}

ξ{α} ∨ ζ{f}

.

We can do this according to the following two schemes:

ξ{t} ∧ ζ{α}
‖
‖ {s}

ζ{ξ{t} ∧ α}
‖
‖ {s}

ζ{ξ{α}}
‖
‖ {s}

ξ{α} ∨ ζ{f}

and

ξ{t} ∧ ζ{α}
‖
‖ {s}

ξ{ζ{α}}
‖
‖ {s}

ξ{α ∨ ζ{f}}
‖
‖ {s}

ξ{α} ∨ ζ{f}

.

6 ALESSIO GUGLIELMI AND TOM GUNDERSEN

For example, for ξ{ } = [{ } ∨ b] ∧ c and ζ{ } = (d ∧ { }) ∨ e, consider

([t ∨ b] ∧ c) ∧ [(d ∧ α) ∨ e]
=

([t ∨ b] ∧ c) ∧ [(α ∧ d) ∨ e]
s

(([t ∨ b] ∧ c) ∧ (α ∧ d)) ∨ e
=

(((α ∧ [t ∨ b]) ∧ c) ∧ d) ∨ e
s

(([(α ∧ t) ∨ b] ∧ c) ∧ d) ∨ e
=

(d ∧ [f ∨ ([α ∨ b] ∧ c)]) ∨ e
s

[(d ∧ f) ∨ ([α ∨ b] ∧ c)] ∨ e
=

([α ∨ b] ∧ c) ∨ [(d ∧ f) ∨ e]

.

We define the following ‘macro’ rule ss, called super switch, to be a shorthand for any
derivation of the above form:

ξ{t} ∧ ζ{α}
ss

ξ{α} ∨ ζ{f}
.

Remark 2.6.
α ∨ α

c↓
α

and
α

c↑
α ∧ α

are two other ‘macro’ rules: they are called, respectively,

contraction and cocontraction, and they apply to generic formulae instead of atoms. They
can be derived, respectively, from {ac↓,m} and {ac↑,m}. For an example of the latter, see
Figure 1 (page 10).

3. Atomic Flows

In this section, we define atomic flows and ai-cycles inside them. These special cycles
are circular dependencies between interactions and cointeractions, and they are particularly
complex to deal with in the syntax. They turn out to be natural concepts in atomic flows,
and understanding them is the key to our normalisation algorithm. The section closes with
the definition of streamlined atomic flows and associated derivations.

3.1. Atomic Flows and Derivations. Atomic flows are somewhat similar to proof nets.
However, we prove that, no matter how we freely build an atomic flow (as opposed to a
proof net structure), the flow is associated with some derivation. So, atomic flows are always
‘sequentialisable’, in proof-net parlance. In fact, atomic flows carry much less information
than derivations do, because they do not keep track of the logical relations between the
atoms they trace, only their structural information is retained (in the sense of structural
rules, as opposed to logical ones).

We can think of atomic flows as composite diagrams that are freely generated from a set
of six elementary diagrams. Technically, atomic flows are special kinds of labelled directed
acyclic graphs, and the properties of their vertices are dictated by their labels, which we
define as follows.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 7

Definition 3.1. We call the following six diagrams (atomic-flow) labels:

ai↓ or interaction aw↓ or weakening ac↓ or contraction

ai↑ or cointeraction aw↑ or coweakening ac↑ or cocontraction

.

Cointeraction is also called cut.

Definition 3.2. An (atomic) flow is a tuple (V,E, η, up, lo) such that:

(1) V is a finite set of vertices, denoted by ν;
(2) E is a finite set of edges, denoted by ǫ;
(3) η : V → {ai↓, ai↑, aw↓, aw↑, ac↓, ac↑} maps vertices to their labels;
(4) up : E → V ∪ {⊤} and lo : E → V ∪ {⊥} are, respectively, the upper and lower

maps, and ⊤ and ⊥ are special vertices not belonging to V ; we define, for every
ν ∈ V ∪ {⊤,⊥}, the set Lν = { ǫ | up(ǫ) = ν } of lower edges of ν, the set Uν = { ǫ |
lo(ǫ) = ν } of upper edges of ν, and the set Eν = Lν ∪ Uν of edges of ν;

(5) if |S| denotes the cardinality of set S, we have that

if η(ν) = ai↓ then |Lν | = 2 and |Uν | = 0,

if η(ν) = ai↑ then |Lν | = 0 and |Uν | = 2,

if η(ν) = aw↓ then |Lν | = 1 and |Uν | = 0,

if η(ν) = aw↑ then |Lν | = 0 and |Uν | = 1,

if η(ν) = ac↓ then |Lν | = 1 and |Uν | = 2,

if η(ν) = ac↑ then |Lν | = 2 and |Uν | = 1;

(6) there is no sequence ǫ1, . . . , ǫh of edges of V such that up(ǫi) = lo(ǫi+1 (mod h)), for
1 ≤ i ≤ h;

(7) there is a polarity assignment π : E → {−, +} such that, for every ν ∈ V ,
(a) if η(ν) ∈ {ac↓, ac↑} then π(Eν) = {−} or π(Eν) = {+};
(b) if η(ν) ∈ {ai↓, ai↑} then π(Eν) = {−, +}.

Besides ǫ, we use small numerals 1, 2, . . . and colours to denote edges. Atomic flows are
denoted with A, B, C and D. Given an atomic flow A, we say that the sets L⊤ = {ǫ1, . . . , ǫh}
and U⊥ = {ǫ′1, . . . , ǫ

′
k} contain, respectively, the upper and lower edges of A; in such a case,

we can represent A as
ǫ1 · · · ǫh

A

ǫ′
1 · · · ǫ′

k

.

In general, we represent atomic flows as directed-graph diagrams, except that the special
vertices ⊤ and ⊥ are not shown, and the labels of the vertices are explicitly shown as
graphical elements. When we refer to the vertices of an atomic flow, we do not include ⊤
and ⊥. Sometimes we identify vertices with their labels.

An atomic flow is a directed graph, whose edges are associated to atom occurrences
in derivations, and the direction of the edges corresponds to the up-down direction in a

8 ALESSIO GUGLIELMI AND TOM GUNDERSEN

derivation. Vertices are associated to points in the derivation where atom occurrences are
created or destroyed, and the nature of each vertex is described by its label. Naturally, these
graphs are acyclic (condition 6). The two special vertices ⊤ and ⊥ represent the top and
bottom of a derivation: we can consider ⊤ the vertex that creates all the atom occurrences
in the premiss and ⊥ the vertex that destroys all atom occurrences in the conclusion.

The polarity assignment condition (7) ensures that atoms in(co)contractions have the
same polarity, and those in (co)interactions have dual polarities (as happens in derivations).
Every atomic flow has 2n polarity assignments, where n is the number of connected compo-
nents in the graph. We should not be worried about the apparent complexity of the polarity
assignment condition: in fact, we could equivalently consider two sorts of (co)contraction
and (co)weakening labels, the negative and the positive ones, and ask for vertices to be
joined by respecting their polarities. This is clearly a locally checkable property, much
simpler than, for example, some global correctness criterion for proof nets.

Example 3.3. Consider the atomic flow

A = ({ ν1 , ν2 , ν3 },

{ 1 , 2 , 3 , 4 , 5 },

{ ν1 7→ ai↑ , ν2 7→ ac↑ , ν3 7→ ai↑ },

{ 1 7→ ⊤ , 2 7→ ⊤ , 3 7→ ν2 , 4 7→ ν2 , 5 7→ ⊤ },

{ 1 7→ ν1 , 2 7→ ν2 , 3 7→ ν1 , 4 7→ ν3 , 5 7→ ν3 }) ;

the following are three of its possible representations:

4

21 5

3
,

1 +

3 4

2 − + 5

and
3 4

2 +1 − 5 −

;

in the last two diagrams, we also indicated each of the two possible polarity assignments.
This flow has one cocontraction and two cointeraction vertices; it has three upper edges, 1,
2 and 5, and no lower edges.

Example 3.4. The graph is not an atomic flow, for lack of a polarity assignment.

We now define the mapping from derivations to atomic flows. As we said, the idea is
that structural rules map to the respective atomic-flow vertices, and the edges trace the
atoms between inference steps. We first state a fact, whose proof is immediate.

Proposition 3.5. Given an SKS derivation Φ, there is a unique atomic flow A (modulo
isomorphisms) such that:

(1) there is a surjective map between the set of atom occurrences of Φ and the set of
edges of A;

(2) for each inference step
ξ{α}

ρ
ξ{β}

of Φ, where ρ ∈ {ai↓, ai↑, aw↓, aw↑, ac↓, ac↑} and
α

ρ
β

is a rule instance, all atom occurrences in ξ{ } in the premiss are respectively

mapped to the same edges of A as the atom occurrences in ξ{ } in the conclusion;

the atom occurrences in
α

ρ
β

are mapped to edges of A such that the edges are related

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 9

with vertices as indicated below, for each possible case of the inference step:

t
ai↓

a1 ∨ ā2
to

1 2
,

a1 ∧ ā2

ai↑
f

to
1 2

,

f
aw↓

a1
to

1
,

a1

aw↑
t

to
1

,

a1 ∨ a2

ac↓
a3

to
1 2

3
,

a1

ac↑
a2 ∧ a3

to
2 3

1
,

where the mapping is indicated by small numerals.
(3) for each inference step of Φ of kind

ξ{α ∧ [β ∨ γ]}
s

ξ{(α ∧ β) ∨ γ}
,

ξ{(α ∧ β) ∨ (γ ∧ δ)}
m

ξ{[α ∨ γ] ∧ [β ∨ δ]}
,

ξ{α ∨ β}
=

ξ{β ∨ α}
,

ξ{α ∧ β}
=

ξ{β ∧ α}
,

ξ{[α ∨ β] ∨ γ}
=

ξ{α ∨ [β ∨ γ]}
,

ξ{α ∨ [β ∨ γ]}
=

ξ{[α ∨ β] ∨ γ}
,

ξ{(α ∧ β) ∧ γ}
=

ξ{α ∧ (β ∧ γ)}
,

ξ{α ∧ (β ∧ γ)}
=

ξ{(α ∧ β) ∧ γ}
,

ξ{α ∨ f}
=

ξ{α}
,

ξ{α}
=

ξ{α ∨ f}
,

ξ{α ∧ t}
=

ξ{α}
and

ξ{α}
=

ξ{α ∧ t}

all the atom occurrences in ξ{ }, α, β, γ and δ in the premiss are respectively
mapped to the same edges of A as the atom occurrences in ξ{ }, α, β, γ and δ in
the conclusion.

Definition 3.6. Given a derivation Φ, we say that the unique atomic flow A defined in
Proposition 3.5 is the atomic flow associated with the derivation Φ. Sometimes, when an
atom occurrence a in Φ maps to an edge ǫ in A, we decorate ǫ with the label a.

Example 3.7. Figure 1 has some examples of atomic flows associated with derivations.

Inference rules are usually called linear when they do not ‘create’ nor ‘destroy’ atoms.
Linear rules of SKS are switch, medial and (every equation defining) rule =. Note that
linear inference rules do not introduce any vertices in atomic flows.

We now show that there is no such thing as an ‘invalid atomic flow’, or, in other words,
the mapping from derivations to atomic flows is surjective.

Theorem 3.8. Every atomic flow is associated with some derivation.

Proof. First, we construct a derivation scheme Φ that ‘glues together’ any two atomic flows
without introducing any vertices. For every α, β, the atomic flow of the following derivation

10 ALESSIO GUGLIELMI AND TOM GUNDERSEN

t
ai↓

a ∨ ā
=

(a ∧ t) ∨ (t ∧ ā)
m

[a ∨ t] ∧ [t ∨ ā]
=

[a ∨ t] ∧ [ā ∨ t]
s

([a ∨ t] ∧ ā) ∨ t
=

(ā ∧ [a ∨ t]) ∨ t
s

[(ā ∧ a) ∨ t] ∨ t
=

(a ∧ ā) ∨ t
ai↑

f ∨ t
=

t

a ∧ [ā ∨ t] ∧ ā
ai↓

a ∧ [ā ∨ [ā ∨ a]] ∧ ā
=

(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā
s

[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā
ac↓

[(a ∧ ā) ∨ a] ∧ ā
ai↑

[f ∨ a] ∧ ā
=

a ∧ ā
ac↑

(a ∧ a) ∧ ā
=

a ∧ (a ∧ ā)
ai↑

a ∧ f

[a ∨ b] ∧ c
ac↑

[(a ∧ a) ∨ b] ∧ c
ac↑

[(a ∧ a) ∨ (b ∧ b)] ∧ c
ac↑

[(a ∧ a) ∨ (b ∧ b)] ∧ (c ∧ c)
m

([a ∨ b] ∧ [a ∨ b]) ∧ (c ∧ c)
=

([a ∨ b] ∧ c) ∧ ([a ∨ b] ∧ c)

Figure 1: Examples of atomic flows associated with derivations.

consists only of edges (there are no vertices):

Ψ =

[α ∨ β] ∨ t
=

[(α ∧ t) ∨ (t ∧ β)] ∨ t
m

([α ∨ t] ∧ [t ∨ β]) ∨ t
=

([α ∨ t] ∧ [β ∨ t]) ∨ t
s

[([α ∨ t] ∧ β) ∨ t] ∨ t
=

(β ∧ [α ∨ t]) ∨ t
s

[(β ∧ α) ∨ t] ∨ t
=

(α ∧ β) ∨ t

.

We use Ψ and ss (see Remark 2.5) to ‘move’ an atom a from one context ζ{ } to another
context ξ{ }, again with an associated atomic flow that is free of vertices:

(ξ{t} ∧ ζ{a}) ∨ t
ss

[ξ{a} ∨ ζ{f}] ∨ t

Ψ
‖
‖ {s,m}

(ξ{a} ∧ ζ{f}) ∨ t

.

This construction can be used zero or more times to get the desired Φ, for h ≥ 0:

(ξ{t} · · · {t} ∧ ζ{a1} · · · {ah}) ∨ t

Φ
‖
‖ {s,m}

(ξ{a1} · · · {ah} ∧ ζ{f} · · · {f}) ∨ t

.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 11

We can now prove the theorem by induction on the number of vertices of a given atomic
flow A. The cases where A only has zero or one vertex are trivial. Let us then suppose that
A has more than one vertex; then A can be considered as composed of two flows B and C,
each with less vertices than A, as follows:

ǫ̂1 · · · ǫ̂k ǫ̃1 · · · ǫ̃m

A

ǫ̂′
1 · · · ǫ̂′

l
ǫ̃′
1 · · · ǫ̃′n

=

ǫ̃m· · ·ǫ̃1· · ·
B

ǫ̂kǫ̂1

ǫh· · ·ǫ1

C

ǫ̃′nǫ̃′
1 · · ·ǫ̂′

l· · ·ǫ̂′
1

,

where h, k, l,m, n ≥ 0 (this can possibly be done in many different ways). By the inductive

hypothesis, there exist derivations

γ

ΦB

‖
‖

ζ{aǫ1
1 } · · · {aǫh

h }

and

ξ{aǫ1
1 } · · · {aǫh

h }

ΦC

‖
‖

δ

whose flows are,

respectively, B and C. Using these, we can build

(ξ{t} · · · {t} ∧ γ) ∨ t

(ξ{t}···{t}∧ΦB)∨t
‖
‖

(ξ{t} · · · {t} ∧ ζ{aǫ1
1 } · · · {aǫh

h }) ∨ t

Φ
‖
‖

(ξ{aǫ1
1 } · · · {aǫh

h } ∧ ζ{f} · · · {f}) ∨ t

(ΦC∧ζ{f}···{f})∨t
‖
‖

(δ ∧ ζ{f} · · · {f}) ∨ t

,

whose flow is A.

The derivations in the constructions for the theorem above involve tautologies of the
kind α ∨ t. There, the ‘logical content’ of α does not matter because it is trivialized by
t, and we are free to build derivations with any premiss and conclusion. A challenging
question is whether a derivation exists with a given associated flow and with given premiss
and conclusion; in this case, we cannot resort to logical units to trivialize derivations. In the
following, in particular in Sections 4 and 5, we reason about derivations whose premiss and
conclusion are arbitrary and have to be preserved through transformations of derivations
and their associated flows.

3.2. Paths and Cycles. We now define the notions of ‘ai-path’ and ‘ai-cycle’ in atomic
flows. Paths are sequences of adjacent edges that only ‘go down’ or only ‘go up’; ai-paths
are formed by joining paths at interaction or cointeraction vertices; ai-cycles are circular
ai-paths. We also define the notion of ‘simple edge’, i.e., an edge connecting an interaction
and a cointeraction, as in the first diagram in this paper.

Definition 3.9. Given an atomic flow (V,E, η, up, lo) and ǫ1, . . . , ǫh ∈ E such that, for
1 ≤ i < h, we have lo(ǫi) = up(ǫi+1), up(ǫ1) = ν and lo(ǫh) = ν ′, we say that ǫ1, . . . , ǫh is a
path from ν to ν ′ and that ǫh, . . . , ǫ1 is a path from ν ′ to ν; both paths have length h. An
ai-path from ν to ν ′ of length h is either a path from ν to ν ′ of length h or a sequence of edges
ǫ1, . . . , ǫk, ǫk+1, . . . , ǫh such that ǫk 6= ǫk+1 and, for some ν ′′ ∈ V with η(ν ′′) ∈ {ai↓, ai↑}, we
have that ǫ1, . . . , ǫk is an ai-path from ν to ν ′′ and ǫk+1, . . . , ǫh is an ai-path from ν ′′ to ν ′.

12 ALESSIO GUGLIELMI AND TOM GUNDERSEN

An ai-path of length h is maximal if no ai-path containing its edges has length greater than
h. An ai-path from (resp., to) ν of length h is a maximal ai-path from (resp., to) ν if no
ai-path from (resp., to) ν containing its edges has length greater than h. A path from an
interaction to a cointeraction vertex or vice versa is called an ai-connection.

Example 3.10. The atomic flow on the left has the ai-paths on the right, and the paths
are marked with an asterisk:

1

2 3

4

5

1
∗

1, 2 2
∗

3
∗

1, 2, 4 2, 4∗ 3, 4∗ 4
∗

1, 2, 4, 5 2, 4, 5 3, 4, 5 4, 5 5
∗

.

In addition, the flow has the paths and ai-paths obtained from the shown ones by inverting
the order of edges, for example 5, 4, 2, 1 is an ai-path. The ai-paths from the interaction
vertex are 1 and 2 and 2, 4 and 2, 4, 5; the ai-paths to the contraction vertex are 1, 2 and
2 and 3 and 4 and 5, 4; of all the ai-paths to the cointeraction vertex, 2, 4 is the only ai-
connection; the only other ai-connection in the flow is 4, 2. The maximal ai-paths are 1, 2, 4, 5

and 3, 4, 5 and their inverses. The maximal ai-paths from the cointeraction vertex are 4, 2, 1

and 4, 3 and 5; the maximal ai-paths to the contraction vertex are 1, 2 and 3 and 5, 4.

Simple edges represent immediate causality relations between axioms and cuts. They
play a crucial role in the following, in particular when they belong to ai-cycles.

Definition 3.11. An ai-connection consisting of a single edge is called a simple edge. A
clean path is an ai-path where every ai-connection is a simple edge. An ai-cycle is an ai-
path from a vertex to itself, where no edge appears twice; we do not distinguish ai-cycles
that only differ for cyclic permutations of their edges or for inversion, so, if ǫ1, . . . , ǫh is an
ai-cycle, then ǫ2, . . . , ǫh, ǫ1 and ǫh, . . . , ǫ1 are the same ai-cycle. A fragile cycle is an ai-cycle
containing a simple edge. Atomic flows and ai-paths are both called cycle-free if they do
not contain ai-cycles.

Example 3.12. In the following cycle-free flow all the ai-paths are clean paths; 1, 2 and 3

are ai-connections and simple edges:

1 2 3 .

Example 3.13. Consider the following atomic flow:

1 2

3 4 7 85 6 .

The flow contains two ai-cycles: 1, 4, 5, 6, 7, 2 and 1, 3, 8, 2. The first ai-cycle contains the two
simple edges 5 and 6, so it is a fragile cycle; the second ai-cycle does not contain any simple
edge. Note that the two ai-cycles are ‘overlapping’, in the sense that edges 1 and 2 belong
to both.

Remark 3.14. If an ai-path is maximal, then it is cycle-free.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 13

3.3. Streamlined Derivations. Intuitively, we can consider interaction and weakening as
creators of paths, and we can consider cointeraction and coweakening as their destroyers.
We call a derivation ‘streamlined’ if no path is both created and destroyed.

Definition 3.15. An SKS derivation is streamlined if, in its associated atomic flow, there
are no paths from interaction or weakening vertices to cointeraction or coweakening vertices.

Remark 3.16. It immediately follows from the definition that the diagram below describes
the shape of a streamlined derivation; the boxes stand for flows obtained by freely composing
edges and vertices whose labels are only those indicated on the boxes:

· · ·

· · · · · · · · · · · · · · ·

· · ·

.

Example 3.17. The first flow is not streamlined, the other two are streamlined:

, and .

Remark 3.18. A streamlined SKS proof is cut-free. In fact, consider the diagram in
Remark 3.16: there can be no ai-cycles, and any maximal ai-path from a cut goes all the
way to the top. So, if there are cuts, there must be atoms in the premiss of the derivation,
and it cannot be a proof. Note also that a cut-free proof is not necessarily streamlined, as
it might have paths from interactions to coweakenings.

Definition 3.19. We say that an algorithm P streamlines a derivation Φ if the output of
P on Φ is a streamlined derivation that has the same premiss and conclusion as Φ, in the
same deductive system.

We know that a Craig interpolant of formulae α and β is a formula γ such that α → γ

and γ → β, and all the atoms in γ appear in α and β. Consider a derivation whose premiss
is α and conclusion is β and consider all the ai-paths from atoms of α that are not in β

and from atoms of β that are not in α. While, in general, each of these ai-paths can be
composed of an arbitrary number of paths, in a streamlined derivation they consist of at
most two paths. We would then be tempted to exploit this simplification to try and read
interpolants as some intermediate formulae in streamlined derivations. Unfortunately, this
does not work so simply, as the following example shows.

14 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Example 3.20. The two following streamlined derivations have the same premiss α = a ∧ ā

and conclusion β = b ∨ b̄ and the same atomic flow (at the centre):

a ∧ ā
ai↑

f
=

f ∧ [f ∨ t]
s

(f ∧ f) ∨ t
=

t
ai↓

b ∨ b̄

a ∧ ā
=

(a ∧ ā) ∧ [f ∨ t]
ai↓

(a ∧ ā) ∧ [f ∨ [b ∨ b̄]]
s

((a ∧ ā) ∧ f) ∨ [b ∨ b̄]
ai↑

(f ∧ f) ∨ [b ∨ b̄]
=

b ∨ b̄

.

The formulae that appear in the derivation on the left, apart from the premiss and conclu-
sion, are interpolants of α and β. In the derivation on the right, the same is not true.

The results we get in this paper for derivations share some characteristics with Craig’s
interpolation for formulae: 1) we focus on a normal form that essentially depends on the
atoms in common between premiss and conclusion, 2) the cost of getting it is exponential
(to the best of our knowledge), and 3) it is intimately related to cut elimination.

We are able to use the methods presented here in order to read interpolants from
derivations, so overcoming the problem shown in the previous example. We start from
streamlined derivations and then we perform some further constructions; this way, we obtain
a normal form such that each inference step of the kind ai↑, aw↑ or ac↑ is above all inference
steps of the kind ai↓, aw↓ or ac↓. This normal form is obtained by Kai Brünnler in [Brü06b]
by resorting to the sequent calculus, while we can obtain it directly in the calculus of
structures. These results are presented in [GG08].

4. Reductions of Atomic Flows

We control normalisation of derivations by manipulating atomic flows, in the sense of
graph rewriting. There are two kinds of flow reductions: local and global ones. In local
reductions, a bounded subflow in a flow is substituted by another subflow that fits in the
context. In global reductions, the entire flow is rewritten: normally, two slightly altered
copies of a flow are connected together. In this section, we see local transformations, which
are based on reduction rules; in Section 5, we deal with global reductions. It is convenient
to classify reduction rules into those for weakening and those for contraction. After seeing
flow reductions and tying them with derivations, in Subsection 4.1, we explore some of their
basic properties, in the two short Subsections 4.2 and 4.3.

4.1. Reductions. We introduce reductions for atomic flows, for which we define a concept
of soundness. We will soon see that, corresponding to every sound reduction, there is a
transformation on derivations that preserves premiss and conclusion. We will then be able
to control complex proof transformations by simple atomic flow transformations.

We start by defining some flow reductions: they are relations A → B between flows,
which we interpret as the possibility of replacing flow A with flow B.

Definition 4.1. In Figure 2, we define graphical expressions of the kind r : A → B, where
r is a name and A and B are flows.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

w↓-c↓ :
1

2
→ 1,2 c↑-w↑ :

2

1

→ 1,2

w↓-i↑ : 1 → 1 i↓-w↑ : 1 → 1

w↓-w↑ : →

w↓-c↑ :
1 2

→
1 2

c↓-w↑ :
1 2

→
1 2

c↓-i↑ :
31 2

→

31 2

i↓-c↑ :
31 2

→
31 2

c↓-c↑ :

1 2

3 4

→

1 2

3 4

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→

+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

16 ALESSIO GUGLIELMI AND TOM GUNDERSEN

(2) g is a one-to-one map from the lower edges of A to the lower edges of B,
(3) for every polarity assignment π for A, there is a polarity assignment π′ for B such

that π′(f(ǫ)) = π(ǫ) and π′(g(ǫ′)) = π(ǫ′), for any upper edge ǫ and any lower edge
ǫ′ of A;

we define reduction rules with graphical expressions r : A → B, where f and g are indicated
by labelling edges. A binary relation R on the set of atomic flows is called an (atomic-flow)
reduction if, whenever C R D, there is a one-to-one map from the upper edges of C to the
upper edges of D and a one-to-one map from the lower edges of C to the lower edges of D.
For every reduction rule r : A → B, the reduction →r is defined, such that C →r D if and
only if A appears as a subgraph in C and we obtain D by replacing A with B in C, while
respecting the correspondence of edges; we call this operation a reduction by r.

Remark 4.4. The condition on polarity assignments for a reduction rule r guarantees that
the D in C →r D is a proper atomic flow, if C is one.

Remark 4.5. Because of the condition on polarity assignments for reduction rules, two
distinct connected components in a flow cannot be connected by a reduction. To see that
this is impossible, consider the following ‘reduction rule’, which violates the condition on
polarity assignments:

→ .

For this ‘reduction rule’ there exist both valid (left) and invalid (right) polarity assignments:

+ − → + − + + → + ? .

It is immediate to check:

Proposition 4.6. The graphical expressions in Figure 2 are atomic-flow reduction rules.

Our reduction rules bear a striking resemblance to many rewriting systems on graphs,
and in particular with interaction nets [Laf97]. It is certainly possible that some interesting
connections with other formalisms can be drawn at some point, but, at this time, we are
not aware of any. We note that the resemblance might simply be due to there being very
few things that we can do with atoms: we can carry them through, delete them or duplicate
them, and it is difficult to think of anything else. We might think of making several copies
of an atom at once, instead of just two, and this indeed has some uses in the fight against
the bureaucracy related to associativity of (co)contraction.

What is peculiar to our work is the fact that reducing flows corresponds to transforming
derivations in a very direct way. The correspondence is captured by the notion of soundness,
which we now define.

Definition 4.7. A reduction R is sound if, for every A and B such that A R B and for
every derivation Φ with atomic flow A, there is a derivation Ψ with atomic flow B such that
Φ and Ψ have the same premiss and conclusion; in this case we write Φ R Ψ. A reduction
rule r is sound if →r is sound.

The proof of the following theorem is essentially contained in Figures 3 and 4.

Theorem 4.8. The reduction rules w↓-c↓, w↓-i↑, w↓-w↑, w↓-c↑, c↓-i↑, c↓-c↑, c↑-w↑, i↓-w↑,
c↓-w↑ and i↓-c↑ are sound.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 17

w↓-c↓ :
3 1

2
→ 1,2

ξ{f}
aw↓

ξ{a3}

Φ
‖
‖

ζ{a3 ∨ a1}
ac↓

ζ{a2}

→w↓-c↓

ξ{f}

Φ{a3
�f}

‖
‖

ζ{f ∨ a1,2}
=

ζ{a1,2}

w↓-i↑ : 2 1 → 1

ξ{f}
aw↓

ξ{a2}

Φ
‖
‖

ζ{a2 ∧ ā1}
ai↑

ζ{f}

→w↓-i↑

ξ{f}

Φ{a2
�f}

‖
‖

ζ{f ∧ ā1}
aw↑

ζ{f ∧ t}
=

ζ{f}

w↓-w↑ : 1 →

ξ{f}
aw↓

ξ{a1}

Φ
‖
‖

ζ{a1}
aw↑

ζ{t}

→w↓-w↑

ξ{f}

Φ{a1
�f}

‖
‖

ζ{f}
=

ζ{f ∧ [f ∨ t]}
s

ζ{(f ∧ f) ∨ t}
=

ζ{t}

w↓-c↑ :
1 2

3

→
1 2

ξ{f}
aw↓

ξ{a3}

Φ
‖
‖

ζ{a3}
ac↑

ζ{a1 ∧ a2}

→w↓-c↑

ξ{f}

Φ{a3
�f}

‖
‖

ζ{f}
=

ζ{f ∧ f}
aw↓

ζ{a1 ∧ f}
aw↓

ζ{a1 ∧ a2}

Figure 3: ‘Downwards’ reduction rules for weakening and their soundness.

Proof. For r ∈ {w↓-c↓,w↓-i↑,w↓-w↑,w↓-c↑, c↓-i↑, c↓-c↑} and r : A → B as in the left columns
of Figures 3 and 4, for every C and D such that C →r D and for every Ψ with flow C, the
right columns of the tables provide reductions Ψ →r Ψ′, where Ψ′ has flow D, as follows.
If Φ′ →r Φ′′ is the reduction provided by the table, then

Ψ =

α

Ψ1

‖
‖

α′

Φ′ ‖
‖

β′

Ψ2

‖
‖

β

and Ψ′ =

α

Ψ1

‖
‖

α′

Φ′′ ‖
‖

β′

Ψ2

‖
‖

β

.

We can deal with the remaining rules by employing dual derivations to the ones shown.

18 ALESSIO GUGLIELMI AND TOM GUNDERSEN

c↓-i↑ :
3

4

1 2

→

31 2

ξ{a1 ∨ a2}
ac↓

ξ{a4}

Φ
‖
‖

ζ{a4 ∧ ā3}
ai↑

ζ{f}

→c↓-i↑

ξ{a1 ∨ a2}

Φ{a4
�a∨a}

‖
‖

ζ{[a1 ∨ a2] ∧ ā3}
ac↑

ζ{[a1 ∨ a2] ∧ (ā ∧ ā)}
=

ζ{(ā ∧ [a2 ∨ a1]) ∧ ā}
s

ζ{[(ā ∧ a2) ∨ a1] ∧ ā}
ai↑

ζ{[f ∨ a1] ∧ ā}
=

ζ{a1 ∧ ā}
ai↑

ζ{f}

c↓-c↑ :

1 2

5

3 4

→

1 2

3 4

ξ{a1 ∨ a2}
ac↓

ξ{a5}

Φ
‖
‖

ζ{a5}
ac↑

ζ{a3 ∧ a4}

→c↓-c↑

ξ{a1 ∨ a2}

Φ{a5
�a∨a}

‖
‖

ζ{a1 ∨ a2}
ac↑

ζ{a1 ∨ (a ∧ a)}
ac↑

ζ{(a ∧ a) ∨ (a ∧ a)}
m

ζ{[a ∨ a] ∧ [a ∨ a]}
ac↓

ζ{a3 ∧ [a ∨ a]}
ac↓

ζ{a3 ∧ a4}

Figure 4: ‘Downwards’ reduction rules for contraction and their soundness.

Remark 4.9. The previous soundness theorem only depends on the switch and medial
rules for the reductions in Figure 4. Any system obtained from SKS by replacing s and
m with linear rules that can derive them would support a soundness theorem like the one
above, for the same reduction rules. For example, we could think of replacing s with the

rule
[a ∨ b] ∧ [c ∨ d]

s
′

(a ∧ c) ∨ [b ∨ d]
, from which s is derivable.

Definition 4.10. A finite set of reduction rules is a flow rewriting system. For every
flow rewriting system F = {r1, . . . , rh} we define →F = →r1

∪ · · · ∪→rh
. The reflexive

transitive closure of →F is denoted by →⋆
F . Given a set of atomic flows S, we say that a

flow rewriting system F is terminating on S if there is no infinite chain A1 →F A2 →F · · · ,
for every A1 ∈ S; if F is terminating on the set of atomic flows, we say that it is terminating.
We say that atomic flow A is normal for flow rewriting system F if there is no atomic flow
B such that A →F B.

4.2. Weakening and Coweakening. The reduction rules for weakening and coweakening
make for a very simple flow rewriting system. They are very ‘friendly’ rules, because they
greatly simplify atomic flows and associated derivations.

Definition 4.11. The following flow rewriting system is called w:

{ w↓-c↓ , c↑-w↑ , w↓-i↑ , i↓-w↑ , w↓-w↑ , w↓-c↑ , c↓-w↑ } .

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 19

Theorem 4.12. Flow rewriting system w is terminating.

Proof. At every reduction, either the number of vertices decreases, or it stays the same but
the number of contraction and cocontraction vertices decreases.

Remark 4.13. If flow A is normal for w, then there is no ai-path from a weakening or
coweakening vertex to another vertex in A.

Since reducing by w does not introduce new edges, we have:

Proposition 4.14. If A is cycle-free and A →⋆
w B then B is cycle-free.

4.3. Contraction and Cocontraction. The reduction rules for contraction and cocon-
traction are much less ‘friendly’ than weakening/coweakening ones, mainly because they
create infinite reduction chains. A judicious use of these rules is the key to success for our
normalisation methods.

Definition 4.15. The following flow rewriting system is called c:

{ c↓-i↑ , i↓-c↑ , c↓-c↑ } .

Remark 4.16. Flow rewriting system c is not terminating:

+ −

+
→c

− +

+
→c + + −

→c · · · .

We see that if a contraction vertex belongs to an ai-cycle, reductions by c make it ‘bounce’
in the ai-cycle and create a trail; while bouncing, the vertex alternates between contraction
and cocontraction; if we assign a polarity to the flow, the vertex alternates between being
positive and negative.

Through a simple argument by contradiction, we have:

Proposition 4.17. If A is cycle-free and A →⋆
c B then B is cycle-free.

Again, reasoning by contradiction, we have:

Proposition 4.18. If an atomic flow is normal for c then all its ai-paths are clean paths.

The previous proposition could be rephrased by saying that if an atomic flow is normal
for c then all its ai-connections are simple edges.

Since reducing by w does not introduce new vertices, we have:

Proposition 4.19. If A is normal for c and A →⋆
w B then B is normal for c.

By contradiction and a simple case analysis, we have:

Proposition 4.20. If A is normal for w and A →⋆
c B then B is normal for w.

Maximal ai-paths provide for a measure when dealing with the termination of c.

Remark 4.21. A simple inspection to the reduction rules of c convinces us that reducing
by c does not change the number and length of the maximal ai-paths of a flow. The same
holds for the maximal ai-paths to or from vertices that are not involved in a given reduction.

Theorem 4.22. Flow rewriting system c is terminating on the set of cycle-free atomic
flows.

20 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Proof. Let A be a cycle-free flow. We associate to each contraction (resp., cocontraction)
vertex ν its rank rν =

∑

pi∈Iν
hi, where Iν is the set of all maximal ai-paths pi = ǫi

1, . . . , ǫ
i
hi

from ν, such that ǫi
1 is the lower (resp., upper) edge of ν (so, the rank of a vertex is the sum

of the lengths of certain maximal ai-paths from it). Note that every (co)contraction vertex
has non-zero rank. We prove that a reduction of A by c decreases the sum of the ranks of
the (co)contraction vertices of A. First note that the rank of the vertices not involved in
the reduction step stays the same (see Remark 4.21). We then need to show that the sum
of the ranks decreases for the vertices involved. There are three cases, depending on the
reduction rule:

c↓-i↑: a contraction vertex ν is replaced by a cocontraction vertex ν ′, and rν′ = rν − n,
where n > 0 is the number of maximal ai-paths from ν whose first edge is the lower
edge of ν;

i↓-c↑: this is dual to the previous case;
c↓-c↑: a contraction vertex ν and a cocontraction vertex ν ′ are replaced by two contraction

vertices ν1 and ν2 and two cocontraction vertices ν ′
1 and ν ′

2; we have rν1
+rν2

= rν−n,
where n > 0 is the number of maximal ai-paths from ν whose first edge is the lower
edge of ν; analogously, we have rν′

1
+ rν′

2
= rν′ − n′, where n′ > 0 is the number of

maximal ai-paths from ν ′ whose first edge is the upper edge of ν ′.

Remark 4.23. Normalising by c can blow the size of atomic flows exponentially, in par-
ticular in a situation like the following (noted by Lutz Straßburger):

... →⋆
c

...
...

...
... .

In fact, if there are n couples cocontraction/contraction like the two shown above on the
left, then there are 2n maximal ai-paths, and their number (and length) is conserved by →⋆

c

(see Remark 4.21). Exactly one ai-path passes through each edge in the middle portion of
the flow on the right.

Normalising flows via the rewriting system c is important, and we know from Re-
mark 4.16 and Theorem 4.22 that we can only have termination for cycle-free atomic flows.
It turns out that we can ‘break’ ai-cycles if we manage to move contractions and cocontrac-
tions away from at least one ai-connection per ai-cycle, so to create a simple edge. As we
saw in Definition 3.11, we call the ai-cycles exhibiting this property ‘fragile’. We now see
how to transform every ai-cycle into a fragile cycle, and Subsection 5.2 shows how to break
fragile cycles.

Theorem 4.24. For every atomic flow A there is an atomic flow B such that A →⋆
c B and

all the ai-cycles in B are fragile cycles.

Proof. Given any polarity assignment for A, consider all contractions and cocontractions
with some edge belonging to an ai-cycle and mapping to −. Apply the rules of c to these

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 21

vertices until they change polarity. Now, every ai-cycle contains at least one ai-connection
mapping to −, and this cannot be anything else than a simple edge.

Example 4.25. The negative ai-connection 1, 2, 3 can be made into a negative simple edge:

− 1

− 2

− 3

→c

−

−

−

→⋆
c − .

Example 4.26. The following atomic flow reduction (also present in Figure 6 on page 30)
shows another application of the previous theorem:

→c .

5. Streamlining Algorithms

In this section we prove our main results. The basis of our normalisation technique
is the elimination of a simple edge, which means eliminating also the axiom and cut it
connects. This entails a duplication of the entire flow/derivation, and the repeated process
generates an exponential growth in size. Of course, this is what we expect from an algorithm
that generalises cut elimination for propositional logic.

We start by studying a single elimination of a simple edge. We will then study two
algorithms, based on simple-edge elimination, that, in combination, achieve the desired
normalisation result. The final part of this section presents two normalisation algorithms,
of varying strength, and discusses possible variations.

5.1. Elimination of a Simple Edge. Definition 5.1 contains a graphical representation
of the main idea of this section. It is a reduction of atomic flows and associated derivations,
whose purpose is eliminating one simple edge, and at the same time removing one interaction
and one cointeraction vertex. Contrary to previous reduction rules, we are dealing here with
a global transformation of atomic flows and associated derivations: a reduction can involve
an entire flow/derivation and not just a local subflow/subderivation.

The reduction of simple edges that we are about to define is not strictly necessary
for getting our results, because we could jump directly to the more general Definition 5.6.
However, it is important to understand this reduction in isolation, both because it is simpler,
and also because it provides the basis for different reduction strategies from those that we
discuss in this paper.

22 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Definition 5.1. We define the reduction →se (where se stands for simple edge) as follows,
for every atomic flow A:

ǫ1 · · · ǫh 2

A

ǫ′
1 · · · ǫ′

k
3 1

→se ǫ̂1 · · · ǫ̂h 2̂

Â

ǫ̂′
1 · · · ǫ̂′

k

ǫ̃1 · · · ǫ̃h

Ã

ǫ̃′
1 · · · ǫ̃′

k
3̃

2̃

· · ·ǫ1 ǫh

3̂

ǫ′
1

ǫ′
k· · ·

,

where h, k ≥ 0, edges have been renamed with ˆ and ˜ accents, flows Ã and Â are both
isomorphic to A, and edges 2̂ and 3̃ are identified.

A simple inspection of the definition of →se suffices to prove the following statement,
about →se not introducing any ai-cycles.

Proposition 5.2. If atomic flow B is cycle-free and B →se C, then C is cycle-free.

Theorem 5.3. Reduction →se is sound.

Proof. Let Φ be a derivation with flow B, such that B →se C. We show that there exists a
derivation Ψ with flow C and with the same premiss and conclusion as Φ. In the following,
we refer to the figure in Definition 5.1. We assume that Φ has premiss ξ{t•} and conclusion
ζ{f•}, where the evidenced and labelled t• and f• can be traced to the interaction and
cointeraction vertices eliminated by →se, respectively (this can always be done by using
switches and unit equations). Intuitively, we can think of t• and f• as mapping to special
‘unit edges’, which can be substituted just like normal edges. So, we assume that Φ is

ξ{t•}

Φ1

‖
‖

ξ′{t•}
ai↓

ξ′{ā2 ∨ a1}

Φ2

‖
‖

ζ ′{ā3 ∧ a1}
ai↑

ζ ′{f•}

Φ3

‖
‖

ζ{f•}

.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 23

We obtain the two derivations Ψ′ and Ψ′′ from Φ as follows:

Ψ′ =

ξ{t}

Φ1

‖
‖

ξ′{t}
=

ξ′{f ∨ t}
aw↓

ξ′{ā2̃ ∨ t}

Φ2{a1
�t}

‖
‖

ζ ′{ā3̃ ∧ t}
=

ζ ′{ā3̃}

Φ3{f•�ā}
‖
‖

ζ{ā3̃}

and Ψ′′ =

ξ{ā2̂}

Φ1{t•�ā}
‖
‖

ξ′{ā2̂}
=

ξ′{ā2̂ ∨ f}

Φ2{a1
�f}

‖
‖

ζ ′{ā3̂ ∧ f}
aw↑

ζ ′{t ∧ f}
=

ζ ′{f}

Φ3

‖
‖

ζ{f}

.

Derivation Ψ′ has flow B′ and Ψ′′ has B′′:

B′ =

ǫ̃1 · · · ǫ̃h

3̃

Ã

ǫ̃′
1 · · · ǫ̃′

k

2̃

and B′′ =

ǫ̂1 · · · ǫ̂h 2̂

Â

ǫ̂′
1 · · · ǫ̂′

k
3̂

.

We combine Ψ′ and Ψ′′ to get the desired derivation Ψ with flow C and the same premiss
and conclusion as Φ:

Ψ =

ξ{t}
c↑

ξ{t} ∧ ξ{t}

ξ{t}∧Ψ′ ‖
‖

ξ{t} ∧ ζ{ā}
ss

ξ{ā} ∨ ζ{f}

Ψ′′∨ζ{f}
‖
‖

ζ{f} ∨ ζ{f}
c↓

ζ{f}

,

where ss, c↓ and c↑ are ‘macro’ rules introduced in Remarks 2.5 and 2.6.

The reduction →se on atomic flows is symmetric and deterministic, and this might be
a surprise, because we tend to expect a non-deterministic choice in the elimination of a
cut in classical propositional logic. The corresponding construction on derivations might
appear symmetric and deterministic, too, but, subtly, it is not. In fact, we have two ways

of realising the macro rule
ξ{t} ∧ ζ{α}

ss

ξ{α} ∨ ζ{f}
by using s; informally, either we ‘put ξ{t} inside

ζ{ }’ or we ‘put ζ{α} inside ξ{ }’ (see Remark 2.5). Note, however, that
β ∧ [α ∨ γ]

s

(β ∧ α) ∨ γ
is

a special case of ss (modulo =); so, we might replace s with ss inside SKS, and we would
eliminate this non-determinism. Contrary to s, the rule ss is not local (in the sense that it
cannot be checked in time bounded by a constant); we do not know whether a local rule
exists that could make for a symmetric and deterministic derivation corresponding to flows
obtained by →se.

24 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Repeated →se reductions can lead to infinite chains, because at each step a flow is
duplicated. In fact, if the flow contains more than one simple edge the number of simple
edges after each →se reduction increases.

5.2. Breaking Fragile Cycles and Eliminating Clean Paths. Since indiscriminately
composing →se reductions might lead to infinite chains, in order to normalise proofs, we
have to impose some discipline on →se reductions. Moreover, it is not guaranteed that →se

can achieve normalisation without preliminarily ‘preparing’ the atomic flow. All that said,
we are interested in as free as possible reduction mechanisms.

It turns out that we can achieve our objectives by defining two similar, recursive reduc-
tions based on →se. The main idea is to constrain →se into a very simple binary recursion
scheme, controlled by two different conditions on simple edges. These conditions provide
induction measures that basically amount to counting the number of simple edges in the
flow to reduce. As we are about to see, we are able to keep the symmetry already exhibited
by →se.

The following two reductions, →bc and →ex, should be understood as ‘one-shot’ reduc-
tions, meaning that they will only be needed once each in the normalisation process. They
consist, basically, of chains of →se reductions. In order to define →ex, we need the notion
of ‘extremal simple edge’.

Definition 5.4. If ǫ1, . . . , ǫk, . . . , ǫh is a maximal clean path (i.e., a clean path that is also
a maximal ai-path), ǫk is a simple edge and the edges ǫk+1, . . . , ǫh are not simple edges,
then ǫk is an extremal simple edge.

Remark 5.5. In every maximal clean path there are at most two extremal simple edges,
one for each ‘direction of the path’. In Example 3.12 (page 12) there are two maximal clean
paths, and edges 1 and 3 are the extremal simple edges of both.

Definition 5.6. We inductively define the reductions →bc and →ex (where bc stands for
break ai-cycles and ex for eliminate extremal simple edges) as follows. Given a flow B, the
base cases are:

• if there are no fragile cycles in B then B →bc B;
• if there are no extremal simple edges in B then B →ex B.

For the inductive cases, let us suppose that

B =

ǫ1 · · · ǫh 2

A

ǫ′
1 · · · ǫ′

k
3 1

and C =
ǫ̂1 · · · ǫ̂h 2̂

D′′

ǫ̂′
1 · · · ǫ̂′

k

ǫ̃1 · · · ǫ̃h

D′

ǫ̃′
1 · · · ǫ̃′

k
3̃

· · ·ǫ1 ǫh

ǫ′
1

ǫ′
k· · ·

,

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 25

1 3· · ·
A

· · · 2 4

→bc

3 1· · ·

1

A

· · · 3 4 · · · 2

A

· · · 2 4

· · ·

· · ·

3 1 · · ·
A

1 · · · 3 4 · · ·
A

2

· · ·2 4

Figure 5: Example of a two-step →bc (or →ex) reduction.

where h, k ≥ 0, and let

B′ =

ǫ̃1 · · · ǫ̃h

3̃

Ã

ǫ̃′
1 · · · ǫ̃′

k

2̃

and B′′ =

ǫ̂1 · · · ǫ̂h 2̂

Â

ǫ̂′
1 · · · ǫ̂′

k
3̂

,

where the correspondence of edges has been indicated by adding accents to their labels. We
have that:

• if 1 is an edge belonging to an ai-cycle, B′ →bc D′ and B′′ →bc D′′ then B →bc C;
• if 1 is an extremal simple edge, B′ →ex D′ and B′′ →ex D′′ then B →ex C.

Example 5.7. Consider the atomic flow to the left in Figure 5. Assuming that the two
evidenced simple edges both belong to ai-cycles and that the box A stands for a cycle-free
flow, then the atomic flow on the right is the result of a →bc reduction. Similarly, if the
two evidenced simple edges are extremal simple edges, and the box stands for a flow that
contains no simple edges, then the atomic flow on the right is the result of a →ex reduction.

Notice that the flow in Figure 5 represents the ‘external’ shape of any flow after elimi-
nating any two simple edges. Eliminating more simple edges would follow the same pattern.

Remark 5.8. It is possible to generalise the construction in Figure 5 to any number n of
simple edges: for any n, there is an atomic flow of the same nature as the one at the right

26 ALESSIO GUGLIELMI AND TOM GUNDERSEN

of the figure, with 2n boxes. So, a →bc or →ex reduction can be ‘executed’ in one step if
the simple edges involved, and their order, is known in advance.

The following two theorems guarantee properties of flows after reducing by →bc and
→ex, provided that the flow to which we apply them meets some conditions. These condi-
tions can be achieved by a careful use of the flow rewriting system c for contractions, as we
see later on.

Theorem 5.9. If all the ai-cycles in atomic flow B are fragile cycles then there exists a
cycle-free flow C such that B →bc C.

Proof. By induction on the number of ai-cycles: follow Definition 5.6 and note that when
composing D′ and D′′ in C, no ai-cycles are created.

Example 5.10. Notice that removing one simple edge might break more than one ai-cycle.
The following flows have, respectively, two, three and two fragile cycles. Removing edges 1,
2, 3 or 4 breaks two ai-cycles each:

1

,
2 3

and
4

.

Remark 5.11. Reductions →se and →bc can introduce new simple edges along the edge
labelled 2̂ and 3̃ in Definitions 5.1 and 5.6. This phenomenon is the reason for having
introduced the notion of extremal simple edge. As an example, consider the following
application of →se to a non-extremal simple edge. The problem occurs when the two copies
of the given atomic flow (neither of which contains a simple edge) are combined, and the
edge that connects them becomes a simple edge:

2

13

→se

2̃

3̃

2̂

3̂

.

Reducing over extremal simple edges avoids the problem.

The algorithms we show in this paper would terminate even if we did not insist on
reducing over extremal simple edges, but doing so simplifies the induction measure.

Theorem 5.12. If all the ai-paths in cycle-free atomic flow B are clean paths then there
exists a flow C such that no ai-connections appear in it and B →ex C.

Proof. By induction on the number of simple edges. We follow Definition 5.6 and its no-
tation. We have to verify that, when composing D′ and D′′ in C, no ai-connections are
created. This could only happen if, in A, edge 2 were upper edge of a cointeraction and
edge 3 were lower edge of an interaction; this is impossible, because 1 is an extremal simple
edge.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 27

Theorem 5.13. Reductions →bc and →ex are sound.

Proof. The proof is almost identical for →bc and →ex, so, to fix ideas, we prove the theorem
for →bc, by induction on its definition. The base case is trivial. For the inductive case,
the construction is similar to the one in the proof of Theorem 5.3, and we see it briefly.
Consider

Φ =

ξ{t•}

Φ1

‖
‖

ξ′{t•}
ai↓

ξ′{ā2 ∨ a1}

Φ2

‖
‖

ζ ′{ā3 ∧ a1}
ai↑

ζ ′{f•}

Φ3

‖
‖

ζ{f•}

, Ψ′ =

ξ{t}

Φ1

‖
‖

ξ′{t}
=

ξ′{f ∨ t}
aw↓

ξ′{ā2̃ ∨ t}

Φ2{a1
�t}

‖
‖

ζ ′{ā3̃ ∧ t}
=

ζ ′{ā3̃}

Φ3{f•�ā}
‖
‖

ζ{ā3̃}

and Ψ′′ =

ξ{ā2̂}

Φ1{t•�ā}
‖
‖

ξ′{ā2̂}
=

ξ′{ā2̂ ∨ f}

Φ2{a1
�f}

‖
‖

ζ ′{ā3̂ ∧ f}
aw↑

ζ ′{t ∧ f}
=

ζ ′{f}

Φ3

‖
‖

ζ{f}

,

where Φ has flow B, such that B →bc C, and Ψ′ and Ψ′′ are obtained from Φ and have
flows B′ and B′′, respectively, as per Definition 5.6. By induction hypothesis, there are
derivations Ψ̂′ and Ψ̂′′ with flows D′ and D′′ such that B′ →bc D′ and B′′ →bc D′′ and with
the same premisses and conclusions as Ψ and Ψ′. We can compose these derivations into
the following, whose flow is C:

ξ{t}
c↑

ξ{t} ∧ ξ{t}

ξ{t}∧Ψ̂′ ‖
‖

ξ{t} ∧ ζ{ā}
ss

ξ{ā} ∨ ζ{f}

Ψ̂′′∨ζ{f}
‖
‖

ζ{f} ∨ ζ{f}
c↓

ζ{f}

.

Remark 5.14. Similarly to what we do in Remark 4.9, we observe here that the previous
soundness theorem holds for any proof system containing the same structural rules as SKS

and whose logical rules are such that the c↑, ss and c↓ rules are derivable. So, the soundness
theorem depends only very loosely on the choice of logical rules.

Remark 5.15. After a →bc or →ex reduction, the size of an atomic flow grows by a factor
of O(2n), where n is the number of simple edges involved in the reduction (see Remark 5.8).
This accounts for an equally exponential growth in the corresponding derivation.

Out of the two reductions →bc and →ex, we define two algorithms, BC and EX, which
use flow rewriting system c to achieve the necessary preconditions for the two reductions.

Definition 5.16. For every SKS derivation Φ0 with atomic flow A0, algorithm BC (for
break ai-cycles) performs the following steps:

28 ALESSIO GUGLIELMI AND TOM GUNDERSEN

(1) Make ai-cycles fragile. Transform Φ0 into Φ1, whose flow A1 is obtained by assigning
a polarity to A0 and applying c over negative contraction and cocontraction vertices
belonging to ai-cycles, until they are all positive.

(2) Break ai-cycles. Transform Φ1 into the algorithm’s output Φ2, whose flow A2 is
such that A1 →bc A2.

Theorem 5.17. Given any SKS derivation, algorithm BC produces a derivation with the
same premiss and conclusion and such that its atomic flow is cycle-free.

Proof. We refer to Definition 5.16. Step 1 transforms the given derivation Φ0 into Φ1, which,
by Theorems 4.24 and 4.8, exists and all its ai-cycles are fragile cycles and its premiss and
conclusion are the same as those of Φ0. Then, by Theorems 5.9 and 5.13 we conclude that
Φ2, obtained from Φ1 in Step 2, exists, is cycle-free and its premiss and conclusion are the
same as those of Φ1.

The first and second reduction steps in Figure 6 provide an example of application of
algorithm BC.

Definition 5.18. For every SKS derivation Φ2, with cycle-free atomic flow A2, algorithm
EX (for eliminate extremal simple edges) performs the following steps:

(1) Make ai-paths clean. Transform Φ2 into Φ3, whose flow A3 is normal for c.
(2) Remove simple edges. Transform Φ3 into the algorithm’s output Φ4, whose flow A4

is such that A3 →ex A4.

Theorem 5.19. Given any SKS derivation whose atomic flow is cycle-free, algorithm EX

produces a derivation with the same premiss and conclusion and such that, in its atomic
flow, there are no ai-connections.

Proof. We refer to Definition 5.18. Step 1 transforms the given derivation Φ2 into Φ3, which,
by Theorems 4.22 and 4.8 and by Propositions 4.17 and 4.18, exists, is cycle-free and all its
ai-paths are clean paths and its premiss and conclusion are the same as those of Φ2. Then,
by Theorems 5.12 and 5.13 we conclude that Φ4, obtained from Φ3 in Step 2, exists, there
are no ai-connections in its atomic flow, and its premiss and conclusion are the same as for
Φ3.

The output of BC and EX is not normal for c, in general, as a quick look at Figure 5
shows.

5.3. Streamlining Algorithms. We obtain here our main result: normalisation algo-
rithms for propositional logic that normalise generic derivations, and that entail cut elimi-
nation on proofs. We show two (similar) such algorithms, but it is clear that there are many
possible variations. These algorithms are obtained as combinations of the reductions →w,
→c, →bc and →ex. We strengthen the notion of streamlined derivation introduced in the
beginning, in order to appreciate the variations in the design of the normalising algorithms.

Definition 5.20. For every SKS derivation Φ0, algorithm Str (for streamlining) performs
the following steps:

(1) Break ai-cycles. Apply BC to Φ0 and obtain Φ2.
(2) Eliminate ai-connections. Apply EX to Φ2 and obtain Φ4.
(3) Move away weakenings and coweakenings. Transform Φ4 into algorithm’s output

Φ5, whose flow A5 is normal for w.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 29

Example 5.21. In Figure 6, algorithm Str is applied. For each flow the corresponding
derivation is shown. Inference rules are used modulo the relation = for formulae. Trivial
rule instances are omitted. The atomic flow we start out with has an ai-cycle, but no simple
edge. The first step is to move a contraction to create a simple edge. The second step
removes the simple edge. The remaining steps are weakening reductions. The reader can
apply the construction in the proof of Theorem 5.3 (or 5.13) in order to generate the third
derivation. We recall that adding some switch instances can be necessary in order to ‘pull’
the units involved in interactions and cointeractions to the premiss and conclusion of the
derivation to be reduced.

We are about to prove that algorithm Str does more than just streamlining derivations:
it turns out that Step 3 performs unnecessary reductions on weakening and coweakening
vertices connected with contraction and cocontraction ones. However, the shape of the
derivations produced by Str is notable, so we prefer to present Str this way, and it is
understood that its definition can be weakened if strict streamlining is all that is required:
we only need to apply the weakening reductions that are necessary to get streamlined
derivations, and no more.

We now make precise the notion of streamlining obtained by Str (called ‘super-stream-
lining’), and a further strengthening that we explore in the rest of this section.

Definition 5.22. An SKS derivation is super-streamlined if it is streamlined and its asso-
ciated atomic flow is normal for w. An SKS derivation is hyper-streamlined if it is super-
streamlined and its associated atomic flow is normal for c. We say that an algorithm
P super-streamlines (resp., hyper-streamlines) a derivation Φ if the output of P on Φ is
a super-streamlined (resp., hyper-streamlined) derivation that has the same premiss and
conclusion as Φ.

Example 5.23. In Example 3.17 (page 13), the second flow is streamlined, but not super-
streamlined, and the third is hyper-streamlined (so, super-streamlined as well).

Remark 5.24. Consider the following figure

· · · · · ·

· · · · · · · · ·

· · · · · ·

· · · · · ·

· · · · · · · · ·

· · · · · ·

.

We see on the left the shape of flows of super-streamlined derivations and on the right that
of flows of hyper-streamlined derivations, where the boxes represent flows obtained by freely
composing edges and vertices whose labels are only those indicated on the boxes. Compare
to Remark 3.16. This is the shape of the atomic flow of a hyper-streamlined proof:

· · ·

· · · · · ·

.

30 ALESSIO GUGLIELMI AND TOM GUNDERSEN

c
↓

→bc

→⋆
w →⋆

w →w

ā
ai↓

[a ∨ ā] ∧ ā
s

(a ∧ ā) ∨ ā
m

[a ∨ t] ∧ [ā ∨ ā]
ac↓

[a ∨ t] ∧ ā
ac↑

[(a ∧ a) ∨ t] ∧ ā
s

(a ∧ a ∧ ā) ∨ t
ai↑

(a ∧ f) ∨ t

c
↓

ā
ai↓

[ā ∨ a] ∧ ā
s

ā ∨ (a ∧ ā)
m

[a ∨ t] ∧ [ā ∨ ā]
ac↑

[(a ∧ a) ∨ t] ∧ [ā ∨ ā]
s

(a ∧ a ∧ [ā ∨ ā]) ∨ t
ac↑

(a ∧ a ∧ a ∧ [ā ∨ ā]) ∨ t
s

(a ∧ a ∧ [(ā ∧ a) ∨ ā]) ∨ t
ai↑

(a ∧ a ∧ ā) ∨ t
ai↑

(a ∧ f) ∨ t

→bc

ā
c↑

ā ∧ ā
aw↓

[t ∨ a] ∧ ā ∧ ā
s

[t ∨ (a ∧ ā)] ∧ ā
m

[a ∨ t] ∧ [t ∨ ā] ∧ ā
ac↑

[(a ∧ a) ∨ t] ∧ [t ∨ ā] ∧ ā
s

[(a ∧ a ∧ [t ∨ ā]) ∨ t] ∧ ā
ac↑

[(a ∧ a ∧ a ∧ [t ∨ ā]) ∨ t] ∧ ā
s

[(a ∧ a ∧ [a ∨ ā]) ∨ t] ∧ ā
s

[(a ∧ [a ∨ (a ∧ ā)]) ∨ t] ∧ ā
ai↑

[(a ∧ a) ∨ t] ∧ ā
ss

(a ∧ f) ∨ t ∨ (a ∧ ā)
m

(a ∧ f) ∨ t ∨ ([a ∨ t] ∧ ā)
ac↑

(a ∧ f) ∨ t ∨ ([(a ∧ a) ∨ t] ∧ ā)
s

(a ∧ f) ∨ t ∨ (a ∧ a ∧ ā)
ac↑

(a ∧ f) ∨ t ∨ (a ∧ a ∧ a ∧ ā)
s

(a ∧ f) ∨ t ∨ (a ∧ a ∧ [(a ∧ f) ∨ ā])
aw↑

(a ∧ f) ∨ t ∨ (a ∧ a ∧ ā)
ai↑

(a ∧ f) ∨ t ∨ (a ∧ f)
c↓

(a ∧ f) ∨ t

→⋆
w

ā
c↑

ā ∧ ā
s

[t ∨ (f ∧ ā)] ∧ ā
m

[t ∨ ā] ∧ ā
s

[(f ∧ [t ∨ ā]) ∨ t] ∧ ā
s

[(f ∧ ā) ∨ t] ∧ ā
aw↓

[(f ∧ a ∧ ā) ∨ t] ∧ ā
ai↑

ā
ss

t ∨ (f ∧ ā)
m

t ∨ ā
s

t ∨ (f ∧ ā)
aw↓

t ∨ (f ∧ [(a ∧ f) ∨ ā])
aw↑

t ∨ (f ∧ ā)
aw↓

t ∨ (f ∧ a ∧ ā)
ai↑

t
aw↓

(a ∧ f) ∨ t
aw↓

(a ∧ f) ∨ t ∨ (a ∧ f)
c↓

(a ∧ f) ∨ t

w
↓

⋆

ā
c↑

ā ∧ ā
aw↑

ā
aw↑

t
aw↓

(a ∧ f) ∨ t

→w ā
aw↑

t
aw↓

(a ∧ f) ∨ t

Figure 6: Example of application of algorithm Str.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 31

Note that a hyper-streamlined SKS proof is a KS proof.

Theorem 5.25. Algorithm Str super-streamlines (and so, streamlines) every SKS deriva-
tion.

Proof. We refer to Definition 5.20. Theorems 5.17 and 5.19 guarantee that there are no
ai-connections in Φ4’s flow A4. By Theorem 4.12, Step 3 terminates. Since no new ai-
paths are created by Step 3, and because of Remark 4.13, we can conclude that Φ5 is
super-streamlined. Since the reductions of w are sound (Theorem 4.8), the premiss and
conclusion of Φ5 are the same as those of Φ0.

Cut elimination immediately follows (see also Remark 3.18).

Corollary 5.26 (Cut elimination). Algorithm Str, when applied to an SKS proof, produces
a cut-free proof.

Remark 5.27. Cut-free proofs obtained from Str do not exhibit any coweakening rule, but
there might be cocontraction rules, since Step 2 of algorithm EX might introduce some.

We can easily define a stronger algorithm than Str.

Definition 5.28. For every SKS derivation Φ0, algorithm HStr (for hyper-streamlining)
performs the following steps:

(1) Super-streamline. Apply Str to Φ0 and obtain Φ5.
(2) Move away contractions and cocontractions. Transform Φ5 into algorithm’s output

Φ6, whose flow A6 is normal for c.

Theorem 5.29. Algorithm HStr hyper-streamlines every SKS derivation; moreover, when
applied to an SKS proof, HStr produces a KS proof.

Proof. We appeal to Theorem 5.25 and we note that, by Proposition 4.20, the flow of the
output derivation is normal for w and c.

Remark 5.30. Thanks to algorithm HStr, we can easily obtain a ‘decomposition’ result
(as this kind of theorems are called in the deep-inference literature). Any SKS derivation
can be reduced to a derivation of the form

α
‖
‖ {ai↓,aw↑,ac↑}

β
‖
‖ {s,m}

γ
‖
‖ {ai↑,aw↓,ac↓}

δ

.

In fact, a given derivation is transformed into a hyper-streamlined one, and then it is reduced
to the form above by (obvious) permutations of inference steps. Actually, we can obtain

32 ALESSIO GUGLIELMI AND TOM GUNDERSEN

more detailed normal forms than the above, for example, any of the following:

α1
‖
‖ {ai↓}

α2
‖
‖ {aw↑}

α3
‖
‖ {ac↑}

α4
‖
‖ {s,m}

α′
4
‖
‖ {ac↓}

α′
3
‖
‖ {aw↓}

α′
2
‖
‖ {ai↑}

α′
1

,

α1
‖
‖ {aw↑}

α2
‖
‖ {ai↓}

α3
‖
‖ {ac↑}

α4
‖
‖ {s,m}

α′
4
‖
‖ {ac↓}

α′
3
‖
‖ {ai↑}

α′
2
‖
‖ {aw↓}

α′
1

,

α1
‖
‖ {aw↑}

α2
‖
‖ {ac↑}

α3
‖
‖ {ai↓}

α4
‖
‖ {s,m}

α′
4
‖
‖ {ai↑}

α′
3
‖
‖ {ac↓}

α′
2
‖
‖ {aw↓}

α′
1

, etc.

In [BT01, Brü04], this result is obtained as a consequence of cut elimination for SKS. We
note that direct attempts at proving decomposition can face hard termination problems
when dealing with the permutation of ac↓ over ai↑ inference steps (and the dual case).
The problem boils down to taming infinite loops of the same nature as those mentioned in
Remark 4.16. The streamlined forms of derivations, of course, take care of this. For an
instructive example of this phenomenon, in a more complicated logic to which we hope to
extend atomic flows, we refer the reader to [GS07].

The complexity of Str and HStr is exponential on the size of the input derivation, mainly
due to the recursive duplication of derivations (see Remark 5.15). This is in line with the
expectations for propositional logic normalisation. As we said in Remark 4.23, normalising
via →c also bears a potentially exponential cost, due to the contraction/cocontraction
reduction. Normalising via →w, instead, reduces the complexity of derivations, as Figure 6
shows. These algorithms can be optimised, in the sense of complexity of flows and proofs,
in many ways. For example, a simple method for keeping the complexity low is to always
reduce weakenings as soon as possible.

There is a source of exponential speed-ups that is worth exploring in the future. The
definition of →bc and →ex is based on recursively copying and stitching together copies of
an entire flow. This is so because we need to make sure that, corresponding to the flows that
we stitch together, there are proper corresponding derivations. However, it is not necessary
to operate on the entire flow, it would be enough to copy and stitch only the minimal
flow containing a simple edge and for which a subderivation can be found. In other words,
we are duplicating entire flows for the only reason that we know that they correspond to
derivations, but a more sophisticated approach could be able to do better.

We know that there is no strongly normalising algorithm based on →se, if by ‘strongly
normalising’ we mean a completely liberal use of →se. However, natural constraints on →se

might lead to strong normalisation. For example, it might be possible to succeed in this if
we adopt the notion of ‘minimal derivation containing a simple edge’ mentioned above.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 33

6. Conclusions

We have shown a novel method of control for normalisation algorithms. It is based
on a simple, graphical formalism, called ‘atomic flows’, similar both to proof nets and flow
graphs. Atomic flows appear to capture an important aspect of the normalisation process.
With a novel technique supported by atomic flows, we proved a symmetric generalisation of
cut elimination for derivations, which seems to be desperately complicated when subjected
to some traditional syntactic analysis.

We and other researchers, in particular François Lamarche and Lutz Straßburger, found
several times that dealing with loops similar in nature to those of Remark 4.16 is very
challenging (see, for example, [GS07, LS05a, LS05b, Str07b]). The similarities suggest
that the techniques of the present paper are probably applicable to other normalisation
algorithms and to categorical axiomatisations of classical logic.

We have exploited the possibility, peculiar to deep inference, of designing proof systems
whose structural rules are all atomic and whose logical rules are all linear. This allows
a great simplification in the geometric study of dependencies between inference rules. In
comparison, the sequent calculus, for example, cannot exhibit an atomic contraction rule;
this means that contractions on single atom occurrences are not independent, and so, sub-
stituting atom occurrences with more complex formulae becomes practically impossible.

Our success stems from the possibility of easily manipulating complex graphs by ac-
cessing single, independent occurrences of atoms. We expect to quickly broaden the range
of applications of our methods, because all the major logics enjoy presentations in deep
inference with atomic structural rules and linear logical ones, contrary to what is possible
in any other known formalism. However, our methods so far rely on contraction (and co-
contraction for symmetric normalisations), so, ironically, it is not obvious how to use them
in the case of pure linear logics.

This work shows that cut elimination is far less a delicate property than it is usually
assumed. As a matter of fact, any choice of logical inference rules, provided it makes for an
implicationally complete system (so that we can recover the switch and medial rules), would
leave the results presented here intact. We argued that the normalisation algorithm itself is
not delicate, and enjoys a vast range of possibilities for optimisation. We find it interesting
that, by adopting a more liberal syntactic discipline than that of non-deep inference, we
correspondingly obtain more freedom for normalisation. Some would expect the opposite to
happen. We interpret this as further evidence that traditional proof theory is too syntactic,
to the point that syntactic artefacts obscure a deeper and simpler reality.

Much of this paper has been about the flow rewriting systems w and c, which allow
reductions of flows based on local reduction rules. We then developed global reduction
mechanisms, based on the global reduction →se, only enough to show our normalisation
theorem, with the minimum conceptual effort. However, there is a multitude of interesting
global reduction mechanisms, arising from the atomic flow perspective, that are worth
exploring. The paper [GG08] is devoted to these global mechanisms, especially in connection
with possible computational interpretations.

We are currently investigating, together with Michel Parigot, the use of atomic flows in
a computational interpretation of normalisation in SKS. We are also trying to extend our
technique to the case of intuitionistic [Tiu06a] and modal logics [GT07, Sto07]. Preliminary
investigations with Alwen Tiu lead us to think that the algorithm can be adapted to his
presentation of intuitionistic logic in the calculus of structures; in particular, flow polarities

34 ALESSIO GUGLIELMI AND TOM GUNDERSEN

match Tiu’s polarities, which is an interesting phenomenon that we do not fully under-
stand at this point. We anticipate that modalities will play a crucial role in understanding
constructivity beyond intuitionist logic.

With Michel Parigot, we are using atomic flows to design and test the properties of a
new bureaucracy-free formalism that we are temporarily calling formalism B. Just to give
an example, in formalism B, the derivation on the right in Figure 1 (page 10) becomes

[

a
ac↑

(a a)

b
ac↑

(b b)

]

m

([a b] [a b])

c
ac↑

(c c)

,

where disjunctions and conjunctions are considered modulo commutativity and associativity.
Derivations in formalism B are, basically, atomic flows enriched with logical information.
Consequently, in this formalism, the behaviour of normalisation algorithms controlled by
atomic flows is much more natural than the same for the calculus of structures.

In the future, we want to explore the relations between atomic flows and proof nets, as in
[LS05a, LS05b, LS06, Str07b, SL04]. An interesting problem is to find simple combinatorial
conditions that decide whether an atomic flow is associated to some derivation with a given
premiss and conclusion. Our results might help in restricting this problem to cases where
no structural rules are involved, i.e., to the purely linear fragment consisting of the rules
switch and medial. The problem for switch in isolation is solved by the correctness criteria
for multiplicative linear logic, see Christian Retoré’s [Ret03]. Lutz Straßburger, in [Str07a],
found a criterion for the system containing only medial. For the combination of switch and
medial, no criterion is known.

We are also interested in exploring the connections between our work and Craig’s in-
terpolation theorem, especially in relation with the size of interpolants (see Alessandra
Carbone’s work [Car97] for a possibly related approach to ours). There appear to be
connections between atomic flows and Dominic Hughes’ combinatorial proofs [Hug06]; we
are especially interested in generating combinatorial proofs by manipulating atomic flows.
Atomic flows could be given an algebraic characterisation with Albert Burroni’s polygraphs
[Bur93]; Yves Guiraud investigated similar constructions in his paper [Gui06], where he
analyses this way the structural bureaucracy of SKS derivations. Finally, there might be
connections with the theory of matings, as in the works [And81] by Peter Andrews and
[Bib81] by Wolfgang Bibel; that theory also can be considered an abstract characterisation
of proofs.

Acknowledgements

We thank Michel Parigot for feedback during the early development of atomic flows,
and for extensively testing the ideas presented here and suggesting improvements to this
paper. We thank Kai Brünnler, Paola Bruscoli and Lutz Straßburger for comments on
a draft and Alwen Tiu for stimulating discussions and for finding a mistake in an earlier
version of this work. We are very grateful to the anonymous referees for their splendid work
and the many suggestions they had for improving this paper.

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 35

References

[And81] Peter B. Andrews. Theorem proving via general matings. Journal of the ACM, 28(2):193–214,
1981.

[BG08] Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference. ACM Transac-

tions on Computational Logic, 2008. In press. http://cs.bath.ac.uk/ag/p/PrComplDI.pdf.
[Bib81] Wolfgang Bibel. On matrices with connections. Journal of the ACM, 28(4):633–645, 1981.
[Bru02] Paola Bruscoli. A purely logical account of sequentiality in proof search. In Peter J. Stuckey, editor,

Logic Programming, 18th International Conference, volume 2401 of Lecture Notes in Computer

Science, pages 302–316. Springer-Verlag, 2002. http://cs.bath.ac.uk/pb/bvl/bvl.pdf.
[Brü03] Kai Brünnler. Atomic cut elimination for classical logic. In M. Baaz and J. A. Makowsky, editors,

CSL 2003, volume 2803 of Lecture Notes in Computer Science, pages 86–97. Springer-Verlag, 2003.
http://www.iam.unibe.ch/∼kai/Papers/ace.pdf.

[Brü04] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. Logos Verlag, Berlin, 2004.
http://www.iam.unibe.ch/∼kai/Papers/phd.pdf.

[Brü06a] Kai Brünnler. Cut elimination inside a deep inference system for classical predicate logic. Studia

Logica, 82(1):51–71, 2006. http://www.iam.unibe.ch/∼kai/Papers/q.pdf.
[Brü06b] Kai Brünnler. Deep inference and its normal form of derivations. In Arnold Beckmann, Ul-

rich Berger, Benedikt Löwe, and John V. Tucker, editors, Computability in Europe 2006, vol-
ume 3988 of Lecture Notes in Computer Science, pages 65–74. Springer-Verlag, July 2006.
http://www.iam.unibe.ch/∼kai/Papers/n.pdf.

[Brü06c] Kai Brünnler. Deep sequent systems for modal logic. In Guido Governatori, Ian Hodkinson, and
Yde Venema, editors, Advances in Modal Logic, volume 6, pages 107–119. College Publications,
2006. http://www.aiml.net/volumes/volume6/Bruennler.ps.

[Brü06d] Kai Brünnler. Locality for classical logic. Notre Dame Journal of Formal Logic, 47(4):557–580,
2006. http://www.iam.unibe.ch/∼kai/Papers/LocalityClassical.pdf .

[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In R. Nieuwenhuis and
A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture Notes in Artificial Intelligence, pages
347–361. Springer-Verlag, 2001. http://www.iam.unibe.ch/∼kai/Papers/lcl-lpar.pdf.

[Bur93] Albert Burroni. Higher dimensional word problems with applications to equational logic. Theoret-

ical Computer Science, 115(1):43–62, (1993).
[Bus91] Samuel R. Buss. The undecidability of k-provability. Annals of Pure and Applied Logic, 53(1):75–

102, 1991.
[Car97] Alessandra Carbone. Interpolants, cut elimination and flow graphs for the propositional calculus.

Annals of Pure and Applied Logic, 83:249–299, 1997.
[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems.

Journal of Symbolic Logic, 44(1):36–50, 1979.
[DG04] Pietro Di Gianantonio. Structures for multiplicative cyclic linear logic: Deep-

ness vs cyclicity. In J. Marcinkowski and A. Tarlecki, editors, CSL 2004, volume
3210 of Lecture Notes in Computer Science, pages 130–144. Springer-Verlag, 2004.
http://www.dimi.uniud.it/∼pietro/papers/Soft-copy-ps/scll.ps.gz .

[Gen69] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected

Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1969.
[GG08] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic flows

II. http://cs.bath.ac.uk/ag/p/NormContrDIAtFl2.pdf, 2008.
[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[GS01] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the calculus of struc-

tures. In L. Fribourg, editor, CSL 2001, volume 2142 of Lecture Notes in Computer Science, pages
54–68. Springer-Verlag, September 2001. http://cs.bath.ac.uk/ag/p/NoncMELLCoS.pdf.

[GS02] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL.
In M. Baaz and A. Voronkov, editors, LPAR 2002, volume 2514 of Lecture

Notes in Artificial Intelligence, pages 231–246. Springer-Verlag, October 2002.
http://www.lix.polytechnique.fr/∼lutz/papers/NEL.pdf.

[GS07] Alessio Guglielmi and Lutz Straßburger. A system of interaction and structure IV: The ex-
ponentials. In the second round of revision for Mathematical Structures in Computer Science.
http://www.lix.polytechnique.fr/∼lutz/papers/NELbig.pdf, 2007.

http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://cs.bath.ac.uk/pb/bvl/bvl.pdf
http://www.iam.unibe.ch/~kai/Papers/ace.pdf
http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/q.pdf
http://www.iam.unibe.ch/~kai/Papers/n.pdf
http://www.aiml.net/volumes/volume6/Bruennler.ps
http://www.iam.unibe.ch/~kai/Papers/LocalityClassical.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://www.dimi.uniud.it/~pietro/papers/Soft-copy-ps/scll.ps.gz
http://cs.bath.ac.uk/ag/p/NormContrDIAtFl2.pdf
http://cs.bath.ac.uk/ag/p/NoncMELLCoS.pdf
http://www.lix.polytechnique.fr/~lutz/papers/NEL.pdf
http://www.lix.polytechnique.fr/~lutz/papers/NELbig.pdf

36 ALESSIO GUGLIELMI AND TOM GUNDERSEN

[GT07] Rajeev Goré and Alwen Tiu. Classical modal display logic in the calculus of structures and minimal
cut-free deep inference calculi for S5. Journal of Logic and Computation, 17(4):767–794, 2007.
http://users.rsise.anu.edu.au/∼tiu/papers/cmdl.pdf.

[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Computational

Logic, 8(1):1–64, 2007. http://cs.bath.ac.uk/ag/p/SystIntStr.pdf.
[Gui06] Yves Guiraud. The three dimensions of proofs. Annals of Pure and Applied Logic, 141(1-2):266–

295, 2006. http://www.loria.fr/∼guiraudy/recherche/cos1.pdf .
[Hug06] Dominic J.D. Hughes. Proofs without syntax. Annals of Mathematics, 164(3):1065–1076, 2006.
[Kah06] Ozan Kahramanoğulları. Reducing nondeterminism in the calculus of struc-

tures. In M. Hermann and A. Voronkov, editors, LPAR 2006, volume 4246
of Lecture Notes in Artificial Intelligence, pages 272–286. Springer-Verlag, 2006.
http://www.doc.ic.ac.uk/∼ozank/Papers/reducingNondet.pdf.

[Kah07a] Ozan Kahramanoğulları. Maude as a platform for designing and implementing deep in-
ference systems. In RULE 2007—The Eighth International Workshop on Rule-Based Pro-

gramming, Electronic Notes in Theoretical Computer Science. Elsevier, 2007. In press.
http://www.doc.ic.ac.uk/∼ozank/Papers/rule07.pdf.

[Kah07b] Ozan Kahramanoğulları. System BV is NP-complete. Annals of Pure and Applied Logic, 2007. In
press. http://www.doc.ic.ac.uk/∼ozank/Papers/bv npc apal.pdf.

[Laf97] Yves Lafont. Interaction combinators. Information and Computation, 137:69–101, 1997.
[LS05a] François Lamarche and Lutz Straßburger. Constructing free boolean categories. In Prakash Panan-

gaden, editor, 20th Annual IEEE Symposium on Logic in Computer Science, pages 209–218. IEEE,
2005. http://www.lix.polytechnique.fr/∼lutz/papers/FreeBool-long.pdf.

[LS05b] François Lamarche and Lutz Straßburger. Naming proofs in classical propositional
logic. In Pawe l Urzyczyn, editor, Typed Lambda Calculi and Applications, volume
3461 of Lecture Notes in Computer Science, pages 246–261. Springer-Verlag, 2005.
http://www.lix.polytechnique.fr/∼lutz/papers/namingproofsCL.pdf.

[LS06] François Lamarche and Lutz Straßburger. From proof nets to the free *-autonomous category.
Logical Methods in Computer Science, 2(4):3:1–44, 2006. http://arxiv.org/pdf/cs.LO/0605054 .

[Ret03] Christian Retoré. Handsome proof-nets: Perfect matchings and cographs. Theoretical Computer

Science, 294(3):473–488, 2003.
[SL04] Lutz Straßburger and François Lamarche. On proof nets for multiplicative linear

logic with units. In J. Marcinkowski and A. Tarlecki, editors, CSL 2004, volume
3210 of Lecture Notes in Computer Science, pages 145–159. Springer-Verlag, 2004.
http://www.lix.polytechnique.fr/∼lutz/papers/multPN.pdf.

[Sto07] Phiniki Stouppa. A deep inference system for the modal logic S5. Studia Logica, 85(2):199–214,
2007. http://www.iam.unibe.ch/til/publications/pubitems/pdfs/sto07.pdf.

[Str02] Lutz Straßburger. A local system for linear logic. In M. Baaz and A. Voronkov, editors, LPAR

2002, volume 2514 of Lecture Notes in Artificial Intelligence, pages 388–402. Springer-Verlag, 2002.
http://www.lix.polytechnique.fr/∼lutz/papers/lls-lpar.pdf.

[Str03a] Lutz Straßburger. Linear Logic and Noncommutativity in the Calcu-

lus of Structures. PhD thesis, Technische Universität Dresden, 2003.
http://www.lix.polytechnique.fr/∼lutz/papers/dissvonlutz.pdf.

[Str03b] Lutz Straßburger. MELL in the calculus of structures. Theoretical Computer Science, 309:213–285,
2003. http://www.lix.polytechnique.fr/∼lutz/papers/els.pdf.

[Str07a] Lutz Straßburger. A characterisation of medial as rewriting rule. In Franz Baader, editor, RTA

2007, volume 4533 of Lecture Notes in Computer Science, pages 344–358. Springer-Verlag, 2007.
http://www.lix.polytechnique.fr/∼lutz/papers/CharMedial.pdf.

[Str07b] Lutz Straßburger. On the axiomatisation of boolean categories with and with-
out medial. Theory and Applications of Categories, 18(18):536–601, 2007.
http://www.lix.polytechnique.fr/∼lutz/papers/medial.pdf.

[Tiu06a] Alwen Tiu. A local system for intuitionistic logic. In M. Hermann and A. Voronkov, editors, LPAR

2006, volume 4246 of Lecture Notes in Artificial Intelligence, pages 242–256. Springer-Verlag, 2006.
http://users.rsise.anu.edu.au/∼tiu/localint.pdf.

[Tiu06b] Alwen Tiu. A system of interaction and structure II: The need for deep inference. Logical Methods

in Computer Science, 2(2):4:1–24, 2006. http://arxiv.org/pdf/cs.LO/0512036.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://users.rsise.anu.edu.au/~tiu/papers/cmdl.pdf
http://cs.bath.ac.uk/ag/p/SystIntStr.pdf
http://www.loria.fr/~guiraudy/recherche/cos1.pdf
http://www.doc.ic.ac.uk/~ozank/Papers/reducingNondet.pdf
http://www.doc.ic.ac.uk/~ozank/Papers/rule07.pdf
http://www.doc.ic.ac.uk/~ozank/Papers/bv_npc_apal.pdf
http://www.lix.polytechnique.fr/~lutz/papers/FreeBool-long.pdf
http://www.lix.polytechnique.fr/~lutz/papers/namingproofsCL.pdf
http://arxiv.org/pdf/cs.LO/0605054
http://www.lix.polytechnique.fr/~lutz/papers/multPN.pdf
http://www.iam.unibe.ch/til/publications/pubitems/pdfs/sto07.pdf
http://www.lix.polytechnique.fr/~lutz/papers/lls-lpar.pdf
http://www.lix.polytechnique.fr/~lutz/papers/dissvonlutz.pdf
http://www.lix.polytechnique.fr/~lutz/papers/els.pdf
http://www.lix.polytechnique.fr/~lutz/papers/CharMedial.pdf
http://www.lix.polytechnique.fr/~lutz/papers/medial.pdf
http://users.rsise.anu.edu.au/~tiu/localint.pdf
http://arxiv.org/pdf/cs.LO/0512036

	1. Introduction
	2. Background on Deep Inference
	3. Atomic Flows
	3.1. Atomic Flows and Derivations
	3.2. Paths and Cycles
	3.3. Streamlined Derivations

	4. Reductions of Atomic Flows
	4.1. Reductions
	4.2. Weakening and Coweakening
	4.3. Contraction and Cocontraction

	5. Streamlining Algorithms
	5.1. Elimination of a Simple Edge
	5.2. Breaking Fragile Cycles and Eliminating Clean Paths
	5.3. Streamlining Algorithms

	6. Conclusions
	Acknowledgements
	References

