61,481 research outputs found

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    The Mode of Computing

    Full text link
    The Turing Machine is the paradigmatic case of computing machines, but there are others, such as Artificial Neural Networks, Table Computing, Relational-Indeterminate Computing and diverse forms of analogical computing, each of which based on a particular underlying intuition of the phenomenon of computing. This variety can be captured in terms of system levels, re-interpreting and generalizing Newell's hierarchy, which includes the knowledge level at the top and the symbol level immediately below it. In this re-interpretation the knowledge level consists of human knowledge and the symbol level is generalized into a new level that here is called The Mode of Computing. Natural computing performed by the brains of humans and non-human animals with a developed enough neural system should be understood in terms of a hierarchy of system levels too. By analogy from standard computing machinery there must be a system level above the neural circuitry levels and directly below the knowledge level that is named here The mode of Natural Computing. A central question for Cognition is the characterization of this mode. The Mode of Computing provides a novel perspective on the phenomena of computing, interpreting, the representational and non-representational views of cognition, and consciousness.Comment: 35 pages, 8 figure

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    Computer-Aided Derivation of Multi-scale Models: A Rewriting Framework

    Full text link
    We introduce a framework for computer-aided derivation of multi-scale models. It relies on a combination of an asymptotic method used in the field of partial differential equations with term rewriting techniques coming from computer science. In our approach, a multi-scale model derivation is characterized by the features taken into account in the asymptotic analysis. Its formulation consists in a derivation of a reference model associated to an elementary nominal model, and in a set of transformations to apply to this proof until it takes into account the wanted features. In addition to the reference model proof, the framework includes first order rewriting principles designed for asymptotic model derivations, and second order rewriting principles dedicated to transformations of model derivations. We apply the method to generate a family of homogenized models for second order elliptic equations with periodic coefficients that could be posed in multi-dimensional domains, with possibly multi-domains and/or thin domains.Comment: 26 page
    corecore