538 research outputs found

    Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 3: Literature surveys and technical reports

    Get PDF
    The technical effort and computer code developed during the first year are summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis

    Development of an acoustic microscope to measure residual stress via ultrasonic Rayleigh wave velocity measurements

    Get PDF
    High stress in a crucial instrument part can cause failure. Stress detection is one of the aims of nondestructive testing. The velocity change of acoustic waves can be used to detect stress in a material. An acoustic microscope is an instrument which induces and detects acoustic waves and in one mode of operation, is able to measure the velocity of acoustic surface waves. It does this over a very small area and is capable of high spatial resolution;One of the challenges in the measurement of stress is the achievement of high spatial resolution. Since the stress induced velocity shifts are generally small (~0.01%), the required precision of time and distance measurements can be quite high for the short propagation distances required for high spatial resolution. The goal of this dissertation is to measure residual stress via the acoustic wave velocity with spatial resolution on the order of one millimeter or less;There are many types of acoustic waves. The type of interest here are surface waves known as Rayleigh waves. The velocity of these waves are determined by time and distances measurements. The high precision necessary leads to many complications in the measurements. These are described and, for a few cases, overcome;The sound velocity in a material can be used to describe material characteristics other than stress. The instrument was used to measure the velocity of Lamb waves on freestanding diamond films. The possibility of using these velocity measurements as a method of characterizing the diamond films is explored. Attempts at using the acoustic microscope on a variety of materials with a large range of Rayleigh wave velocities led to the discovery of surface waves following the second and third front surface reflections between the lens and the surface of the sample. The explanation of these surface waves and their uses are described;Velocity measurements were made on a sample of silicon carbide during loading in an attempt to measure applied stress. Shifts in the velocity were observed but were not reproducible. The problems with these measurements are described and some possible causes given

    Theory of Probability and Mathematical Statistics

    Get PDF
    У навчальному посібнику розглянуто основні поняття теорії ймовірностей та множин, алгебру множин, доповнено основами теорії множин та графів. Наведені закони розподілу та числові характеристики випадкових величин та їх функцій. Також подані основи потоків подій, марковських процесів та систем масового обслуговування, що дуже актуальні у віртуальних обчислюваннях та хмарних технологіях. Розглянуті початкові статистичні формулювання, вирівнювання і узгодження статистичних розподілів та оцінки їх параметрів. Посібник двомовний – українсько-англійський. Матеріал лекцій представлий у вигляді «два стовпці тексту на одній сторінці» (так звана «книгасорочечка», Англійською «vein book»). Посібник призначений для здобувачів ступеня бакалавра за спеціальностями 121 «Інженерія програмного забезпечення», 126 «Інформаційні системи та технології». Також може бути запропонований для студентів закладів вищої освіти для самостійного (без підказки перекладу) опрацювання з англомовними текстами за фахом, особливо в магістратурі

    Acoustic diffraction from a semi-infinite elastic plate under arbitrary fluid loading with application to scattering from Arctic ice leads

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1989The problem of a low-frequency acoustic plane wave incident upon a free surface coupled to a semi-infinite elastic plate surface, is solved using an analytic approach based on the Wiener-Hopf method. By low-frequency it is meant that the elastic properties of the plate are adequately described by the thin plate equation (kH ≲ 1). The diffraction problem relates to issues in long range sound propagation through partially ice-covered Arctic waters, where open leads or polynya on the surface represent features from which acoustic energy can be diffracted or scattered. This work focusses on ice as the material for the elastic plate surface, and, though the solution methods presented here have applicability to general edge diffraction problems, the results and conclusions are directed toward the ice lead diffraction process. The work begins with the derivation of an exact solution to a canonical problem: a plane wave incident upon a free surface (Dirichlet boundary condition) coupled to a perfectly rigid surface (Neumann boundary condition). Important features of the general edge diffraction problem are included here, with the solution serving as a guideline to the more complicated solutions presented later involving material properties of the boundary. The ice material properties are first addressed using the locally reacting approximation for the input impedance of an ice plate, wherein the effects of elasticity are ignored. This is followed by use of the thin plate equation to describe the input impedance, which incorporates elements of elastic wave propagation. An important issue in working with the thin plate equation is the fluid loading pertaining to sea ice and low-frequency acoustics, which cannot be characterized by simplifying heavy or light fluid loading limits. An approximation to the exact kernel of the Wiener-Hopf functional equation is used here, which is valid in this mid-range fluid loading regime. Use of this approximate kernel allows one to proceed to a complete and readily interpretable solution for the far field diffracted pressure, which includes a subsonic flexural wave in the ice plate. By using Green's theorem, in conjunction with the behavior of the diffracted field along the two-part planar boundary, the functional dependence of ∏D (total diffracted power) in terms of k (wavenumber), H (ice thickness), α (grazing angle) and the combined elastic properties of the ice sheet and ambient medium, is determined. A means to convert ∏D into an estimate of dB loss per bounce is developed using ray theoretical methods, in order to demonstrate a mechanism for acoustic propagation loss attributed directly to ice lead diffraction effects. Data from the 1984 MIZEX (Marginal Ice Zone Experiments) narrow-band acoustic transmission experiments are presented and discussed in this context.I also gratefully acknowledge financial support provided by the WHOI Education Office and the Office of Naval Research

    Language and compiler for algorithmic choice

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 55-60).It is often impossible to obtain a one-size-fits-all solution for high performance algorithms when considering different choices for data distributions, parallelism, transformations, and blocking. The best solution to these choices is often tightly coupled to different architectures, problem sizes, data, and available system resources. In some cases, completely different algorithms may provide the best performance. Current compiler and programming language techniques are able to change some of these parameters, but today there is no simple way for the programmer to express or the compiler to choose different algorithms to handle different parts of the data. Existing solutions normally can handle only coarse-grained, library level selections or hand coded cutoffs between base cases and recursive cases. We present PetaBricks, a new implicitly parallel language and compiler where having multiple implementations of multiple algorithms to solve a problem is the natural way of programming. We make algorithmic choice a first class construct of the language. Choices are provided in a way that also allows our compiler to tune at a finer granularity. The PetaBricks compiler autotunes programs by making both fine-grained as well as algorithmic choices. Choices also include different automatic parallelization techniques, data distributions, algorithmic parameters, transformations, and blocking.by Jason Ansel.S.M

    Numerical modelling of low temperature plasma

    Get PDF
    The intention of this thesis is to gain a better understanding of basic physical processes occurring in low temperature plasmas. This is achieved by applying both analytic and numerical models. Low temperature plasmas are found in both technological and astrophysical contexts. Three different situations are investigated: an instability in electronegative plasmas; electron avalanches during plasma initiation; and a phenomenon called the Critical Ionisation Velocity interaction. Industrial plasma discharges with electronegative gases are found to be unstable in certain conditions. Fluctuations in light emission, particle number densities and potential are observed. The instability has been reproduced in a variety of experiments. Reports from the experiments are discussed to characterise the key features of the instability. An, as yet un-considered, physical process that could explain the instability is introduced. The instability relies on the plasma's transparency to the electric field. This mechanism is investigated using simple zero-dimensional numerical and analytic models. The results from the models are compared to experimental results. The calculated frequencies are in good agreement with the experimental measurements. This shows that the instability mechanism described here is relevant. For the remaining two problems a three-dimensional particle model is constructed. This model calculates the trajectories of each individual particle. The potential field is solved self-consistently on a computational mesh. Poisson's equation is solved using a Multigrid technique. This iterative solution method uses many grids, of different resolutions, to smooth the error on all spatial scales. The mathematical foundation and details of the components of the Multigrid method are presented. Several test cases where analytic solutions of Poisson's equation exist are used to determine the accuracy of the solver. The implemented solver is found to be both efficient and accurate. Collisions are vitally important to the evolution of plasmas. The chemistry resulting from collisions is the reason why plasmas are so useful in technological applications. Electron collisions are included in the particle model using a Monte-Carlo technique. A basic method is given and several improvements are described. The most efficient combination of improvements is determined through a series of test cases. The error resulting from the collision selection process is characterised. Technological plasmas are formed from the electrical breakdown of a neutral gas. At atmospheric pressure the breakdown occurs as an electron avalanche. The particle model is used to simulate the nanosecond evolution of the avalanche from a single electron-ion pair. Special attention is paid to the inelastic collisions and the creation of metastables. The inelastic losses are used to estimate the photon emission from the electron avalanche. The Critical Ionisation Velocity phenomena is investigated using the particle model. When a neutral gas streams across a magnetised plasma the ionisation rate increases rapidly if the speed of the neutrals exceeds a critical value. Collisions between neutrals and positive ions create pockets of unbalanced negative charge. Electrons in these pockets are accelerated by their potential field and can reach energies capable of ionisation. The evolution of such an electron overdensity is simulated and their energy gain under different density and magnetic field conditions is calculated. The results from the simulation may explain the discrepancy between laboratory and space experiments

    Propagation and dissipation of VHF Rayleigh waves in Scotland

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D41717/82 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore