60,823 research outputs found

    Progressive transmission and display of static images

    Get PDF
    Progressive image transmission has been studied for some time in association with image displays connected to remote image sources, by communications channels of insufficient data rate to give subjectively near instantaneous transmission. Part of the work presented in this thesis addresses the progressive transmission problem constrained that the final displayed image is exactly identical to the source image with no redundant data transmitted. The remainder of the work presented is concerned with producing the subjectively best image for display from the information transmitted throughout the progression. Quad-tree and binary-tree based progressive transmission techniques are reviewed, especially an exactly invertible table based binary-tree technique. An algorithm is presented that replaces the table look-up in this technique, typically reducing implementation cost, and results are presented for the subjective improvement using interpolation of the display images. The relevance of the interpolation technique to focusing the progressive sequence on some part of the image is also discussed. Some aspects of transform coding for progressive transmission are reviewed, intermediate image resolution and most importantly problems associated with the coding being exactly invertible. Starting with the two-dimensional case, an algorithm is developed, that judged by the progressive display image can mimic the behaviour of a linear transform while also being exactly invertible (no quantisation). This leads to a mean/difference transform similar to the binary-tree technique. The mimic algorithm is developed to operate on n-dimensions and used to mimic an eight-dimensional cosine transform. Photographic and numerical results of the application of this algorithm to image data are presented. An area transform, interpolation to disguise block boundaries and bit allocation to coefficients, based on the cosine mimic transform are developed and results presented

    Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding

    Get PDF
    Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties

    Multiplicative Multiresolution Decomposition for Lossless Volumetric Medical Images Compression

    Get PDF
    With the emergence of medical imaging, the compression of volumetric medical images is essential. For this purpose, we propose a novel Multiplicative Multiresolution Decomposition (MMD) wavelet coding scheme for lossless compression of volumetric medical images. The MMD is used in speckle reduction technique but offers some proprieties which can be exploited in compression. Thus, as the wavelet transform the MMD provides a hierarchical representation and offers a possibility to realize lossless compression. We integrate in proposed scheme an inter slice filter based on wavelet transform and motion compensation to reduce data energy efficiently. We compare lossless results of classical wavelet coders such as 3D SPIHT and JP3D to the proposed scheme. This scheme incorporates MMD in lossless compression technique by applying MMD/wavelet or MMD transform to each slice, after inter slice filter is employed and the resulting sub-bands are coded by the 3D zero-tree algorithm SPIHT. Lossless experimental results show that the proposed scheme with the MMD can achieve lowest bit rates compared to 3D SPIHT and JP3D

    Optimal modeling for complex system design

    Get PDF
    The article begins with a brief introduction to the theory describing optimal data compression systems and their performance. A brief outline is then given of a representative algorithm that employs these lessons for optimal data compression system design. The implications of rate-distortion theory for practical data compression system design is then described, followed by a description of the tensions between theoretical optimality and system practicality and a discussion of common tools used in current algorithms to resolve these tensions. Next, the generalization of rate-distortion principles to the design of optimal collections of models is presented. The discussion focuses initially on data compression systems, but later widens to describe how rate-distortion theory principles generalize to model design for a wide variety of modeling applications. The article ends with a discussion of the performance benefits to be achieved using the multiple-model design algorithms

    Steerable Discrete Cosine Transform

    Get PDF
    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms

    Child labour: the case study in Bangladesh

    Get PDF
    Child labour involves of person that age below than 17 years old. Child labour often happen in poor countries such as Bangladesh. In Bangladesh, the issue of child labour might be the biggest issue. Bangladesh come up with Bangladesh Labour Act (BLA) that did not allow any person age below from fourteen years old to work (Nawshin et al, 2019). One of the aim or purpose of this act is to prevent teen workers in order to get the proper payment of any work. This is because when organization use child labour, they might be paid at lower rate because children usually do not have much responsible in their family compared to teen workers. This indirectly cause an economic matter in a family
    corecore