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Abstract 

Various modal logics seem well suited for developing models of knowledge, be- 

lief, time, change, causality, and other intensional concepts. Most such systems are 

related to the classical Lewis systems, and thereby have a substantial body of con- 

ventional proof theoretical results. However, most the applied literature examines 

modal logics from a semantical point of view, rather than through proof theory. 

It appears arguments for validity are more clearly stated in terms of a semantical 

explanation, rather than a classical proof-theoretic one. We feel this is due to the 

inability of classical proof theories to adequately represent intensional aspects of 

modal semantics. This thesis develops proof theoretical methods which explicitly 

represent the underlying semantics of the modal formula in the proof. We initially 

develop a Gentzen style proof system which contains semantic information in the 

sequents. This system is, in turn, used to develop natural deduction proofs. An- 

other semantic style proof representation, the modal expansion tree is developed. 

This structure can be used to derive either Gentzen style or Natural Deduction 

proofs. We then explore ways of automatically generating MET proofs, and prove 

sound and complete heuristics for that procedure. These results can be extended to 

most propositional system using a Kripke style semantics and a f is t  order theory 

of the possible worlds relation. Examples are presented for standard T, S4, and 

S5 systems, systems of knowledge and belief, and common knowledge. A computer 

program which implements the theory is briefly examined in the appendix. 
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1 Introduction 

The field of Artificial Intelligence covers a broad interdisciplinary area of research 

devoted to the goal of realizing, as computational constructions, those behaviors and 

performances typically associated with human intelligence. As such, it represents 

the intersection of work done by researchers in the areas of philosophy, computer 

science, mathematics, and psychology to name a few. 

One particular set of people in the A1 community have embraced logic as a 

language which can be used to model the cognitive processes of intelligent agents at 

some level of description. Initially, propositional and first order logic were used to 

model small deterministic situations which could be completely described by some 

set of axioms. However, philosophers are quick to point out that many human 

behaviors are intensional; and that first order languages tend to be ill-suited to 

expressing intensional concepts. Some more powerful system should be used. 

One can consider two ways of extending first order logic to more powerful sys- 

tems. One can allow variables and substitution to range over predicates and formula, 

yielding higher order logic; or one can enhance the language with more logical oper- 

ators, yielding modal logic. It is to modal logic that most A1 researchers turn when 

attempting to devise formal systems encompassing intensional concepts. 

What does it mean for a system of logic to "model" some concept or concepts. 

At the very least, we would expect that the sentences which are derivable seem to 

express the proper (intuitive) relationships among the members of the domain of 

discourse. Alternatively, if we have a sound and complete theory, we can replace 

"derivable" by "validn. In this case, we have two competing methods of studying a 

system of logic. We can construct arguments for sentences from axioms by syntactic 

methods, or examine them analytically by semantic met hods. 

Formal analytic methods date back to the development of sequential methods by 

Gentzen [6]. In the first order systems, the edensional nature of the language makes 

it possible to develop an analytic proof theory which stands in exact correspondence 

to the underlying semantics. However, when we turn to modal languages, analytic 

methods suffer from the non-eztensional nature of the language. An analytic proof 

theory strictly couched in a modal language can never express analytic arguments 



as a first order language would. 

The purpose of this thesis is to develop, by modification of the notion of modal 

proof, an analytic proof theory somewhat after the style of Gentzen [6]. From 

this logical basis, we develop computational methods of deduction suitable for both 

interactive and automatic generation of proofs. This allows the use of the computer 

as a tool for the study of systems of modal logic - a possibility which seems to have 

been largely ignored to this point. 

1.1 Background and Motivation 

Are semantical arguments for validity really useful? That is, do we really need 

explanations (in the form of proofs) which justify the validity of sentences in an 

analytic way. There is, of course, no firm answer to a question such as this. On the 

other hand, a cursory look at some of the uses of modal logic in A1 may lend weight 

to the hypothesis that semantical arguments are useful and should be studied. 

From an A1 perspective, probably two of the major turning points in the phi- 

losophy of modal logics were the development of model theory by Kripke[l4], and 

Hintikka's work [lo] on knowledge and belief. The former put modal logic on firm 

mathematical grounds as a type of logistic system. The latter work set forth sys- 

tems closely related to the classical S4 and 5 5  systems with modal operators which 

could be interpreted as "agent a knows that p" and "agent a believes that pn, thus 

bringing modal systems to the attention of A1 researchers. 

From a philosophical point of view, there are several shortcomings with that 

particular formulation of knowledge and belief. However, it was a starting point for 

later work by Sato[28]. Based on diicussions with John McCarthy, he formalized 

various extensions to classical modal systems to formalize concepts of knowledge, 

introspection, and common knowledge (281 as problems in AI. As an example, he 

showed how the problem of three wise men could be presented using modal logic. It 

is interesting to note that he also develops a sequent calculus for his modal systems. 

However, the proof of the wisemen problem is presented .semantically; and, the 

formal proof is presented almost as an afterthought. 

At about this same time, McCarthy and Hayes[17], in a series of articles on 



formalized action paradigms, suggested it might be possible to use modal logics (in 

particular a semantic interpretation of them), as a language for expressing action. 

Moore [22] did just this by combining both the modal logic of knowledge based on 

the possible world semantics of Kripke [14], and the situation calculus of McCarthy 

and Hayes recast in terms of possible worlds. His approach uses a first-order for- 

mulation of modal logic semantics, thus allowing explicit reasoning about worlds, 

within the formalism. 

Some of the latest work in modal logic and A1 is due to Konolige [13]. He 

formalizes a deduction model of belief for a family of first-order modal logics and 

proves a form of Herbrand's theorem for these logics. This is crucially important 

since, while decision procedures have existed for T, S4, and S5 [ll], there have 

been no corresponding semi-decision procedures for quantified modal logics which 

are amenable to automated theorem proving. 

Another fertile area for the use of modal systems has been in temporal reason- 

ing[l6]. Typically, futures and pasts are represented by linear or branching sets 

of states, and the set of modal operators enhanced to cover all the possibilities of 

future and past tenses. Thus, a modality can be interpreted, for instance, as saying 

that "some condition holds in all states of some future" - essentially quantifying 

existentially on branches, and universally on states within that branch. It seems 

that semantic proofs in these logics offer a very coherent basis for natural language 

explanations of temporal system behavior. 

One theme which is common to this (quick and incomplete) review of literature 

is the semantic viewpoint taken toward logic. One would expect, given the compu- 

tational applications, that the work would have a more computational flavor; that 

is, manipulation of syntax in a proof theoretical fashion. However, there are few 

cases where classical modal proofs are even discussed. For instance, Moore circum- 

vents the problem by translating to the first order domain, and Konolige presents 

an entirely different semantics which is more amenable to computational methods. 

There is, in fact, a substantial body of work in the proof theory of modal logics 

[5,25,26,27,28,29], but, with the notable except ion of tableau methods, little of that 

work has impinged upon current research in applications of the logics. I would 



suggest the reason why rests fundamentally on the fact that modal logics have an 

intensional interpretation of predicates. Rather than being only strictly true or 

false, predicates can occur within modalities and be subject to varying interpre- 

tations. To accomplish this, the semantics of the modal operators is formalized 

using items not expressible in the language. This is, of course, where modal lan- 

guages derive their unique characteristics. It is possible for the modal operators 

to express fairly abstract concepts and rely on the underlying semantics to supply 

proper interpret ation. 

On the other hand, the gap between the syntax and semantics tends to make 

purely axiomatic arguments for validity somewhat obscure. This is one reason why, 

even with the availability of abundant proof theory for modal logics, one more often 

sees semant ical arguments for validity offered. e.g. [22,28]. Another problem with 

strictly axiomatic and in general most proof theoretic systems is that it is difficult 

to compare modal systems; even those with the same syntax. McCarthy and Hayes 

[17] make this point, and suggest that systems which explicitly account for the 

semantics of the logic allow both classification of various systems and "intelligible 

interpretation for modal predicate calculi." 

As mentioned above, very little has been done in the realm of applying com- 

putational methods to modal logic. Contrast this with first order languages where 

the computer is an invaluable aid in generating proofs and refutations. Resolu- 

tion methods have provided a fertile ground for implementations which are based 

on logical systems. The funda'mental basis for most of this work is some form of 

Herbrand's Theorem. 

One of the problems with applying standard proof theoretical tools to theorem 

proving in modal logic has been the lack of a Herbrand type of result (with the 

previously cited exception of Konolige). Herbrand's theorem fundamentally rests 

on the notion of substitution of elements from the domain of discourse yielding a 

tautologous form of the formula. However, since the underlying semantics of modal 

systems is nontruth-functional, it is difficult to derive an analog to Herbrand's 

Theorem. Hence, most automated theorem proving techniques cannot be used in a 

straightforward fashion. 



One way to circumvent this problem is to consider translating modal statements 

into some first order language and carrying out the proof in that language. Morgan 

[24] discusses two approaches for applying standard theorem proving technology 

to non-classical (specifically modal and intuitionistic) logics. The first approach 

involves embedding the entire axiomatic system of the object language into a meta- 

language based on first order logic. Axioms and inference rules of the object lan- 

guage appear explicitly in the meta language. This allows for easy translation of 

proofs of object language statements in the meta language to proofs in the object 

language. No knowledge of the semantics of the object language is required. 

This approach suffers from extreme inefficiency from a computational point of 

view. We are essentially running an interpreter for one nondeterministic system 

using another nondeterministic (and perhaps undecidable) system! Last and most 

important, the approach works only for propositiorurl logics; the extensions to first 

order logic are far from trivial. 

The second approach (similar to the one we are taking) translates the formula 

into first order logic and proceeds with the proof in that system. Morgan [24] and 

Haspel [9] develop and prove the correctness of proof methods based on a semantic 

translation of modal statements into first order predicate calculus. Based on this, 

we know that first order languages are strong enough to express semantical proofs 

of most modal logics. 

The interested reader may wish to examine a version of this approach presented 

in Moore[22,23]. This method essentially builds an "interpretern for modal logic 

in first order logic. A number of axioms are specified for the translation of modal 

statements into their first order equivalents, and an axiomitization of the semantics 

of modal logic is used to derive conclusions. He notes the translation axioms can be 

procedurally interpreted as they are only syntactic rewrites, and proofs which out- 

line a semantical argument for truth are presented. The advantage of this approach 

is that the reasoning about worlds is very explicit, and it allows a fairly intuitive 

coalescing of knowledge and action by referring to "statesn of knowledge and taking 

a state space approach to action. 2. 

'Moore's formulation also deals with identity and quantification which makes the system much 

5 



In summary, it appears there are at least two reasons to undertake the study of 

a form of proof theory which explicitly accounts for the semantics underlying the 

validity of a statement. First, the best explanations for statements in a theory are 

often semantical. Secondly, it is conceivable that a proof theory of this form would 

be more amenable to implementation on a computer. 

The theory presented herein addresses both of these issues. It is proof theoretical 

in that it is applicable to the syntax of the logic; but, it has more correspondence 

to semantics in that the proofs mirror semantic arguments by showing the actual 

model structure being developed. In this thesis we develop both the proof theory, 

and computational methods of deduction for a set of such a systems. The languages 

we cover will all be propositional modal logics with Kripke style semantics. The 

restriction to the propositional case is due to merely time and space constraints is 

not indicative of any known inherent limitations of the method. 

1.2 Overview of the Thesis 

In the next section of this thesis we review the standard definitions for modal logic. 

We then provide a definition of the syntax in which proof statements will be writ ten, 

and supply an interpretation for those formulas. Since we will study a variety of 

logics in this thesis, we present the syntax and semantics in a general fashion and 

customize the language and interpretations to each of our examples as needed. 

The third section presents a modified sequent calculus for constructing seman- 

tical proofs in modal logics having a Kripke type semantics. In the interests of 

extensibility, the system is presented as a base collection, and operational inference 

figures for the additional modal operators are added as needed. Information about 

the possible worlds relation is explicitly represented in the sequents, and the in- 

troduction rules for the modalities modify this information. Proofs of soundness 

and completeness are given for the standard T, 54,  and S5 logics. The system 

is extended to handle multiple knowers and common knowledge. The Wise Man 

puzzle as it appears in [28] is presented as a example of the style of proofs using 
- - - - 

more complicated. In the propositional case, his approach and ours are essentially the same, 

though our goals are somewhat divergent. 



this formalization. 

The next section presents linear natural deduction proofs after the fashion of 

Miller [18,19,20]. These proofs are much more amenable to machine implementation 

than the Gentzen proofs upon which they are based, yet capture the same semantic 

flavor as the sequent calculus. They can be viewed as Suppes style proofs which 

are "linearizationn of the sequent system established in the previous section. The 

presentation will be based on a proof outline. Several outline transformations will 

process outlines until a completed proof is achieved. Correctness of these transfor- 

mations will be based on the Gentzen system. As a result, the proof of correctness 

gives a simple algorithm for constructing a Gentzen proof corresponding to the 

natural deduction proof. 

Following this, we develop the notion of proof representations for modal state- 

ments. In particular, we adopt the expunsion tree as a basic proof representation 

and modify it to suit our languages. Expansion trees and their modal analogs have 

many desirable properties as a compact and clean proof representation. As an ex- 

ample, we will demonstrate how sequential and natural deduction proofs can be 

constructed from expansion tree proofs. 

One can view the search for an expansion tree proof in two stages. First, con- 

struct the "scaffoldingn of the tree, then search for the appropriate substitution 

instances of a formula which make the deep structure of the tree tautologous. One 

way of searching for these substitution instances is to use the method of matings 

[1,2]. We will examine some of the issues involved in this proof process. In particu- 

lar, we will show that substantial speedup can be achieved by suitably structuring 

the search. These results also suggest that it is possible to view the search for a proof 

as interaction between a standard theorem prover, and attached procedures. There 

are several issues of control in this view; with standard tableau systems appearing 

as a point on the spectrum. 

Finally, we will describe implemented systems for finding expansion trees, and 

editing natural deduction proofs based on the above theory. Nearly all examples 

presented in the thesis were run on or generated by these systems. In the appendix 

we present some Prolog code corresponding to the mathematical definitions in order 



to clarify the connections between the formalism and its implementation. 

It is assumed the reader is familiar with standard first order logic, and has 

had some exposure to modal logic and higher order logic. Knowledge of Gentzen 

systems and natural deduction proofs is essential, as well as a basic understanding 

of automated theorem proving. Familiarity with the language Prolog is useful, but 

not essential. 



2 Syntax and Semantics 

This section gives a general account of some modal systems of logic - that is, logics 

with an extended set of operators. Since we will study a number of languages, 

our definitions of syntax will be for languages with some set of modal operators. 

Similarly, our definitions of semantics will be general enough to account for this 

class of languages. 

We will in fact supply two definitions of syntax. The first is the standard defi- 

nition of a modal language. This, in our case, is what might be termed the outer 

syntax. It is the syntax of the language under study. On the other hand, our proof 

system will have a special syntax, the inner syntax - the language in which proofs 

are carried out. Our definition of "proof" in the next section will make the con- 

nection between statements of the outer language, and proofs of those statments 

couched in the inner language. 

2.1 Definition of the Outer Language 

The syntax for modal languages is the normal set of well formed formulae of the 

propositional calculus closed under both the standard rules of formation, and rules 

for the modal operator symbols. Following [4], we will adopt the convention of 

referring to some sequence of modalities and negations containing an even number of 

negations as afirmative, and an odd number as negative. Often, a modal language 

contains modalities which are dual to each other - that is, either operator can 

be defined as an affirmative occurence of the other. In order to generalize the 

presentation, we will consider the set R to be some set of modal operator symbols, 

and some subset of their duals, n, will be introduced by definition if they are 

required. 

In the sequel, we will take the liberty of using the symbol XK as a schema to 

be uniformly replaced by A or V wherever it occurs; and, similarly, Q will stand 

for V or 3 whichever being appropriate from context. Also, more recent literature 

has replaced L and M by the symbols and 0 respectively. In this thesis we will 

continue to use L and M with their classical interpretations. Lastly, we will let 



characters at the beginning of the greek alphabet (a, /3, . . .) denote formulas in the 

outer syntax, and characters toward the end (+, a,. . .) as formulas in the inner 

syntax. 

Definition 2.1 Let ll be a set of propositional atoms, and R be a (possibly empty) 
set of modal operators. P, the set of well-formed propositions, is the smallest set 
containing ll and closed under the following rules of formation: 

if a! is a wff, then - a! is a wff 

if a and /? are a wffs, then aMO(P is a wff 

if a is a wff, then pa is a wfF for all p E R. 

We will often enrich our syntax by defining the symbol > and a set of symbols, 

$2, which represent the duals of the operators in R. 

Definition 2.2 

4f For each w E $2, w a  --p - a! for someunique p E  R. 

In this formulation, we can define the system for a single modal operator by 

letting R = {L) and $2 = 0, or get standard syntax for T (S4 or 55) by adding M 

to n. The systems of knowledge [8,13,22] consider a number of modalities, Ki or 

Si representing the knowledge or beliefs of agents in the system. We can arrive at 

modal logic of knowledge by letting R = {Kl,. . . , K,) and $2 = 0 
Now that we have a syntax, we need to supply an interpretation to give content 

to the system. There is a fairly uniform semantics which, with only minor variations, 

covers all systems of modal logic we will discuss. The formulation we will present 

initially is the standard account such as is found in [4,11,12]. This is not the 

only possible semantical account for modal logics. For instance, Halpern [7] has 

given an alternate semantics which is also sound and complete with respect to a 

modal language used to model knowledge, and Konolige[l3] formalizes yet another 

interpretation which is equivalent to Kripke semantics under certain restrictions. 

At this point, however, we will consider only Kripke type semantics. 



The basic notion in Kripke semantics is a world (sometimes referred to as a state 

in the propositional case). A world is an assignment of truth valuation to atomic 

symbols, or alternatively a set of propositions. Thus, the semantics of propositions 

under modal operators is not directly truth-functional - a statement in the language 

may be true or false depending on the particular world we choose to look at. 

Worlds are related by an accessibility relation. This accessibility relation is used 

to give an interpretation for the modal operators. The interpretation of a modality 

can often be thought of as quantifying universally or existentially over related worlds. 

We will refer to modalities with the former interpretation as universal modalities, 

and the latter as existential modalities. 

Definition 2.3 A model, M, is a tuple (W, V, Rp, , . . . , Rp, ) where 

W is a set of worlds, 

V is a valuation function V : II x W H (0, I), and 

Rpi for any pi E R is a binary relation on worlds in W, i.e. Rpi C W x W. 

Given this structure, we can define an interpretation for a modal formula. 

Definition 2.4 A formula, a, is true in a model, M, and a world, wi E W (denoted 
(M, wi) + a) iff: 

(Mywi) k p  iff V(p,wi) = 1 if p €  R, 

(M, wi) k- iff not (M, toi) k a 

for any universal p E R, (M, toi) pa iff for all wj such that wiRPwj, 

(M,wj) k a 

for any existential p E R ,  (M, wi) pa iff there is some wj such that wiRPwj, 
and (M, wj) + a 

Definition 2.5 A formula, a, is true in a model (denoted M a) iff it is true at 
every world in that model. 

Definition 2.6 A formula a is x-valid for some system of modal logic x (denoted +, a) iff it is true in all models of the class conforming to the restrictions of system 
x. 



Different systems of modal logic can be defined over the same language by mod- 

ifying the class of models under consideration. For instance, having no restrictions 

yields a basic system (sometimes called K, not to be confused with the system K 

in the thesis) which is the smallest system one can consider. Any system which 

contains K is called a normal system. T, S4, and S5 are normal systems which 

restrict the relation, RL , be reflexive, reflexive and transitive, or an equivalence 

respectively. All of the system we will present are normal systems. 

2.2 Definition of the Inner Language 

In the previous subsection, we defined validity, in standard fashion, as satisfaction 

ranging over all models and all worlds in that model. This is not the only possi- 

ble definition. In his original work, Kripke defined a normal model to be a triple 

(H, W, R) where W is a set of worlds, R is a relation, and H is some arbitrary mem- 

-ber of W. The interpretation function then uses H as the originating member in 

the world relation. 

As one would expect, Kripke's definition of validity implies the one we have 

given above. If a formula is satisfied in a model from some arbitrary world, then 

by universal generalization, it is true in all worlds. Notice, then, that the truth of 

some formula in a world depends only on the subformula of that formula, and the 

worlds related to that originating world. This is formalIy expressed by defining the 

notion of a generated model[4]. We say a model MU is generated from M by w if 

Mw is a restriction of M to the worlds related to w. The particular result we are 

interested in is: 

Proposition 2.1 Let M be a model. Then: 

M k A iff for every w E M, MW k A 

In other words, the generated portion of a model suffices as a test of the truth 

of a formula in a model. For purposes of validity, then, we need only focus our 

SNearly all work in A1 has been done using variants of the systems mentioned above. There are 

several other restrictions possible on R (e.g. Euclidean or Serial) which we will neglect. Most 

results presented in this thesis generalize to those variants. 



attention on the class of generated models. ' 
This view of semantics seems to lend itself toward an analytical style of analysis. 

If one were analyzing the semantical content of a formula, one would pick some 

arbitrary world from which to start. One would then examine the model generated 

by the sentence to determine truth or falsity. This is, in fact, the basis for most 

refutation-based semantic tableau theorem provers. 

In order to construct an analytic proof theory in this style, we must be able to 

represent the intermediate stages of the proof. This is not (directly) possible in the 

standard syntax because propositions are not strictly eztensional. Modal languages 

are not extensional simply because the truth valuation of a proposition depends on 

both its subformula, and the possible world it occurs in, as can be clearly seen in 

Definition 2.4. We intend to develop a proof structure which is closely related to the 

semantics of the formulae, so we must tailor that structure to be more nearly truth- 

functional. Obviously, the way to do this is to develop some way of representing 

the possible-worlds relation. 

In our proof systems, we will ornament formulae with a world term denoting the 

world or set of worlds in which the subformula is to be interpreted, e.g. (a V P)wa. 
The proof will proceed by generating a model based on the sentence. At all points, 

the ornamentation on the formula, and a set of relation constraints will encode the 

current frame of the proof. Validity will be ensured by selecting a special arbitrary 

initial world term which appears nowhere else in the proof and appealing to universal 

generalization over the class of models generated from that term. 

The following definitions formalize the notion of ornamented formulas, which 

we will sometimes call the inner syntax. The standard definition of modal formulas 

will be called the outer syntax. 

Definition 2.7 Let H = {wo, wl, . . .), be a set of world variables. 

Let II be a set of propositional atoms, and R be a (possibly empty) set of modal 
operators. PI, the set of well-formed inner propositions, is the smallest set closed 
under the following rules of formation: 

{(a),la E II and w E B) 2 PI, 

*For more discussion on generated model, the interested reader should consult [4]. 



if (a), is a wff, then (N  a), is a wff 

if (a), and /3, are a wffs, then ( ~ x K P ) ,  is a wff 

if (a), is a wff, then (pa),  is a wff for all p E R. 

This is simply a restatement of Definition 2.1 so that all well-formed formulas 

are ornamented with a world term. However, here we have an explicit represen- 

tation for possible worlds. This requires semantic modifications to account for an 

interpretation of the world variables and the possible worlds relation. We will do 

this in the obvious way, by interpreting the modal formulae under a substitution of 

elements of the possible worlds domain for the world variables. 

Our proof systems will be sequent systems similar to those developed by [6]. 

However, we will augment the sequent with a representation for constraints on the 

reIationship among the possible worlds variables. That is, sequents in this system 

are to be of the form 

R;C + 0 

where C and O are sets of ornamented modal formulae, and R contains statements 

of the form: wi R, wj .  These latter statements encode the current conditions on 

the possible worlds relation for the various modal operators (p  in this case) in the 

language. Our notion of substitution will have to account for these constraints. 

Definition 2.8 Define a substitution as a mapping, s, from elements of H to ele- 
ments of the possible worlds domain, W, of a model, i.e. 

Moreover, we will call a substitution proper with respect to some set of statements6 
{w j  RPi w ~ . . . )  if, for all such statements, 

A proper substitution, then, is a mapping of the possible world ornamentations 

to the possible worlds of a model such that the relational constraints are met. By 

using the above definition, we offer the following interpretation for our extended 

sequents: 

6Note we denote syntas by w Rp wt and write this actual relation in a model as (w,  w t )  E Rp to 
avoid confusion. 
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Definition 2.9 Let r and A be possibly empty sets of inner formulas. We say M 
is a model for a sequent R; I' + A, written 

if, for every R-proper substitution s, we have 

(M,s(w)) a for some (a), E I' or (M,s(w)) p for some (P), E A 



3 A Gentzen-style System for Modal Logic 

In this section we will present several flavors of a sequent system, LKM, for modal 

logic after the style of Gentzen [6]. In section 2, we introduced a notation which 

allows us to specify the possible worlds information needed to interpret modal state- 

ments. Recall our convention is the expression (A), is interpreted to mean: "The 

formula A is true in the world denoted by w" , and our sequents contained st atments 

which denoted the relationships between possible worlds. 

Inference rules in a sequent system are typically taken to be introduction rules for 

each logical connective in the language. In order to generalize our treatment, we will 

define a base collection of rules for LKM which correspond to the standard complete 

set of operational inference figures for non-modal calculus. For any modal language 

with some operator set R, we will add an antecedent and a succedent introduction 

rule for every p E R . By symmetry, every w E fl will use the introduction rules of it's 

corresponding member in R, but with the side of the occurrence reversed (i.e. the 

succedent rules become antecedent rules and vice-versa). By adding these inference 

figures to the base collection to get particularizations of LKM to the syntax under 

study. 

As a proof proceeds, certain introduction rules will modify the "topologyn of 

the possible worlds relation by adding constraints to 8. Other introduction rules 

will use the information in R as a proviso on their applicability. The restrictions of 

this proviso allow us to specialize a particular instantiation of LKM to some class 

of models. At the end of the proof, ?R gives the essential structure of the possible 

worlds relation which forces validity. 

In the sequel, we will adopt the convention of denoting different instances of 

LKM by a subscript naming the logistic system in use, e.g. LKM,*, or LKMS5. 

The subscripts will be one of T, S4, S5, K (knowledge), or 0 (common knowledge). 

Also, we will denote the derivability of an endsequent of the form 0; --+ (a), in 

a system x by I-, a, and the derivability of a proposition in a Hilbert system 

by FH . Furthermore, we will use the symbol I-" to denote derivability in the 

(usually first order) theory of possible worlds relations for a system of modal logic, 

x. For example, ES4 denotes derivability in a theory of reflexive, transitive, binary 



relations. 

3.1 The Basic System LKM 

Let A, C ,  and P be propositional formulas, and let I?, A, Q and A represent possibly 

empty, finite lists of formulae. The following are the base inference rules for our 

modal derivation system, LKM. 

Definition 3.1 (The Base Collection of Inference Figures) The base collection of 
inference figures is: 

8;I' + Q %;I' + 0 
thinning thinning 

8 ;  @),,I' + Q 8 ; r  -3 O, (A), 

x;(A)w,(A)w,r + Q %;I' 4 Q,(A)w,(A)w 
contraction contraction 

8 ;  (A),,r --+ Q %;I' + @,(A), 

8 ;  A, ( A ) ~ I ,  (C)W~,I '  -' Q 8 ;  r --+ Q, (A),I, (CIw2, A 
interchange interchange 

R;A, (c )w~, (A)wi , r  -' Q 8 ;  r --+ Q, (C)W2, ( A ) w ~ ,  A 

% ; r  - Q, (A), R;(A),,A -+ A 
cut 

8;I ' ,A + @,A 

%;I' -' @,(A), R;I' + Q, ( c ) ~  
A-IS 

%;I' ---, @,(AAC), 

R;(A),,I' -3 Q R;(c),,I' + Q 
A-IA A-IA 

~ ; ( A A c ) , , ~  + Q R;(AAC),,I '  + Q 

R;(A),,I' + Q ~ ;c , , I '  -+ Q 
V-IA 

R;(AVC),,I' + Q 

8;I' + @,(A), 8;r + Q, (c), 
v-IS v-IS 

8;r 4 Q,(AV C), 8;r + Q, (A v C), 



Axioms in this system are of the form: 

A proof in this system will be a tree with the sequent 0; + (A), at the root, and 
axioms at the leaves. We will say this is a proof for the modal statement A. 

Proposition 3.1 (Soundness and Completeness of the Base Collection) There is an 
LKM proof for a if and only if a is tautologous. 

Notice that any proof in LK could be converted to a proof in LKM merely by 

adding a w E B ornamentation to all formulae in all sequents, and the converse. 

Hence, LK and LKM proofs are equivalent, and, by soundness and completeness 

of LK for propositional logic, LKM is also sound and complete. 

Corollary 3.2 Propositional calculus is contained in all modal systems discussed 
in this thesis. 

3.2 The Systems T ,  S4, and S5 

Most classical modal languages have a single modal operator. These are based on 

a possible worlds relation which can be reflexive, a pre-ordering, or an equivalence 

relation6. These systems are typically called T, S4, and 5 5  respectively. 

Consider enriching the syntax of our base language with the standard modalities 

L and M ,  i.e R = { L )  and fl = { M ) .  We will then need to add inference figures 

to the base collection to account for these operators. Heretofore, nothing was done 

with the topology of the possible worlds relation. All generated models contained 

a single world and an empty relation. By introducing these modalities, we also 

introduce the need to state and use restrictions on the models generated. Hence, 

the following inference figures make explicit reference to 3. 

'It can also be serial or euclidean, or have other constraints. See [8,4]. 



Definition 3.2 

?These rules contain the proviso that w RL x follows, in the theory of the system s, 
from the statements contained in 92, i.e 91 b8 w RL x as indicated on the inference 
figure. Henceforth we will adopt the convention the bracketed figure represents this 
proviso and refrain from noting it explicitly. 

*These rules contain the proviso that x does not appear as an ornamentation or 
variable in the lower sequent. 

Furthermore, we will add the following constraints to the possible worlds rela- 

tion. The theory of s will contain: 

The axiom of reflexivity, Vx .x RL x, if s is T, S4, or S5; 

The axiom of transitivity, Vx y z .x RL y A y RL z 3 x RL Z, if s is S4 or S5; 

The axiom of symmetry, Vxy .x RL y > y RL x, if s is S5. 

We will refer to these particularizations of LKM as LKMt, LKM84, and LKMss 

respectively. 

Example 3.1 A proof of Lp 3 LLp in LKMa4 or LKMn5 would be: 

922; Pwz ' Pw2 
L-IA 

R2; LPWO ---' Pw, 
L-IS 

N1;Lpwo ---, Lpwl 
L-IS 



We could prove soundness of these systems based on the validity preserving 

properties of a first order translation of a modal statement7. Instead, we shall offer 

the following direct proof based on our interpretation for 8. 

Proposition 3.3 (Soundness for LKMT,S4,sS) If kT,S4,SS a then ~ T , S 4 , S s  a 

Proof: We merely need to show the additional rules are validity pre- 
serving. We will demonstrate the proof for the L rules. The proof for 
M is, by symmetry, a trivial modification. 

Consider L-IS. Assume the upper sequent of the rule is valid, 
but there is a counter model, M, for the lower one. Then there 
is a substitution s such that (M,s(w)) &CZ Lp. But, by the proviso 
that s does not appear in the lower sequent, and the validity of 
the upper sequent we know that (M,s(z)) p for any X-proper 
substitution, and hence for all worlds accessible from s(w) in all 
models, including s(z) in M.  This is a contradiction, so there can 
be no such countermodel. 

Consider L-IA. Assume the upper sequent is valid, but there is 
a countermodel, M, to the lower sequent. Then, there is a substi- 
tution s such that (M, s(w)) Lp. But, by validity of the upper 
sequent, we know that (M,s(s)) p. By the proviso, it must be 
the case that s(w), s(x) E RL. This is a contradiction. 

We will show completeness of this system relative to the axiomitisation for the 

Hilbert system given in definition C.1, and then appeal to the completeness of that 

system. The method of the proof is to show that any formula derived in some 

Hilbert system has a corresponding proof in the Gentzen system. In this proof, 

we will make essential use of cut; so, the proof demonstrates completeness for the 

system with the cut rule. We must then demonstrate that cut-elimination holds for 

this system to support a completeness result for the system without cut. 

The following lemmas demonstrate that, given an L K M  proof for the inputs to 

necessitation or modus ponens, we can generate a proof for the output. Formally, 

these rules are admissible to the system. 

7See the appendix for this alternate soundness proof. 

8~ rule is admissible to a system if adding it to the system does not change the theorems of the 

system[l3]. 



Lemma 3.4 The rule of necessitation is admissible to this system. 

Proof: If we have a proof for a, we can construct a proof for L a  by 
the following procedure. Select a new world variable w' not appearing 
anywhere in the proof for a. Add the statement w' RL W ,  where w if the 
ornamentation of a, to 8 of the bottom sequent. Apply L-IS to the 
bottom sequent, producing a sequent 0; + (La),,. This, then, is a 
proof for La. 

Lemma 3.5 The rule of modus ponens is admissible to this system. 

Proof: 

Suppose we have proofs for (a), and ( a  > P)k. Then by suitable renam- 
ing of ornamentation, we can construct a proof for (P), in the following 
fashion. First, note that last step in the proof for a 3 /3 was 3 -IS. 
Thus the new proof would join at this last step and become: 

0; --+ (a), 0; (4, --, ( P ) w  
cut 

Proposition 3.6 (Relative Completeness of LKM,5) If a then kT,S4,SS a 

Proof: The proof is by induction on the length of the Hilbert derivation. 

A derivation of length zero consists of some axiom of the system. 
It is easy to show that all axioms of the systems under question 
are derivable in the appropriate instantiation of LKM 

A derivation of length n is some derivation of length n - 1 followed 
by the application of one rule of inference to some subset of the 
formulas appearing in that derivation. By the induction hypothesis, 
there is an LKM proof for those formulas in the system under 
question. By the admissibility of the inference rules, we know we 
can construct a proof for the the final formula in the sequence based 
on the proofs for the basis of the inference rule. 



Such a completeness result for Gentzen systems without cut rests fundamen- 

tally on cut-elimination for the Gentzen system. We will not prove cut-elimination 

directly for of our systems at this point, but postpone the argument to Section 5 

where it will be a corollary of a proof transformation. 

Systems without cut also exhibit an interesting relationship between ornamen- 

tations and members of R in a sequent. If we examine the modality rules, we see 

that any world ornament appearing in a sequent must also appear in 82 except for 

the initial world. Also, if any relation constraints appear in R, then wO appears 

there also. We will formally call this property the containment property . 

Definition 3.3 (The Containment Property) A system exhibits the containment 
property if, for any sequent derivable in the system, either R contains no constraints, 
or it is the case that any world ornament of a formula in the sequent appears in !I? 
of that sequent. 

All systems in this thesis in fact have the containment property. One immediate 

consequence of the containment property is the sharpening of the provisos requiring 

arbitrary world variables. Instead of looking at the entire sequent, it now suffices 

to consider only the members of R. 

Also, notice that it is possible that the model generated by a proof with cut 

may not be a generated model. In fact, it may not even be a cohesive model - 

that is, a model where the possible worlds topology is connected. Thus, by showing 

cut-elimination for this system, we also have an alternate proof for proposition 2.1. 

The exact relationship between cut and the model topology is an issue that 

requires further investigation. 

3.3 Extensions of LKM to a Logic of Knowledge 

The extension of LKM to multiple agents in a system of knowledge is very straight- 

forward. We now assume there are a number of modal operators R = {Kl, Kz, . . .), 
and Cl = 8. The rules L-IA and L-IS become a set of rules Ki-IS and Ki-IA for 

i = 1,. . ., and the rules M-IA and M-IS are disallowed. The accessibility relation 



will be indexed by agent, i.e. there will be n accessibility relations RKi . The possi- 

ble worlds theory for K will contain the conjunction of the appropriate constrains 

on each accessibility relation. The additional rules for LKMK are (schematically): 

$This rule contains the proviso that x does not appear as a variable on 8 or an 

ornamentation of a formula in the lower sequent. 

The theory of K's accessibility relation will contain an axiomitization of the 

possible worlds relation for each "knower". Hence we can represent agents which 

differing reasoning abilities (e.g. positive introspection, negative introspection) by 

varying the restrictions on the different accessibility relations. The proofs of sound- 

ness and completeness of these rules is similar to the Propositions 3.3 and 3.6, and 

so are omitted. 

Modal logics of knowledge are often enhanced by adding modalities indicating 

common knowledge (sometimes differentiating between implici t  common knowl- 

edge, and explicit common knowledge [28,8]). For instance, the following modifica- 

tions of LKMK extend that system to account for a modal operator 0 representing 

common knowledge: 

Definition 3.4 

1. The addition of a modality, 0 to R. 
2. The addition of preorder constraints on Ro to the theory of K. 

3. The addition of the axiom Vx y .x RKi y > x l& y to the theory of K 

4. The addition of the following two rules of inference to LKMK: 

$This rule contains the proviso that x does not appear as a variable on X or 
an ornamentation of a formula in the lower sequent. 



As an example of the flavor of this system, we present the proof of the three 

wise men as reported in [28]. The interested reader should refer to that paper and 

note the exact correspondence between that (semantic) argument and our proof. 

Example 3.2 In the following, interpret pi as the proposition, "wise man i has a 
white dot on his head." Ki is, of course, interpreted as, "wise man i knows that", 
and 0 is interpreted as, 'it is common knowledge that." The axioms for the wise 
man puzzle (adapted from [28]) are: 

2. 0 (PI v P2 v ps) 

We will in general omit inference figures using thinning, since they are easily inserted 
from context. The proof is: 

closes several V-IA 
' 3 ;  ( P I  P2 V ~ 3 ) ~ s  - ( P ~ ) w s ( P ~ ) w ~ ,  ( ~ 1 ) ~ s  

0 - I A  
8 s ;  ( ~ s ) w a  - (ps)Wa 

K l - I A  8 3 i 3 w 0  - ( P S ) W S ( P ~ ) W ~ ~  ( ~ 1 ) ~ s  K l - I A ,  7 - I A  
3 3 ;  K l ( p 3 ) W a  - (ps)wa S 3 ; 3 w 0 1  Kl (N ~ 2 ) ~ 2  + ( ~ a ) w s ,  ( ~ 1 ) ~ s  V-IA 

a s ;  3 ~ 0 ,  ( K l ( p s )  v Kl(- ps))tua - ( ~ 2 ) w s ,  (ps)Wa,  ( ~ i ) w s  
K 1 - I A ,  7 - I A  

3 3 ;  3w01 ( K l ( p s )  v K l ( -  ~ 3 ) ) w 2 ,  ( K l ( -  ~ a ) ) t u a  - ( ~ 3 ) w 2 ,  ( p i ) W s  

923; ( ~ a ) w a  - (pn)Wa 
Kl -1A 

8 s ;  Ki ( ~ a ) w 2  + ( P ~ ) W Z  See above 
V - I A  

8 s ;  2w0, ( K i ( p a )  V Ki(- h ) ) w a ,  ( K i ( ~ s )  V K i ( -  ps))wa --* ( ~ 2 ) t a 2 ,  ( ~ s ) t u i ,  ( ~ i ) w s  
o-ia, A-IA  

a3; 2 ~ 0 ,  ~ W O  - ( ~ a ) w a ,  (ps )wa1  ( ~ i ) w s  
K l - I S  : 3 s  := 3 2  U { w 2  RK1 w 3 )  

3 s ;  ~ W O ,  3 ~ 0  - ( ~ 2 1 t u 2 ,  (ps)Wa, ( K i ( ~ l ) ) w a  
-- IA 

3 2 ;  ~ W O ,  3 ~ 0  - K i ( p 1 )  + (pa)Wz, (ps)Wa 
K 2 - I A ,  K 3 - I A  

3 2 ;  2w0,3w0,4w0 - (pa)tua, (ps)toa 
K 2 - I A ,  7 - I A  

8 2 ;  ~ W O ,  ~ W O , ~ W O ,  K 2 ( -  ~ 3 ) ) w l  - ( ~ 2 ) ~ 2  
K2- IS  : 3 2  := !Rl U { w l  RK, w2) 

8 2 ;  2w013w0,4w01 K 2 ( -  ~ 3 ) ) w l  - ( K 2 ~ 2 ) w l  

'Here we have adopted the convention that [K4]a is shorthand for Kia v Ki - a. 
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R 1 ;  ( ~ 3 ) w l  - ( ~ 3 ) w l  
K 2 - I A  

8 1 ; K 2 ( ~ 3 ) w l  - ( P S ) W ~  See above 
V - I A  

R i ; 2 w o , 3 w o , & o ,  ( K 2 ( ~ 3 )  v K ~ ( - P s ) ) W I  -* ( K a ~ ~ ) w i ,  ( ~ 3 ) w i  
o-ia,several A-IA 

8 1 ;  2w0,  ~ W O ,  3 ~ 0 8 4 ~ 0  - ( K 2 ~ 2 ) w l ,  ( P S ) ~ I  
contraction 

R 1 ;  ~ W O ,  3w0, ~ W O  - ( K z P ; ~ ) w I ,  ( P S ) W I  K3-IA, 1-IA 
0 ;  ~ w 0 ~ ~ w 0 ~ ~ w 0 , ~ ~ 0  - ( ~ 3 ) w l  

Ks-IS : 821 := 0 U (wO RKt ~ 1 )  
0;  2w0, ~ W O ,  ~ W O ,  5wo --* ( K s ( p 3 ) ) W o  

thinning 
0; 1 ~ 0 ~ 2 ~ 0 ,  QWO, ~ W O P ~ W O  - ( K 3 ( ~ 3 ) ) w 0  

3 - I S ,  several A-IA 
0; - (1 ,293,  4 , s  3 ( K 3 ( ~ 3 ) ) w 0  



Linear Natural Deduction Proofs1' 

In this section we will show how to build natural deduction proofs in modal logic. 

These proofs will essentially be an incrementally constructed "linearizationn of the 

previously presented Gentzen proofs. The justification of correctness will be based 

on sequent systems, and will in fact yield an algorithm for constructing Gentzen 

proofs corresponding the natural deduction proofs. As in the preceding section, 

we will first present a base collection of outline transforms paralleling the base 

collection of inference rules. We will establish correctness of this base set. We 

will then demonstrate the procedure for extending the system to the various modal 

calculi and demonstrate correctness for those languages. At the end of the section 

we present a (slightly edited) proof for the wisemen puzzle (see example 3.2). 

4.1 The Base Collect ion of Proof Outline Transformations 

A natural deduction proof will consist of a set of lines and a set of sequents, collec- 

tively referred to as a proof outline. The lines in the proof contain a line number, a 

set of hypotheses, a formula, and a justification. The line number is merely a label 

so that sets of hypotheses can be expressed as sets of numbers rather than lists of 

formulae. The combination of hypotheses, formula, and justification correspond to 

a sequent and the inference rule applied to derive this sequent from its predeces- 

sor. There is one special justification, N J ,  which marks lines which for which a 

justification must be derived. 

Definition 4.1 Let L be an ordered set of line labels and J be a set of justifications 
containing a special justification N J .  A proof line is an ordered tuple (1, U ,  a, j )  
where: 

1. 1 E L, 
2. U L where all members of U precede I ,  

3. a is some formula, and 

4. j E J is the justification for this line. 

1°This section is primarily based on the notes presented in [20] 



The sequents are used to keep track of the "leavesn of the (incomplete) Gentzen 

tree. As long as a branch is open, there will be a corresponding sequent in the 

proof outline. When a branch closes, the sequent will be deleted. The sequents are 

represented as sets of line labels rather than the actual formulae. Lines which appear 

on the left side of some sequent are called supporting lines, while lines appearing on 

the right side of a sequent are called sponsoring lines. 

As long as there are sequents in the outline, there are sponsoring lines yet to 

be justified. Later in this section, we present outline transformations which will 

permit us to transform outlines into "more completen outlines. This transforming 

process will finish when the outline is complete, i.e. when all branches close and 

the outline is actually a proof. Note that these proofs, like the Gentzen proofs they 

are derived from, will be cut free rather than axiomatic. 

Definition 4.2 A proof outline, 0, is a pair, (L, C), where: 

1. L is a list of proof lines which is a complete or incomplete ND-proof. A line with 
the justification N J  represents a piece of a proof which must be completed. 
Let Lo be the set of all line labels in L which have this justification. These are 
called the sponsoring lines of 0. 

2. C = {X; I'l --+ 1 I I E Lo , rl C L \ Lo) is a set of sequents, where the Iine 
labels in rl must precede 1, and 8 encodes the accessibility relation for this 
sequent. The lines in r1, called supporting lines, and are said to support I; 
while, conversely, 1 sponsors the lines in rr. A line is active if it is either a 
supporting line, or a sponsoring line which does not assert I. 

It is easy to show that 0 has an active line if and only it C is not empty. We 

say that 0 is an outline for A if the last line in 0 (more precisely, in L) has no 

hypotheses and asserts (A),O. It is also easy to show that if line a supports line z 

then the hypotheses of a are a subset of the hypotheses of z. 

A Gentzen proof is begun by writing the formula to be proved on the right side 

of the sequent arrow (with Xo on the left side in our case) and applying operational 

inference rules until the tree closes or no rules are applicable. In an analogous 

fashion, we can define an initial proof outline, called the trivial outline, to which we 

apply transformation rules until the outline is complete. 



Definition 4.3 Let A be a formula, and let z be the label for the proof line 

NJ. 

If L is the list containing just z, and C is the set containing just the sequent 
80; + z then Oo := (L, C) is clearly an outline. We call this outline the trivial 
outline for A. 

Example 4.1 A proof outline for the theorem in Example 3.1 is gotten by setting 
L = (1,2,3,4,5,6), C = {w1Rw2, wORw1; 1,2 + 3) where the lines in L are: 

(1) 1 I- (Lp)wo HYP 
(2) 1 (P)WZ L-ded 

(3) 1 1- ( ~ 1 ~ 2  NJ  

(4) 1 I- ( L P ) ~ I  L-gen 

(5) 1 1- (LLP)WO L-gen 

(6)  1 (LP 3 LLP)WO deduct (5) 

It is easy to verify that (L, C) is an outline. Also, by application of Rulep2 to lines 
2 and 3, we get a completed outline. l1 

Below we list several transformations of outlines. These take an outline, 0 = 

(L, C) in which C is not empty, and produce a new structure, 0' = (L', C'), which 

(as we shall verify) is also an outline. We shall assume that any sequent of the form 

8 ;  I' +I is simply another way to write the sequent 8 ;  I' --+ , i.e the sequent in 

which the succedent is empty. 

In a Gentzen system, there are antecedent and succedent rules which introduce 

connectives into the formulae in the antecedent and succedent of the sequent re- 

spectively. Moreover, cut-free Gentzen systems have a subformula property which 

states that the formula occurring higher in the tree are simpler (contain fewer con- 

nectives) than the formulae lower in the tree. Hence, moving up the tree reduces 

the complexity of the formula appearing within sequents until axioms appear and 

the branch closes. 

In outline transformations, there are D-rules and P-rules which perform a func- 

tions analogous to the antecedent and succedent rules of a Gentzen system respec- 

tively. The D- rules will be responsible for simplifying the logical complexity of 

support lines, while the P- rules simplify the logical complexity of sponsoring lines. 

l lA  script of the session used to generate this proof appears in the appendix. The text processor 
output used to format the above example was also automatically generated. 
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A portion of the outline will be closed by the three transformations, RuleP, RuleP1, 

and RuleP2. These rules are responsible for giving a justification to a sponsoring 

line without creating a new sponsoring line. In this case, C' results from removing 

a sequent from C and justifying a sponsoring line. 

The transformations below explicitly describe how to compute new members of 

C' from members of C. If a sequent, a, in 0 is unaffected by the transformation, 

then we assume that a E C'. A similar description for computing L' from L is given 

by showing two boxes of proof lines separated by an arrow. The box on the left 

contains lines present in L, while the box on the right contains lines present in L'. 

If a line appears in the box on the right but not in the box on the left, we add 

this new line to L' in the position indicated by the alphabetical ordering of the line 

labels. If a line appears in both boxes, then its justification has been changed from 

N J  in L to a new justification in L'. It is always the case that all the lines in L are 

contained in L'. 

If C' is not empty, then each sequent a' E C' is of two kinds. If no line in a' was 

altered or inserted by the transformation, then o' E C. Otherwise, a' is constructed 

from a unique a E C. Some transformations, like D-Disj and P-Conj, will construct 

two sequents in C' from a sequent in C. Most of the D- and P- transformations will 

construct one sequent in C' from one in C. 

Definition 4.4 (The Base Collection of Outlines) 
D-Coqj 

Here a  is a supporting line in 0. C' is the result of replacing a  with the lines b,c 
everywhere in C, i. e. line o is no longer active. 

D-Disj 
Let a  be a disjunctive support line and let line z be a sponsor for line a. Build 
C' by replacing the sequent X;r, + z with the two sequents R; I', b  ---+ m and 
R; I', n + y, where I' := I', \ {a ) .  

I(a) )I k ( A 1 A A 2 ) .  ~ u l e ~ l  => (b) X (AI )w  RuleP: a 

(c) X (A2)w RuleP: a 



(a) 1' I- (AlVA2)w 

( 2 )  I- (C)W# RU1eXl N J  => 

(b) b I- (A l ) ,  HYP 

( m )  X , b  I- ( C ) W ~  N J  
( n )  7% i- (A2)w HYP 

( Y )  U,n I- (qW# NJ 
( z )  U I- (C),( Cases: a, m, y 

D-BackChaini 
Let i = 1,2 and set j := 3 - i. Let a be a disjunctive support line which is sponsored 
by z, and let a be the sequent 8 ;  I?, a -+ z. I f  we let Co := C \ (8; I', + z )  
thenCt :=Cou{8;I '  -+ m,%;I',n ---, 2). 

( m )  X I  I- (+)w N J  

(n )  I- (Ail,  HYP 
( x )  U l ,  n 1- (C)w N J  
( y )  Ul I- ( A j > C ) ,   deduct:^ 

(2)  U1 I- (C) ,  RuleP: a, m, y 

(a) U t- ( A 1 V A 2 ) ,  RuleX 

(2)  U l  I- (C)w N J  

D-ModusPonens 
Let a be an implicational support line, which is sponsored by line z and let a be 
the sequent 8; I', a --+ z, Add the lines below to the outline. If we set Co := 
C \ (8;I', -+ z )  then C' := C o u  {%;I' + m,  R;I',n + 2). 

=> 

(a) U i- (A1 > A2), RuleX 
N J  

/ => 
(2)  U l  I- (C)w 

( m )  U1 I- (&)w N J  
(n )  n I- (A2)w HYP 

(2)  Ul,n I- (C)w N J  
(y) U1 I- (A2 3 C) ,  Deduct: x 

( z )  U1 I- (C) ,  RuleP: a, m, y 

D-ModusTollens 
The qualifications for this transformation are the same as those for D-ModusPonens. 

(a) U t- (Al  3 A2), RuleX 

(2)  X I  I- (C)W N J  

( m )  X I  I- ( 4 2 ) ~  NJ 

(n )  n I- (1Al)W HYP 

(2) H I ,  12 I- ( c ) w  NJ 
( y )  Ul I- ( l A l  > C) ,  Deduct: x 

( z )  U1 I- (C) ,  RuleP: a, m, y 

D-Imp 
This rule treats implication as if it were an abbreviation of a disjunction. C' is the 
result of replacing a with b in each sequent of C. Line a is no longer active. 

I(a) U I- (Al 3 A,), ~ u l e ~ ]  => I(b) U I- (-.Al V A2), RuleP 1 



D-Neg 
Apply one of the following four sub-transformations to line a, depending on which 
one matches the structure of a. C' is the result of replacing a with b in each sequent 
of C. 

=> 
=> 
=> 

1 (a) # I- (-.A1 3 ~ 2 ) ~  ~ u l e ~ l  => 

kb) # I- (A), RuleP: a1 

I(b) # I- (Al A 7A2)w RuleP: a1 

D-Thinning 
If line a supports line z, then we can drop line a as a support of line z. 

Each of the P-rules listed below will "process" a sponsoring line z. Let 
x0 := c \ {R; rz + 2). 

P-Coqj 
Set C' := Co u {R; I?, + rn, 8 ;  I', --+ y). 

P-Disj2 
Set C' := Co u (8; I'z, a --+ XI- 

P-Imp 
Set C' := C U (8 ;  I?,, a ---+ Y). 

(x) 1 , a  I- (A2)w 

(y) # I- ( l A l  3 A2), Deduct: x 
(z) # I- (A1 V A2)w RuleP: y 

(x) 1 , a  I- (A1)w 

(y) # I- (-A2 2 A1), Deduct: x 

(2) # I- (Al V A2), RuleP: y 

(Y) 1 , a  I- (A2)w 
(z) # I- (Al 2 A2)w Deduct: y 



P-Contraposit ive 
Set C' := C U {R;I',,a ---, x). 

(5) t- ( 4 ,  
(y) X k (1A2 > lAl)Jleduct: x 

(z) X I- (A1 > A2), RuleP: y 

P-Neg 
Apply one of the following four sub-transformations. Set C' := Co U (8; I?, + y). 

Set C' := C u {R;I',,a + y). >I 
(Y) X,a I- 1 

(2) X t- (4, IP: y 

P-Thinning 
We may replace line z with line y as a sponsoring line, provided that what we 
get is still an outline. In this case, set C' := Co U (R;I', -4 y), where Co := 
C\{R;I', + z). 

The following three versions of the RuleP transformation are used to complete a 
subproof, i. e. they remove a sequent from the list of the outline's sequents. RulePl 
and RuleP2 are included here for technical reasons to be made clear later. They 
are obviously subsumed by RuleP. 

I ( % )  I- (4, N J I  => 
(Y) I- 1 N J  

(4 I- (A), RuleP: y 



RuleP 
Let lines al,  . . . , an be some of the supports of z, such that [R, A (A1)wl A . . . A 
(A,),,] 3 (A), is tautologous. Then we can change the justification of line z from 
N J  to RuleP: al,  . . . , an. C' is Co. 

(al) XI t- (Al)w1 RuleX 

(an) Xn I- (An),= RuleX 

(2) (A), NJ 

=> I (z) X t- (A), RuleP: al, . . . , a, I 

RuleP1 
If Al and A2 are complementary, signed atoms, then we have proved line z indirectly. 
Set C' := Co. 

RuleX 

X2 (A2)w RuleY => I ( % )  X t- (A), RuleP : a1 , a2 / 

RuleP 2 
If Al and A2 are signed atoms which are equal to each other, then we have proved 
line z directly. Set C' := Co. 

(a) XI (&)w RuleYI => ( 4  F (A2). RuleP: a1 

(4 N2 (A2)w NJ  

Notice that after a D- transformation is applied, the line a may or may not still be 
active, while after a P- transformation is applied, the line z is no longer active. 

4.2 Correctness of the Base Collection 

In order to show that natural deduction proofs built using the above defined outline 

transformations are correct, we will show that: 

1. The rules 1-EA and 1-ES which eliminate negation for the antecedent and 
succedent are admissible to LKM, and in fact give a procedure for removing 
those rules from a completed proof. 

2. For each application of an outline transformation, there is a corresponding 
piece of an LKM proof which is a derivation of the new sequent in the outline 
from the old sequent. 

3. Each use of the various forms of rulep remove a sequent only if there is an 
LKM proof for that branch. 



There is a slight technical problem in that the correspondence between outline 

transformations and Gentzen proofs is not complete. In particular, the D-Neg rules 

manipulate formulae in a way which is not directly justifiable in terms of LKM 

inferences. To remedy this, we introduce the following three outline transformation 

rules. These are essentially composite transformations based on those given in 

Section 4. 

Definition 4.5 Let D-Imp* be the transformation which results from combining 
D-Imp and D-Disj, i.e. apply D-Disj to the disjunctive line produced by D-Imp. 
Let D-Neg* be the transformation which does the following: applies D-Neg, and if 
that instance of the transformation was not used to remove double negation, then 
applies either D-Conj, D-Disj, or D-Imp, depending on the structure of the proof 
line resulting from the D-Neg application. Let P-Neg* be the transformation which 
does the following: applies P-Neg, and if that instance of the transformation was 
not used to remove double negation, then applies either P-Conj, P-Disj, or P-Imp 
depending on the structure of the proof line resulting from the P-Neg application. 

Definition 4.6 Consider the following class of outline transformations: D-Conj, 
D-Disj, D-Imp*, D-Neg*, P-Conj, P-Disj 1, P-Imp, P-Neg*, RulePl, RuleP2, and 
P-Indirect. We shall call this collection the minimal collection of transformations. 

Notice that C' contains fewer sequents than C if and only if the transformation 

rule applied was RulePl or RuleP2, and therefore, C' c C. This is simple to verify 

by checking that all the D- and P- transformations in the minimal collection never 

decrease the number of elements in the sequent set. RulePl and RuleP2, however, 

do decrease this number by one, by removing a sequent (i.e. supplying a justification 

to an NJ  line). 

In the following, let LKM* denote the base collection plus the rules 1-EA and 

1-ES. 

Proposition 4.1 If some sequent has a proof in LKM*, it has a proof in LKM. 

Proof: The proof is a simple induction-like procedure showing the elim- 
ination rules can be moved up the tree and finally eliminated. 

For the ground case, consider a tree of height one, where the elim- 
ination rules lead to an axiom. Then we have: 



converts to 

P - P 
1-IA 

'PIP - 
and similarly for 1 -EA. 

Note the elimination rules can be "slid" past all introduction rules, 
other than 1-IA in the case of 1-ES and 1-1s in the case of 
1-EA, by virtue of the fact that those rules cannot interfere with 
the applicability of the elimination rules. We will demonstrate this 
for A-IA. 

converts to 

A - I A  

For the negation introduction rules, we have the following cases: 

. . . .  
RuleX 

LP + A 
1-IA 

r + l p , ~  
1-ES 

LP + A 

converts to 

. . . .  
RuleX 

F,P + A 

and similarly for 1 -EA. 



Proposition 4.2 Assume that 0' = (L', C') is the result of applying some transfor- 
mation from the minimal collection of transformations to the outline 0 = (L, C) . 
If C' is properly contained in C and a ;  I', ---, z is a member of C and not of C', 
then R; I?, + z has a cut-free, LKM*-proof. 

Proof: Assume the hypotheses of this theorem. Clearly the transfor- 
mation applied to 0 was either RulePl or RuleP2. 

Assume that it was RulePl. Then I', must have contained two lines, 
say a and b which asserted (A), and (-A),, respectively, where (A), 
is an atomic formuIa. Let (C),, be the assertion in line z,  and let 
I' := I', \ {a, b). Then a cut-free, LKM*-proof of 8 ;  I', -+ z is the 
following. 

a ;  (A),, (1A)W + 

several Thinning 

Assume that it was RuleP2. Then I?, must have contained a line say 
a which asserts (A),, where (A), is an atomic formula and such that 
z asserts (A),. Then a cut-free, LKM*-proof of 8 ;  I?, + z is simply 
the following. Here, I? := I?, \ ( a ) .  

~ ; ( A ) W  + (A), several Thinning 

Proposition 4.3 Let 0' be the result of applying one of the transformations in the 
minimal collection to the outline 0. Let C and C' be the sequent sets associated 
with 0 and 0'. If each sequent in C' has a cut-free, LKM*-proof then each sequent 
in C has a cut-free, LKM*-proof. We will refer to an outline transformation having 
this property as correct. 

Proof: If the transformation which was applied was either RulePl or 
RuleP2, then the preceding Proposition says that the sequent removed 
from C has an cut-free, LKM*-proof. In the cases where a D- or P- 
transformation was applied, either one or two sequents in C' are con- 
structed from a sequent in C .  (More than one or two sequents in C' may 
have been constructed, however, from the application of some transfor- 
mations.) Below we show how to combine cut-free, LKM*-proofs for 
those one or two sequents to give a cut-free, LKM*-proof of the original 
sequent in C. Let (C),, denote the formula asserted by a line supported 



by (A),. We shall not specify when the inference rule of interchange is 
used, since it will be easy for the reader to insert them in the inference 
figure where they are required. 

Case D-Conj: 
8 ;  r, (Al)w, (A2)w + (CIw' 

A-IA 
a ; r , ( A l  A A2)w,(A2)w --' (C)w' 

A-IA 
8 ;  r, (A1 A A,),, (A1 A A2)w ---+ (C)wt 

Contraction 
92; r, (A1 A A2)w -+ (C)ov' 

Case D-Disj: 
R ; r ,  ( 4 ) w  + (C)wt B ; ~ , ( A ~ ) ~  + (cIWl 

V-IA 
92; r, (A1 v A2)w + ( C ) w '  

Case D-Imp*: 
8; r, ( 4 ) w  + (C)Wt 

1-EA 
8;r + ( c ) ~ ~ ,  ( A I ) ~  8 ;  r, ( ~ ~ 1 ~  + (cIwt 

3 -1A 
92; (A1 2 A2)w, + (C)W' 

Case D-Neg: If a asserts (11 A), then 

If a asserts (l.Al V then 

92; r, (lAl)w, (7A2)w + (C)Wt 
1-EA 

8 ;  r, ( 4 2 ) w  ---+ (c)wl, 
1-EA 

a ;  r -4 (c) ,~ ,  (AI),, p 2 l W  
v-IS 

8; r ---, (c),I, (AI v A ~ ) ~ ,  ( ~ ~ 1 ,  
v-IS 

8; r + (C)Wt, (A1 v Aa)w, (A1 V Az)uI 
Contraction 

8 ;  I? + (C)Wt, (A1 v A2)w 
1-IA 

8 ;  I', (1.Al v A2)w + ( ~ W I  

Tf a asserts (-.Al A A2)w then 



If a asserts ( l .A1  > At)w then 

Case P-Conj: 
%;r + (&lW xi r + ( A ~ ) ~  

A-IA 
8; r + (A1 A A2)w 

Case P-Disjl: 

8; r + (Al)w, (A2)w 
V-IS, twice 

R; r + (A1 v A2)w, (A1 V A2)w 
Contraction 

3; r -+ (AI v 
Case P-Imp: 

Case P-Neg: 

If z asserts ( l l A ) w ,  then 

If z asserts (-.A1 V Az), then 



%;I' + (1Al)W R; I' + ( 4 2 ) w  
1-ES 1-ES 

%I', (A1)W + %; r, (A2)w --, 
V-IA 

%I',(Al v A2)w --+ 1-1s 
R; I' + ( i .Al V A2lw 

If z asserts (-.Al A A2), then 

8 ;  , (11Al)  w + ( 4 2 )  w 
1-EA 

B; I' + ( 4 2 ) w ,  (1Al)W 
7-ES 

x; r , (Al)w + (lA2)w 
1-ES 

B;L(A1)w,(A2)w + 

A-IA twice 
RI', (A1 A A2)w,(A1 A A2)w + 

Contraction 
%;I',(A1 A A2)w + 1-1s 
R;I' + (i .Al A A2lw 

If z asserts ( l .Al > A2)w then 

R; r, r, (A1 3 A2)w + 

several Contractions 
%;I',(A1 2 A2)w + 

1-IA 
R;l? + (-.Al 2 A2lw 

Case P-Indirect : 

Proposition 4.4 Let A be a formula, and let Oo be the trivial outline for A. If 
there is some list (TI,. . . , T,) of transformations from the minimal collection of 
transformation such that 0 := Tn(. . . (TI (Oo) . . .) contains an empty sequent set, 
then the lines in 0 form a completed ND-proof of A and A has an LKM-proof. 
Furthermore, this LKM-proof can easily be constructed by using the constructions 
given in the proofs of Propositions 4.1, 4.2, and 4.3. 



Proof: Is an immediate consequence of the preceding propositions. 1 

Extensions to this basic system will involve adding more outline transforms 

to the base collection. Soundness of these systems will be based solely on the 

correctness of the new outline transforms with implicit reference to the preceding 

proposition. 

4.3 Outline Transformations for Logics of Knowledge 

We will now extend the base set of transformations to encompass modal operators. 

Since the classical systems are contained in the knowledge systems, we will give 

rules for the knowledge systems and establish correctness for those rules. 

As it turns out, there are two different sets of outline transformations possible 

for modal operators in R depending on whether the dual modality is present in 

n. We will consider both those cases below. The justification for the modalities is 

based on whether the introduction of the modal operator forces the generation of a 

new related world, or uses the structure contained on 3? to deduce a relationship. 

Definition 4.7 Let the set of outline transformation rules for the modal operators 
with dual modalities be comprised of the base collection plus the following rules 
for each p E R and w E fl. 

D-P 
Let a be a modal support line, and suppose that w Rp w' follows from X. C' is C 
with a replaced by a, b, i.e line a stays active. 

I(.) x t- ( P ( P ) ) w  ~ u l e x l  => ( (b) X I- ( P ) ~ I  pded: a] 

D-w 
Let a be a modal support line, and w' is a new world not appearing in X. C' is the 
result of replacing a by b, and adding w R, w' to 3? in C. 

(4 M ( w ( P ) ) w  RuleX 

( 4  u ( c ) w  NJ 
(Y) M,b I- ( C ) w  

( 4  I- (C)w w-gen: a, y 



D - N e g  
We also need the following two transforms which are cases of D-Neg in the base 
collection: 

=> (b )  U b ( w l p ) ,  RuleQ: a 

=> (b) U I- (pip), RuleQ: a 

p-P 
Let z be a modal sponsoring line and let w' be some world which is not free in 8. 
Set C' := Co U (8, w Rp w'; I?, --, y) .  

P - w l  
In this case, z is a modal sponsoring line and w R, w' follows from 8. 
Let C' := Co u ( 8;r, --, y ) .  

P-w2 
In this case, z is a modal sponsoring line and w R, w' follows from X .  Here, we 
allow the formula of the sponsoring line to be used again by inserting it the out- 
line as a hypothesis and processing the new sponsoring line by contradiction. Let 
C' := Co U ( 8 ;  I?,, a, b  -+ y ) .  

N J I  => 1 )  x t (w(p))w 

P - N e g  
We also need the following two transforms under the same conditions as P-Neg of 
the base collection: 

( Y )  l/ ( P ) ~ I  N J  

(4 U I- ( w ( P ) ) w  w-ded: y 

If there are modal operators for which the dual does not exist in the language, 

then we have to treat negative modalities containing that modal operator in a 

fashion similar to that found in the D-Neg* rules of the correctness proof. In 



other words, instead of using a negation rule to move the negation inward and then 

applying the appropriate rule for the modality, we will do both at once. 

Definition 4.8 Let the set of outline transformation rules for the modal operators 
without dual modalities be comprised of the base collection plus the following rules 
for each p E R12 

D-P 
Let a be a modal support line, and suppose that w Rp w' follows from 8. C' is C 
with a replaced by a, b wherever it occurs, i.e. line a stays active. 

I(.) w I- (P(P))W ~ u l e x l  => I (b) X I- (P),I pded: a ]  

D-Neg 
We need the following case of the D-Neg rules given in the base collection. Here w' 
is some new world. Replace a by b wherever it occurs in C to get C'. 

( a )  x I- ( ~ ( p ) ) ~  ~ u l e ~ l  => I(b) X I- (1p)L p-gen: a 

p-P 
Let z be a modal sponsoring line and let w' be some world which is not free in 8. 
Set C' := Co U (8, w Rp w'; I?, -+ y). 

P-Negl  

We also need following case of P-Neg where 8 l- wRw', and C' := Co U { 8 ;  I?, -+ y) 

P-Neg2 
Finally, we need following case of P-Neg where 8 I- wRwl: In this case C' := 

Co u {8;F,,a,b - y) 

pded: a 
N J  

Proposition 4.5 The rules given in definitions 4.7 and 4.8 are correct. 

''In order not to belabor the presentation, we consider only universal modalities. We leave it to 
the reader to supply the outline transformations for existential modalities having no dual in the 
language. 



Proof: 

Since the rules of definition 4.8 are the D-Neg* rules for definition 4.7, 
the following proof establishes the claim. 

Case D-p: 
~;r , (pP)w,(P)w~ + (C)w1 

p-IA 
x ;  r, (PP)~ ,  ( P P ) ~  -+ (C)Wl 

Contraction 
x ; r ,  ( P P ) ~  + (C)Wl 

Case D-w: 

The proviso on w' set by w-IA is satisfied by the condition of D-w, and 
the proviso on w Rp w' set by p-IA is satisfied by the condition on D-p. 

Case D-Neg of definition 4.8 and D-Neg* for definition 4.7: 
If a asserts (lpp), then 

If a asserts (lwp), then 

x ;  r, (1wp)w + (C)Wl,MP 
1-IA 

x ;  I-, (TWP)~,  (1wp)w + (C)Wl 
Contraction 

B; r , ( - JP)w + (C)Wl 

As in the D-w and D-p cases, the provisos on p-IS and w-IS are met 
by the conditions on D-p and D-w. 

Case P-p: 

8 ,w  Rpw1;r + (P)wl 
p-IS 

8; r -+ ( P P ) ~  



Case P-w : 

fR;r -+ (wP)~,(wP)w contraction 

a ; r  + (wp)w 

As in the D-w and D-p cases, the provisos on the rules are satisfied by 
the restrict ions on the outline transformation. 

Case P-Neg of definition 4.8 and P-Neg* of definition 4.7: 

If z asserts (iwp), then 

If z asserts (lpp),, then (for the general case) 

~ ,WRpw1; r , (P~ )w , (~ )w~  
P-IA 

z ;  r, ( P P ) ~ ,  (PP)~" + 

contraction 

The provisos on p-IA and w-IA are (again) satisfied by the conditions 
on the corresponding outline transformations. 

Example 4.2 The following is a partially completed (and somewhat edited) version 
of the wise man problem presented in example 3.213. The reader should refer to 
that example for the interpretation of the propositions and modal operators, and 
the axiomitization of the puzzle. Also, note that a set of outline transformations 
for the 0 modality were included with provisos corresponding to those stated in 
Definition 3.4. 
First we have broken down all of the initial information by applications of proposi- 
tional rules, and employed the common knowledge transformations to deduce lines 
7 and 8. 

lSThe initial version of this proof was automatically generated, and that version edited for 
readability. 



( 1 ~ 2 ~ 3 ~ 4 ~ 5 ) ~ ~  
(2 3 r\ 4 A 5),0 

HYP 
Rulep(1) 

(O(P~ v P2 A PS))WO Rulep (3) 
(O([Kl]Ps) A [Ks]pl A ([Kl]p2) A [K2IPl A [K2IPs A [&IP2) wo Rulep(5) 
([KlIPs) A [&]PI A ([K1]p2) A [K2]p1 A [K2IPS A [Ks]P2)wl 0-ia(6) 
([KlIPS) A [KS]PI A ([Kilpz) A [K2]p1 A [K2IPs r\ [Ks]P2)w2 0-ia(6) 
(K~Ps v KlTs)w2 Rulep (8) 
(KlP2 v K 1 7 ~ 2 ) ~ 2  Rulep(8) 
(K2Ps K21~s)wl Rulep (1 5) 
(KsK27K1~1 A K s l K 2 ~ 2 ) ~ ~  Rulep(1) 

The lines below are using modality rules to infer new information about what propo- 
sitions are known by whom. 

Rulep (18) 
Ks-ded(l9) 
K2-ded(20) 

Rulep (18) 
Ks-ded(22) 
K2-gen(23) 

These lines represent a stage of the proof about half way through. It remains to 
justify the right branch of the argument by cases (line 30). 

The lines below represent the lowest closed branch of the cases argument. 

4.4 Two More Types of Outline Transformations 

BY P 
K1-ded 

Rulep (26) 
cases: 16,28,25 

Ks-gen 
deduct(32) 

Thus far, all the material presented in this section has been directly justifiable in 

terms of a cut-free LKM proof. A "real" mathematician, however, would seldom 



produce a proof which is, in a sense, cut-free. Instead he makes suitable definitions 

and states and proves lemmata which build to the ultimate conclusion he seeks. 

Proofs stated in this form are naturally clearer and easier to read as they are 

shorter and more compact. 

The method of outline transformations is a computat ional method of incremen- 

tally constructing a proof under partial or total guidance by a human. In order 

to make this method more palatable, we should allow the use of definitions and 

lemmata in this system. 

The following outline transformations are one possible approach to the use of 

these tools. The introduction of lemmata and axioms leads to the need to use 

the cut rule. The use of definitions requires the modification of LKM to support 

definition inferences. Here, we must also assume some database axioms, definitions, 

and previously proved theorems of the system. In the sequel a and $ are arbitrary 

ornamented formulas. 

P-Ax 
This transform allows the introduction of external information from some external 

database. It is assumed that a is a member of that database. The justification MP 

stands for modus ponens. In this case, C' := Co U { 8; a, r, -+ y) 

Given 

D-Def 
This introduces definitions in supporting lines. + is an instance of a where some 

subformula has been replaced by its definition. Replace a by b wherever it occurs 

in C to get C'. 

I(a) X I- o ~ u l e ~ l  => I (b) X I- + Def: a1 

P-Def 
This transform allows the introduction of definitions in sponsoring lines. In the 

following, + is an instance of a where some subformula of a has been replaced by 

its definition. In this case, C' := Co U ( 92; I?, + y) 

(Y) )(,a I- + N J  

(z) N I- u DeEy 



The justification for P-Ax is: 

~ ; r  -+ u R ; ~ , u  -+ + 
cut 

x;r + + 
For definitions, we assume that the system LKM has been augmented with 

definition inference rules. B y  this, we mean the upper sequent of the rule differs 

from the lower by replacement of a subformula of a member of the lower sequent 

by its definition. The justifications are then: 

The example sessions shown in the appendix demonstrate the use of definitions. 



5 Towards a Unification of Proof Representations 

Thus far we have presented two proof systems. First, we introduced the LKM 

family. This system had the character of standard logical systems. This made it 

easy to discuss in a formal manner and demonstrate its properties. At the other 

end of the spectrum, the outline technique is clearly oriented toward computational 

editting of proofs. This makes the formalization straightforward to implement, but 

difficult to analyze. 

Ideally, what we would like is some structure which is theoretically "cleann, yet 

is also computationally oriented. If done correctly, it should be straightforward to 

translate this structure into LKM, outline transformations, or any other style of 

modal proof we might develop. The purpose of this section is to develop such a proof 

representation. This representation will be based on expansion trees as developed 

by Miller [18,19,21]. 

Expansion trees (ET's) were originally developed as a proof representation for 

higher order logic. As such, they provide a Herbrand type of result for that class of 

languages. ET-proofs are structured to be are a compact representation of a proof, 

yet contain all the essential information to generate Gentzen proofs, linear natural 

deduction proofs, Hilbert style proofs, and linear reasoning proofs [21]. 

As mentioned above, modal logics and higher order logics can be viewed as some- 

what orthogonal extensions to classical first order logic. Since ET's are sufficient 

for higher order logic, the question naturally arises as to whether this structure 

is adaptible to modal logics. This section addresses this question by developing a 

modal analog of ET proofs, called modal ezpcrnsion tree proofs (MET-proofs), which 

will encode a (propositional) modal proof. 

We wiIl motivate the discussion by examining the ET proof for the first order 

translation14 of a formula in the system S4. This examination of ET's for modal 

translations will serve the dual purpose of providing an introduction to ET's for 

those unfamiliar with the formalism, and revealing certain structural regularities 

which will motivate the definition of MET'S. The result will be a structure resem- 

14See appendix section B for an explanation of the translation of modal statements to first order 

equivalent statements 



bling ET's and the criteria for that structure which deliniate proofs from non-proofs 

of modal statements. 

5.1 MET Proofs 

An expansion tree represents both the logical structure of a formula, and the sub- 

stitutions required to generate a tautologous instance of it. Two functions, Sh  and 

Dp, map expansion trees to a quantified formula and to the instantiated form of 

the formula respectively. Rather than use Skolemization to ensure proper use of 

substitution, expansion trees have two order relations defined on the substitution 

terms which serve the same purpose. 

The following definition is a slightly modified version of that found in [21]. In 

the sequel, let SYA denote A with the substitution of t for all free occurrences of 

the variable x in A. 

Definition 6.1 We now define expansion trees, dud ezpansion trees, selected vari- 
ables, expunsion terms, and two functions Sh  and Dp which map expansion trees 
and dual expansion trees to formulas. 

1. If A is an atom, p, then A is both an expansion tree and a dual expansion tree. 
Dp(A) := Sh(A) := p. 

2. If Q is an expansion tree (dual expansion tree), then - Q is a dual expansion 
tree (expansion tree). Sh(- Q) :=- Sh(Q) and Dp(- Q) :=- Dp(Q). 

3. If Q1 and Q2 are expansion trees or dual expansion trees, then so are Q1x(Q2. 
sh(Q1~~Q2) := Sh(Q1) NSh(Q2) and Dp(QlNQ2) := DP(Q~)NDP(Q~).  

4. If Q2A is universal and occurs positively (existential and occurs negatively), 
and Q is an expansion tree (dual expansion tree) for SzA, y not selected in Q, 

' Y 
then Q' := A +Y Q is an expansion tree (dual expansion tree). Sh(Q1) := A 
and Dp(Q1) := Dp(Q). We say y is selected in Q'. 

5. If QxA is existential and occurs positively (universal and occurs negatively), 
and Q1,. . . Q, is a list of expansion trees (dual expansion trees) for 
S::A,. . . , S P A  then Q' := A +tl  Q1 + t ~ .  . +tn Qn is an expansion tree (dual 
expansion tree) with expansion terms tl, . . . t,. Sh(Qt) := A and Dp(Q1) := 

Dp(Q1) V . V Dp(Qn) (Dp(Qf) := Dp(Q1) A - -. A Dp(Qn))- 

We will say an arc or node dominates another arc or node in and MET if the 

former occurs above the latter in that tree. We will also use the symbol 3 as an 

abbreviation for - . . . v . . .. 



Let SQ and 0Q be the set of selection and expansion terms respectively for an 

ET, Q- 

Definition 5.2 Let <$ be a binary relation on Sq such that z <$ y if there is a 
t E e9 such that z is free in t and a node dominated by (the arc labelled with) 
t is selected by y. Let <Q denote the transitive closure of <:. This is called the 
imbedding relation for Q. 

Definition 5.3 An expansion tree, Q is sound if none of the free variables in Sh(Q) 
are selected in Q. An expansion tree is an expansion tree for A if Sh(Q) = A and 
Q sound. An ET-proof for A is an expansion tree, Q, for A such that: 

1. Dp(Q) is tautologous, and 

2. <Q is acyclic. 

Figure 1 is an ET for the translation of Lp > LLp. This ET can be turned into 

an ET-proof by attaching, by an implication operator, another ET representing the 

possible worlds relation constraints such that the deep form of the entire structure 

is tautologous. 

Expansion trees for the translations of modal formula would be a sound and 

complete proof representation for modal systems of logic. However, we can make 

the following observations. Note that each occurrence of a modality appears in the 

tree as a selection or expansion followed by an implication operator. This makes 

the ETs very "bushy" compared to the information they hold. Moreover, in the 

first-order case, these selections and expansions treat quantification over worlds the 

same as  quantification over individuals. We generally would like to differentiate 

between worlds and individuals. Lastly, every expansion tree will be prefaced by 

the restrictions on the possible worlds relation which are all of essentially the same 

form. 

These observations lead us to define a new structure, modal expansion trees, 

which are a specialization of expansion trees to modal logic. METs will resemble 

ETs, but are made more compact by distinguishing between relational information 

and propositional information. In particular, we will add generation and deduction 

nodes which mirror selection and expansion nodes, respectively, but are only used 

for the possible worlds relation. 



Sh(M) = [Vwl .wO RL ~ 1 >  F ( w ~ ) ]  > V W ~  .wO RL W I D  V W ~  . ~ 1  RL ~ 2  3 ~ ( W Z )  

D p ( M )  = [wO RL ~ 2  > 5 ( ~ 2 ) ]  3 [wO RL ~ 1  r) . ~ 1  RL ~ 2  D  F ( w ~ ) ]  
S = { w l ,  w 2 )  

0 = { w 2 )  

< A t =  {) 

Figure 1: An ET for the translation of Lp > L L p  



Definition 5.4 Here we define the modal expansion tree (MET) of a formula A, 
denoted M, the functions Dp and Sh, generation and deduction variables, associated 
literals, and free world variable. 

1. If A is an atom, p, then Q := (p), is both an expansion tree and a dual 
expansion tree. Dp(Q) := F(w) and Sh(Q) := (p),. We will refer to w as the 
free world variable in Q and denote this by Q[w] We will often refer to a tree of 
this form as the trivial tree, and F(w) as the literal associated with this node. 

2. If Q[w] is an expansion tree (dual expansion tree), then (- Q) [w]  is a dual ex- 
pansion tree (expansion tree). Sh(- (Q),) := (- Sh(Q)), and Dp(- Q) :=- 

DP(Q). 

3. If Ql[w] and Qz[w] are expansion trees or dual expansion trees, then so is 
(QI)~(Q~)[w].  If Sh(Q1) = a, and Sh(Q2) = P,, then S ~ ( Q ~ X Y Q ~ )  := ((YMP),, 
and D P ( Q ~ M Q ~ )  := Dp(Ql)#Dp(Qz). 

4. If A is universal and occurs positively (existential and occurs negatively), the 
matrix of A is A', the operator of A is p and Q[w] is an expansion tree 
(dual expansion tree) for A', then Q' := (A +, Q) [XI is an expansion tree 
(dual expansion tree) provided x is not generated in Q. Sh(Q1) := (A), and 
Dp(Q1) := x R, w 3 Dp(Q) (Dp(Q1) := x R, w A Dp(Q)). w is the generation 
variable for Q', and x Rp w is the literal associated with this generation arc. 

5. If A is existential and occurs positively (universal and occurs negatively), the 
matrix of A is A', the operator of A is p and Ql[wl], . . . Q,[w,] is a list of expan- 
sion trees (dual expansion trees) for A' then Q' := (A +"I Q1 +"? . . +"" Q,) [XI 
is an expansion tree (dual expansion tree) with deduction terms wl, . . . w,. 
S h(Q') := (A), and Dp(Q1) := (x Rp wl) A Dp(Q1)) V . . . V (x Rp w, A Dp(Q,)) 
(Dp(Q') := (X Rp wl 3 Dp(Q1)) A . . . A (X Rp W, 2 Dp(Q,))) . x Rp wi is the 
literal associated with the deduction arc labelled with wi. 

Generation and deduction terms are a restricted case of selection variables and 

expansion terms, and SO must satisfy many of the same properties. In particular, 

they have a similar order relation. 

Definition 5.5 Given an MET, M, let 

EM = {W I W  is a deduction variable in M) 

TM = {w 1 w is an generation variable in M) 

Definition 5.6 Let M be an MET. Define a relation <& on T by wi <& wj if 
wi E C, and the arc labelled with wi dominates the arc labelled with wj. Let <M 
denote the transitive closure of <: . 



Sh(M) = L p >  LLp 

Dp(M) = [wO RL w2 > fi(w2)I 3 
[wO RL ~1 3 . ~ 1  RL w2 > fi(w2)] 

(LP) wo (LLP) wo c = (w2 )  

w2 1 T = { w l ,  w2)  

Figure 2: The MET proof for Lp > LLp 

The MET, as defined, represents the structure of the modal formula and some 

of the possible worlds structure. We must somehow represent the theory of the 

possible worlds relation. In the most general case, we will do this by associating 

and expansion tree for the possible worlds theory with certain conditions attached. 

For theories such as T or S4, we can in fact collapse the structure of MET's to be 

much more concise. 

Definition 5.7 An MET M of A is an MET proof for A if 

1. There is a sound expansion tree, Q, such that Dp(Q) > Dp(M) is tautologous, 

2. The free variable of M does not appear generated in M, 

3. No generated world variable of M appears selected in Q, and 

4. <M U <Q is acyclic15. 

We can derive different classes of MET's by restricting Q to be an expansion tree 

for some set of axioms specifying the restrictions on the possible worlds relation. 

For example, figure 5.1 is the MET-proof for Lp > LLp in S4. Notice how this 

representation compares with that of figure 1. 

We will show METs are sound and complete by demonstrating equivalence of 

the MET for a formula to the ET of the first order translation of a formula. 

Proposition 5.1 A modal formula M has an MET proof, M ,  iff it's translation, 
A, has an ET proof. 

lSWe will abuse notation and henceforth denote this as < ~ , g .  
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Proof: (sketch) 

Proof of this proposition involves showing that we can convert one proof 
representation to the other and still yield a proof. 

1. Assume we have an MET proof. By the previous discussion, there 
is a simple recursive translation from an MET proof to a sound ET, 
Q2, of s ~ ( M ) .  Thus, the deep formulas are logically equivalent. By 
definition, there is some ET Q1 such that Q1 3 Q2 has a tautol- 
ogous deep formula. Imbedding relation of this ET is identical to 
that of the MET, and so is acyclic. Hence, this is an ET-proof. 

2. The proof in the other direction is similar, and so is omitted. 

Corollary 5.2 MET's are a sound and complete proof representation for modal 
logic. 

Proof: By virtue of the preceding proposition, the correctness of trans- 
lation to first-order equivalent statements, and the soundness and com- 
pleteness of ET's as a proof representation. 4 

5.2 Automatic Generation of LKM proofs 

There is a striking similarity between MET-proofs and sequential proofs as pre- 

sented in section 3. We can, in fact, show an explicit connection between MET- 

proofs and sequential proofs by demonstrating a procedure for translating MET- 

proofs to sequential proofs. This procedure will also provide an example of the use 

of the various properties of MET's, and provides, as a corollary, a completeness 

result for LKM without the cut rule. 

The approach will be to define an analog sequent system which operates on 

MET-proofs. This system will be in exact correspondance with the LKM system, 

and proofs in the analog system will be directly translatable in to L K M  proofs via 

use of Sh as defined over MET's. Following the terminology of Miller [20], we shall 

call this the Q-system of inference; and, it shall contain Q-sequents and Q-inference 

rules. 

Definition 5.8 An Q-sequent is a structure of the form: 

Q; Nl,  . . . , N, + MI,. . . , M, where 



1. Ni is a dual modal expansion tree 

2. Mi is a modal expansion tree 

3. Q is a sound expansion tree 

4. Q and - Nl A . . . A  Nr V MI V . . . V Ma comprise an MET-proof. 

We shall say that the sequent: 

Sh(Q); Sh(Nl), . . . , Sh(N,) + Sh(Ml), . . . , Sh(Ma) 

is the LKM sequent associated with this Q-sequent. 

For the purposes of this construction, consider LKM with the structural in- 

ference rules Thinning and Contraction, propositional inference rules V-IA, V-IS, 

7-IA, 7-IS, and modal inference figures L-IA and L-IS. We will assume that 

sequents are multisets, negating the need for interchange. In the sequel, we will 

refer to a world x as admissible in a Q-sequent if x does not appear in T associated 

with that Q-sequent. 

We can now define several Q-inference figures analogous to the LKM inference 

figures listed above. 

Definition 5.9 (The Q-analog Inference Figures) 
Here, A and C are METs, and I' and O are sets of METs. 

Q;A[w],I' + O Q ; c [ w ] , ~  --+ o 
V-IA, 

Q;(AvC)[w],I' + O 

Q;P[xI,C -+ @ Q,w RL X; C ---+ P[x], @ 
L - I A ~ ~  L-IS, 

Q; (LP += P) [w], C --+ 8 Q ; c  + LP[w],@ 

tNote that ti and x must be admissible. 



Proposition 5.3 If the lower structure of the inference figures of definition 5.9 is 
a Q-sequent, the upper structure is a Q-sequent. 

Proof: 

First, observe that modal expansion trees and dual modal expansion 
trees are preserved under the structural changes given in the inference 
rules. If the imbedding relation was acyclic in the lower Q-sequent, it is 
in the upper Q-sequent. Moreover, in each case, Q is unchanged, or has 
an unquantified atom attached via a conjunct. These changes sustain 
Q's status as a sound expansion tree. 

Lastly, for the propositional rules it is straightforward to verify that the 
tautologous nature of the deep forms holds. It remains to shown that 
the tautology condition is preserved by the modal inference figures. 

For L-IS, note that Dp of the lower stucture is of the form 

which is equivalent to 

This is the deep form for the upper sequent. 

For L-IA, the lower structure has the deep form: 

which is tautologous iff 

and 
Dp(Q) 3- DP(@)v - 5 V D P ( ~ )  

are tautologous. 

The latter is the deep form for the upper structure. Note that the former 
statement corresponds to the proviso on L-IA, while the admissibility 
condition corresponds to the proviso of L-IS. 

4 



We have now verified that the inference rules are properly defined. It is simple 

to show that one of these inference rules is always applicable until the members of 

the Q-sequent consist only of trivial trees. Merely observe that the propositional 

rules are always applicable, and the acyclic nature of < ensures that some deduction 

term is always eliminable. 

Notice that the tautologous nature of the deep form ensures that there must be 

matching atoms in the expansion trees. That is, if we take Sh  of a leaf sequent 

consisting of only trivial trees, then it must be derived from an LKM axiom soley 

through applications of thinning. 

Proposition 5.4 If M is a MET-proof for A, then there is a corresponding (cut- 
free) LKM proof for A. 

Proof: Consider a Q-inference which has M at the root, and Q-sequents 
consisting only of trivial trees at the leaves. For any rule but L-IA*, 
replace the sequents by the S h  form and drop the Q subscript. For 
example, for V-IA we have 

For L-IAo*, add the following proof segment: 

Sh((Lp +" PI . .)[w]), Sh(pi[ti]), Sh(r)  + Sh(@) 
L-IA 

Sh((Lp+" p~.. .>[w]),Sh((Lp+~'pl ...)[ w]),Sh(I') + Sh(O) 
contract ion 

Sh((Lp +" pl . . .) [w]), Sh(I') -+ Sh(O) 

Finally, apply the appropriate Thinning's to the leaf sequents of the 
partial LKM tree to derive LKM axioms. This final object will be an 
LKM proof for A. 

5.3 Automatic Generation of Natural Deduction Proofs 

As an example of the use of MET proofs, and also as a (relative) completeness result 

of the outline transformations, we will sketch how to convert an MET proof into a 

natural deduction proof. The algorithm we will present is highly non-deterministic 



and is only a starting point. There are several changes that could be incorporated to 

both increase the efficiency of the process, and to make the proofs more "elegant". 

The crux of the method used to generate natural deduction proofs from METs 

is that, by associating a portion of the MET with each line of the proof, we can use 

the information present to select outline transformations, and substitute the proper 

generation and deduction terms where appropriate. To be completely formal in 

our argument, we should redo Definition 4.1 to accomodate the MET associated 

with each line. Then, we would need to add the MET manipulations to each of the 

outline transforms. Most of these manipulations are straightforward, however, and 

due to time and space restrictions will not be given. We shall instead provide a 

purely informal account. The interested reader should consult [18] for the complete 

account. 

There are two fundamental results we need about proof outlines. 

Proposition 5.5 If 0 is an outline which contains a non-atomic active lines, then 
some outline transformation can be applied to 0. 

Proof of this proposition rests on the fact that we can either eliminate a standard 

connective, or (based the acyclic nature of < defined on the MET associated with 

this line) apply a transformation for a modality. 

Proposition 5.6 If 0 is an outline in which all active lines assert atoms, then 
RulePl or RuleP2 can be applied to the outline for all lines needing justification. 

Proof of this proposition is based on that fact that the deep formula would not 

be tautologous is this were not the case. 

In the ensuing discussion, we will assume we have a spanning mating for the 

deep formula. 

Proposition 5.7 If I is a proof line in 0, and no literal of the MET associated 
with 1 is mated, then D-Thinning or P-thinning (whichever is appropriate) can be 
applied and it will not interfere with the closure of 0. 

Justification of this proposition is based on that fact that the paths of the se- 

quent~ associated with this outline do not use the literals in this particular formula. 

Hence, it can be removed without changing the essential structure of the outline. 



An algorithm for generating a natural deduction proof for a formula, given an 

MET for that formula, is: 

1. Initially set 0 := Oo 

2. Apply P-Neg or D-Neg to any lines which assert top level negations. 

3. Apply some outline transformation to 0 

4. Apply D-thinning or P-thinning to any applicable proof line 

5. If some active line is not atomic, go to step 2. 

6. Apply RulePl or RuleP2 to all active sequents to close the outline. 

The three preceding propositions assure the algorithm is correct and will always 

yield a proof given an MET. We must, however, ensure it terminates. Such a proof 

is based on the following observations: 

1. Any application of a transformation from the base set reduces the complexity 

of some line in the proof, deactivating that line in the process. 

2. Any applications of a modality transformation to some line introduces at most 

a finite set of lines. 

3. Any application of a RuleP variant closes some line and removes a sequent. 

Based on these observations, we see that the inner loop of the algorithm will 

eventually terminate (if not, we would need have infinite formula, or and infinite 

expansion tree, both of which are disallowed). The application of RuleP rules must 

also terminate. Thus, the algorithm terminates. 

5.4 Automatic Generation of MET-proofs 

We will now explore some aspects of the actual generation of MET-proofs. The 

generation will be based on proving the validity of Dp of the modal expansion tree 

for some formula. It would be possible, of course, to use tableau methods as the 

basis for generation. However, there are some reasons why first-order methods may 

be appropriate. First, very efficient first-order theorem provers exist, and semantic 



translations for numerous modal logics are first-order. Thus, it is time-efficient to 

add a translator to the front end of a theorem prover, rather than develop a new 

theorem prover. Second, it is not entirely clear that tableau methods are applicable 

to first order modal theories, while there are translations which account for first 

order modal logic. Thus, we will consider first-order methods. In particular, we 

prove some properties about the search space for MET-proofs which enhance the 

efficiency of the proving process. 

We can view the search for an MET-proof as a two-stage process. First, con- 

struct an MET for the formula of interest and then search for a substitution which 

makes deep structure tautologous under the constraints imposed by the possible 

worlds relation, and has an acyclic imbedding relation. Practically, we use skolem- 

ization to encode the imbedding relation and use standard theorem provers to check 

for validity of the translation of the shallow formula, giving us the proper instanti- 

ation for the selection and expansion arcs as a by-product. It is simple to convert 

a skolemized tree to the structure we have defined. 

The structure of the formulae which we are considering is fairly rigid. The 

question arises as to whether we must examine the full search space in the course 

of theorem proving. As it turns out, there are sound and complete heuristics for 

pruning the search space. We will present those heuristics based on analysis of the 

method of matings [2]. We will assume the reader has some familiarity with this 

method. 

To quickly summarize the process, a fist-order formula in nnf is tautologous if 

and only if it has a mated pair of literals along every path in the formula.16 Paths 

are defined over formulas in negation normal form, and correspond roughly to the 

clauses of the formula in conjunctive normal form. A pair of atoms on a path is 

mated if there is some substitution such that the atoms are made identical under 

that substitution. By analysis of the paths of the deep formula, we will see that 

there is an intelligent way to search for these matings. 

16Rather than supply a formal definition, we refer the reader to the appendix, Section A, page 82 

where the F'rolog theorem prover is listed. The definition of path in that code is essentially the 

formal definition of path. 



In the sequel, we will assume a unique labelling of the literals1' of a formula of 

the form rl, r2, ... for relational atoms (r-literals in the sequel), and 11, 12, ... for other 

atoms (p-literals in the sequel). We will also denote the set of paths for the deep 

formula of an MET by ll. It will be convenient to distinguish between r-literals and 

pliterals on paths, so we view paths a pairs of sets, e.g. ((rl, . . . , r,,,), (ll,. . . ,in)). 

A mated pair will be a tuple (p1,p2) such that pl and p2 are complementary. A 

mated pair (pl,p2) is a mating for a path (R, P )  if either R or P contains both pl 

and pa. We will often refer to matings of r-literal as relational matings, and other 

matings as propositional matings. A set of mated pairs is a spanning mating for a 

set of paths if and only if each path has a mating from that set. For the purposes 

of the following discussion, we will call a literal occurrence essential with respect 

to a some mating if it appears as a member of a mated pair. FinalIy we will also 

assume (for convenience sake) that all logics have both the positive and negative 

sense of the modalities. 

Definition 5.10 A modal formula containing both L and M modalities is in nega- 
tion normal form (nnf) if the scope of each negation operator extends to only atomic 
propositions. 

Henceforth, we will only consider modal formulae in nnf. It is simple to show 

that all propositional modal statements have an equivalent nnf. We immediately 

observe the following: 

Proposition 5.8 If A is a modal formula in nnf, and M is an MET for A, then 
both 14 and Dp(M) are in first-order nnf (modulo rewrite of the newly introduced 
implication signs). 

Proof: We show by induction that the deep formula of an MET for a 
formula in nnf results in a first order formula in nnf. The proof for is 
similar and left for the reader. 

If A is a literal or the negation of a literal then Dp(M) is in nnf. 

If A is A1XI(A2 then, by the induction hypothesis, Dp(MA,) and 
Dp(MA,) are in nnf, hence so is Dp(M) 

If A is L(A1), then Dp(MA) is x R, w > Dp(MA,) which rewrites to - x R, w v Dp(MA,). The negation extends only to a literal, and 
Dp(MAt) is in nnf by hypothesis. 

''We take a literal to be an atom, or the negation of an atom. 



If A is M(A1) ,  then Dp(MA) is (x R,wl A 6p(.M~,[wl]) V . . . V 

(x R, w, A &(M~, [W,] )  which, by appealing to the induction hy- 
pothesis, is in nnf. 

As we said at the beginning, there is a substantial amount of structure associated 

with the deep formula of an MET in nnf. In order to expose this structure, we need 

to define dominance as a relation between positive r-literals (which are associated 

with deduction nodes) and literals. 

Definition 5.11 We will say a positive r-literal, r, dominates another literal, I, 
in an MET if the deduction arc associated with r occurs above the node or arc 
associated with 1 in the MET. We will call a sequence of r-literals rl, rz, . . . , r, a 
dominating chain of 1 in an MET if rl dominates I, ri dominates r j  for i < j and 
there is no positive r-literal which dominates I and does not appear in the chain. 

By virtue of the special structure of the class of MET'S, we can state the following 

fundament a1 proposit ion. 

Proposition 5.9 If a path (R, P) E ll contains a literal dominated by an r-literal, 
r, then there is a path (R1, P1) E TT. where: 

R1 = R - {rllrlis dominated by r) 

P1 = P - {p'lp' is dominated by r) 

We will often write (R, P) 4, (R', P') to denote this relationship between paths. 

Proof: 

This can easily be seen by looking at structure of the deep formula of 
the MET. Positively occurring relation literals occur only in deduction 
nodes. Thus, they are attached by a conjunctive operator when the 
formula appears in nnf. Hence, when constructing paths for the deep 
formula, there will be a bifurcation; half of the paths will contain the r- 
literal, and half will contain the path extensions generated by the subtree 
conjoined to the r-literal. 

Definition 5.12 Let 11° = { T I T  E II contains no positive r) 

Proposition 5.10 For any modal formula, 11° # 8 



Proof: 

By the fact that MET'S are non-empty and finite, by repeated appli- 
cation of the Proposition 5.9 we can arrive at a path with no positive 
r-literals. 

4 

It is easily seen that all elements of 11° are minimal with respect to 4. Another 

simple consequence of 4 is the following: 

Proposition 5.11 If T E ll contains a mated pair of pliterals, (11,12), then (11,12) 
is a mating for all rrr' E ll such that rrr' 4 rrr. 

Proof: 

This is, again, a very simple result based on the fact that the rrr' dif- 
fer only by the replacement of relation propositions with more literals. 
Hence, if some mated pair was a mating for rrr, both members of that 
pair appear in T' and hence that mated pair is a mating for T'. l8 4 

Note the existence of 11° implies a result analogous to the standard result in 

modal logic (e.g [ll] pg. 41) which states that the PC-transform of a modal theorem 

is tautologous. These paths correspond to the propositional part of the formula. If 

there is a spanning mating for II, then the only matings for these paths must be 

propositional. Hence, the PC-transform is tautologous. 

Also, note the following property of paths. If there are T and rrr' in II where 

T +, rrr', and r dominates an essential literal in rrr, then the mating for rrr' must occur 

within the relational portion of the path, or be an alternate propositional mating 

for rrr by Proposition 5.11. 

It is convenient to view the set of paths containing a dominating literal of some 

member of 11° as a lattice-like struct~re. '~ For the simplest case, referring to figure 

5.4, assume we have one dominating r-literal, rl, in an MET. The lattice for this 

tree has two elements. Assume there is a spanning mating for these paths. Then 

the least element has a propositional mating. If this is not a mating for the greatest 

element, then rl must dominate an essential literal. Note, since rl is the only 

positive r-literal, it immediately follows that rl must be mated. 

''This is, in fact, a particularization of a more general result stating that a mating for some path 
is a mating for all paths which are extensions of the mated one. 

lg They are in fact a lattice, but we make no use of formal lattic properties here. 
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Figure 3: A Simple Example of a Path Lattice 

Figure 4: A More Complex Example of a Path Lattice 



Suppose we have three relation literals, rl, r2, rs, which dominate sets of literals 

L1, L2, L3 (see figure 5.4). Furthermore, suppose that there are only two possible 

matings for the least element of the lattice. One mating uses only literals under 

r2, and the other uses one literal dominated by rl, and one dominated by rs. If 

we look at all immediate predecessors of the least element, they can all achieve 

propositional matings. However, at the next level there is only one path which 

could have a propositional mating. The greatest element must have a relational 

mating. If r2 was the mated relation literal, then r2 and the propositional mating 

under it would suffice as a spanning mating for the entire lattice. 

If r2 is not mated, then look at the paths rl or rs. In each case, we can find 

paths which, under the stated restrictions, force a mating for those literals. The 

sum of these matings is, in fact, a spanning mating for the entire lattice. 

We would like to generalize these ideas and formalize the notion that certain 

r-literals are essential to a mating, and some are not. By doing this, we can examine 

exactly what structure the essential r-literals have. Intuitively, when we view an 

MET, it seems the only essential r-literals should be those that have some bearing 

on the propositional mating. In the examples this was true; only dominating r- 

literals of the propositionally mated pairs were important. We will formalize this 

by defining a strong mating. 

Definition 5.13 A constraint set, C, for a path (R, P) and a positive r-literal r 
dominating at least one literal in the path is defined as: 

C (r'lr' E R and r does not dominate r') 

We will refer to the pair (r, C) a constraint of the path (R, P). 

Definition 5.14 A literal, I, in a path T has satisfied constraints if: 

1. The are no r-literals dominating I (in which case there are no constraints), or 

2. For all r dominating I, r is identical to a negative occurrence in the associated 
constraint set, and that literal has satisfied constraints. 

Definition 5.15 A strong mating for a path, R E 11° is a mating, (11,12) for R such 
that both l1 and l2 have satisfied constraints. A strong spanning mating is a strong 
mating for all members of IT0. 



A strong mating, then, consists of a propositional mating, matings for a dominat- 

ing chain of the members of that propositional mating, and matings for members of 

the dominating chains of all r-literals mated to members of some dominating chain. 

We will now proceed to show that a strong spanning mating is a spanning mating, 

and that a spanning mating must include a strong spanning mating. 

Proposition 5.12 If T E no, and T 4, T', then r together with the negative 
r-literals in w form a constraint with respect to all literals dominated by r. 

Proof: Directly from the definition of 4 and constraint. 4 

Proposition 5.13 If all matings for a path, T, depend on at least one member of 
some subset wt w, then at least one member of that subset has all constraints 
satisfied. 

Proof: 

We will show by strong induction that some member of the selected set 
must have all of its constraints satisfied. 

The measure we will use is: 

0 if some member of the set has no dominating r-literals. 

the maximum, over all members of the set, of the highest number 
of constraints which might need to be satisfied for that member. 

1. If there are no dominating r-literals for some literal in w', then the 
result is trivial; there are no constraints for that literal. 

Suppose that there are n + 1 constraints for some member. Con- 
sider the path (R1, PI) where all members of the specified set are 
replaced by their immediately dominating r-literal as in Proposi- 
tion 5.9. The only possible matings in this path must use these 
new positive r-literals. Now, consider R1' c R1 consisting of all 
negative r-literals which participate in a mating. Some member of 
this set has 5 n constraints, and all matings depend on this set. By 
the induction hypothesis, at least one member has all constraints 
satisfied. 

Now, consider Ry c R1 consisting of all positive r-literals partici- 
pating in a mating with a r-literal having satisfied constraints and 
negative r-literals with no satisfied constraints. All matings de- 
pend on this set, some member of this has 5 n constraints, and so 



has satisfied constraints. Moreover, this member must be mated 
to another r-literal with satisfied constraints, by the way R: was 
constructed. Hence the original set has some member with satisfied 
constraints. 

Lemma 5.14 If some member of 11° has several matings in some spanning mating, 
the constraints of both members of one of those mated pairs are mated in that 
spanning mating. 

Proof: Consider selecting one member of each mated pair and ap- 
plying Proposition 5.13. At least one member of this set has satisfied 
constraints. We can symmetrically do this with the other member of all 
mated pairs. The question arises as to whether both members of some 
mated pair have satisfied constraints. Suppose not. Then each mated 
pair has at least one member which does not have satisfied constraints. 
Take all members of mated pairs which are unsatisfied. This is a set to 
which Proposition 5.13 can be applied, and hence some member must 
have satisfied constraints. This is a contradiction. Our assumption must 
have been wrong, and both members of some mated pair have satisfied 
constraints in this path. 4 

Proposition 5.15 If A has a spanning mating, then it has a strong spanning mat- 
ing. 

Proof: Every member of 11° has a mated pair in that spanning mating. 
By the previous proposition, some mated pair in each of those paths has 
satisfied constraints with respect to that path. 

Proposition 5.16 In a path set II, A strong spanning mating for 11° of an MET- 
proof yields a spanning mating for II. 

Proof: For some T E 11°, we can consider the set of paths { T ' I T  4 T' )  

and show by induction on 4 that each path will contain a constraint. 
It immediately follows that this path has a mating. Since all paths are 
related in this way to some path in no, the result follows immediately 

1. In the first case, all propositional paths are mated - there no con- 
straints. 



Assume w' occurs at height n + 1. By the induction hypothesis, 
there is a w 4" w" which contains the matched pair of some con- 
straint, and w" + O,w'. There are three cases to consider: 

If r was not part of the constraint in T", then the mating for 
w" will suffice for w'. 
If r, was mated in K", but r does not take part in the constraints 
of the strong mating for T, then there must be other literals in 
w" which do form a constraint, and these still form mating for 
w' . 
Otherwise, the new literal, call it ro, is an essential dominator. 
If its mate in the associated constraint is in this path, then 
there is a mating for this path. However, it may have been pre- 
viously subsumed. There must still be some constraint whose 
the mated pair is in this set. Assume not. Then some positive 
r-literal, rl, in this path dominates the mate for ro. Another 
positive r-literal, r2 dominates the mate for rl (there must be 
one since r,-, is part of a constraint and rl dominates it's mate). 
If we continue this, we eventually get a cycle since there are 
only a finite number of positive r-literals and, by assumption, 
no mating. However, this implies the imbedding relationship 
on the tree is cyclic, and hence there is no MET-proof. This 
is a contradiction, so some constraint is satisfied in this path, 
and hence the path is mated. 

These results do not take into consideration the possible worlds theory. However, 

they extend directly. First, we can extend Definition 5.14 by adding the following: 

3. For all r dominating 1, r is in the x-closure of the associated 
constraint set for the possible worlds theory x, and all literals upon 
which the mate for r depends have satisfied constraints. 

In other words, if we require transitive closure over some set of literals to get a 

mated pair, all the literals used in the transitive deduction have satisfied constraints. 

For reflexivity, our result still holds, since reflexivity adds one literal to a path which, 

if mated, adds no further constraints. Hence, spanning matings and strong spanning 

mating are still equivalent. Symmetry is similar. 



The result also holds for transitivity, though it is more difficult to see. Transi- 

tivity essentially forces paths to triplicate, and adds a positive r-literal to two and a 

negative r-literal to one of the triplicates. We have to make the alIowance that if a 

transitivity is used, we consider the two alternate paths where the positive r-literals 

are mated. We put their mates in a set with all other negative r-literals and see 

that either they have satisfied constraints, or some other literal not depending on 

transitivity has satisfied constraints. We leave the formal proof for the reader. 

By virtue of the results we have obtained, we can now imagine constructing a 

theorem prover using the following algorithm. 

1. Find a mating for 11° of an MET 

2. For each path in 11°, attempt to satisfy the constraints for some mated pair 

in that path. 

This means that we do a standard matching process interleaved with some pro- 

cedural code for checking membership in the x-closure of constraint sets. Moreover, 

there is substantial flexibility in the interaction between searching for matings and 

strong matings. This method, then, appears to offer more flexibility than standard 

tableau methods, and also allows construction of MET'S 

Lastly, this allows use to define a concise version of modal expansion trees. First, 

we need the following result: 

Lemma 5.17 If the restrictions on the accessibility relation are 3V, then if Q := 
Q1 3 Q2 is an expansion tree for Ro 3 a and <Q, is acyclic, then <Q is acyclic. 

This lemma essentially observes that, under certain restrictions, the select ion 

and expansion variables in the "semanticn portion of the tree are not important in 

the analysis of the imbedding relation. 

Proof: 

We will prove the contrapositive form of the statement. So, assume that 
<Q is cyclic. Then there are x and y in SQ and OQ such that x <Q y and 
y <Q x. Thus, a deduction arc labelled with x dominates a generation 
arc labelled with y and a deduction arc labelled with y dominates a 
generation arc labelled with x . But, in the semantic portion of the tree, 



selection arcs dominate expansion arcs, but not vice-versa. Hence, the 
cyclic portion of the relation must occur somewhere within the body of 
the translated formula. Therefore, <Q, is cyclic. d 

Thus, we need only consider the MET's imbedding relation. In view of this and 

the previous results on matings, we can restate the definition of MET proofs as: 

Definition 5.16 An MET M of A is an MET, proof for A if 

1. The theory of x if 3V 

2. <M is acyclic, 

3. The free variable of M does not appear generated in M. 

4. The MET has a strong spanning mating with respect to theory x. 

The last condition is the slight strengthening of the notion of tautology we need 

to make the definition work. In some sense it may seem to be "overspecifying." 

Standard ET's merely state that the deep formula is tautologous - a truth functional 

definitional divorced from any procedure. Our condition presupposes a particular 

procedure for search. However, it seems we need a notion of what p-literals are 

needed for the proof in order to state a condition like tautology for MET's. 



Conclusions and Future Research 

The thrust of this research has been the formalization of a modal proof theory which 

is concise yet analytical (or compositional) in nature. The lack (to our knowledge) 

of other endeavors in this areas has forced our treatment in this thesis has to be 

necessarily broad. However, it appears that this method is a useful vehicle for 

generating proofs which yield more intuition of the underlying semantic structure 

of a formula. 

We developed a formal base for theses systems by defining the LKM family. 

From this we moved to the method of outlines. This yielded a formalism which 

had a computational nature, and was suitable for implementation of systems with 

human interaction. Finally, MET'S have the promise of providing a "franca lingua" 

from which proofs in other systems can be generated. 

There are, of course, several questions left open by this thesis. Foremost among 

these is the question of the power, generality and extensibility of such systems. In 

particular, there what class of languages this approach is sufficient for. For instance, 

we have investigated a temporal modal language due to Mays [16]. However, at the 

time of this writing we do not have the soundness proofs of a Gentzen system for 

this logic. It appears that the a Gentzen system of this form is constructible, and 

that proof representation and theorem proving along the lines presented this thesis 

is doable. 

The use of outlines and possible automatic generation of Suppes style proofs 

based on outlines is different approach than is typically seen in automated theorem 

proving. This style of proof is quite amenable to machine implementation and 

interaction than standard proof theory. It is arguable that tableau methods are 

sufficient methods for computer implement ation, however a tableau refutation does 

not (explicitly) return an explanation of the proof. The impetus of the method of 

outlines is to demonstrate the validity of a formula rather than just answer "yes" or 

"no." This, in turn, could lead to natural language front ends which take a proof 

and generate an explanation or interact with the user. 

There are also the computational issues of designing an outline based proof 

editor which can accomodate many flavors of modal logic by simple changing of 



the transform rules and attached semantic procedures. It is possible to envision an 

MACSYMA or LCF type of system as a tool for logicians based on this method. 

The treatment of METs was mostly proof of existance and correctness. There 

are several questions relating to whether this structure, when extended to the first 

order case, could be considered a Herbrand type of result for modal logic. We have 

some initial intuitions along these lines, and it appears that issues of quantification 

which historically have been difficult to deal with become much clearer in this 

formalism. 

The extended notion of matings presented at the end of chapter 5 seems to offer 

some interesting new avenues into modal theorem proving. The theory presented 

there attempts a propositional mating which must then satisfy other "higher order" 

constraints. However, one can turn the search around and satisfy the relational con- 

straints first. Which way to go is largely a heuristic question - tableau provers being 

only one point on this spectrum. Moreover, we have started to look at intutionistic 

logic and its translation to S4. It may be possible to construct a method of matings 

for intuitionistic logic aIong these lines. 

It appears that tableau methods could be used to generate MET'S. (We can 

in fact show that LKM proofs are constructible from tableau refutations). Since 

tableau methods are the most highly developed computational methods for modal 

logic, this connect ion certainly worth investigating. 

More than anything, however, the concept of different proof representations and 

their inter-relationship needs more exploration. In some sense all proof methods 

are related, though specific methods are tailored toward different purposes. It is 

of the utmost utility to be able to unify divergent methods and translate between 

them. This thesis is a beginning toward this unification. 



A Implementation Status 

A.l  A Natural Deduction Editor 

The preceding formalism for generation of natural deduction proofs has been im- 

plemented as an interactive outline editor written in prolog. The language is a first 

order modal logic in which the Barcan formula and it's converse are valid (i.e the 

domain of all worlds is identical) and all identifiers are rigid. This section presents 

an overview of the data structures and implementation. 

By definition 4.1, a line is a 4-tuple. In prolog, a line is a 5-place term where 

the fifth member is the world ornamenting the formula. Similarly, a 3-place term 

containing a list supporting lines, a sponsoring line, and the accessibility relation 

information. A proof outline is, then, a tuple consisting an (ordered) list of lines, 

and a list of sequents. 

Outline transformations are functions from an outline to another outline. To 

facilitate definition of these functions, a transform language was defined, and a 

compiler written which translated the transform language to prolog rules. The 

compiled rules are a relation between the outline, the lines to be transformed, and 

the new outline resulting from the transformation. The rule fails if some proviso of 

the outline transform is not satisfied. 

Example A.l The following is an example of a transform rule 

d-disj iss ( sponsor(H I -  C). 
support (Hi 1 - A B) . 

add(Line1, [Linei] I - A,stwl ,hyp) , 
add(Line2,[LineilH] I -  C,sw,NJ). 
add(Line3, [Line31 I - B . stwl .hyp) . 
add(Line4,[Line3IHl I -  Cssw,NJ1), 

The reserved words sw and stwl designate the free world in the sponsoring line, 



and the first supporting line respectively. The reserved word re1 designates the 
relation information in the sequent associated with the sponsoring line. 

Proofs can be finished using either the supplied rulepl or rulepa rules, or 

rulep. In the case of rulep, a simple theorem prover is used to verify the validity 

of the formula. 

In order to make such a system usable, a number of addition facilities must be 

available. This section is a quick and cursory summary of the commands available 

in the current natural deduction system. This appendix also contains scripts of 

some example sessions. 

A.l . l  Proof Processing Commands 

This set of commands can be used to transform old proof outlines into new proof 

outlines. All transform rules are identified by name. Information required by them 

(e.g. line numbers, variables) is prompted for automatically. New worlds are of the 

form wn, and variables are of the form vn where n is some integer. The current 

transforms with the proof environment are: 

rulep rulepl rulep2 
pruled druled 
d-always p-always 
d-con j d-dis j d-imp 
d-neg I d-neg2 d-neg3 
d-thinning d-all  d-exist s 

Two special rules which need some explanation are pruled and druled. These 

are special transforms for introducing definitions into the proof. They prompt for 

a predicate and generate a new line by replacing (preserving variable bindings) all 

instances of the predicate by its definition. Definitions are assumed to be in the 

database in the form: 



A.1.2 Informational Commands 

The following commands are available for getting information on a proof currently 

in progress. 

Q print - print the entire proof thus far. 

Q active - print only the active lines in the proof. 

Q sequents - Print the current sequents in the outline. 

Q outer - Print the outer operator of the line which the user supplies to the 

prompt. 

A.1.3 Utility Commands 

These rules print information about the outline editor, and allow the user to save, 

restore, backup, quit, or format a proof. 

Q rules - Print all the deduction rules available. 

Q save - write the proof lines to a file which is prompted for. This is different 

than the dump command. 

Q dump - dump the proof to a file which is prompted for. This file can then 

be the argument of a restore command, i.e. it save the entire state of the 

proof. 

Q done - Quit working on the current proof. 

Q tex - format the proof lines into tex. 

Q restore - This command is typed to the prolog interpreter to restore a 

previously dumped proof. The form is restore (<fname>). 



A.1.4 Syntax 

The following syntactic conventions are used in the examples. 

a and is 8. 

a implication is ->>. 

a is not. 

a f oral1 (X , F) is universal quantification. 

a e x i s t s  (X , F) is existential quantification. 

a L is necessarily. 

a M is possibly. 

A.2 Example Session 

A.2.1 A Proof of the S4 Axiom20 

?- prove(l(p) ->> l ( l ( p ) ) ) .  

rulename: p-imp. 

sponsor: ,. 
rulename: print .  

12 12 1 - l ( p )  i n  wO hyp 

13 12 1 - l ( l ( p ) )  i n  wO ,160 

11 I -  l ( p ) - > > l ( l ( p ) )  i n  wO deduct(l3) 

rulename: p-always. 

sponsor: ,. 

world? w1. 

"This is the session used to generate the natural deduction proof of example 4.1. 
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rulename: p-always. 

sponsor: ,. 

world? w2. 

rulename: print. 

12 12 1 -  l(p) in wO hyp 

16 12 1 - p in w2 ,770 

14 12 1 -  l(p) in wl 1-is 

13 12 1 -  l(l(p)) inwO 1-is 

11 I - l(p)->>l(l(p)) in wO deduct(l3) 

rulename: d-always. 

supporti: ,. 

world? w2. 

rulename: print. 

12 12 1 - l(p) in wO hyp 

16 12 1 - p in w2 1-ia 

15 12 I - p in w2 ,770 

14 12 1 - l(p) in w1 1-is 

13 12 1 -  l(l(p)) inwO 1-is 

11 I - l(p->>l(l(p)) in wO deduct(l3) 

rulename: tex. 

where? 'papers/example.tex'. 

rulename: sequents. 

rulename: rulep2. 

sponsor: ,. 
supportl: ,. 
The proof is: 



12 12 1 - l(p) in wO hyp 

16 12 1 -  p in w2 1-ia 

16 12 1 - p in w2 rulep(l6) 

14 12 1 -  l(p) in w1 1-is 

13 12 1 -  l(l(p)) in wO 1-is 

11 I -  l(p)->>l(l(p)) in wO deduct(l3) 

A.2.2 An Example Using Definitions 

I ?- assert (a df (b c)) . 

Yes 
I ?- prove(a ->> a). 

rulename: p-imp. 

sponsor: ,. 
rulename: druled. 

supportl: ,. 
Definition?a. 

rulename: print. 

12 12 I -  a i n w O  hyp 

14 12 1 - bnc in wO def (12) 

13 12 1 -  a in wO ,161 

11 I -  a->>a in wO deduct(l3) 

rulename: pruled. 

sponsor: ,. 
Definition?a. 

rulename: print. 

12 12 I -  a inwO hyp 

14 12 1 - bnc in wO def (12) 

16 12 I - bnc in wO ,746 



13 12 1 - a i n  wO def (16) 

11 I - a->>a i n  wO deduct(l3) 

rulename: sequents. 

; 14 1 -  16 

rulename: rulep2. 

sponsor: 16. 

support1 : 14. 

The proof is: 

12 12 I - a i n  wO hyp 

14 12 1 -  b-c i n  wO def (12) 

16 12 1 -  bAc i n  wO rulep(14) 

13 12 1 - a i n  wO def (16) 

11 I -  a->>a i n  wO deduct(l3) 

A.3 Generating Modal Expansion Trees 

The theory discussed in Chapter 5 has been implemented in the form of a Prolog 

program. This section presents the code for that theorem prover and an example 

run. This particular implementation is not complete since deduction nodes in trees 

are limited to a single outgoing arc. Also, the definitions of some predicates such 

as member have been omitted. 

/* This s e t  of predicates converts to modal NNF */ 

nnf ((- (A B)), (A1 & A211 :- nnf ((" A) ,All ,nnf ((' B) ,A2). 
nnf ((-  (A & B)) , (A1 A2)) : -  nnf ((' A) ,A11 ,~f((- B) sA2) - 
n.nf("(" A), B) : -  nnf(A,B). 
n.nf(l(A),l(B)) : - nnf (A,B). 
nnf (m(A) .m(B)) : - nnf(A.B). 



nnf(' 1(A) ,m(B)) :- nnf('A,B). 
nnf(- m(A),l(B)) :- nni('A,B). 
nnf(-(A -> B) , ( A1 & Bl)) :- nnf(A.Ai),nnf((' B)sB1). 
&('(A <-> B),C) :- nnf(('(A -> B)) ^ ('(B -> A)),C). 
d ( ( A  ^ B), (A1 B1)) :- mf(A.A1), nnf(~,~l). 
nni((A & B) , (A1 & Bl)) :- nnf(A,Al),nnf(B,Bl). 
d ( ( A  -> B) , ( A1 ^ Bl)) :- d(' A.Al).nnf(~,~l). 
&((A <-> B) ,C) :- nni((A -> B) k (B -> A),C). 
nnf(A,A) :- atom(A1. 
nnf ("A, 'A) : - atom(A) . 

/* An MET is a pair of a tree and a free variable for that tree. This set 
of predicates builds skolemized METs. */ 

expansion(l(A1 ,gen(Y ,L) ,-, even,DV) : - 
synskfn (DV , Y) , 
expansion(A ,L, Y ,even,DV) . 

expansion(m(A),ded([~X,Lll).~,even,DV) :- 
expansion(A , L, X ,even. [X I DV1 ) . 

expansion(A -> B,L1 -> L2,Xseven,DV) :- 
expansion(A.Ll .X,odd,DV) . 
expansion(BSL2,X,even.DV). 

expansion(A <-> B,L1 <-> L2,X,even,DV) :- 
expansion(A -> B ,L1 ,X, even.DV), 
expansion(B -> A, L2 ,X ,  even ,DV) . 

expansion(A & B.Ll & L2,X,even,DV) :- 
expansion(A , L1, X . even, DV) . 
expansion(B , L2, X , even, DV) . 

expansion(A ^ B.Ll LZ,X,even,DV) : - 
expansion(A , Ll . X , even, DV) , 
expansion(B,L2,X,even,DV). 

expansion(' A, -L,X,even,DV) : - expansion(A,L ,X,odd.DV) . 



expansion(A -> B,L1 -> L2,X,oddSDV) : - 
expansion(A . Ll . X . even, DV) , 
expansion(B . L2. X , odd, DV) . 

expansion(A <-> B.L1 <-> L2,X,oddSDV) :- 
expansion(A -> B,Ll,X,odd,DV), 
expansion(B -> A.L2,X.odd,DV). 

expansion(A & B,L1 & L2,XSodd,DV) :- 
expansion(A , L1. X , odd, DV) . 
expansion(B .L2 .X,odd.DV) . 

expansion(A a B,LI a L2,X,odd,DV) :- 
expansion(A,Li,X,odd,DV), 
expansion(B,L2 ,X,odd,DV). 

expansion(" A .-L ,X .odd,DV) : - expansion(A.L,X ,odd.DV) . 
expansion(A,A,-,,.-) :- atom(A). 

/* An MET for a formula is the skolemized version of the tree for the 
formula in nnf. */ 

/* label generates labels for everything in the tree, notes dominance 
relationships, and builds an assoc list of literal names and the literals 
themselves. The result is the collapsing of the tree to what corresponds to 
the PC transform in this system. The connection between literals (which 
are asserted into various structures in the database) and the atoms is 
maintained through the assoc list. This allows us to use Prolog unification 
to do the proper substitution during the theorem proving stage. Note we 
need the occur check. 
* / 

label(~Tree,FV1,PCNewTree,PAlistsRAlist) :- 
FV = sk, 
labell(Tree,FVs~,PCNewTree,PAlist,RAlist). 



labell(gen(NFV,A),FV,Dom~rpair(X,~(N r NFV)) * B,PAlist, 
[[X,'(FVrNFV)]IRAlistl) :- 
gensym (rlit , X) , 
gendomrel (X , Dom) , 
labell(A,NFV,Dom,B,PAlistDRAlist). 

labeli(ded([[NFV,A] lTI)nEVsDom,B a C,PAlist,[[X,FV r NFV] IRAlistl) :- 
T \== [I , 
gensym (rli t , X) , 
assert (dominator (X) ) , 
gendomrel(X,Dom), 
labell(A,NEV,X,B,PAlistlsRA1ist1) , 
label1 (ded(T) ,FV,Dom,C,PAlist2 ,RAlist2) , 
append(PAlistl,PAlist2,PAlist), 
append(RAlist1,RAlist2,RAlist). 

labell(ded( [[NFV,All) ,FV,Dom,B,PAlist , C C  r NFVI IRAlistl) :- 
gensym(r1it ,X) , 
assert (dominator(X) ) , 
gendomrel(X ,Dom) , 
labell(A,NFV,X,B,PAlistsRAlist). 

labell(' A,FV,Dom,pair(X," B),[[X,' B]],[]) :- 
atom(A) , 

gensym (plit , X) , 
B =..[A,FVI, 
gendomrel(X,Dom). 

/* This asserts facts about the dominance relationship; the reason for the 
var is just a handy way to handle the case where there is no dominator */ 

gendomrel (Node, Dominator) : - var(Dominator) ; 
nonvar (Dominator) , assert (dom (Dominator, Node) ) . 

/* Do the pi zero paths split into pairs of plits and rlits. */ 



path(pair (L .PI ,path( [I , [pair (L .PI 1 ) . 
path(rpair(L,R) ,path( [rpair(L ,R)], [I 1). 

hpaths (PCTree ,Paths) : - bagof (Path, path (PCTree ,Path) .Paths) . 

/* The structure needed during the proof search is the labelled tree, the 
paths, and the dominance relationships */ 

gen-struct (Tree ,Paths ,PAlist ,RAlist) : - 
label(Tree ,PC ,PAlist ,RAlist) . 
hpaths(PC , Paths) , 
label-paths (Paths) . 

/* Ok, some restaints stuff. In a path, if I mate this literal, what 
else must be mated. */ 

dchain(Lit,Rel,[n)ominator,Rl] IR]) :- 
dom (Dominator, Lit) . 
removedom(Rel,Dominator,R1), 
dchain(Dominator.Rl ,R) . ! . 

dchain(,,,, [I 1. 

removedom(Set.Lit,Newset) :- bagof(rpair(Lits,P), 
(member(rpair(Lits,P) .Set). 

\+dom(Lit.Lits)), 
Newset). 

removedom ( [I, , , [I) . 

/* Ok, here we go; the theorem proving algorithm. We mate a pair and then 
try to mate the dominators ad infiniturn. Note the mutual recursion -- 
If you mate some positive r-literal, you have to go satisfy its 
dominating chain. */ 



simplemating(~ath, Lit1 ,Lit2) : - 
member (pair (Lit 1, Atom) ,Path) , 
member(pair(Lit2,' Atom),Path). 

satisfy([] ,,, [I 1. 
satisfy( [[Lit ,Set] lR1 ,RAlist , [[Lit ,Rlit ,her] IRestI : - 

assoc (Lit ,RAlist ,Atom) , 
in(rpair (Rlit , ' Atom), Set) , 
satisfy (R,RAlist ,Rest) , 
satisfydominators(R1it,SetsRAlist,Other). 

/* Defining the closure conditions on the set -- 56 doesn't work without 
more sophistication about marking. The structure returned contains 
information on what closure rules were used, and what members of the 
set were matched. */ 

/* So a mating of a propositional path is a simple mating plus satisfaction 
of the extra constraints */ 

mate (path(R1its ,Flits) ,mating(Litl ,Mates1 ,Lit2 ,Mates21 ,RAlist) : - 
simplemating(Plit8 ,Lit1 , Lit2) , 
satisfydominators(Lit1 ,Rlits ,RAlist,Matesl) , 
satisfydominators(~it2 ,Rlits,RAlist ,Mates21 . 

/* A spanning mating is a mating for all paths. */ 

spanning-mating( [F I RI , [Fi I Rll ,t) : - 
mate(F ,F1 ,RAlist) , 
spanning-mating (R , R1, RAlist . 

spanning-mating ( [I , [I , -1 . 



/* Top level callable predicate. Given a tree, what is the mating showing it 
tautologous. */ 

met (X ,M) : - cleanup.gen,stmct (X ,Paths ,PAlist ,RAlist . 
spanning-mat ing (Paths .M,RAlist . 

cleanup :- abolish(dominator,1),abolish(dom,2),abolish~ppath,2~. 

/* In this case, any literal has only one occurrence, and I don't want it to 
backtrack. In the general case, the cut has to go. */ 

assoc (X,List ,Y) : - member( [X,Y1 ,List), ! . 
label-paths ( [F I R] ) : - gensym (path, Y . assert (ppath(Y , F) ) , label-paths (R) . 
label-paths( [I ) . 

/* Hacks to write better */ 

writemate([]) :- nl. 
writemate ([mating(X ,Y ,A,B) IRI ) : - write (XI ,write( - '1 ,write(A) ,nl, 

write('f or '1 ,write(X) ,write ( '  : '1 ,nl, 
writelist (Y) , 
write ( 'for ') ,write (A) .write ( : '1 ,nl. 
writelist (B) . 

Example A.2 

I ?- prove(p -> p). 

*************** The Tree *************** 



I" p l i t l  p l i t2 , skI  

p l i t 2  - p l i t l  
f o r  p l i t 2 :  

f o r  p l i t  I  : 

In this case, there was a propositional mating, and there were no further constraints 
on the propositions involved. 

p l i t 4  - p l i t 3  
f o r  p l i t 4  : 

f o r  p l i t 3 :  
r l i t i  r l i t 2  [I 

In this case, the mating of p l i t 3  with p l i t 4  induced the further constraint that two 
relation literals would be mated - rl i t l  and r l i t 2  as indicated. These correspond 
to the r-literals synthesized from the generation and deduction node in the tree. 
The empty list indicates that there were no constraints induced by this mating. If 
there were, they would appear nested within the list. 

no 
I ?- assert  (t) . 



[ded( [ [sk, ' plit711) A plit8. sk] 

plit8 - plit7 
for plit8 : 

for plit7 : 
rlit4 ref lit [I 

In this case, by changing to system T, we can prove L(p) > p. In this case mating 
plit7 required the use of transitivity as denoted by the ref lit marker. 

[ded( [ Csk6,- plitli] I) A gen(sk4,gen(sk6 ,plit12)) ,sk] 

piitia - piitii 
for pliti2: 



f o r  p l i t l l :  
r l i t 8  tlit ( r l i t 9 ,  rlit 10) [I 

Finally, by going into S4, we can prove Lp > LLp. The tlit marker indicates 
transitivity was used, and that it used r l i t 9  and r l i t 1 O  from the constraint set. 

B Soundness Via First Order Translation 

In this section, we present an alternate soundness proof based on the validity pre- 
serving properties of a first order translation of the formula. We will define the 
-TRANSFORM for converting a modal propositional statement into the appropriate 
first-order non-modal expression. This transformation will encode a modal propo- 
sition, p, into a first-order predicate fi(w), where w signifies the world in which 
w is true,i.e. p ji(w). A modal expression of the form pp will be trans- 
formed into a first order (meta-language) statement expressing the semantics of 
the (object level) modal statement in terms of the possible-worlds relation R, , i.e. 

Lp (XP.Xt.Vx.t R, x 2 Px)fi. 

Definition B.1 The ---TRANSFORM of a formula, a! is: 

where MT is defined by: 

1. MT(p,n) := X ~ n . f i ( ~ n )  where p is atomic 

2. MT(-- p, n) := (XP.XXn. - Psn)MT(p, n) 

3. MT(pl $ p2,n) := (XP~P~.XX~.P~X, $ P ~ x , ) M T ( ~ I , ~ ) M T ( ~ ~ , ~ )  where $ is 
any binary connective. 

4. MT(pp, n) := (XP.XX,.VW,.X,R~W, > Pwn)MT(p, n + 1) for any universal 
modality p 

5. MT(wp,n) := (AP.Xxn.3wn.xnRLwn /\ Pw,)MT(p, n + 1) for any existential 
modality w 



In the following, we will denote the --TRANSFORM of a formula, a, as &, and 
the ---TRANSFORM of sets of formula, @, as 6. 

Example B.l LLp > Lp 
(VX~.WOR~X~ T, ( V X ~ . X ~ R ~ X ~  > j ( ~ 1 ) )  2 VXO.WORLXO 3 ~ ( x o )  

This approach also extends to first-order modal systems with or without the 
Barcan formula or its converse. In this case we would simply add a rule which 
quantifies the bound variable over the ---TRANSFORM of the matrix. For instance, 
in the case where the Barcan and it's converse are valid, we would have: 

MT(Vy a, n) := (XPAx,Vy Px,) MT(a,  n) 

We would then have to establish the convention that the predicates are eztended by 
one argument which must be a world. 

Proposition B.l Definition B. 1 is validity preserving, i.e. 
~ T , S ~ , S S  a if 80 1 

where 8 contains the axiomitization of the appropriate accessibility relation. 

Correctness of various forms of semantic translation for satisfiability or validity 
can be found in [9,4]. In this paper, we will rely on the fact that the --TRANSFORM is 
validity preserving . 

The basic procedure is to show that an LKM-proof of A can be converted to 
an LK-proof of !Ro T, 2. 

Proposition B.2 If A has a LKM proof, then !Ro - has an LK proof. 

Proof: 

1. For a tree of height 0, if 
8; (p), -+ (p), is an axiom, then 8, MT (p, n) w ---, MT (p, n) w 
can be converted to an axiom by repeated application of thinning. 

2. For a tree of height n, we have the following cases: 

If the last rule applied was a rule of propositional calculus, the 
transformation simply of the form: 

8; At - 2 
RuleX 

8; A' + z1 
RuleX 



These transform to2' : ,.. a,& + c1 
RuleX 

and - x,A1 - E1 
RuleX 

% , A  + M ~ ( a , n ) , e  
The validity of the upper sequents follows from the induction 
hypothesis. 
For L-LA we have: 

8;pwt,C -+ 8 
L-IA 

8;(Lp)w,E + 8 

transforms to: 

Given 
RuleX - 

8 + wRLwr ? R , M T ( ~ , ~ ) W ' , ~  -+ 6 
V-IA 

" 
%, 8, wRLwr > M T ( ~ ,  n)wr, f: + B 

several thinnings ,., 
?R,wRLwl > MT(p,n)wl ,g  -+ B 

,., V-IA 
B , V X . W R ~ X  2 M T ( ~ ,  n)z, f: + 8 

By the proviso attached to LIA, we know that the left branch 
closes. The upper sequent of the right branch is the --TRANSFORM of 
the upper sequent of L-IA, and hence closes by the induction 
hypothesis. 
For L-IS we have: 

% U { W R ~ W ' } ; C  -+ p',,B 
L-IS 

transforms to: 

"We have used 6 to denote {MT(B,n)wl(B), E 8). 



The proof of the upper sequent follows from the induction hy- 
pothesis. The only detail is to ensure that V-IS is applicable. 
However, it is easy to show by induction that any free variables 
in the lower sequent must appear in R. Hence, by the proviso 
on L-IS, V-IS is applicable. 

In summary, we have shown that by application of the above transfor- 
mation rules, we can convert an LKM proof to the corresponding LK 
proof. 1 

Proposition B.3 If FLKM A ,  then ELK No > 3. 
Proof: Apply Proposition B.2 to the LKM proof. Apply > -IS to the 
bottom sequent in that structure. 4 

Proposition B.4 The LKM systems are sound. 

Proof: By Proposition B.3, if we have an LKM proof of a, we have 
an LK proof of &. Proposition B.l states that Definition B.l is validity 
preserving. Hence, 

C Hilbert Systems for Modal Logic 

Here we quickly present sound and complete Hilbert style formulations for the 
classical and knowledge logics discussed above. 

Definition C.1 (A Hilbert System for T. S4. and S5) 

The system T consists of the axioms and inference rules of propositional calculus 
with the addition of the axioms 

and the rule of inference 
If F H  p then L p  

The system S4 is T with the addition of the axiom 



LLp 3 Lp 

The system S5 is S4 with the addition of the axiom 

Mp 3 LMp 

The following logic of knowledge is a slightly modified version of that appearing 
in [28]. 

Definition C.2 (A Hilbert System for Modal Logics of Knowledge) 

The basic system consists of the axioms and inference rules of propositional calculus 
with the addition of the axioms 

Ki(p 3 q)  3 (Kip 3 Kiq) 

and the rule of inference 
If I-, p then Kip 

For common knowledge we add the axiom: 

An agent has positive introspection if the following axiom appears: 

An agent has negative introspection if the following axiom appears: 
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