3 research outputs found

    Organelle trafficking of chimeric ribozymes and genetic manipulation of mitochondria

    Get PDF
    With the expansion of the RNA world, antisense strategies have become widespread to manipulate nuclear gene expression but organelle genetic systems have remained aside. The present work opens the field to mitochondria. We demonstrate that customized RNAs expressed from a nuclear transgene and driven by a transfer RNA-like (tRNA-like) moiety are taken up by mitochondria in plant cells. The process appears to follow the natural tRNA import specificity, suggesting that translocation indeed occurs through the regular tRNA uptake pathway. Upon validation of the strategy with a reporter sequence, we developed a chimeric catalytic RNA composed of a specially designed trans-cleaving hammerhead ribozyme and a tRNA mimic. Organelle import of the chimeric ribozyme and specific target cleavage within mitochondria were demonstrated in transgenic tobacco cell cultures and Arabidopsis thaliana plants, providing the first directed knockdown of a mitochondrial RNA in a multicellular eukaryote. Further observations point to mitochondrial messenger RNA control mechanisms related to the plant developmental stage and culture conditions. Transformation of mitochondria is only accessible in yeast and in the unicellular alga Chlamydomonas. Based on the widespread tRNA import pathway, our data thus make a breakthrough for direct investigation and manipulation of mitochondrial genetics

    The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Get PDF
    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage
    corecore